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There are a number of theoretical predictions for astrophysical and cosmological objects, which emit
high frequency (106 − 109 Hz) gravitation waves (GW) or contribute somehow to the stochastic high
frequency GW background. Here we propose a new sensitive detector in this frequency band, which is
based on existing cryogenic ultrahigh quality factor quartz bulk acoustic wave cavity technology, coupled
to near-quantum-limited SQUID amplifiers at 20 mK. We show that spectral strain sensitivities reaching
10−22 per

ffiffiffiffiffiffi
Hz

p
per mode is possible, which in principle can cover the frequency range with multiple

(>100) modes with quality factors varying between 106 and 1010 allowing wide bandwidth detection.
Due to its compactness and well-established manufacturing process, the system is easily scalable into
arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence
analysis to ensure no false detections.
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I. INTRODUCTION

Gravitational radiation was first predicted by Einstein [1]
as a consequence of his general theory of relativity.
Gravitational waves (GW) are the propagation of a wave
of space-time curvature, and are generated by perturbations
in massive systems. The lowest multipole of this type of
radiation is the quadrupole. Even though astrophysical
events are expected to emit massive energy fluxes in the form
of gravitational radiation, they are yet to be directly detected.
This is because gravity waves interact very weakly with
matter. However, for many decades experimentalists have
been pushing the limits of technology. Currently the free-
mass laser interferometer detectors have been improved to a
point, where they are expected to directly detect gravitational
waves in the 0.1 to 1 kHz frequency band through the
development of advanced LIGO [2].
The first gravitational wave detectors were based on

the “Weber bar,” and required the monitoring of a high-Q
massive resonant system (resonant-mass detector). Such a
system will change its state of vibration due to an incident
gravitational wave of matched frequency and rely on
ultrasensitive transducers to read out the vibration. These
transducers detect the displacement change of the system
and convert it to an electronic signal. Since the first detector
was built [3] technology improved rapidly over the years,
with major projects in Italy, the USA, and Australia [4].
These detectors necessarily operated at low temperatures,
and were successfully built at high sensitivity operating at
5 K down to 100 mK. The original transducers that Weber
used were based on piezoelectricity, and later gap modulated

displacement sensors were developed based on SQUID
readouts [5] and low noise parametric systems [6]. These
devices were optimized to detect millisecond bursts, typi-
cally produced by supernovas with strain sensitivities of
order h1ms > 10−18 (or signal strain Fourier component
H > 10−21 strain=Hz), but have generally been superseded
by the laser interferometer detectors [7–9].
In this work we aim to revive the resonant-mass detector

for the first cosmic search of high frequency gravitational
wave radiation based on piezoelectric quartz bulk acoustic
wave (BAW) resonators. Despite dominance of the low
frequency GW detection, this technology opens the way to
test for known and unknown high frequency sources
[10,11]. In general high frequency gravitational waves
are thought to exist over a broad range of frequencies up
to 1010 Hz, but at a reduced amplitude compared to low
frequency sources sensitive to LIGO. Such experiments
could be interesting from two points of view: first, the high
frequency region has physically understood processes of
generation of GWs; second, such experiments can be
regarded as tests for many emerging theories predicting
GW radiation at such frequencies. The former mostly
includes phenomena associated with discrete sources such
as thermal gravitational radiation from stars [11], radiation
from low mass primordial black holes [12–14], and
gravitational modes of plasma flows [15], while the latter
group is built up by cosmological sources including
stochastic sources in the early Universe [16], GW back-
ground from quintessential inflation [17,18], cosmic strings
[19,20], dilation [21], pre–big bang scenarios [22], super-
inflation in loop quantum gravity [23], postinflationary
phase transitions [24], parametric resonance at the end of
inflation or preheating [25–27], and other predicted objects*michael.tobar@uwa.edu.au
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like braneworld black holes associated with extra dimen-
sions [28,29], clouds of axions [30], or quark nuggets [31].
At least one of the hypothetical sources (due to the Galactic
center shadow brane) comes within a factor 5 of the
sensitivity of the single detector proposed in this work
[10]. Moreover, the sensitivity of the detector could be
further improved via a variety of techniques to bridge this
factor of 5. For example, the detector proposed in this work
can be operated in the quantum limit; thus standard
techniques to beat the quantum limit for the detection of
a classical force can be used. Other ways to increase the
sensitivity would be to use a larger resonant-mass structure,
or an array of detectors. Thus, this technique will provide a
valuable upper bound on such GW sources in the MHz
frequency band and also provide an avenue for possible
detection.
The technological advancement which allows this pos-

