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In dense stellar regions, highly eccentric binaries of black holes and neutron stars can form through
various n-body interactions. Such a binary could emit a significant fraction of its binding energy in a
sequence of largely isolated gravitational-wave bursts prior to merger. Given expected black hole and
neutron star masses, many such systems will emit these repeated bursts at frequencies within the sensitive
band of contemporary ground-based gravitational-wave detectors. Unfortunately, existing gravitational-
wave searches are ill suited to detect these signals. In this work, we adapt a “power stacking”method to the
detection of gravitational-wave signals from highly eccentric binaries. We implement this method as an
extension of the Q transform, a projection onto a multiresolution basis of windowed complex exponentials
that has previously been used to analyze data from the network of LIGO/Virgo detectors. Our method
searches for excess power over an ensemble of time-frequency tiles. We characterize the performance of
our method using Monte Carlo experiments with signals injected in simulated detector noise. Our results
indicate that the power stacking method achieves substantially better sensitivity to eccentric binary signals
than existing localized burst searches.
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I. INTRODUCTION

Stellar mass compact object binary coalescences are
among the most promising sources of gravitational-wave
(GW) emission that are hoped to be detected by the next
generation of ground-based GW observatories, including
LIGO [1], VIRGO [2], GEO600 [3], and KAGRA(LCGT)
[4]. Relevant compact objects are black holes (BH) and
neutron stars (NS), and when the latter are involved,
correlated electromagnetic and neutrino emission could
occur. Though neutrinos will not be detectable except for
(exceedingly rare) events within our galactic neighborhood,
a broad class of putative electromagnetic counterparts
could be observed to distances where GW emission will
be within reach of the detectors. These have been suggested
to include short gamma ray bursts, kilonova or macronova
(radio to UV emission on time scales of a day to a week
from radioactive decay of ejected material [5–7]), radio
emission that occurs weeks to years later from interaction
of the outflow with the interstellar medium [8], radio to
x rays on second-to-day time scales from shocks in binary
NS mergers [9], emission from tidally induced crust
shattering [10,11], and bursts from the eventual collapse
of hypermassive NSs following binary NS mergers [12,13].
It is thus easy to anticipate that being able to detect and
identify properties of mergers will reveal a wealth of
information: characteristics of source populations, testing
general relativity in the dynamical strong field regime, and

for mergers with NSs, learning about their composition and
details of the electromagnetic emission mechanisms.
From a GW data analysis perspective, an important class

of compact object coalescences are the so-called quasicir-
cular inspirals: binaries that are born with a sufficiently
large periapse that GWemission will effectively circularize
the orbit prior to it entering the LIGO band,1 regardless of
the initial eccentricity of the orbit. Optimal template-based
searches are well adapted to this class of binary, and
significant progress has been made toward implementing
them in current analysis pipelines [14]. There are also
astrophysical mechanisms that can produce binaries that
have high eccentricity while emitting in the LIGO band.
These include dynamical capture via energy loss to GW
emission during close 2-body encounters in a dense cluster
[15,16], a merger induced during a binary single star
interaction in a similar environment [17], and Kozai-
resonant enhancement of eccentricity in a hierarchical
triple system [18–22]. Whereas for quasicircular binaries,
the GW emission occurs primarily at twice the orbital
frequency so that systems enter the LIGO band at orbital
frequencies of ∼10 Hz, this is no longer the case for
eccentric binaries. Since eccentric binaries emit GWs at the
orbital frequency and at higher harmonics of the orbital
frequency, GW signals from eccentric sources will enter the
LIGO band at lower mean orbital frequencies. Event
rates are highly uncertain for both classes of binaries
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1For brevity, we refer to the ground-based detector band as the
“LIGO” band and loosely define it to span GW frequencies
between 10 and 2000 Hz.
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(see [23] for a review of estimates for quasicircular inspiral
rates, and [11,15,16,24,25] for estimates and discussions of
dynamical capture systems), though it is generally expected
that quasicircular inspirals will be prevalent. Even if
eccentric mergers are rare, they could be exquisite labo-
ratories to learn about the physics of compact object
mergers mentioned above for several reasons. The GW
emission is concentrated in bursts about periapse passage,
where velocities are much higher than comparable emission
frequencies in a quasicircular inspiral. Hence, more total
power is emitted in the dynamical strong field regime of
GR, which lacks constraints from existing observations and
experiments. This further has the consequence that when
NSs are involved there is more potential for matter
disruption, ejection and formation of more massive accre-
tion disks [26–30]. This can significantly affect electro-
magnetic emission processes and, if these events are
frequent enough, the heavy r-process element abundances
in the Universe [29,31].
For GW data analysis, these properties of high-

eccentricity mergers present several problems.
Quasicircular templates, unsurprisingly, do not perform
well over much of the parameter space in searches of
simulated data, due to large mismatches with the eccentric
waveforms [25,32]. Perturbative waveform generation
methods have not yet been extended to sufficient accuracy
to be used as templates for high-eccentricity binaries
(however, see recent advances in this regard for the
effective-one-body approach [33]). And given that the
majority of the energy emission occurs in concentrated
bursts at high v=c, one can anticipate that these methods
would need to be extended to quite high order in v=c to
obtain waveforms that have the requisite phase coherence
for multiple burst mergers. With regard to full numerical
solutions, the long time scales between bursts for a fixed
periastron distance suggest that it may be computationally
impossible to generate accurate numerical template banks
of entire inspiral-merger-ringdown (IMR) events for the
Advanced-LIGO detector era.
This brings us to the motivation behind the work

presented here, to develop a practical search strategy that
will increase the volume of the Universewithin reach of GW
observatories for high-eccentricity IMR events, as measured
against existing quasicircular inspiral and unmodeled burst
searches. Our approach is to adapt the incoherent (power)
stacking method introduced in [34] to search for GW
emission coincident with soft gamma-ray repeater events.
There, the observed time and duration of each individual
burst from the soft gamma-ray repeater was used to define a
sequence of time-frequency tiles in the GWdata stream over
which power would be integrated, and a statistically
significant excess relative to detector noise was searched
for. Here, we use model IMR waveforms to inform the
choice of timing for an ensemble of time-frequency tiles,
and we search for excess power in the sum over each

member of the ensemble. Thus, we still need a high-
eccentricity “template” bank; however, the accuracy
requirements are significantly less than what would be
required for a matched filter search. Effectively, the model
needs to predict the timing of each burst well enough to
ensure that the majority of the power of the bursts occurs at
those times to within a prescribed, tunable uncertainty
interval. This requirement is much less stringent than the
need to accumulate much less than a cycle in phase error,
which is a requirement for efficient matched filtering. The
downside of power stacking is that it is obviously not as
optimal as matched filtering. If each burst in a sequence is
identical, power stacking would accumulate a signal-to-
noise ratio (SNR) as N1=4 compared to N1=2 for matched
filtering in an N-burst event. For IMR events the bursts do
evolve with time, and in particular, when folded in with
model detector noise, this scaling does not generally hold.
Nevertheless, we show here that power stacking can still
achieve a significant gain compared to single-burst searches.
The remainder of this work is structured as follows. In

