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In this article, we study a particular method of detection of chirp signals from coalescing compact binary
stars—the so-called dynamical tuning, i.e., amplification of the signal via tracking of its instantaneous
frequency by the tuning of a signal-recycled detector. The motion of the signal-recycling mirror, the
position of which defines the tuning of the detector, causes nonstationarity of the detector. The dynamically
tuned detector can be simulated in a quasistationary approximation if the mirror position, amplitude, and
frequency of a chirp signal are changing slowly. A time-domain consideration developed for signal-
recycled interferometers, in particular GEO 600, describes the signal and noise evolution in the more
general case of a purely nonstationary detector. We prove that the shot noise from the dark port and optical
losses remains white in this case. The analysis of the transient effects shows that during the perfect tracking
of the chirp frequency only transients from fast amplitude changes arise because the transients from
changes of the detector tuning and signal frequency completely cancel each other. The slow change of the
amplitude in this case establishes a so-called virtually stationary detection, meaning the signal fields at the
detector hold their stationary values at each instance of time, corresponding to the instantaneous parameters
of the gravitational wave and of the detector. The signal-to-noise-ratio gain from the implementation of
dynamical tuning, calculated in this paper, is ~17 for a shot noise-limited GEO 600-like detector and ~7 for
a detector with both shot and displacement noise.
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I. INTRODUCTION

In the last few decades, a big effort has been made to
detect gravitational waves (GWs) from various sources in
deep space. In particular, we expect a very interesting kind
of GW signal, usually referred to as a chirp signal [see
Figs. 9(a) and 9(b) for an example], to be emitted by
compact binary systems, such as a pair of neutron stars
or black holes inspiraling toward each other and then
coalescing.

A chirp signal gives us unique information about non-
linear dynamics of matter and space-time, as the GWs are
emitted from the regions with strong space-time curvature.
Compact binary coalescence (CBC) and the corresponding
GW signal are conventionally split into three stages:
inspiral, merger, and ringdown. The post-Newtonian
approximation of general relativity (GR) [1-4] allows a
precise prediction of most of the inspiral stage. At this
stage, the signal has a sinusoidal shape with frequency and
amplitude increasing in time. The latter stages of the
inspiral and all of the merger and the ringdown stages
are modeled by numerical relativity, and then all stages are
continuously sewn together.

Once a signal is measured and compared to the tem-
plates, one can extract information about masses and spins
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of the inspiraling binary objects as well as the equation of
state of dense nuclear matter in the case of the merging
neutron stars [5,6]. Therefore, a sensitive detection of chirp
signals might verify or falsify GR or alternative theories of
gravity via comparing their predictions with the measured
parameters. Schutz in Ref. [7] and later Taylor et al. in
Ref. [8] also proposed that the Hubble constant can be
independently determined in a new and potentially accurate
way by observation of the inspiral stage of the chirp GWs.

Nowadays, large-scale ground-based laser interferome-
ters are the most sensitive detectors of GWs in the
frequency range 10 Hz-5 kHz [9]. Currently, the first
generation of GW detectors has finished their operation
without any detection, which agrees with the current
estimations for their detection rate. The significantly
improved sensitivity of the second-generation detectors
will allow us to achieve a detection rate of about
25-400 yr=! [10]. Upon reaching the Earth, the GWs
are only tiny perturbations of the space-time metric causing
a small variation of the proper distances between the quasi-
free-falling test masses of the laser interferometer. All
currently operating and future planned GW detectors are
based on the traditional Michelson topology, a typical
idealized example of which is considered in this paper (see
Fig. 1): the interferometer consists of a 50/50 beamsplitter,
perfectly reflecting end mirrors and additional mirrors
for signal and power amplification, referred to as the
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FIG. 1 (color online). Scheme of the considered GW detector.
The notations are presented in Table I.

signal-recycling mirror (SRM) and power-recycling mirror
(PRM), respectively. Interferometers usually operate near
the dark fringe in the output port, meaning that the laser
beams reflected from the end mirrors destructively interfere
on the beamsplitter toward the photo diode. A GW of
appropriate polarization and direction causes antisymmet-
ric (differential) motion of the interferometer’s end mirrors
relative to the beamsplitter. This breaks the destructive
interference at the output port, allowing a tiny part of the
optical field carrying the information about the GW signal
to reach the photodetector. This signal field gets recircu-
lated by the SRM, forming the differential mode of the
interferometer in the effective signal-recycling cavity
(SRC). The PRM in the laser port increases power at the
end mirrors, and by recirculating the light reflected from
them, it creates the common mode of the interferometer in
the power-recycling cavity (PRC). This mode is sensitive
to the symmetric (common) motion of the end mirrors.
Therefore, the common mode of the detector does not
contain any information about the GW signal, and in the
rest of this paper, we only consider the differential mode.

Parameters of the SRC are determined by the properties
of the SRM: the frequency bandwidth of the cavity is
determined by the SRM transmittance, and the detuning of
the laser carrier frequency from cavity resonance is
determined by the microscopic position of the SRM. In
this sense, the SRC is equivalent to a simple Fabry—Perot
cavity [11]. The SRC can be tuned to any desired signal
frequency via the proper choice of the cavity detuning.
Currently, all GW detectors operate stationary in time,
meaning that the parameters of the SRC are fixed. There are
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FIG. 2 (color online). The quantum noise of broadband and
narrow band detector configurations. The quantum noise of a
quasistationary dynamical tuning (the points of optical resonance
in curves corresponding to each tuning) is also presented to
compare with the mirror displacement noise.

two typical regimes of detection of chirp signals in this
case: a broadband operation and a narrow band operation
(see Fig. 2). In the former regime, the detector is sensitive to
the entire frequency band of the chirp signal, but at
moderate sensitivity. On the contrary, in the narrow band
regime, the detector is much more sensitive, but only in a
narrow band around the signal frequency to which the SRC
is tuned (see Fig. 2). Since the chirp signal at the inspiral
stage is a sine function with frequency increasing in time
[see Fig. 9(b)], the peak sensitivity of the narrow-band-
operated detector will only be achieved during the short
interval of time, when the particular instantaneous fre-
quency of the chirp approximately coincides with the
detuning of the SRC.