sibility is due to recentworkonquartzBAWresonators,which
have been cooled to below 20 mK with outstanding acoustic
properties [32–35]. Also, they have proven to be compatible
with SQUID amplifiers and offer quantum limited amplifi-
cation at mK temperatures [36,37]. The modes in these
devices are naturally sensitive to gravitational waves at very
high frequencies between 1 MHz and nearly 1 GHz with Q-
factors of order 109 and approaching 1010. The piezoelec-
tricity and high acoustic Q-factor ensures significant “self”
transductance of the BAW resonator with high electro-
mechanical sensitivity without the necessity of an externally
added transducer.Thesedeviceswereoriginallydeveloped for
high stability frequency applications [38–40] and more
recently adapted at low temperatures for quantum information
applications [33,35,41] and fundamental physics tests [34].
Indeed it seems like the quantum limited readout of these
devices in the quantum ground state will soon be achieved.
Temperatures are accessiblewhere suchmodeswill be in their
ground state without the necessity of sideband cooling and
near-quantum-limited SQUID and parametric amplifiers also
exist at these frequencies [37,42–44]. Here, we show that a
sensitivegravitationalwavedetector ofbetter than10−21 strain
per

ffiffiffiffiffiffi
Hz

p
canbe realizedwith thepresent day technology in the

frequency range of 1 to 1000MHz. Currently there is no other
technology capable of measuring such high frequency gravi-
tational waves with such sensitivity, and a range of possible
high frequency sources could exist. Only recently an idea of
detectingmedium frequencyGW (50–300 kHz) using levitat-
ing optical resonators has been proposed [45]. In addition to
that searches for GW background at 100 MHz have been
considered with an interferometric detector [46]. The system
proposed in this work can potentially provide a larger
frequency range and higher sensitivity for this purpose.

II. ACOUSTIC WAVE DISTRIBUTION
IN A CURVED CAVITY

The displacement distribution for the thickness modes
of a plate resonator with curved surfaces can be

calculated from the Stevens-Tiersten theory [47–49].
The theory establishes a partial differential equation for
the dominant component of the displacement ud, for the
piezoelectric contoured BAW cavity with slowly varying
thickness in the x-y plane due to the large radius of
curvature (Fig. 1) [48]:

ρüd þ
π2n2ĉz
4h20

�
1þ x2 þ y2

2Rh0

�
ud ¼ Mn∂2

xxud þ Pn∂2
yyud;

ð1Þ

where n is the overtone number, Mn and Pn are
parameters, which depend on material constants, R is
the resonator plate radius of curvature, 2h0 ≪ R is the
resonator thickness, ρ is the material mass density, and cz
is the effective elastic coefficients for the longitudinal
mode. The acoustical cavity is also characterized by its
length L and electrode length ~L (Fig. 1).
The dominant component of the displacement ud is

either along x, y, or z axes (correspondingly ux, uy, or uz)
depending on the type of the thickness mode: longitudinal
(A mode), fast shear (B mode), or slow shear (C mode)
[50]. Due to the higher sound velocity, the latter can be
excited to much higher overtones (OT) and exhibits
extremely high Q-factors [51].

x

z

y

Electrodes

(b)