Sec. II, we review the model, introduced in [25], that we use
to generate gravitational waveforms. The model follows
equatorial geodesic motion on a Kerr BH background,
coupled to quadrupole GW energy and angular momentum
loss to evolve the parameters of the orbit with time. Though
the model does not contain all the relevant parameters or,
likely, the needed accuracy to be used for a “real” search, it
captures enough of the physics of eccentric signals that it is
adequate to use to develop the power stacking algorithm. In
Sec. III, we describe some of the basics of time-frequency
search methods for unmodeled gravitational-wave bursts
that provide the building blocks for our targeted search. In
Sec. IV, we introduce the power stacking method for
searching for gravitational-wave signals from high-
eccentricity IMR events. It is beyond the scope of this work
to explore all the intricacies and details that would need to be
worked out to develop this method into a mature search
strategy. These include issues of parameter extraction and
degeneracies, required accuracy of thewaveformmodel and
effects of modeling error, the efficacy of themethod over the
full range of relevant binary parameters, and analysis with
multiple detectors. However, we do begin to answer some of
these questions using Monte Carlo simulations over a
limited range of parameters for a single detector with
simulated noise. Our results suggest that power stacking
could increase the detectable horizon distance by asmuch as
a factor of 3 compared to single burst searches over much of
the parameter space studied (but on the flip side, it is still a
similar factor less thanwhat could be achievedwithmatched
filtering), and it is quite robust to waveform modeling
uncertainties. Finally, we discuss directions for future work
in Sec. V. We will use geometrized units (G ¼ c ¼ 1) for
developing the method, but we will specify units in the
results section when we apply the method to signals
observed by specific detectors.
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II. WAVEFORM MODEL

As mentioned in the Introduction, neither existing full
numerical nor perturbative methods of calculating highly
eccentric IMR waveforms are likely to be accurate enough
to be of use in an optimal matched filter search, motivating
the search for alternative search strategies. Fortunately, to
be able to develop new analysis methods and compare to
matched filtering, we do not need extremely accurate
waveforms. Instead, the model waveforms need only
capture the qualitative features of highly eccentric signals
that are relevant to the data analysis. These waveforms then
define the “true” signals injected into simulated detector
noise; likewise, they are used to define the optimal SNR
that could be achieved with a matched filter search as the
baseline to compare with the alternative approach.
The binary IMR model we use was introduced before in

[25], though since it plays a central role in the rest of this
paper, we review it here (see Figs. 1 and 2 for a sample
inspiral trajectory and a corresponding gravitational

waveform computed with this model). It is a hybrid
composed of two components: an effective Kerr geodesic
description of the inspiraling binary sourcing quadrupole
radiation and a merger-ringdown model originally devel-
oped for quasicircular systems. We describe these compo-
nents separately below.

A. Inspiral model

Wemodel the inspiral phase beginning with geodesiclike
motion in an effective Kerr geometry. The total massM and
angular momentum J ¼ aM of the Kerr geometry are set to
the (instantaneous) net rest mass and sum of spin and
orbital angular momenta of the binary, respectively, while
the parameters of the geodesic are the (instantaneous)
reduced energy and orbital angular momentum of the
binary. This is akin to an effective-one-body reduction,
and the reason we include orbital angular momentum in the
spin of the effective black hole is that this was shown to
better reproduce zoom-whirl-like behavior in a similar
geodesic model of equal-mass merger simulation results
[35]. Note though that in this study we only consider
spinless binary components, so the spin of the effective
Kerr black hole is entirely due to orbital angular momen-
tum. This work could potentially be extended to include
an effective treatment of spin-orbit interaction for spins

FIG. 1 (color online). Simulated trajectory of a binary with
parameters M ¼ 10M⊙, rp ¼ 8M, mass ratio q ¼ 1, and initial
eccentricity e0 ¼ 1 as computed using the model described in the
text. Colors correspond to the magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2þ þ h2×

p
of emitted

gravitational radiation, and the integration is stopped when r
reaches the innermost photon orbit. The radial coordinate is given
in units of M. See Fig. 2 for the waveform corresponding to
this orbit.

FIG. 2. Simulated gravitational-wave strain hðtÞ computed
using the model described in the text for a binary with parameters
M ¼ 10M⊙, rp ¼ 8M, q ¼ 1, e0 ¼ 1 at 100 Mpc and optimally
oriented. The bottom panel is a close-up of the time of merger of
the signal shown in the top panel.
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aligned with the angular momentum, by including con-
tributions from both the spin and orbital angular momenta
in the spin of the effective Kerr background. However,
since this model has only been vetted for the case of
nonspinning binaries, we restrict our study to that case
as well.
We solve the geodesic equation using the Boyer-

Lindquist form of the Kerr metric:

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Ma2rsin2θ

Σ

�
sin2θdϕ2

−
4Marsin2θ

Σ
dtdϕ; ð1Þ

where

Σ ¼ r2 þ a2cos2θ;

Δ ¼ r2 þ a2 − 2Mr:

That the initial binary members have zero spin implies that
there will be no spin-induced orbital plane precession;
hence, the relevant geodesics are equatorial (θ ¼ π=2) and
uniquely described by the two reduced energy and angular
momentum parameters. We characterize each binary by the
mass ratio q (q ∈ ð0; 1�), the initial periapse rp and initial
eccentricity e0. At each time step of the geodesic integration
we consider the black hole and geodesic parameters to be
constant. To incorporate the consequences of gravitational-
wave emission, we adjust these parameters between time
steps as follows. First, we map the trajectory to the center-
of-mass frame in a flat Cartesian space; specifically, if m1

and m2 are the masses of the two bodies in the binary, and
ðr;ϕÞ are the Boyer-Lindquist coordinates of the geodesic,
the Cartesian coordinates of the bodies are ~x1 ¼ ðm2=MÞ~R
and ~x2 ¼ ðm1=MÞ~R, with ~R ¼ rðcosϕx̂þ sinϕŷÞ. Then,
using quadrupole formulas, we compute the waveform and
energy and angular momentum radiated using the latter two
quantities to adjust the parameters of the geodesic and Kerr
metric accordingly. The integration is terminated when the
radial coordinate r reaches the innermost circular photon
orbit (or “light ring”) rLR,

rLR ¼ 2M

�
1þ cos

�
2

3
cos−1ð−a=MÞ

��
; ð2Þ

at which point we transition to the merger-ringdown
waveform, discussed next.
The above inspiral model is clearly ad hoc, yet as

described in [25] it matches numerical results from single,
small periapse (rp) encounters quite well, and it approaches
the results from PN theory in the limit of large rp.

B. Merger model

The merger-ringdown phase is modeled using the
implicit rotating source (IRS) model [36,37]. The model
approximates the gravitational radiation emitted by a
coalescing binary using an effective rigidly rotating source
with adiabatically evolving multipole moments. In the IRS
model, the phase evolution of emitted gravitational waves
asymptotically approaches the least-damped quasinormal
mode frequency ωQNM:

ωðtÞ ¼ ωQNMð1 − f̂Þ; ð3Þ

f̂ ¼ c
2

�
1þ 1

κ

�
1þκ

�
1 −

�
1þ 1

κ
e−2t=b

�
−κ
�
; ð4Þ

where c and κ are free parameters of the model and b ¼
2Q=ωQNM is a function of the quality factor Q of the final
BH. The quality factor Q is approximately the number of
oscillations required for the energy of the oscillating system
to be attenuated by a factor of e2π . The parameters c and κ
are fixed as constants that give good fits to numerical data
for a wide range of binary parameters [25,36].
The amplitude is modeled by

AðtÞ ¼ A0

ωðtÞ
� j _̂fj
1þ αðf̂2 − f̂4Þ

�1=2

; ð5Þ

where A0 is an overall amplitude factor and α is a free
parameter that is chosen such that it is a good fit to
numerical simulations (see [25]).