Another option for the detection of a chirp signal was
proposed by Meers et al. in Ref. [12]: real-time tuning of a
narrow-band SRC to the instantaneous frequency of the
signal via positioning of the SRM, i.e., real-time signal
tracking. This method of detection is referred to as
dynamical tuning. However, analysis in Ref. [12] was
performed under the following approximations: (i) a shot-
noise-limited detector and (ii) slow enough motion of the
SRM such that the detector can be considered as a
quasistationary one; i.e., all the optical fields evolve
adiabatically on the time scale of the motion of the
SRM. The latter approximation also sets the limiting instant
of time until which the signal can be observed before
entering the regime of rapid frequency increase, where
quasistationary approximation does not hold anymore.
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To agree with these approximations, the authors considered
detecting only a part of the chirp signal—with the instanta-
neous frequency varying from 100 up to 500 Hz. The
method developed in this paper allows us to treat the
problem of dynamical tuning outside of these approxima-
tions. It should be noted that we do not consider the
problem of signal prediction; we assume that the initial time
evolution of the signal is known, for instance, from the low-
frequency data of other GW detectors, such that the
subsequent evolution of the signal can be predicted.

The response of a stationary-operated detector to
GWs and all kinds of noise sources is usually calculated
in the frequency domain. For a detailed analysis, see
Refs. [9,13-17]. A GW detector performing dynamical
tuning operates in the nonstationary regime. The tracking
of a chirp signal with a slowly changing frequency may be
described with a quasistationary approximation, assuming
the detector reaches steady state very fast. A quasistationary
approximation can also be considered in the frequency
domain, as it was performed in Ref. [12]. However, when the
frequency of the signal and, correspondingly, position of the
SRM change too fast, a frequency-domain analysis is not
adequate, and therefore we develop a time-domain analysis
to model it properly. In particular, the detector response
takes the form of a series over an infinite number of round
trips of light inside the SRC [18,19], the so-called impulse
response.

The basics of time-domain and frequency-domain analy-
ses of laser GW detectors this paper is grounded on,
including the stationary responses to common and differ-
ential modes of a stationary operating interferometer, and
its shot-noise sensitivity formulas are given with sufficient
details in Ref. [20].

Using our time-domain model, we also calculate the
response of the detector to shot noise (vacuum fluctuation
of the electromagnetic field injected from the dark port or
lossy optical elements) and to differential motion of the end
mirrors (caused by the GWs and various types of mirror-
displacement noise such as thermal noise). The analysis of
the transient processes during ideal dynamical tuning,
performed using this approach, has shown that only fast
amplitude changes cause a deviation from the quasista-
tionary predictions, while the transients from signal fre-
quency and from the SRM position cancel each other. The
slow change of amplitude establishes a so-called virtually
stationary detection, when the output signal at every
instance of a nonstationary detection has the stationary
value, corresponding to the instantaneous parameters of the
signal and of the detector. The radiation pressure noise
(back action) is omitted for the considered power at the end
mirrors in the current model because (i) its typical frequen-
cies are lower than the characteristic frequencies of the
considered part of chirp signals starting from 200 Hz (see
Fig. 3) and (ii) it is dominated by the other noise sources
(see Fig. 2).
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FIG. 3 (color online). The quasistationary approximations of
dynamical tuning for the detector with the full quantum noise
(with radiation pressure) and with the shot noise only.

Finally, we study the possible signal-to-noise-ratio
(SNR) gains from the implementation of dynamical
tuning to the traditional broadband stationary operated
detector. For the shot-noise-limited detector, the increase
of the SNR is ~17, and for the detector with both
displacement and shot noise, the increase is ~7. We found
that, in contrast to the stationary operated detector
limited by both displacement and shot noise, the detector
performing dynamical tuning is only displacement noise
limited. This happens because displacement noise and
GW signal, both creating the differential motion of the
end mirrors, are resonantly enhanced by dynamical
tuning in the same manner (effectively, dynamical tuning
tracks and amplifies the same components of displacement
noise as of the GW signal), while shot noise on the
photodetector remains the same (more precisely, shot noise
remains delta correlated independently of the motion of
the SRM).

The paper is organized as follows. We derive the time-
domain response of the detector to a gravitational wave in
Sec. II. We consider the influence of displacement noise on
the detector output in Sec. III and by the shot noise in
Sec. IV. The time-domain models are presented in these
sections with a consistency check in comparison to the
stationary model. The features of a nonstationary model
and, especially, its difference from a quasistationary
approximation are represented in Sec. V. In Sec. VI, we
present the SNR gain with respect to a stationary detector,
which can be achieved with dynamical tuning.

II. MODEL FOR THE SIGNAL INDUCED BY
A GW DURING DYNAMICAL TUNING

Let us consider the GW detector described above.
A plus-polarized gravitational wave h(t), falling
perpendicular onto the detector, causes a differential
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motion of the end mirrors proportional to the arm length,
assuming they have initially rested,

xq(t) = ) (1)
where

() = X000 @

is the differential motion and x.(¢) and x,(¢) are the
displacements of the east and the north end mirrors,
respectively (see Fig. 1). L is the arm length.

The differential displacement of the end mirrors breaks
the dark-port condition of a Michelson interferometer,
injecting signal sidebands into the SRC. In this paper,
we neglect the optomechanical back-action effects, so the
further evolution of sidebands may be reduced to the two
elementary phenomena: (i) reflections (and transmissions)
from the mirrors and a beamsplitter and (ii) propagation
through space. The optical losses in our case may be
effectively reduced to the reflections. As part of this
evolution, some field exits the dark port and is detected
by a photodetector. The resulting output current on the
photodetector () contains the information about the
differential motion of the end mirrors, caused by gravita-
tional waves.