(a)

FIG. 1 (color online). (a) Side view of a curved BAW plate
cavity. The red curve shows typical distribution of mode
displacement along the cut in the case m ¼ 0 and p ¼ 0.
(b) Top view photo of a BAW cavity plate in a plastic box
(sample supplied by Serge Galliou).
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Implying harmonic motion uðx;y;z;tÞ¼Ūðx;y;zÞeiωXnmpt,
the eigensolutions of the homogenous problem correspond-
ing to Eq. (1) can be estimated by

UXnmp ¼ sin
nπz
2h0

e−αnπ
x2
2 Hmð

ffiffiffiffiffiffiffiffi
αnπ

p
xÞ;

× e−βnπ
y2

2 Hpð
ffiffiffiffiffiffiffiffi
βnπ

p
yÞ; ð2Þ

where X stands for a type of vibration (A, B, or C modes),m
and p are integer numbers characterizing the acoustic wave
distribution in the x − y plane, Hx is a Hermit polynomial,
and

α2 ¼ ĉz
8Rh30Mp

; β2 ¼ ĉz
8Rh30Pn

: ð3Þ

It should be noted that typically only resonances with the
odd overtone number n and even m and p numbers are
piezoelectrically detectable.
The angular frequencies of thickness modes of a curved

plate is approximated as follows [41]:

ω2
nmp ≈

n2π2ĉz
4h20ρ

�
1þ χx

n
ð2mþ 1Þ þ χy

n
ð2pþ 1Þ

�
; ð4Þ

where ρ is the resonator material density, ĉz is a modified
effective elastic constant for the given type of vibration,

χx ¼ 1
π

ffiffiffiffiffiffiffiffi
2h0M
Lĉz

q
, and χy ¼ 1

π

ffiffiffiffiffiffiffiffi
2h0P
Lĉz

q
. For high-Q BAW cavities

the expression can be approximated by just the multiplier
term before the square brackets, because in the limit of
large n, R ≫ 2h0 and low m and p numbers (usually both
are zero), thus the last two terms in the expression are much
less than 1.
For the case of the main modes (m ¼ 0, p ¼ 0), the

effective mass is given by the expression [41]

mn;0;0 ¼ ρπh0L2
Erfð ffiffiffiffiffiffi

2n
p

ηxÞErfð
ffiffiffiffiffiffi
2n

p
ηyÞ

2ηxηyn
; ð5Þ

where ηx ¼ L
ffiffiffiffi
πα
2

p
and ηy ¼ L

ffiffiffiffi
πβ
2

q
are unitless trapping

parameters.
For a given acoustic device the trapping parameters ηx

and ηy could not be measured directly. Although it is
possible to estimate these parameters based on measure-
ments of spurious resonances of a certain overtone and
resonator dimensions. Experimentally, it is often possible to
determine resonance frequencies of the main OT ωn;0;0 and
a few of its spurious resonance in particular, ωn;2;0, ωn;0;2
and ωn;2;2. Utilizing this information, two parameters of the
general expression for the frequency (4) are

χx ¼ n
ω2
n;2;0 − ω2

n;0;0

5ω2
n;0;0 − ω2

n;2;2
; χy ¼ n

ω2
n;0;2 − ω2

n;0;0

5ω2
n;0;0 − ω2

n;2;2
: ð6Þ

These parameters calculated from the experimental data can
be used to determine the ratios M