III. TIME-FREQUENCY ANALYSIS

As illustrated in Fig. 2, the waveform of a typical high-
eccentricity binary begins in a repeated burst phase, with
the instantaneous eccentricity steadily decreasing with each
burst. If the initial periapse is sufficiently large, the orbit
will eventually circularize. However, for much of the
parameter space relevant to dynamical capture [25], binary
single interaction induced mergers [17] and Kozai-
resonance driven mergers [21,22], some fraction, if not
all, of the GW energy emitted within the LIGO band will
come from the repeated burst phase.
Matched filtering is the optimal detection strategy when

the signal waveform can be precisely modeled. However, as
discussed in the Introduction, eccentric waveforms where
most of the observable energy is within the repeated burst
phase are poor candidates for matched filtering today. For
full numerical simulations, this is because computational
resources do not exist to produce accurate template banks
for the full range of relevant parameters. Perturbative
methods have not been developed to sufficiently high order
to provide the requisite phase accuracy over the lifetime of
the typical signal.
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On the other hand, time-frequency methods, though
suboptimal, can be effective for unmodeled or poorly
modeled events. For GW searches to date, these have only
been developed for single, isolated bursts [38], with the
notable exception of a power stacking method targeting
emission associated with soft gamma ray repeater events
[34]. The goal of our work is to adapt this latter method to
highly eccentric IMR events. In the remainder of this
section we give an overview of time-frequency analysis
and, specifically, the Q transform that underlies the power
stacking procedure described in subsequent sections.
A time-frequency analysis begins by constructing a time-

frequency representation of the detector data xðtÞ. To do so,
we choose a two-parameter family of basis functions
fψðτ; fÞg that covers a region of interest in time-frequency
space. Then, the projection of xðtÞ onto these basis functions
is computed. For example, in the case of a short-time Fourier
transform (STFT), the projections Xðτ; fÞ are given by

Xðτ; fÞ ¼
Z

∞

−∞
xðtÞwðt − τÞe−2πiftdt; ð6Þ

where wðtÞ is a window function, such as a Hann window.
The basis can be specialized if it is known that the class of
target waveforms projects preferentially onto a particular
family of functions.
Once a time-frequency representation has been con-

structed, bursts can be detected by searching for excess
power in a time-frequency tile above the power expected
for detector noise alone [39]. If this excess power is above
some threshold (set by the desired false alarm rate), an
event is registered. Examples of time-frequency methods
include the TFCLUSTER algorithm [40]; Waveburst,
which uses a wavelet decomposition [41]; and the Q
pipeline [42]. We have chosen to use the Q pipeline as
the basis for our search method for eccentric binaries, and
so in the remainder of this section we provide some details
on the Q pipeline.

A. The Q transform

The Q pipeline is one example of a time-frequency
method used to search for poorly modeled gravitational-
wave bursts. The key step in the method is theQ transform,
which is the projection of time series data onto a multi-
resolution basis of windowed complex exponentials. Recall
that we want to choose a family of basis functions that are
each “well localized” in time and frequency. For any basis
function ψðtÞ, we define its characteristic center time τ and
the characteristic center frequency ϕ as follows:

τ ¼
Z

∞

−∞
tjψðtÞj2dt; ð7Þ

ϕ ¼ 2

Z
∞

0

fj ~ψðfÞj2df; ð8Þ

where in the definition of ϕ we include a factor of 2 since
we only integrate over positive frequencies. The squared
uncertainty in time and frequency of ψðtÞ is defined by the
corresponding variances:

σ2t ¼
Z

∞

−∞
ðt − τÞ2jψðtÞj2dt; ð9Þ

σ2f ¼ 2

Z
∞

0

ðf − ϕÞ2j ~ψðfÞj2df: ð10Þ

For bursts with no zero-frequency content, these quantities
are constrained by an uncertainty relation [43]:

σtσf ≥
1

4π
: ð11Þ

Moreover, this minimum uncertainty limit is achieved by
Gaussian-windowed complex exponentials [43]:

ψðtÞ ¼
�

1

2πσ2t

�
1=4

exp

�
−
ðt − τÞ2
4σ2t

�
exp½2πiϕðt − τÞ�

¼
�
8πϕ2

Q2

�
1=4

exp

�
−
4π2ϕ2ðt − τÞ2

Q2

�

× exp½2πiϕðt − τÞ�; ð12Þ

where the dimensionless quality factor Q (not to be
confused with the quality factor used in the IRS ringdown
model discussed in Sec. II B) is the ratio of center
frequency to uncertainty in frequency:

Q ¼ ϕ

σf
: ð13Þ

Intuitively, this Q parameter can be understood as the
number of oscillations of the windowed sinusoid, as
illustrated in Fig. 3. Alternatively, this parameter can
also be thought of as controlling the aspect ratio of ψðtÞ
[as given by (12)] in time-frequency space: ignoring the
normalization factor, ψðtÞ in the low-Q limit is a delta
function in time that is localized in time but not in
frequency; in the high-Q limit, we recover the familiar
Fourier basis that is localized in frequency but not in time.

B. The Q-transform basis

In a general search for unmodeled gravitational-wave
bursts, a basis of minimum uncertainty functions described
by (12) allows the time-frequency structure of an arbitrary
burst to be maximally resolved. Since one then does not
have a priori knowledge of the duration of a burst, the Q
transform uses a multiresolution basis that resolves struc-
ture over multiple characteristic time and frequency scales.
For the basis of windowed complex exponentials, this is
controlled by the Q parameter. Therefore, the Q transform
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is a projection onto a three-parameter family of basis
functions fψðt; τ;ϕ; QÞg.
Note that this multiresolution basis is, in general, not

orthogonal. However, since the goal of the Q pipeline is
burst detection rather than signal reconstruction, the lack of
orthogonality is not a significant concern. The only caveat
is that we may need to be careful in accounting for
statistical correlation between projections onto overlapping
basis functions.
In choosing the number and placement of basis functions

to cover the targeted parameter space, we want any well-
localized burst in the targeted parameter space to be a good
match to some basis function in order to maximize the
chances of detection. Simultaneously, the chosen basis
should be as sparse as possible in the interest of computa-
tional efficiency. LetΨ be the space of normalized Gaussian-
windowed complex exponentials within some target
parameter space ½τmin; τmax� × ½ϕmin;ϕmax� × ½Qmin; Qmax�.
In the following, we set τmin ¼ 0 and τmax to the duration
of the signal of interest. The tradeoff between the competing
goals described above is parametrized by the mismatch
parameter μmax, which we define for a given (finite) basis
fψg ⊂ Ψ as

μmaxðfψgÞ ¼ max
φ∈Ψ

min
ψ∈fψg

ð1 − jhφjψij2Þ; ð14Þ

where hφjψi is a simple unweighted time-domain inner
product between φ and ψ given by

hφjψi ¼
Z

∞

−∞
φ�ðtÞψðtÞdt: ð15Þ

Equation (14) represents the worst-case signal loss due to a
mismatch between a well-localized burst φ ∈ Ψ and the

best-match basis function ψ ∈ fψg. Intuitively, a sparser
basis leads to a greater value of μmax and vice versa.
To select a basis, we use the following procedure: first,

we fix some value μ > 0 and construct a basis fψg such
that μmaxðfψgÞ ≤ μ over the target parameter space. It can
be shown that this bound is achieved by a basis that is
logarithmically distributed inQ, logarithmically distributed
in ϕ, and linearly distributed in τ [[42] Sec. 3.2.2].

C. Statistics

We assume that the detector noise nðtÞ is stationary white
noise that is Gaussian distributed. The normalized energy Z
for a basis function ψ is then defined as

Z ¼ jhψ jxij2
E½jhψ jnij2� ; ð16Þ

where x is the detector output and E½·� is the expectation
value of the argument. When the Q transform is applied to
stationary white noise, this normalized energy is exponen-
tially distributed with unit mean [42]:

fðZÞdZ ¼ expð−ZÞdZ: ð17Þ
This normalized energy can be related to the SNR obtained
via matched filtering. Let xðtÞ ¼ sðtÞ þ nðtÞ, where sðtÞ
denotes the signal. Let X ¼ hψ jxi, S ¼ hψ jsi and
N ¼ hψ jni. Then jXj2 ¼ jSj2 þ jNj2 þ jSjjNj cos θ, where
θ is a uniformly distributed phase term. Therefore,
E½jXj2� ¼ jSj2 þ E½jNj2�, and

E½Z� ¼ E½jXj2�
E½jNj2� ¼

jSj2
E½jNj2� þ 1: ð18Þ

If the (two-sided) power spectral density SnðfÞ varies
slowly over the bandwidth of ψ , then E½jNj2� ≈ 2SnðϕÞ,
where ϕ is the center frequency of ψ . We recognize
jSj2=SnðϕÞ as the square of the SNR obtained via matched
filtering using the template ψ (again, to within the
approximation that Sn varies slowly). Therefore, if sðtÞ
is a sine-Gaussian burst with optimal SNR ρ, the normal-
ized energies Z satisfy the relation

E½Z� ¼ 1

2
ρ2 þ 1: ð19Þ

The factor of 1=2 can be interpreted as the “cost” of
projecting over complex basis functions, which is done
since the phase of the signal is unknown.