The response of the detector to the signal under these
circumstances can be considered linear for two reasons:
(i) the smallness of the end-mirror displacements caused by
the GW in comparison to the wavelength of the light and
(i1) the superposition principle for the fields inside the
cavity. The output current of such a linear system in the
time domain is defined by the end-mirror input motion via a
so-called impulse response L,_.(f,1;),

mo-[tu%@mmmwm 3)

o]

where s — ¢ stands for “signal to current.” Thus, once we
know the linear response of the detector, we can simulate
the output current for any gravitational wave.

The physical meaning of the impulse response of the
detector is the photocurrent caused by the delta-impulse-
shaped differential jitter of the end mirrors in the instance of
time #;. It contains the information about the signal trans-
formation inside the detector; hence, all the optical param-
eters as well as the motion of the SRM are encrypted in it.

The impulse response for GEO 600 with a moving SRM
has the following explicit expression:

Lo .(t, 1)) = i C, cos[&, ()] x 5(1‘1 —t+nt+ %)
n=0
(4)
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TABLE I. Notations and definitions used in this paper.

Notation Definition

w, Frequency of the carrier laser

c Speed of light

A Cross section of the detected beam

R Equivalent end-mirror reflectivity (B10)

T, Transmittance of the SRM

R, Reflectivity of the SRM

E Field falling on the beamsplitter (see Fig. 1)

e Phase of the field E

b Local oscillator of the homodyne detector

bn Homodyne angle (B15)

ky Wave vector “

x(t) Microscopic displacement of the SRM from
the resonant position

T Round-trip time (5)

Physically, it is a sequence of the output pulses with
amplitudes C,, and phases &,(¢) describing a decaying
and oscillating envelope. The pulses occur every round trip
7 in the output photocurrent. The expressions for ampli-
tudes and phases are explicitly presented in Eq. (B14).

The notations and definitions of the physical values used
in the expression for an impulse response (and in other
models of this paper) are presented in Table I. Its derivation
is shown in Appendix B 3, while the description of the
time-domain model this derivation is based on can be found
in Appendix B. The basic features of the model are
considered in the simpler case of a Fabry—Perot cavity
in Appendix A.

The depiction of the impulse response is presented in
Fig. 4 for a 100 Hz detuning in two scales: of seconds and
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FIG. 4 (color online). The typical impulse response of the

considered detector with a constant detuning f,, = 100 Hz:

(a) in the response decay-time scale and (b) in the single round-
trip time scale (~8 us).
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TABLE II. Unchanged GEO 600 parameters.
Current
configuration
Symbol Quantity value
A2 Equivalent power transmission on 450 ppm (107°)

the east mirror (losses at the
mirrors + scattering on the

beamsplitter)
A2 Equivalent power transmission on the 390 ppm
east mirror (losses at the mirrors)
L Effective length of the arm 1200 m
W, Power falling on the beamsplitter 2.12 kW

(at point E in Fig. 1)

of single pulses (~8 us). The typical set of parameters of
GEO 600, used for the simulations of this plot (as well as
for other calculations in this paper), is presented in Tables II
and III. The tables also include the current parameters of
GEO 600 and describe the changes required for the
implementation of dynamical tuning.

The physics standing behind the impulse response is the
following. The signal pulse created in the SRC by the
differential end-mirror movement makes the round trips
between the SRM and the end mirrors with the period

Tzz%. (5)

Every time the pulse is reflected from the SRM, the small
part of it leaks from the cavity and is detected at the
homodyne detector with the local oscillator (LO)
field (B12).

These leaked pulses form the infinite number of
decaying “echoes” at the output with amplitudes
Cy,C;,Cs,.... Two consequent pulses in this sequence
are differing by a decay factor during one round trip R R;,
and the phase shift between two consequent impulses is
obtained during the reflection from the SRM due to its
microscopic displacement from the resonant position.

The reflection of light from the beamsplitter and from the
end mirrors is equivalent to the reflection from a single

TABLE III. GEO parameters, modified for the dynamical
tuning.
Value for
Current dynamical
configuration tuning
Symbol Quantity value configuration
T2 Power transmission on 0.1 420 ppm
the SRM
o Frequency detuning of 0 Hz Resonant
signal-recycling tracking
cavity
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mirror with the reflectivity R; defined in Eq. (B10). This
mirror and the SRM form an equivalent Fabry—Perot cavity.
A more thorough description of the equivalence between
the SRC of GEO 600 topology and a single Fabry—Perot
cavity is presented in Appendix B 7.

The impulse response (4) describes the behavior of a
detector also in the stationary case when &, () = const. The
Fourier transformation turns the impulse response into
transfer function R,_.(Q) presented in Eq. (B16). The
transfer function describes the response of the detector on
the sine gravitational wave. The wave creates two side-
bands in the detector, the amplification of which has
resonant features. The transfer function R,_,.(Q) coincides
with those, obtained conventionally in the frequency
domain, e.g., in Refs. [20-23]. Therefore, the model for
the time-domain response on the gravitational wave is
consistent with the accepted frequency-domain models.

III. MODEL FOR THE END-MIRROR
DISPLACEMENT INDUCED NOISE
DURING DYNAMICAL TUNING

Gravitational waves cause differential end-mirror
motion. However, it is not the only source of this motion.
There is a number of stochastic influences on the end
mirrors in GEO 600 causing it, the most significant of
which are thermal noise in mirror coating, seismic noise,
and gravity gradient noise [24,25]. The noise is stationary
and characterized by its spectral density S(Q2), the theo-
retical prediction of which is known and is depicted
in Fig. 10.

The impulse response to the differential end-mirror
motion (4) defines the output current at the photodetector
for an arbitrary input. It is also applicable to stochastic
motion of the end mirrors.