ĉz
for the given plate

parameters h0, R, and L. Substituted into (3), this infor-
mation leads to

α ¼ χx
2πh0

ffiffiffiffiffiffiffi
RL

p ; β ¼ χy
2πh0

ffiffiffiffiffiffiffi
RL

p ; ð7Þ

which results in

ηx ¼
L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χx

h0
ffiffiffiffiffiffiffi
RL

p
r

; ηy ¼
L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χy

h0
ffiffiffiffiffiffiffi
RL

p
r

: ð8Þ

III. ACOUSTIC CAVITY SENSITIVITY TO
GRAVITATIONAL WAVES

A. Antenna response

The vibration of a normal mode λ ¼ Xnmp of a
gravitational wave antenna based on an acoustic cavity
could be decomposed into [52]:

uλðx; tÞ ¼ BλðtÞUλðxÞ;
Z
V
dvρUλUλ0 ¼ δλλ0mλ; ð9Þ

where V is the resonator volume. The second equation
represents the normalization condition which is merely the
definition of the mode mass. The mode eigenfunction (2)
satisfies this condition.
According to [52,53], the response BðtÞ of the antenna to

curvature tensor component Rα
βγδ is

B̈λ þ τ−1λ _Bλ þ ω2
λB ¼ −c2Ri0j0

Z
V
dv

ρ

mλ
Ui

λðxÞxj; ð10Þ

where τ−1λ is the mode bandwidth and xj ∈ fx; y; zg.
The right-hand side provides the gravitational wave-cavity
coupling,

ξλ ¼ h0 ~ξλ ¼
Z
V
dv

ρ

mλ
Ui

λðxÞxj; ð11Þ

that is nonzero only for xj ¼ z for any n, m, and p. For the
odd nth overtone with zero in-plane wave numbers, the
sensitivity coefficient is

~ξXn00 ¼
ξXn00
h0

¼ 8

nπ

Erfð ffiffiffi
n

p
ηxÞErfð

ffiffiffi
n

p
ηyÞ

Erfð ffiffiffiffiffiffi
2n

p
ηxÞErfð

ffiffiffiffiffiffi
2n

p
ηyÞ

: ð12Þ

This result suggests that the only dimension of the cavity
sensitivity depends on its thickness h0. Other dimensions
enter the results only through the dimensionless trapping
parameter η. Assuming ηx ≈ ηy ¼ η, the sensitivity of
various overtones of a BAW cavity is shown in Fig. 2.
The case of nonzero numbers m and p is shown in

Fig. 3(a). The same plot, Fig. 3(b), demonstrates the wave
distribution along one of the plane coordinates.
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B. Strain sensitivity

Near the quantum limit of operation, the single sided
spectral density of the strain noise due to the Nyquist
spectral density of force fluctuations acting on the antenna
is given by [54]

Sþh ðfÞ ¼
4

h0 ~ξλf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eλ

mλQλωλ

s
; ð13Þ

where Eλ is the Nyquist noise energy of the mode given by

Eλ ¼ χλkBTλ; ð14Þ

where Tλ is the mode temperature of overtone λ, kB is the
Boltzmann constant, and χλ is given by the Callen-Welton
theorem [55,56]:

χλ ¼ ℏωλβ

�
1

expðℏωλβÞ − 1
þ 1

2

�
; ð15Þ

where βλ ¼ 1=ðkTλÞ. Here the last term accounts for the
vacuum fluctuations.
Assuming the ultimate limit of Q-factor, i.e. Landau-

Ruomer dissipation, QλðωÞ ¼ const, the detection condi-
tion reduces to

Sþh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16kTχ
L2Q

ffiffiffiffiffi
ρ

ĉ3z

rs ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηxηyErfð

ffiffiffiffiffiffi
2n

p
ηxÞErfð

ffiffiffiffiffiffi
2n

p
ηyÞ

q
Erfð ffiffiffi

n
p

ηxÞErfð
ffiffiffi
n

p
ηyÞ

:

ð16Þ

As a numerical example, we consider a state-of-the-art
acoustic cavity used to excite extremely high OTs as
detailed in Ref. [35]. For this quartz device L ¼
1.5 × 10−2 m, ĉz ≈ 105 GPa (could be varied by changing
the cut), ρ ¼ 2643 kg

m3, 2h0 ¼ 5 × 10−4 m. The material
parameter ĉz is calculated to give the fundamental fre-
quency of the quasilongitudinal mode ffund ¼ 3.138 MHz.
The Q-factor could exceed 109 at T ¼ 20 mK. The
resulting single sided power spectral density of the strain
sensitivity is