D. Example

As an example application of the Q transform, we inject
a sine-Gaussian burst hðtÞ ¼ h0 exp ½−4π2ϕ2ðt − τÞ2=Q2�×
exp ½2πiϕðt − τÞ� with τ ¼ 0, ϕ ¼ 256 Hz, and Q ¼ 8 into
simulated noise characteristic of Initial LIGO. The burst is

FIG. 3. The real part of two Q-transform basis functions
corresponding to parameters ϕ ¼ 10 Hz and τ ¼ 0 s, with
Q ¼ 10 (solid line) and Q ¼ 20 (dotted line). The functions
have been normalized such that ∥ψ∥ ¼ 1.
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injected with optimal SNR ρ ¼ 14. The resulting time
series is Q transformed with mismatch parameters μ ¼ 0.2
and μ ¼ 0.01. For ease of comparison between the two
values of μ, we choose fixed Q planes of Q ¼ 4; 8; 16,
though in practice these values will depend on μ. The result
is shown in Fig. 4.
The lower value of μ results in a higher-resolution time-

frequency image at the cost of computation time. Note that
the highest observed Z values (in theQ ¼ 8 transforms) are
Z ≈ 100, as expected from the SNR of the injected signal
and (19).

IV. DETECTING GRAVITATIONAL WAVES
FROM HIGHLY ECCENTRIC BINARIES

Since existing methods of gravitational-wave detection
are poorly suited for detecting signals emitted by highly
eccentric binaries, we seek a detection algorithm that
(1) improves on existing search methods for unmodeled,

well-localized bursts, and
(2) is more robust than matched filtering to mismatches

between the template and the signal.
In this section, we describe a novel search method that

specifically targets gravitational waves from eccentric

binaries. We first give a general outline of the method
before describing an implementation based on the Q
transform and then discuss the statistical properties of
the method and give an example application. Finally, we
characterize the properties and effectiveness of the method
using Monte Carlo simulations.
The main idea is a variant of excess power methods,

though instead of identifying a single time-frequency tile
whose power exceeds a certain threshold (as is done in
searches for well-localized bursts), we instead sum excess
power over a set of tiles. In particular, we do not require that
the signal be detectable in any single time-frequency tile.
This “power stacking” strategy has been used to search for
gravitational-wave signals from soft gamma repeater bursts
by aligning repeated bursts with electromagnetic triggers
[34,44]. In our method, tile selection is guided by our
waveform model described above. A candidate event is
identified when the computed statistic exceeds a predeter-
mined threshold chosen to achieve a given false alarm rate.
Note then that our method still requires a bank of

“templates” that informs which sequence of tiles is viable
for the class of binaries being searched for. In other words,
even though an individual sequence could have as few as
one (“direct collision”) to up to thousands of distinct tiles
depending on the initial periapse, the number of tile
sequences that are searched for any given starting time
in the data stream is determined by the fundamental
(intrinsic) parameters describing the binary (here,
M; rp; e0 and q) and the extrinsic parameters describing
the relative orientation of the binary and detector. For the
analysis below it will be useful to have actual waveforms,
and not just the corresponding set of times for the time-
frequency tiles, though if implemented in a search pipeline
only the latter would be needed. Furthermore, we allow a
tolerance for timing error due to the intrinsic uncertainty of
time-frequency analyses, but we could also vary this
tolerance to account for an imperfect model; in this way,
we could, in principle, use a cruder strategy for choosing
the sequence of times.

A. Description

Here, we give a general framework for our approach that
admits many possible implementations. Let fψg be a
complete, but not necessarily orthogonal, basis for the
Hilbert space of square-integrable functions on the real line,
L2ðRÞ, where the basis functions ψ are themselves abso-
lutely and square integrable. This last condition ensures
that the basis functions are “localized” in time (as opposed
to, for example, the familiar Fourier basis of complex
exponentials, which are only localized in frequency).
On this space, we define the time-domain inner product
using (15), and the L2 norm as

∥f∥ ¼
ffiffiffiffiffiffiffiffiffiffiffi
hfjfi

p
: ð20Þ

FIG. 4 (color online). An example of theQ transform applied to
a sine-Gaussian burst (τ ¼ 0, ϕ ¼ 256 Hz, Q ¼ 8) injected in
LIGO noise at ρ ¼ 14. Top panels:Q ¼ 4. Middle panels:Q ¼ 8.
Bottom panels: Q ¼ 16. Left panels: μ ¼ 0.2. Right panels:
μ ¼ 0.01.
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For simplicity, let the basis functions be normalized such
that ∥ψ∥ ¼ 1. Possible choices of basis functions include
Gaussian-windowed complex exponentials and a wide
selection of existing orthonormal wavelet families (for future
work, it would be interesting to investigate wavelets adapted
to the waveform structure of eccentric binary bursts).
We assume that we are given a model that provides

waveforms hðtÞ ∈ L2ðRÞ (to some level of accuracy) for
the binary parameters of interest, here ðM; rp; q; e0Þ. Let
h0ðtÞ denote the “whitened” waveform:

h0ðtÞ ¼
Z

∞

−∞

~hðfÞffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p e2πiftdf; ð21Þ

where again SnðfÞ ¼ Snð−fÞ is the two-sided power
spectral density of the detector noise nðtÞ, which we
assume is stationary, and ~hðfÞ is the Fourier transform
of hðtÞ. The waveform is said to be whitened since the
application of the whitening kernel SnðfÞ−1=2 to stationary
detector noise nðtÞ reduces its power spectral density to a
constant function of frequency.
With respect to the choice of basis, we define theN-burst

signature (or for brevity, signature) of a set of eccentric
binary parameters, SNðM; rp; q; e0Þ, to be the set of N
distinct basis functions fψ1;…;ψNg, such that the sum

C ¼
XN
i¼1

jhψ ijh0ij2
E½jhψ ijn0ij2�

ð22Þ

¼
XN
i¼1

jhψ ijh0ij2 ð23Þ

is maximized. The sum is weighted by the expected value
of noise power projected onto the basis function ψ i, but
since n0ðtÞ is whitened noise and ∥ψ i∥ ¼ 1, we have that
E½jhψ ijn0ij2� ¼ 1. The signature SN is therefore the set of N
basis functions that best approximates the whitened signal
h0ðtÞ. The number of basis functions N can either be a fixed
parameter or be determined by the signature generation
algorithm.
Suppose that the model waveform hðtÞ for a given single

set of parameters captures general features of actual signals
over some region of parameter space, even if hðtÞ does not
exactly match the actual signal produced by a binary
with the same initial parameters. Let D∶Ψ ×Ψ →
½0;þ∞Þ be a function that satisfies the usual conditions
for a metric on the space of basis functionsΨ. For example,
a natural choice for D is the Euclidean distance
Dðψ1;ψ2Þ ¼ ∥ψ1 − ψ2∥. For each i ∈ f1;…; Ng, let
ξi ≥ 0 be a real parameter that defines the “slack” for
each best-match basis function ψ i. More precisely, let
Bi ¼ fφ∶Dðφ;ψ iÞ ≤ ξig be the set of basis functions
within a distance ξi of ψ i as measured by D.