For stationary detectors, it does not matter whether noise
and signals are compared at the end mirrors or at the output
photocurrent. The reason is that a linear detector transforms
the same frequency components of both noise and signal
equally, so the ratio of the intensities of these components
does not change. Something similar happens for the non-
stationary detector. Although the frequency components
here do not evolve independently, the impulse response
transforms the same components of the signal as of the
noise in the same way. So, if the information about the
signal is transferred completely, it also does not matter
where one calculates the sensitivity with respect to the
displacement noise. The completeness of the transferred
signal can be proven by consequent action of the direct and
of the inverse impulse response, as it is shown in Eq. (26).

When we investigate the influence of displacement noise
on the sensitivity of the dynamically tuned detection, we
consider displacement noise alone, neglecting shot noise.
In this case, it is more convenient to compare the signal and
noise at the end mirrors for the following reasons. The first
is the convenient shape of the signal: it is proportional to the
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gravitational wave strain (assuming the initial position and
velocity of the end mirrors equal zero). The second reason
is stationarity of the displacement noise, simplifying the
calculations. The third reason is the independence of the
ratio between the signal and the displacement noise from
the motion of the SRM required for the dynamical tuning.
So the SNR may be calculated in the conventional way,
e.g., in the frequency domain, using the expression

© |x 2
d* = /_ ) ;g' dQ, (6)

where X4(Q) is the Fourier transform of the signal differ-
ential mirror motion x4(?).

If we want to calculate a more realistic sensitivity
including both displacement and shot noise, we should treat
their influences at the same part of the interferometer. For
this purpose, it may be more convenient to treat displacement
noise at the output of the detector, ie., in the signal
photocurrent. As it was mentioned, the autocorrelation
function of this noise may be found from the one of the
end-mirror motion noise via the impulse response (4),

By(t1. 1) = Z
m=0

X B(ty —t; + (m = n)7), (7)

N

Can Cos fm(ll ) COs gn(IZ)

Il
o

n

where B(r) can be found from the spectral density S(€2)
mentioned above.

IV. MODEL FOR THE SHOT-NOISE EVOLUTION
DURING DYNAMICAL TUNING

A. Fields in the detector

Quantum shot noise is conventionally considered as
ground-state quantum oscillations injected into a cavity
through any open port and from lossy elements [13]. Since
Maxwell’s equations are valid for quantum mechanics, the
quantum operator of the electromagnetic field can be
treated like the classical field values in the previous
sections.

Let us consider, for example, the quantum field at the
point a, where the laser shines into the detector (see Fig. 1).
The quantum electrical field operator in this point, describ-
ing also the classical part of the light when it is required,
reads

7, _ © [2zho., —iot | A+ iwt d_w
B = [T e @)
~ 2”hwp N —iwpt A+ iyt
R e O SO (8)

where 4(w) and a*(w) are the annihilation and creation
operator, and A is the effective optical cross section of the
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considered beam. The annihilation and creation operators
in the other spatial points of GEO 600 are denoted by the
corresponding letter depicted in Fig. 1. The operator a(¢),
introduced in (8), is a Fourier transform of the annihilation
operator 4(w) and represents the amplitude of the electric
field. One has to note that this Fourier transform is
performed only within the frequency of the anticipated
GWs, which is much smaller than the frequency of the laser
carrier:

Q=0-w, <, 9)

In this section, from all the points in Fig. 1, we are only
interested in the shot-noise injections from the dark port
7(1), injections from the end mirrors #(¢) and (z), and the
detector dark-port output §(7).

The homodyne detection of the output field Ey(t) gives a
signal in the photocurrent, in which we can read out the
GWs and see the noise. The main part of shot noise at the
output is formed from the ground-state oscillations injected
from the dark-port (¢). The homodyne detection of this
input field with the local oscillator (B12) results in a white
spectrum for its noise in the frequency band of detection,

Bin(tl’tl)zczé([l _ZZ)’ (10)

where C, is a constant, determined by the amplitude of the
local oscillator, and is explicitly presented in (B27).

B. Output field expressed in terms of input

The output shot noise is the result of the evolution of the
injected ground-state oscillations E,(z). This evolution,
consisting of a phase shift, propagation, and amplitude
change, is described by the complex amplitudes. Therefore,
we can express the amplitude of the output field in terms of
the input using the complex impulse response,

§(1) = /_ " Lo, 0)a(F)dr, (11)

(5]

where L(t, 1) is the complex impulse response and §(¢)
and 7(¢) are the amplitudes of the output and input fields,
respectively (see Fig. 1). The physical meaning of this
function is a response on the infinitely short pulse with the
optical carrier frequency.

The noise we get by the homodyne detection of this field
with the local oscillator (B12), keeping in mind (10), reads

min(t,t)

Bucltnts) =C, [ an L (AL 1. ).

(12)
Here,

L(t,1;) = L (1, 1) e (=1 (13)
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is an auxiliary impulse response of the output field
amplitude §(7) on the input one Z(¢) in the rotating frame,
i.e., excluding the time evolution of the phase. Explicitly,
the function is

Li(tn) =3 Byexplipn ()50 — 1 +n7)  (14)
n=0

with amplitudes B, and phases ¢, () defined in (B19).

A more detailed derivation of the impulse response is
presented in Appendix B. The plot of the two quadratures
of the auxiliary impulse response is presented in Fig. 5. The
deltalike impulse, sent to the dark port 2(z), is reflected
back from the SRM almost completely (R, =~ 1), as can be
seen in Fig. 5(a). Only a tiny fraction of the input pulse is
injected into the detector and does the round trips the way it
was thoroughly described in Sec. II. For every round trip,
when the pulse reaches the SRM, a part of it goes to the
output [see Fig. 5(c)]. On a larger time scale, the pulses
in both quadratures form the oscillating and decaying
envelopes shown in Fig. 5(b).

The transfer function R (€2) (B21) for the stationary
regime can be obtained from Eq. (14). It is consistent with
the results obtained by the conventional calculations in
the frequency domain [20-23]. In the case of the ideal
end mirrors Ry = —1, the transfer function turns to the
expression (B22), the modulus of which equals 1.