Sþh ¼ 1.7 × 10−22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηxηyErfð

ffiffiffiffiffiffi
2n

p
ηxÞErfð

ffiffiffiffiffiffi
2n

p
ηyÞ

q
Erfð ffiffiffi

n
p

ηxÞErfð
ffiffiffi
n

p
ηyÞ

¼ 1.7 × 10−22Λn;0;0ðηx; ηyÞ;
½strain�ffiffiffiffiffiffi

Hz
p ; ð17Þ

where the coefficient Λn;0;0ðηx; ηyÞ is shown in Fig. 4. The
result suggests that for large enough trapping η, the geo-
metric factor is independent of the overtone number and thus
of frequency. Thus, it is possible to cover a large frequency
range with modes sensitive to the gravitational waves. Note
that for a resonator with no curvature, the trapping vanishes
and Λn;0;0ðηx; ηyÞ coefficient approaches unity.
For actual cryogenic acoustic cavities, the QðωÞ ¼ const

condition is not always fulfilled due to domination of other
loss sources [35]. So, we estimate sensitivities for two
devices that have been characterized at 4 K and 20 mK:
Sample 1, 1.08 mm thick, 13 mm diameter electrode-
separated disk cavities initially designed to sustain shear
vibration of 5 MHz at room temperature (manufactured by
BVA Industrie) [32–34]; 1 mm thick, 30 mm diameter
electrode-separated disk cavities with higher grade surface

1

10-1

10-2

10.1 10

FIG. 2 (color online). Gravitational wave sensitivity ξXn00 as a
function of the trapping parameter η for μ ¼ 1. The shaded area
shows typical values for the well-trapped modes.

(a)

1

10-3

10-6

10-9

10.1 10

(b)

FIG. 3 (color online). (a) Gravitational wave sensitivity ~ξ1mp as
a function of the trapping parameter η. The shaded area shows
typical values for the well-trapped modes. (b) Normalized wave
distribution along x.
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polishing initially designed to sustain shear vibration of
5 MHz at room temperature (manufactured by Oscilloquartz
SA) [34,35]. The resulting comparison is shown in Fig. 5.

C. System calibration

Acoustical vibration of a plate resonator u is usually
transformed to electrical current I using piezoelectric
properties of crystals. The direct calculation of the electro-
mechanical coupling from the first principles then requires
knowledge of the effective component of the crystal
piezoelectric tensor eeff :

I ¼ −
Z
Ae

∂tDzds ¼ −eeff
Z
Ae

∂2
tzuðx; yÞds; ð18Þ

whereD is the displacement vector andAe is electrode area.
Although, material parameters, for quartz in particular, are
not known for cryogenic temperatures. Nevertheless, values
of coupling could be derived based on impedance analysis of

a BAW resonator. Such measurements provide three system
parameters specific to each mode: resonance frequency ωλ,
quality factor Qλ, and motional resistance Rλ. This also can
be done in an alternative representation using an electrical
equivalent circuit with inductance Lλ, capacitance Cλ, and
resistance Rλ. The electrical impedance of the mode λ is then
given as Zλ ¼ jωLλ þ Rλ þ 1

jωCλ
. Since only low overtone

modes are considered in the present analysis, the influence of
the shunt capacitance could be neglected.
Equation (18) can be reduced to a simple charge form

q ¼ κλu assuming linearity of coupling. Here κλ is the
electromechanical coupling coefficient to be determined.
Employing analogy between mechanical and electrical
equivalent models for an acoustic resonance, it can be
found that

Mλ ¼ κ2λLλ; kλ ¼
κ2λ
Cλ

; ð19Þ

where kλ is an effective spring constant. It can be
demonstrated that

κ2λ ¼
ωλMλ

QλRλ
ð20Þ

where the only parameter that cannot be measured directly
with the impedance analysis is the mode mass Mλ that can
be estimated based on the acoustic wave distribution (5).
The parameter κ2λ is typically small for quartz BAW devices
[48,57]. It can be of the order of magnitude κ2λ∼
10−4 − 10−5 C2=m2, since typically 10 MHz mode exhibits
Q ∼ 108 and Rλ ∼ 10 Ohm with about 1–0.1 g mass.