To apply the signature at a time offset τ to whitened
detector data x0ðtÞ, we compute the sum

EðτÞ ¼
XN
i¼1

max
φi∈Bi

jhφiðtÞjx0ðtþ τÞij2

¼
XN
i¼1

max
φi∈Bi

����
Z

∞

−∞
φiðtÞx0�ðtþ τÞdt

����
2

: ð24Þ

The maximization of the projection of x0ðtÞ onto basis
functions in a neighborhood of each ψ i captures the
intuition that we want to be able to detect waveforms that
are “near” the simulated waveform. As with other time-
frequency searches, we register an event at some time τ if
the statistic EðτÞ exceeds a predetermined threshold value
that is chosen to achieve a desired upper limit on the false
alarm. We discuss event thresholds in Sec. IV C 2.
There is a tradeoff between the E threshold necessary to

achieve a given false alarm rate and the robustness of
the search to parameter mismatch and modeling error.
We discuss the statistics of this search method in Sec. IV C.
In the following section, we describe a straightforward
implementation of this method.

B. Implementation

We implement the method described in Sec. IVA as an
extension of the Q transform. This choice is motivated by
the following considerations: (i) after a single application of
the Q transform, we can easily apply multiple signatures
to a time series, (ii) the overcomplete, multiresolution
Q-transform basis increases our prospects of finding good
matches to the signature, and (iii) the Q transform is an
established method that has been deployed in past LIGO
science runs.
Recall that theQ-transform basis of Gaussian-windowed

complex exponentials minimizes the product of σt and σf
[as defined in (9) and (10)], such that σtσf ¼ 1=4π. In the
following, we define the characteristic duration Δt and
characteristic bandwidth Δf of a basis function as follows:

Δt ¼ 2π1=2σt; ð25Þ

Δf ¼ 2π1=2σf; ð26Þ

such that the product ΔtΔf is unity. We now consider the
signature generation and the signal analysis steps separately.

1. Signature generation

Given binary parameters ðM; rp; q; e0Þ, Q-transform
parameters ðQmin; Qmax;ϕmin;ϕmaxÞ, and mismatch param-
eter μ (see Sec. III B), we compute a signature using the
following procedure:
(1) Using the waveform model, simulate (a) the emitted

signal hðtÞ for the given binary parameters and (b)
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the orbital separation rðtÞ from t ¼ 0 until t ¼ tmerge,
defined such that rðtmergeÞ ¼ rLR, the radius of the
light ring. Assume for simplicity that the þ and ×
polarizations contribute equally, so that hðtÞ ¼
hþðtÞ þ h×ðtÞ (for purposes of signature generation,
the overall scaling of the signal is irrelevant).

(2) Identify the sequence of times t1; t2;…; tN where
rðtÞ is at a local minimum. Let tN ¼ tmerge. There-
fore, times t1;…; tN−1 correspond to periapse pas-
sages of the binary, and tN corresponds to the
merger. Let the number of basis functions N equal
the number of minima.

(3) Compute h0ðtÞ, the whitened signal.
(4) Q transform h0ðtÞ to give a set of time-frequency

planes of fixed Q.
(5) For k ¼ 1;…; N: Find the basis function ψk that

maximizes jhψkjh0ij2, subject to the constraint that
tk ∈ ½τk − Δtk=2; τk þ Δtk=2�, where τk is the center
time of ψk and Δtk is the characteristic duration
of ψk.

(6) Shift center times such that the time of the first basis
function is τ1 ¼ 0. Return the set SN ¼fψ1;…;ψNg.

An example of a computed signature is shown in Fig. 5.
Note that in the figure, the real and imaginary components
of the projection are expressed as an overall magnitude and
phase; for the purposes of computing a signature, we are
not interested in the real and imaginary projections, only in
the energy jhψkjh0ij2. We show an example of a projection
and the resulting overlap energy in Fig. 6.

2. Signal analysis

In the following, we let Qk, τk, ϕk, Δtk and Δfk denote
the respective quantities associated with ψk ∈ SN . For a

given detector output xðtÞ of finite duration, a signature SN ,
Q-transform parameters Qmin; Qmax;ϕmin;ϕmax, a value for
μ, and a step size δt, we compute the E statistic at each time
step using the following procedure:
(1) Compute x0ðtÞ, the whitened detector output.
(2) Q transform x0ðtÞ.
(3) For T ¼ j · δt, j ¼ 0; 1; 2;…:

(a) For k ¼ 1;…; N: Choose the time-frequency
plane in the Q transform of x0ðtÞ with the Q
value closest to Qk. Let ck be the maximum
energy of a time-frequency tile that lies within a
distance ofΔtk=2 in time orΔfk=2 in frequency:
ck ¼ maxψ jhψ jx0ij2 for basis functions ψ in
this Q plane, subject to the constraint that
τ ∈ ½τk þ T − Δtk=2; τk þ T þ Δtk=2� and ϕ ∈
½ϕk − Δfk=2;ϕk þ Δfk=2�.

(b) Set EðTÞ ¼ P
N
k¼1 ck.

If we let n be the number of samples in xðtÞ, the Q
transform is precomputed in Oðn log nÞ time [42]. At each
time step, the computation of the statistic EðTÞ takes time
OðNMÞ, where N is the number of time-frequency tiles in
the signature and M ¼ MðμÞ is an upper bound on the
number of overlapping tiles. The set of overlapping tiles
can be found efficiently if the Q planes are represented as
jagged arrays with rows of constant frequency. The number
of overlapping tiles scales with the density of basis
functions and therefore increases as the mismatch param-
eter μ decreases. For μ ¼ 0.2, we observe M ≈ 40. The
algorithm described above can easily be generalized to the
case where we wish to search over multiple signatures
fSð1Þ;…;SðmÞg for a one-time application of the Q trans-
form. In our implementation, we consider tiles that fall
within the time-frequency rectangle defined by the duration
Δtk and bandwidth Δfk of ψk, so the metric and the slack
parameters ξk are chosen implicitly. Additionally, for each
ψk we consider only tiles within a single Q plane.

FIG. 5. Part of a whitened waveform h0ðtÞ (bottom panel) and
the best-match approximation (top panel) as computed using the
algorithm from Sec. IV B 1. Note that the final burst in the
approximation is a superposition of two basis waveforms.
The binary parameters in this example are M ¼ 25, rp ¼ 8,
q ¼ 1, and e0 ¼ 1.
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FIG. 6. Overlap between two basis functions ψ1, ψ2 with
center times τ1, τ2 offset by Δt ¼ 2π1=2σt. In this case,
jhψ1jψ2ij2 ≈ 0.45.
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C. Statistics

1. Distribution of E statistic

We now discuss the statistical distribution of the E
statistic when a signature is applied to detector noise in
the absence of a signal. We will use this distribution to
determine the significance of a given value of E.
We again consider stationary white noise with zero mean

and unit standard deviation. As discussed in Sec. III C, the
normalized energies Z for Q-transform coefficients are
exponentially distributed with unit mean:

fðZÞ ¼ e−Z: ð27Þ

Given N independent tiles, the distribution of the sum of
their respective energies Y ¼ P

N
i¼1 Zi is given by the

Erlang distribution:

fðYÞ ¼ YN−1e−Y

ðN − 1Þ! : ð28Þ

This would be the distribution of the E statistic if the
maximization step in the algorithm is not performed, for
example, if we simply chose the nearest neighbor tile for
each ψk subject to the constraint that the chosen basis
functions are orthogonal.
Instead, for each ψk, we choose the maximum energy over

the set of overlapping tiles. The E statistic is distributed as
the sum of N maxima, each taken over at most M
exponentially distributed random variables that are not
necessarily independent. There is no simple analytic expres-
sion for this distribution, so we approximate it for a given
signature by fitting a shifted Gamma distribution to an
ensemble of E statistics obtained by applying the algorithm
to Gaussian white noise. The Gamma distribution is a two-
parameter family of continuous probability distributions,
with probability density function f described by

fðx; α; βÞ ¼ βαxα−1e−βx

ΓðαÞ : ð29Þ

We include a shift parameter Eo by letting x ¼ E − Eo. The
parameters α, β and Eo are then computed using maximum
likelihood estimation with respect to an ensemble of E
statistics over noise.