The auxiliary impulse response (14) with the help of
Eq. (12) and with some simplifications leads us to the
autocorrelation function of the output shot noise,
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FIG. 5 (color online). Two orthogonal quadratures of the
auxiliary impulse response (real and imaginary parts) to the
vacuum quantum oscillations, injected from the dark port: (a) on
the large amplitude scale, depicting the direct reflection of the
input pulse from the SRM; (b) on the small amplitude scale,
representing the output envelope from the oscillations and decay
(in the rotated frame) of the amplitude pulse as it propagating
inside the SRC; and (c) on the short time scale, picturing the
round-trip time and the discrete nature of the impulse function.
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B,(t1.1) = C, > Dyycos(@1(11))5(ty — 1o — nz)

n=-—oo

+ Co(t — 1), (15)

the amplitudes of the correlations D, of which are
presented in (B28). This is a correlation of white noise
reflected from the cavity. The bigger part of the wave
reflects directly, remaining delta correlated, and the part
transmitted inside makes a sequence of echoes every round
trip, each of which is also correlated with the directly
reflected wave and with other echoes. Because of the
properties of white noise, neither echoes nor directly
reflected light correlates with the pieces of wave between
the echoes.

As it follows from the expression for coefficients (B28),
the autocorrelation function for the detector with ideally
reflecting end mirrors Ry = —1 keeps only one nonzero
summand C,5(#; — t,), meaning the detected shot noise is
white. Despite the nontrivial transformation of the electro-
magnetic field of the quantum oscillations inside the
detector (14), its statistics remains the same.

The delta-correlated statistics in this case is also con-
sistent with the conventional description of the stationary
interferometers in the frequency domain. As it was
mentioned before, in the case of the ideally reflecting
end mirrors, the modulus of the transfer function (B22)
equals 1. The spectral density of the shot noise in this case
is proportional to the squared modulus of the transfer
function, and therefore constant, also meaning the noise
is white.

C. Influence of losses

The optical losses of the laser field inside a cavity, caused
by the scattering into higher-order modes, reflection from
the antireflective coating of the beamsplitter, and the
absorptions in all optical elements, decreases the effective
reflectivity of the equivalent mirror Ry < 1 and therefore
modifies the statistics of the corresponding output noise
in (15). However, the losses cause additional noise due to
the fluctuation-dissipation theorem [26], which can be
equivalently considered as injections of the ground-state
vacuum quantum oscillations through the equivalent mir-
rors [13] with a transmittance equal to the optical losses in
the arms (A, and A, in Fig. 1). The corresponding impulse
responses read in a similar manner to (14):

0 . T
LS,n—»C(t’ [1) = Z Bnk exp[l(pkH (t)]5<t1 -1 ‘l‘ 5 + kT) .
k=0

(16a)

00 . r
Lgeoo(tiy) = ZBek exp[l¢k+1(f)]5(f1 it kT)-
k=0

(16b)
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FIG. 6 (color online). Two quadratures of the auxiliary impulse

response (real and imaginary parts), depicted on the decay time

scale, to the vacuum quantum oscillations, injected from an

equivalent end mirror. The difference between the east and the
north end mirrors is insignificant on the plot scale.

The coefficients B,; and B, are explicitly presented in
(B24), and the phase shifts ¢, (¢) are the same as in the
previous section and defined in (B19).
The plots of the impulse responses are depicted in Fig. 6.
The autocorrelation function of their noise on the
photodetector caused by both of these injections is

Bn(tlv t2> = _Cz Z Dn COS(QO,H_I (t1>)5(t1 —bh - nT)'

n=—00

(17)

As it is easy to see, the total output shot noise of the
nonstationary detector with the moving SRM, including the
injections of the ground-state oscillation from the dark port
(15) and from the optical losses (17), is white:

By\(t).t) = C,6(t) — 1p). (18)

This result is expected because the autocorrelation
function of the output shot noise defines the state of the
output electromagnetic oscillations at the output. There are
no generators of photons inside the detector contributing
to these oscillations, even though we move the SRM.
Therefore, the state of the output shot noise should also be
ground and should have the same statistics as the input
electromagnetic oscillations.

The SNR at the output with respect to the white shot
noise is determined by Eq. (27).

V. DYNAMICAL BEHAVIOR OF A
NONSTATIONARY DETECTOR

The important goal of the investigations presented in this
paper is the study of the dynamical behavior of the detector,
resulting from the nonstationarity caused by the fast
movement of SRM. The analysis is based on the model
for this regime presented in Sec. II with the impulse
response.

Dynamical tuning assumes that we are detecting a chirp
GW signal. Because of their sinusoidal shape, these signals
can be presented in the form

PHYSICAL REVIEW D 90, 102003 (2014)
xq(1) = X (1) cos (1), (19)

where X () and {(7) are the time-dependent amplitude and
phase, respectively. The latter is related to the time-
dependent frequency of the signal, {(7) = ft; Q(t,)dty,
where Q(t) = 2zf(t) is an angular frequency.

A. Quasistationary dynamical tuning

A quasistationary approximation is the first and the
simplest approach to describe a dynamically tuned gravi-
tational wave detector. It was presented and described in the
pioneer paper about dynamical tuning by Meers et al. [12].
According to this approximation, the parameters of the
gravitational waves, namely, the amplitude and the fre-
quency of the gravitational wave, and also the detuning of
the signal-recycling cavity, change slowly enough, so the
fields inside the cavity and the current at the homodyne
detector reach their stationary values, and the transients are
negligible (C1).

In Appendix C, it is shown that dynamical tuning in
quasistationary approximation amplifies a GW uniformly,
without deformations. So the output signal in a quasista-
tionary case equals a multiple of the GW,

Iy(t) = Cqsxd<t)’ (20)

with the coefficient Cys presented in (C4).

The dynamical processes (or dynamical behavior) stud-
ied in this paper are defined as the difference between the
nonstationary time-domain and the quasistationary models.
It arises outside the domain of applicability of a quasista-
tionary approach (C1) [see, e.g., Figs. 9(c) and 12].