IV. SQUID-BASED SIGNAL DETECTION

Due to its piezoelectric nature, a BAW plate cavity can
be directly coupled to an electronic circuit [41]. For
cryogenic operation, the choice naturally falls on super-
conducting quantum interference devices due to their low
noise. The successful observation of Nyqvist noise in
cryogenic BAW cavity has been recently demonstrated
[36]. This section discusses the noise limitations associated
with this detection technique.
It has to be noted that the same BAW cavity can be

probed by optomechanical methods [41] if a mirror coating
is introduced. Optical probing of BAW quartz resonators
has already been used for time-keeping and material study
applications [58].
A typical gravitational wave detection setup involving a

resonant-mass antenna consists of three main parts: a
resonant antenna, a noisy amplifier, and a filter [59,60].
The proposed experimental setup and the equivalent circuit
model are shown in Fig. 6. The first amplification stage of a
detector is based on a near-quantum-limited SQUID
amplifier that has already been employed for dark-matter
search experiments [37]. To calculate the sensitivity of the
whole setup, noise analysis of the dominant noise sources

1

1

10

0.1

100

0.1 10

FIG. 4 (color online). Geometry coefficient Λn;0;0ðη; η; 1Þ.
Note that in modes with η < 1 quality factor is degraded by
the clamping losses.

10 1001
10-23

10-22

10-21

Cavity #1 @ 4K
Cavity #1 @ 20 mK
Cavity #2 @ 20 mK

FIG. 5 (color online). Normalized single sided power spectral
density of the strain sensitivity for various OTs of the longitudinal
mode of two acoustical cavities at 4 K and 20 mK.
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attributed to the Nyquist noise of the antenna and the
amplifier must be considered.

A. SQUID backaction noise

In this section we consider the amplifier Nyquist noise
acting back on the antenna. The voltage noise acting back
on the mode can be written as

VQ ¼ Z0ZλZS

ZSZ0 − ZλðZS þ Z0Þ
�
Is þ

Vs

ZS

�
¼ ZBA

�
Is þ

Vs

ZS

�
;

ð21Þ

where ZS, VS, and IS are input impedance, voltage,
and current noise of the SQUID amplifier and Z0 is the
impedance of the shunt capacitance C0. The corresponding
spectral density of the force fluctuations (measured in
N2=Hz) is

Sf ¼ κ2λ jZBAj2Si: ð22Þ

The backaction impedance ZBA approaches Zλ in the limit
ZS → ∞, Z0 → ∞.
To estimate frequency dependence of ZBA impedance,

we consider typical equivalent electrical parameters of an
acoustic resonance (Rλ ¼ 5 Ohm, Lx ¼ 1 H, C0 ¼ 1 pF)
and input coil of the SQUID amplifier (LS ¼ 400 nH).
From the calculations (see Fig. 7) it is apparent that the
backaction impedance value exactly at the mechanical
resonance equals to the motional impedance of an acoustic
mode Rλ. This makes it independent of the resonance
between the shunt capacitance C0 and the input inductance
of a SQUID amplifier as demonstrated in Fig. 7 (1) and (2).
Result (22) could be compared to the Nyquist force noise

of the mechanical oscillator itself. The influence of these
two types of noises is equal when

Si ¼ 4kTχ
Rλ

jZBAj2
; ð23Þ

which at mechanical resonance gives Si ¼ 4kTχ
Rλ

, i.e. the
equivalent of noise corresponding to the mode equivalent
resistance over the unit bandwidth. In other words, the
SQUID backaction noise could be neglected if it is generated
over the resistance less than that of the BAW mode.