2. Significance and detection thresholds

From the best-fit distribution D, we can determine the
statistical significance of a given value of E. The signifi-
cance threshold for registering a detection is chosen as a
function of the expected number of false events per year
Nfalse. For a step size of δt and a significance threshold η,
the expected number of false events in an observation
period T is

Nfalse ¼ η
T
δt
: ð30Þ

For example, a false alarm rate of 1 yr−1 and a step size of
10 ms requires a threshold of η ≈ 3.2 × 10−10. It is often
more convenient to express this as a negative log signifi-
cance: − ln η ≈ 22. Using the cumulative distribution func-
tion of D and this threshold significance, we can compute
the threshold statistic E� for registering a detection.
It is worth emphasizing that these thresholds and false

alarm rates depend on the assumption of stationary Gaussian
noise. In practice, the false alarm rate is dominated by
various nonstationary and non-Gaussian sources of noise,
resulting in observed false alarm rates orders of magnitude
higher than theoretically predicted [45]. However, false
detection rates based on stationary Gaussian noise are a
useful common standard for comparing the performance of
different methods. We use fixed values of the false detection
rate for our comparisons in Sec. IV E.

D. Example

We now show example applications of the power
stacking method in detecting a simulated signal injected
into detector noise with a power spectrum given by the
design requirements of Initial LIGO. We will consider two
cases: (1) the (unrealistic) case where the signature param-
eters and actual signal parameters are identical, and (2) the
case where there is some mismatch δM, δrp, δq in the
parameters (in the following, we will assume that the initial
eccentricity e0 ¼ 1, such that the pair of compact objects
are initially in an unbound parabolic trajectory).
In both examples, we use a signature generated for binary

parameters (in geometric units) M ¼ 10M⊙, rp ¼ 8M, and
q ¼ 1. After signature generation, we apply the stacking
algorithm to realizations of Gaussian white noise in order to
estimate a distribution of the E statistic with respect to this
signature. The best-fit gamma distribution to this ensemble is
shown in Fig. 7. The significance of any value of E is
determined using the cumulative distribution function FðEÞ
of the best-fit gamma distribution. In the following, we
express significance as the negative log probability of
observing a value E0 ≥ E: − lnð1 − FðEÞÞ. The threshold
for an expected false detection rate of 1 yr−1 for a signature
step size of δt ¼ 10 ms is − lnð1 − FðEÞÞ ≈ 22.
It is convenient to characterize the detectability of a

signal by the optimal SNR obtained through matched
filtering, ρopt (see, for example, [46]). In the following,
we inject our simulated signals with ρopt ¼ 14, computed
over the entire sequence of bursts. The output of the power
stacking method in the matching case is shown in Fig. 8,
while the output in the mismatched case is shown in Fig. 9.
The time axes in the top panels of Figs. 8 and 9 indicate the
time offset of the signature; for example, in Fig. 8, the peak
at t ¼ 0 s represents energy accumulated over the entire
structure of the signal plotted in the bottom panel.
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These examples only characterize single injections in
noise and therefore are of limited use in characterizing the
performance of the power stacking method. In the follow-
ing section, we give the results of several tests of our
method’s performance.

E. Results

We perform Monte Carlo simulations to characterize the
performance of our power stacking algorithm. We also
validate the robustness of the algorithm to parameter
mismatch and modeling error. In these simulations, we
run power stacking on ensembles of simulated signals

injected into simulated noise with a power spectrum
characteristic of the design sensitivities of Initial LIGO
and Advanced LIGO.
As this is a first test of performance, we did not attempt

to model any nonstationarities, transients, or non-Gaussian
characteristics of the simulated noise, though in practice
these features are the primary source of false detections in
single-detector searches (we do not consider multiple-
detector searches here, which would significantly reduce
false alarm rates). We note, however, that our method
should be less susceptible to false detections due to
transients in any single time-frequency tile, since we
compute the total power over multiple tiles that are
delocalized in time-frequency space.
We focus on the range of initial periapse distances

rp ≤ 10M. Larger initial periapse passages are certainly
relevant for producing repeated burst phases that would be
in the LIGO band (see the discussion in [25]), though here
to illustrate, we focus on the closer range which will
produce the strongest emission in the high-eccentricity
phase. Also, to keep the illustration simple, we focus on NS
and low to moderate stellar-mass BH systems, with the total
mass in the range 2–25M⊙ and ratios q ranging from 0.1 to
1. This choice of mass range is further motivated by the
observation that our method achieves the greatest gains in
this regime, as illustrated in Fig. 10.

1. Horizon distance

Any detection statistic will exhibit a negative correlation
between its expected value and the distance to the source of

FIG. 7. Gamma distribution fit to an ensemble of E statistics on
Gaussian white noise. The binary parameters used for computing
the signature are M ¼ 10M⊙, rp ¼ 8M, and q ¼ 1.

FIG. 8. The power stacking method in the matched case for the
signal shown in the bottom panel, and parameters as described in
the caption of Fig. 7. The top panel shows the statistical
significance of the computed statistic E plotted against time.

FIG. 9. The power stacking method in the mismatched case.
The top panel shows the statistical significance of the computed
statistic E plotted against time. In the bottom panel, the solid
waveform shows the injected signal with binary parameters
M ¼ 9M⊙, rp ¼ 7.2M, and q ¼ 1. The dotted waveform shows
the M ¼ 10M⊙, rp ¼ 8M, q ¼ 1 signal characterizing the
signature at the time offset where the E statistic is maximal.
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the gravitational-wave signal, by virtue of the fact that
strain scales as distance−1. We define the horizon distance
to be the luminosity distance between the source and the
observer at which the expected value of the detection
statistic equals the detection threshold. It is therefore a
measure of the maximum distance out to which a source
can be detected.
We compare the horizon distances achieved by (i) the

power stacking method, (ii) a Q-pipeline search that
identifies events by thresholding on the energy of single
time-frequency tiles, and (iii) a search using an optimal
filter. These horizon distances are computed for thresholds
corresponding to false detection rates of 1 yr−1. For the
optimal filter search (i.e., matched filtering using the
optimal template), the cumulative distribution function
(CDF) of matched filtering SNRs is FðρÞ ¼ erfðρ= ffiffiffi

2
p Þ

[47]; for the Q pipeline, the CDF of tile energies is FðZÞ ¼
1 − expð−ZÞ (see Sec. III C); and for the power stacking
search, the threshold is computed using best-fit distribu-
tions as described in Sec. IV C. For a sampling rate equal to
the LIGO sampling frequency of 16,384 Hz, the thresholds
for Q-transform normalized tile energies and optimal
filtering are Z ¼ 27 and ρ ¼ 7, respectively.
The horizon distances are computed for a signal

averaged over sky location, polarization angle and
source orientations. Recall that the strain hðtÞ observed
by a gravitational-wave detector is given by hðtÞ ¼
Fþðθ;ϕ;ψÞhþðtÞ þ F×ðθ;ϕ;ψÞh×ðtÞ, where the detector
response functions Fþ and F× depend on the source sky
position ðθ;ϕÞ and the polarization angle ψ between the
two polarizations. The RMS average of gravitational-wave
strain over sky location and polarization angle of Fþ and