B. Resonant tracking of the sinusoidal signal

During dynamical tuning, the cavity is resonant to only
one of the sidebands caused by a GW, while the other one is
suppressed. The tuning of the sideband takes place when
the additional phase shift the GW gets during one round trip
is canceled by the corresponding displacement of the SRM
from the laser resonance position. Generally speaking, this
condition is defined within one round trip, and therefore we
can express it mathematically for the nonstationary detector
with moving SRM:

2r6c(t) e = (14 7/2) = {(t—7/2) = 2xf()r.  (21)

It is easy to prove this resonance condition by the
substitution of the resonant condition (21) to the impulse
response (4) and applying it to detect the GW (19). The
dynamical tuning detection, following this resonance con-
dition, is referred to as resonant tracking of the signal. The
similar task of the dynamic resonance of a Fabry—Perot
cavity to the perturbations of the laser phase inside it is
considered in details in Ref. [27].
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C. Transient features and virtually
stationary detection

From the mathematical point of view, in the quasista-
tionary approximation described above, the system
switches from one stationary state into another one instan-
taneously. In real systems, there are often finite transient
processes between two stationary cases, caused by inner
physical phenomena, making the behavior of these systems
purely nonstationary. These dynamical transient effects
of the detector make the essential difference between
the known quasistationary approximation and the new
time-domain model presented in this paper.

The major transient features of the nonstationary detector
become apparent already in the plot of its linear response,
depicted in Fig. 4. The decaying oscillations of the
envelope (created by the beating of the detector sideband
with a local oscillator) represent, respectively, the detuning
(which can also be time dependent) and the relaxation time
of the SRC, while the delays between impulses equal the
round-trip time.

The numerical simulation of the output photo current (3)
using the impulse response (4) allows us to study the
dynamical transient effects from the stepwise change of the
parameters. In this paper, we focus on the amplitude X(7),
the signal frequency f(¢), and the detuning of the SRC
5¢(t), since only they are changing during dynamical
tuning. Strictly speaking, only the change of &¢(¢) makes
the detection nonstationary. The response on X (#) and f ()
alone is a response of a stationary detector. However, when
the detector is nonstationary, the changes of these two
values introduce additional nonstationary effects, as it is
shown below. The numerically simulated transients from
the stepwise changes are shown in Fig. 7. In all three cases,
the signal starts with the same set of parameters X(7),
f(2) = 8¢(t) = 250 Hz, followed by a stepwise change of
one of them.

The first typical feature of all three transients is the
length of the relaxation processes, depicted in all three
transients. These relaxations have the same duration as the
impulse response (see Fig. 4).

Let us consider the transients caused by the changes of a
frequency: either of the GW signal in Fig. 7(b) or of the
SRC detuning in Fig. 7(c). In the transient caused by the
signal frequency change, we can see the decay of oscil-
lations at the initial signal frequency. The new stationary
oscillations, arising during the transient, occur at the new
frequency of the GW. In the other transient, caused by the
change of the SRC detuning, the decaying oscillations
immediately occur with the new detuning frequency. The
new stationary oscillations arise here with the GW fre-
quency. Generally speaking, the energy stored before the
parameter shift decays at the new SRC detuning frequency,
while the new oscillations arise at the new GW frequency.

All the explained conclusions are easy to obtain math-
ematically by the substitution of a corresponding stepwise

PHYSICAL REVIEW D 90, 102003 (2014)
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FIG. 7 (color online). The typical transients of the considered
detector on the stepwise change of (a) X (1), (b) f(¢), and (c) 5;(1).

changing parameter into the impulse response equation (4).
It was performed explicitly in Ref. [23].

The remarkable consequence of the described processes
becomes apparent as we numerically simulate the resonant
tracking (21) to the step change of the GW frequency, i.e.,
when both frequencies of the GW and of the SRC detuning
are changing synchronously as it is depicted in the
Fig. 8(a). The decay at the SRC frequency is compensated
here by arising at the same GW frequency. As a result, the
perturbations caused by these two transients are canceled,
so the frequency of the output signal switches instanta-
neously from one value to the other without any relaxation
process.

Since any arbitrary change of frequency may be
expressed in terms of single step transients, the following
can be deduced. During the resonant tracking of a chirp
GW with constant amplitude, the output current will have
its stationary values everywhere, without transition effects,
although the detector could be rather nonstationary. This
condition we call virtually stationary. Consequently, only a
change of GW amplitude causes transients.

D. Transformation of the signal envelope during
resonant tracking

The dynamical effects become crucial during the late
stages of resonant tracking.

Let us calculate the response of the detector to a chirp
GW signal (19). The approach explained here is shown in
more mathematical details in Appendix D. An example of
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on the combinations of stepwise changes of (a) f(¢) and &;
(b) X(1), (1), and &¢(¢); and (c) X(r) and &¢(r).

such a signal from a coalescing binary and of its frequency
behavior are shown in Figs. 9(a) and 9(b). Generally, the
approach described in this subsection is valid for signals
with arbitrary changes of phase and amplitude. The phase
of the chirp defines the required motion of the SRM (21).
The linear response, defined by this SRM motion via
Eq. (4), helps to calculate the output (3).

The resulting expression consists of an infinite series,
each summand of which includes two cosines, one with the
phase of the GW from Eq. (19) and one for the phase of the
cavity detuning from (4). We can expand both cosines into
complex exponents and choose only the resonant sideband
terms from their product, assuming the nonresonant fields,
being summed up with homogeneously distributed phases,
to be insignificant. The amplitude of the gravitational wave
X(t) in the same expression can be represented in the
Fourier domain as X(Q), which turns time delays into
complex exponents. Subsequent reducing of the geometric
series in the obtained formula brings us to the result for the
output photocurrent,

1,(t) = Y(£) cos ¢ (t — 7/2), (22)

with the time-dependent amplitude Y (7) and the same phase
behavior as the input gravitational wave. It appears that the
mathematical expression for the output amplitude Y (¢) may
be expressed from the GW amplitude X(r), where the
Fourier transform of Y(¢) reads

PHYSICAL REVIEW D 90, 102003 (2014)
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FIG. 9 (color online). (a) The gravitational wave signal from a
5+ 5 Solar mass spinless black hole binary. (b) The instanta-
neous frequency of this signal. (c) The output for the resonantly
tracked detection of this signal, calculated using three models:
numerical simulation, a transformed envelope, and a quasista-
tionary approximation.