B. SQUID additive noise

Analyzing the detector equivalent circuit [Fig. 6(b)], the
spectral density of the signal at the system output is found
as follows:

20mK

retliFecived WAB Noisy linear 
amplifer

Signal
force

(a)

(b)

FIG. 6 (color online). (a) Experimental setup. (b) Equivalent
electrical model.

10 1001 1000
1
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104

(a)

10

102

103

0 6188-

(c)

1

10

1
0-2-4 -2 -4

(b)

2

FIG. 7 (color online). Backaction impedance ZBA (solid curves)
in fractional units of Rλ. The detuning frequency given in number
of bandwidths δi ¼ ω−ωλi

ωλi
Qλ is calculated for two resonance

frequencies ωλ1 and ωλ2. Dashed curves demonstrate the nor-
malized impedance of motional branches of the equivalent
model. Note that the impedance drops to Rλ at the mechanical
resonances.
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Sout ¼ W2G2

����� Z0ZS

Z0ZS − ZλðZ0 þ ZSÞ
����2 ~Sλ

þ
���� Z0Zλ

Z0ZS − ZλðZ0 þ ZSÞ
����2Su

�
; ð24Þ

where ~Sλ is the PSD due to signal from the antenna and Su
is due to the additive noise of the SQUID amplifier itself.
From this relation the minimal detectable signal power PSD
(measured in m2=Hz) is founds as

Sλ ¼
1

κ2λω
2
λ jZλj2

~Sλ ¼
Su

κ2λω
2
λ jZSj2

¼ Sϕ
κ2λ jZSj2

; ð25Þ

where the flux noise of a squid amplifier
ffiffiffiffiffi
Sϕ

p
can be as low

as 10−6ϕ0=
ffiffiffiffiffiffi
Hz

p
(at 4 K) with ϕ0 ¼ 2.068 × 10−15 Wb

being the flux quantum [36]. This gives flux noise
ffiffiffiffiffi
Sϕ

p
approaching 2.1 × 10−21 Wb2=Hz. With this noise param-
eter and SQUID input inductance LS ¼ 400 nH and
κ2λ ¼ 10−4 C2=m2, the displacement sensitivity

ffiffiffiffiffi
Sλ

p
can

be estimated as low as 3.3 × 10−19 m=
ffiffiffiffiffiffi
Hz

p
at 1 MHz and

10−20 m=
ffiffiffiffiffiffi
Hz

p
at 1 GHz. Note that in order to minimize

this parameter, the input inductance of the SQUID has to be
maximized.
Similar to the case of the backaction noise, result (25)

could be compared to the intrinsic acoustic mode Nyquist
noise. In this case, the flux noise corresponding to the
antenna Nyquist noise is

Sϕ ¼ 4kTχ
jZSj2
Rλ

���� τ−1λ
s2 þ τ−1λ sþ ω2

λ

����2; ð26Þ

where s is the Laplace variable. The last fraction of the
right-hand side represents the mechanical resonance trans-
fer function. The result expression can be represented in the
following form:

Sϕ ¼ 4kTχ
jLSj2
Rλ

���� τ−1λ ω

τ−1λ jωþ ω2
λ − ω2

����2

¼ 4.4 × 10−39
���� τ−1λ ω

τ−1λ jωþ ω2
λ − ω2

����2; Wb2

Hz
: ð27Þ

This result could be understood as BAW resonance Nyquist
noise at the input of the SQUID amplifier measured in flux
units. Figure 8 compares this noise with the SQUID noise
specified by the manufacturer and discussed above.