F× is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hF2þ;×i

q
¼ 1=

ffiffiffi
5

p
[48]. An optimally oriented source

would lie on the plane perpendicular to the line of sight
from the Earth; to average over source orientations, we
multiply the observed strain at a given distance by a factor
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih−2Y2;�2i
p ¼ 1=

ffiffiffi
5

p
, where −2Yml denotes spherical

harmonics of spin weight −2.
We generate contours of sky-averaged horizon distance

for Initial LIGO (Figs. 11, 12, and 13) and for Advanced
LIGO (Figs. 14, 15, and 16) (cf. the discussion abovewhere
an optimally oriented source would be visible a factor of 5
times farther away). The power stacking method improves
on the method of identifying the single highest-energy
time-frequency tile in the Q transform by as much as a
factor of ∼2–3 over much of the parameter space (and event
rate scales as the cube of this), with the largest gains
observed for binaries with many repeating bursts (low q,
high rp). An optimal matched filter search offers a similar
increase again in horizon distance over power stacking. In
Figs. 11 and 14, we observe that power stacking achieves
the greatest gain compared to the Q pipeline in the lower
end of the mass range we consider. One can attribute this to
the emphasis of the repeating burst phase by the detector

FIG. 10 (color online). Gain in horizon distance dstack=dSG
compared to a single-burst search using the Q pipeline for
Advanced LIGO over a range of total system mass M and mass
ratio q for fixed rp ¼ 8M. The region to the right of the solid line
is the physically plausible parameter space of binaries. The dotted
lines demarcate regions of the parameter space corresponding to
different classes of binaries: the top-left region corresponds to the
space of NS-NS binaries, the middle region to the BH-NS
binaries, and the rightmost region to the BH-BH binaries. In
the following analysis, we focus on the mass range 2–25M⊙
where the method achieves the best performance.

FIG. 11 (color online). Top panel: Contours of horizon distance
for the power stacking method dstack as a function ofM and rp for
Initial LIGO and fixed q ¼ 1. Middle panel: Gain in horizon
distance dstack=dSG compared to a single-burst search. Bottom
panel: Loss in horizon distance dopt=dstack compared to an
optimal filter.
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sensitivity to the lower-mass regime, since the frequency of
the signal varies inversely with the total mass of the binary.
We reiterate that horizon distances of Oð100 MpcÞ could
potentially contain eccentric sources, particularly given the
large uncertainties in event-rate estimates. Furthermore,
since the detected event rate will scale as D3

L, even modest
increases to the horizon distance yield substantial increases
in the expected event rate.

2. Robustness to parameter mismatch

In a matched filter search, a template is only sensitive to
signals in a very small region of parameter space around the
signal that exactly matches the template (see [49–51] for
some recent accuracy studies applied to quasicircular
inspirals). This implies that one needs a rather dense
covering of parameter space with templates, and moreover,
as discussed in the Introduction, this could require each
template to be computed with a level of accuracy difficult to
achieve for eccentric binaries using existing numerical or
perturbative methods. This motivated the development of

the power stacking approach described here. Though we
are not providing a comparison of accuracy requirements or
template densities for matched filter vs power stacking
templates, in this and the following subsections, we
illustrate that (for detection) power stacking does not
require an onerously dense template family and is rather
robust to waveform modeling errors.
In Figs. 17, 18, and 19, we show the variation of

estimated detection probabilities when a fixed signature
at the center of the parameter space is applied to signals
with mismatched parameters. The optimal SNR of the
signals is fixed at ρ ¼ 14. At each sample point in the
parameter space, we inject the simulated signal into 100
noise realizations. We estimate the detection probability at
each of these points as the fraction of instances where the
maximum statistic exceeds the detection threshold. While
the standard deviation of the estimated detection proba-
bility at each point is ∼0.1, our sampling of the parameter
space is sufficiently dense that we can observe clear
patterns in the variation of detection probabilities over
the space.

FIG. 12 (color online). Top panel: Contours of horizon distance
for the power stacking method dstack as a function of M and q for
Initial LIGO and fixed rp ¼ 8M. Middle panel: Gain in horizon
distance dstack=dSG compared to a single-burst search. Bottom
panel: Loss in horizon distance dopt=dstack compared to an
optimal filter.

FIG. 13 (color online). Top panel: Contours of horizon distance
for the power stacking method dstack as a function of rp and q for
Initial LIGO and fixed M ¼ 15M⊙. Middle panel: Gain in
horizon distance dstack=dSG compared to a single-burst search.
Bottom panel: Loss in horizon distance dopt=dstack compared to an
optimal filter.
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We observe that the method achieves detection proba-
bilities of at least 0.5 over a wide range of parameters with a
fixed signature. Therefore, these plots suggest that our
parameter stacking method is robust to mismatch between
the parameters of the signature and the parameters of the
actual signal. This property is a result of the maximization
over nearby basis functions around each best-match basis
function ψk. We observe as well that for signals injected
with fixed optimal SNR, the detection probability falls off
quickly as rp increases. This is due to the spreading of the
(fixed) signal energy over a large number of bursts in the
inspiral phase. To account for this, we can consider a fixed
value of rp; in Fig. 18, we observe that for fixed rp, the
signature at the center of the parameter space achieves good
detectability over a wide range of M and q.
These results suggest that for purposes of signal detec-

tion (as opposed to parameter estimation or signal
reconstruction), a large parameter space can be covered
by a relatively sparse set of signatures, thereby reducing the
computational cost of searching over the large parameter
space of dynamical capture binaries. The curves of high

detectability in Figs. 17, 18, and 19 are indicative of
degenerate sets of signals over the parameter space. We
expect the degenerate paths to follow contours of constant
time intervals between successive periastra. Simple
Keplerian dynamics give a reasonably good approximation
for these paths; regions of parameter space that follow
contours of constant Mð1þ qÞ2q−1r3=2p are degenerate.
This illustrates the trade-off between the size of the
parameter space covered by each signature and the pre-
cision of source parameter estimation given a detection
using a particular signature.

3. Robustness to modeling error

To characterize the effect of modeling error, we treat the
geodesic-based model discussed in Sec. II as the correct
signal and simulate error terms by modifying the quad-
rupolar energy and angular momentum loss via

_E → _Eþ δ _E; ð31Þ

_L → _Lþ δ _L; ð32Þ

FIG. 14 (color online). Top panel: Contours of horizon distance
for the power stacking method dstack as a function ofM and rp for
Advanced LIGO and fixed q ¼ 1. Middle panel: Gain in horizon
distance dstack=dSG compared to a single-burst search. Bottom
panel: Loss in horizon distance dopt=dstack compared to an
optimal filter.

FIG. 15 (color online). Top panel: Contours of horizon distance
for the power stacking method dstack as a function of M and q for
Advanced LIGO and fixed rp ¼ 8M. Middle panel: Gain in
horizon distance dstack=dSG compared to a single-burst search.
Bottom panel: Loss in horizon distance dopt=dstack compared to an
optimal filter.
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where δ _E and δ _L are constant multiples of _E and _L,
respectively. While crude, this error model serves to show
some general properties of the algorithm’s sensitivity to
modeling error. A more thorough analysis would require a
better understanding of our model’s actual error, which is
beyond the scope of this work.
Estimated detection probabilities as a function of δ _E= _E

and δ _L= _L are plotted in Fig. 20 for both the power stacking
method and matched filtering. A fixed signature is used to
searchforsignals injectedwithSNRρ ¼ 14.As inSec. IV E 2,
the detection probability is estimated at each point using 100
simulations. There is little practical information in the plot
about the specific values of the loss of detection probabilities
foragivenstrategyorfractionalerrorsince thecharacterization
of the error in (31) is completely ad hoc.2 However, the point

FIG. 16 (color online). Top panel: Contours of horizon distance
for the power stacking method dstack as a function of rp and q for
Advanced LIGO and fixed M ¼ 15M⊙. Middle panel: Gain in
horizon distance dstack=dSG compared to a single-burst search.
Bottom panel: Loss in horizon distance dopt=dstack compared to an
optimal filter.