Y(Q) = R(Q)X(Q). (23)

The transfer function R(Q), the explicit expression of
which is presented in (D3), is an Airy function for
the equivalent Fabry—Perot cavity. Its frequency half-
bandwidth y, depending on the optical parameters of
SRM and optical losses with (D4), is 8.3 Hz.

The phase and the frequency behavior of the output
signal repeats those of the input GW, while the amplitude at
the output is smoothed with respect to the amplitude of the
GW signal. In other words, during the resonant tracking,
the output signal may be obtained from the GW signal by
low-pass filtering its amplitude.

Obviously, when the amplitude of a gravitational wave
X(t) changes slowly enough, i.e., its typical frequency
components are small with respect to the detector half-
bandwidth

Qxy, (24)

the output signal will have both amplitude and frequency
repeating those of the gravitational wave. So, under this
condition, a virtually stationary detection is performed.
In Fig. 9(c), three different results are presented for the
output signal from the resonant tracking of the chirp
signal, depicted in Fig. 9(a): (blue) the one, simulated
numerically using the linear response from (3), (4); (green)
its envelope, calculated using transfer function R(Q) (23);
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and (dashed red) the output, calculated using a mathemati-
cal model for the quasistationary approximation (20). The
transformation of the envelope, presented in this subsec-
tion, is obtained by neglecting the components of the
nonresonant sideband. The comparison of the results of the
numerical simulation and of the envelope transformation
confirms the negligible influence of these components on
the output.

Comparison of the green and red dashed lines in Fig. 9(c)
shows the difference between the old quasistationary model
and of the new time-domain models of dynamical tuning.
They agree at the earlier stages of the signal but diverge
during the later stages due to dynamical effects.

E. Deconvolution of the signal

With the previous subsection, one can find the obvious
way of restoring of the GW signal after the resonantly
tracked detection. The division of the output envelope by
the transfer function (23) gives the Fourier transform of the
envelope of the input GW. However, there are always errors
in the tuning of the SRC to the signal, reducing the
applicability of this restoring.

However, if we could know the exact (though not
resonant) motion of the SRM, it would be possible to find
the inverse impulse response from (4) and (B14). The
output signal at the instance 7+ 7/2 of time carries
information about the end-mirror displacement in the
infinite number of the previous moments of time ¢ — nz,
with natural n. To single out the information about only one
displacement, the others should be subtracted, which is
possible, using the previous output signals, which contain
the influence only of the previous, with respect to the
required displacements. The more detailed explanation is
described in Appendix B 4. The explicit expression for it
reads

L. (t.t}) = iff,,(t)é(t1 —t—7/2+n7).  (25)
n=0

The factors A,(¢) defined explicitly in (B17) express the
filtering out of the required component of the output signal.
The inverse impulse response allows by definition the
deconvolution of the gravitational wave shape, using the
signal on the photo diode and the known motion law of
the SRM, without restrictions on the tuning or on a GW.

The following equation proves that the eigenbasis of
both direct and inverse impulse response transformations is
full, so theoretically no information about the GW signal is
lost during the resonant tracking:

/ P Leos(t.t)Locltr.f) = 81— 1), (26)

(5o
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VI. SENSITIVITY GAIN FROM
DYNAMICAL TUNING

The main goal of any detector development is increasing
the sensitivity. In this section we study what sensitivity gain
could be achieved by the implementation of the dynamical
tuning. As a reference, we use the current sensitivity of
GEO 600, operating in the stationary broadband regime.
The output signal and noise are largely dependent on the
parameters of GEO 600. They are presented for both
regimes in Tables II and III

The typical value describing the sensitivity is a signal-to-
noise-ratio that can be derived from both Wiener filtering
[28] and the Neyman—Pearson criteria (see Appendix E).
For GW detectors, it is usually used in the frequency
domain for stationary noise [see, e.g., the SNR for
displacement noise (6)]. However, the concept of SNR is
also applicable for the regimes with nonstationary noise,
assuming the noise is Gaussian (which is a good approxi-
mation for GEO 600 after the vetoing of glitches).

The noise of the detector may be divided into three parts:
shot noise, radiation pressure noise, and displacement
noise. The theoretical curves of these noises for GEO
600 are pictured in Fig. 10 [24,25]. We assume that the real
noise will be reduced to the theoretical predictions, and we
consider only them for the analysis. The radiation pressure
noise is negligible in the frequency band of our interest.

The computation of the SNR in the case of signal-to-
shot-and-displacement-noise-ratio is quite a complex task
in the nonstationary case. However, the consideration of the
displacement or shot-noise-limited nonstationary detector
gives already the boundaries that are realistic estimations
for the sensitivity gain from dynamical tuning.

Chirp signals, for which we want to increase the
sensitivity by dynamical tuning, are modeled by using
hybrid models [1-4] for an arbitrary set of masses and spins

radiation pressure noise
shot noise
thermal noise
107 o i
‘| = = =total noise
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T
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FIG. 10 (color online). The theoretical noise budget of the
current GEO 600 configuration.
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of the binary elements. For convenience, only one group of
signals is analyzed: spinless binaries with equal masses and
total mass ranging from 3 to 10 solar masses. The
significant benefits from the dynamical tuning arise at
the very last stages of the chirp, when the typical signal
frequencies are in the shot noise-limited frequency band of
the detector. The rate of frequency change also becomes
high at this stage, causing the nonstationary effects,
described in Sec. V. To consider the important part of a
chirp signal and to avoid the influence of radiation pressure
noise, we consider for each signal only the segment starting
with the instantaneous frequency 200 Hz, as it is shown, for
example, in Fig. 9.