V. DISCUSSION AND FUTURE PERSPECTIVES

In the previous sections, we have estimated the spectral
sensitivity of a gravitational wave antenna based on a single
BAW cavity. Remarkably the sensitivity in terms of spectral
strain sensitivity can be better than the massive 700 Hz to
1 kHz GW detectors developed in the 1990 s [54] but
operational at MHz frequencies. Thus, we have shown that
they are suitable for sensitive detection of gravitational
waves in the MHz frequency range. The advantages of this
system include (1) extremely high Q-factors at cryogenic
temperatures [34] from 4 K down to mK temperatures, (2)
well-established high precision technology, (3) the exist-
ence of a very large number of sensitive modes that can be
used to probe distinct frequency bands [35], (4) compact-
ness, (5) ease of piezoelectrical coupling to SQUID and
parametric amplifiers [36], (6) also there is the possibility
of organizing arrays of detectors to improve sensitivity
and allow coincidence analysis, and (7) the possibility of
designing larger cavities for lower frequency ranges.
It has to be emphasized that the proposed system is a

multimode detector. Due to a large number of very high-Q
modes with a similar sensitivity in a wide frequency range,
the bandwidth of system is not limited by a bandwidth of a
single mode. Rather, the BAW cavity probes the GW
radiation in different sample points across the frequency
range. And due to large bandwidth of a SQUID amplifier,
all the information from all modes will be available at the
system output. This fact may be important for analysis of
stochastic GW background.
While this work estimates the sensitivity for the currently

available state-of-the-art BAW technology, there is room to
optimize this technology for the purpose of increasing
the sensitivity to gravitational waves. One possibility is to
arrange several BAW cavities in an array. This arrangement
alongside cryogenic operation (∼20 mK) becomes possible
due to compactness of the devices (<5 cm3 with a vacuum
can). Although identical BAW devices manufactured
according to the same technological process cooled to
cryogenic temperatures have slightly different frequencies
(up to tens of kHz) due to small imperfections, this may
lead to finer frequency coverage of the incoming gravita-
tional signal. Also, due to the fact that the quartz BAW
technology is already well established, it would be possible
to create a large network of such detector arrays in different

0 10 20-10-20
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Braodband SQUID Noise

BAW Mode Thermal Noise

FIG. 8 (color online). Comparison between SQUID additive
(broadband) noise and BAW cavity mode Nyquist noise at the
SQUID input around resonance frequency ωλ. The frequency
scale is given in number of resonance bandwidths δ ¼ ω−ωλ

ωλ
Qλ.
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laboratories all over the world. This international network
of GW detectors may be used to exclude false detection via
coincidence analysis [4].
Another possibility is to design a special upscaled BAW

cavity for lower frequency range. It has been recently
proposed to use high quality BAW quartz resonators as
mass standards [61]. Although manufacturing of such a
device is associated with considerable technological diffi-
culties, the existence of it is very beneficial for standard
keeping applications allowing not only more accurate mass
standard but also signal transferring due to mass lock to
frequency. This 1-kg standard will have a significantly
lower frequency around 100 kHz range, but augmented
active mass a least 103 times that is beneficial for the
sensitivity. At the same time, quality factor of such a device
at cryogenic temperature cannot be reliably predicted,
although it is generally observed that larger mass systems
exhibit higher values of the Q-factor [34]. So Q-factors in
the range 106–109 can be expected. Moreover, as the
authors [61] suggest the mass standards in different
laboratories can be connected in a synchronized network

that replicates the idea of the large network of BAW cavity
based GW detector arrays.
One of the motivations for the development of the

cryogenic BAW cavity technology is related to the field
of engineered quantum systems. Indeed, the BAW systems
have proven to have the highestQ-factor at the ground state
among mechanical systems [35,62]. At the same time, these
devices are the largest objects (gram scale) that have been
cooled to the ground state with the masses well above the
Plank mass. Thus, BAW technology has potential to test
quantum mechanics and the theory of general relativity
under the same experimental framework [63].
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