FIG. 17 (color online). Estimated detection probability over a
range of M and rp for a signature with fixed parameters
M ¼ 15M⊙, rp ¼ 8M, q ¼ 1 applied over a mismatched param-
eter space. In this figure, and Figs. 18 and 19, we show the raw
data from the Monte Carlo studies vs the contour plots of the
corresponding data in other plots; this is to more clearly illustrate
the degeneracies in parameter space.

FIG. 18 (color online). Estimated detection probability over a
range of M and q for a signature with fixed parameters
M ¼ 15M⊙, rp ¼ 8M, q ¼ 0.55 applied over a mismatched
parameter space.
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FIG. 19 (color online). Estimated detection probability over a
range of rp and q for a signature with fixed parameters
M ¼ 15M⊙, rp ¼ 8M, q ¼ 0.55 applied over a mismatched
parameter space.

2For example, that the detection probabilities seem to be more
sensitive to modeling errors in _L compared to _E is mostly an
artifact of us modeling error as relative fractions of the respective
luminosities in E and L, and the fact that quadrupole emission
physics gives _L=ð _EMÞ ∼ 1=ðωMÞ ≈ ðrp=MÞ3=2; hence, for rel-
evant values of rp, a given fractional modification in _Lwill have a
larger effect on the resultant dynamics than the same fractional
change in _E.
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of the plot is the comparison between the two strategies for a
common waveform modeling error, and it quite clearly
demonstrates the increased robustness to such error relative
to matched filtering that the power stacking method offers.
Again,asmentionedabove, toobtainusefulquantitativevalues
of degradation for a given strategy would require a proper
characterization of errors, which is beyond the scope of this
article.

V. DISCUSSION AND CONCLUSIONS

In this paper we have introduced a GW search strategy
targeting highly eccentric binaries that, though suboptimal
compared to matched filtering, is more robust to modeling
uncertainties and promises improved sensitivity compared
to existing unmodeled burst searches. The method is an
adaptation of a power stacking algorithm developed in [34]
to search for GW bursts associated with soft gamma ray
repeater events. The primary difference in our method is
that the time-frequency signature over which power is
summed is informed by a binary IMR model (the origin of
gamma ray repeaters is unknown, so an unmodeled search
makes sense for this putative source). In that regard it
shares many of the issues and questions associated with
template-based matched filter searches. These include the
effects of modeling error on detection and parameter
estimation, and how degeneracies in parameter space could
limit uniquely identifying particular events. In this work we
have illustrated some of these issues, though we leave a
more thorough examination to future work, as our main
purpose here was to introduce the power stacking method
for eccentric binaries. Within the framework described

here, there is much room for exploring variants of the basic
method. We conclude with a discussion of possible future
directions of study.

A. Choice of metric and ξk parameters

Recall that for a given metric D, we consider the
neighborhood fφg around the basis function ψk defined
by Dðφ;ψkÞ ≤ ξk. The ξk parameters allow us to control
how discriminating the search is. In the limit ξk → 0, only
the basis functions in the signature are considered, and
consequently, the method reduces to a variant of matched
filtering with an approximate template. Larger values of ξk
increase the robustness to parameter mismatch and model-
ing error, but at the cost of increasing the detection
threshold and time complexity. The latter cost is due to
the larger set of tiles that have to be considered at each time
step, while the former is a statistical consequence of
maximizing over a larger number of samples. It should
therefore be possible to optimize the value of ξk to obtain a
desired balance between sensitivity (lower detection thresh-
olds for a given false alarm rate) and robustness.
We also note that in the implementation described in

Sec. IV B, both the metric and ξk parameters are chosen
implicitly. The performance of other metrics is beyond the
scope of this work, but possible candidates include, for
example, metrics that accept only basis functions with the
same characteristic center frequency ϕ:

Dðψ1;ψ2Þ ¼
� ðτ1 − τ2Þ2 if ϕ1 ¼ ϕ2

∞ otherwise
: ð33Þ

Such a metric would be appropriate if it is known that the
frequency of each burst is accurately modeled, but their
relative timing is not.

B. Choice of basis

For reasons outlined in Sec. IV B, we chose to imple-
ment our method using the Q-transform basis of multi-
resolution Gaussian-windowed exponentials. There exists a
wide selection of other possible bases, most notably a
multitude of wavelet families [52]. Briefly, a wavelet family
is a set of functions fψ s;τðtÞg defined by the translation and
dilation of a single prototype ψðtÞ, called the mother
wavelet:

ψ s;τðtÞ ¼
1ffiffiffiffiffijsjp ψ

�
t − τ

s

�
; ð34Þ

where s; τ ∈ R and s ≠ 0. Like the Q-transform basis
described in the preceding section, wavelet basis functions
are localized in time and frequency, and the scale factor s is
a resolution parameter analogous to the Q parameter.
An orthonormal family of wavelets can be chosen such
that the set forms a basis for the Hilbert space L2ðRÞ of
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FIG. 20 (color online). Estimated detection probability as a
function of modeling error in _E and _L for a signature with
parameters M ¼ 15M⊙, rp ¼ 8M, q ¼ 1. Signals are injected
with ρ ¼ 14. Top panel: Power stacking. Bottom panel: Matched
filtering.
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square-integrable functions. Wavelet transforms have been
investigated as a basis for gravitational-wave burst
searches [41,53–55].
Moreover, it is possible to design a mother wavelet ψðtÞ

that matches a signal of interest such that the family
f2−j=2ψð2−jt − kÞg, j; k ∈ Z is an orthonormal basis of
L2ðRÞ [56]; thus, it should be possible to construct a
wavelet transform that is adapted to the gravitational-wave
bursts of eccentric binaries. Such an adapted basis should
increase the sensitivity of our method by more effectively
concentrating the signal energy of each burst into a single
time-frequency tile.

C. Characterizing performance with realistic noise

In Sec. IV E, we performed a first characterization of the
performance of our power stacking method using simulated
detector noise. The simulated noise is stationary, which is
not representative of actual detector noise. In searches for
localized bursts of short duration (< 1 s), it is usually
assumed that the characteristics of detector noise are slowly
varying over the duration of a single burst, and therefore
stationarity can effectively be assumed. However, these
nonstationarities are more significant in a search for signals
from eccentric binaries since the repeating burst phase can
include hundreds to thousands of bursts over minutes to
days [57]. The performance of our method with realistic
noise therefore requires further study.

D. Multiple detectors

The method we described considers output from only a
single detector. However, it is possible to extend the
method to take advantage of networks of multiple gravi-
tational-wave detectors, such as the two 4 km LIGO
detectors at Hanford and Livingston. Trivially, the search
algorithm can be run on the output of each detector; a
detection would then require coincident events in all
outputs (within some time window determined by the light
travel time between the detectors). A multiple detector
search reduces the false alarm rate (and therefore increases

sensitivity) since it is unlikely that a false detection due to
noise transients would occur at multiple geographically
separated detectors simultaneously. Additionally, a detec-
tion in a multiple detector search allows one to obtain an
estimate of the sky location of the source (see [58] for a
review of the degree of localization possible with quasi-
circular inspirals, and [59] for a discussion of the locali-
zation prospects for eccentric signals).

E. Enhanced parameter extraction with a hybrid search

As discussed in detail above, one of the primary reasons
for introducing the power stacking method for eccentric
binaries is to have a technique that does not need as high an
accuracy for the model waveforms as matched filtering.
This is because it is unlikely that computational resources
will be available within the next few years to compute a
template bank covering the full parameter space. The cost
of power stacking is a reduction in detection rate compared
to matched filtering. Furthermore, it is likely (though we
have not investigated this here) that power stacking will
likewise not be as effective as matched filtering in extrac-
tion of parameters from a putative detection. However, the
parameter ranges inferred from a detection with a power
stack searched may be sufficiently narrow that post-
detection, a high accuracy template bank within this range
can be computed, and an improved estimation of the
parameters made with a matched filter search. This would
not mitigate the issue of lower detection rates with power
stacking, though it will allow maximal information about
detected events to be gleaned.
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