According to Sec. IV, the shot noise at the output of a
nonstationary detector is white. Therefore, it is convenient
to calculate the sensitivity for the shot-noise-limited detec-
tor at the photocurrent, too. The output signals are
simulated numerically according to the algorithm from
Appendix F, based on the time-domain model, described in
Sec. II with help of the linear response (4), (B14).

A. Shot-noise-limited dynamically tuned detector vs
shot-noise-limited reference detector

The sensitivity with respect to the displacement noise is
the same for the reference detectors and for the detector
with dynamical tuning, because each of them transforms
the similar components of both GW and displacement noise
in the same way. Thus, the benefits from dynamical tuning
arise only with respect to shot noise. For this reason, we
first compare the two detectors limited by shot noise. It also
allows us to study the pure influence of the dynamical
tuning and the dynamical behavior on the sensitivity.

The ground-state shot noise on the photodiode remains
delta correlated and has the same intensity independent
from the parameters of the SRM, namely, its motion
during the detection and its transmittance (see Sec. IV).
Therefore, once we are limited by shot noise, only the
transformation of the signal by both regimes defines the
sensitivity gain. This allows us to study the influence of
the dynamical effects, described in Sec. V. Thus, even
though GEO 600 is currently operating with squeezed shot
noise, we consider here the ground-state shot noise for the
referent detector.

Both output signals, in the dynamically tuned and in the
reference detectors, are obtained by numerical simulations,
based on the time-domain algorithm. The detection of the
stationary detector can also be simulated in the frequency
domain using the transfer function. The calculations in the
frequency domain and in the time domain differ, however,
only by a Fourier transform, and apart from this are
equivalent. The example of the output for a dynamically
tuned chirp GW signal is presented in Fig. 9(c) as a blue
line with a green envelope. The source for the GW in this
example is a compact binary, consisting of two black holes
with five Solar masses each. Both output signals for this

PHYSICAL REVIEW D 90, 102003 (2014)

input, detected by dynamical tuning and by the stationary
detector, are presented in Fig. 11.

Once the photocurrent signal is calculated, the SNR for it
in the shot-noise-limited case may be calculated according
to the following formula (E10), derived in Appendix E:

&= Ci /0 . (27)

There are two equally used values typically called SNR,
which may lead to a confusion here. Sometimes, d> from
(27) is called SNR, sometimes its square root d is called so.
In the first case, it is the ratio of power of signal and noise,
while in the second case it is the ratio of their amplitudes. In
this work, we use SNR in the first sense, namely, as 2.

The integral from Eq. (27) is solved numerically. The
sensitivity gain in this case is a ratio of the dynamically
tuned and of a reference SNR, which is presented in blue
circles in Fig. 12. Its value is of the order of 17 and slightly
decreases with increasing of the source’s binary mass.

From Eq. (27), it follows that the SNR gain is propor-
tional to the squared average output amplitude ratio
between the dynamical tuning and the stationary detection.
This ratio, as it can be seen from Fig. 11, is approximately
4, which is consistent with the obtained value for the
SNR gain.

This number is the highest possible gain we can get from
dynamical tuning. To achieve it, the displacement noise
should be significantly reduced. In any realistic case with
displacement noise, the gain is lower.

The increase of sensitivity during a slow quasistationary
process is higher with respect to fast nonstationary proc-
esses at the same frequencies because during the transients

10
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FIG. 11 (color online). Comparison of the output signal
envelopes from the dynamical tuning with respect to the reference
stationary detection. The detected GW is from a 5 + 5 Solar mass
spinless black hole binary (see Fig. 9).
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FIG. 12 (color online). The SNR gain from implementation of
dynamical tuning into a shot-noise-limited detector that worked
in a stationary broadband regime. The influence of the nonsta-
tionary dynamical effects on it becomes apparent in comparison
with the depicted result of a quasistationary approximation.

a part of the signal is lost. As it was shown in Sec. V, these
dynamical processes are taken into consideration in the
time-domain model. To estimate the influence of these
processes on the detector sensitivity, we have calculated the
SNR for dynamical tuning, calculated in a quasistationary
approximation, i.e., assuming that the detector switches
between the stationary states instantaneously (20). This
SNR improvement is presented in Fig. 12 with green
circles. It equals ~19 and, in consistence with the general
speculations above, is bigger than the result of time-domain
simulation and independent from the source binary mass.
The difference in the shape between a quasistationary and
time-domain output signals is shown in Fig. 9(c) with red
and green envelopes, correspondingly. This difference is
significant for some part of the signal, but due to the slow
change of frequency and amplitude for most of its duration,
the integral influence on the SNR is only of the order
of 15%.

B. Shot-noise-limited dynamically tuned
detector vs displacement-noise-limited
dynamically tuned detector

At the current operational regime, as it is shown in
Fig. 10, the displacement noise is comparable to the shot
noise in the frequency band of interest. However, since
dynamical tuning dramatically decreases the influence of
shot noise on the sensitivity, the influence of the displace-
ment noise could become dominating. To check this
hypothesis, we compare the dynamical tuning in two
special cases: (i) when the shot noise is dominating during
the dynamical tuning, and we calculate the SNR consis-
tently with Sec. IV, using formula (27), as it was performed
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FIG. 13 (color online). The ratio of SNRs for dynamical tuning
in a shot-noise-limited and in a displacement-noise-limited
detector.

in previous subsection, and (ii) when the displacement
noise is dominating, for which we use the consideration
from Sec. III and find the sensitivity from Eq. (6). As it
was mentioned previously, the sensitivity with respect to
displacement noise is independent from the detector
regime, so it will be the same for the reference detector
as well.

The result of the comparison of the shot-noise-limited
and of the displacement-noise-limited sensitivities is pre-
sented in Fig. 13. The SNR for the shot-noise-dominated
detector is significantly higher, approximately by factor of
12, meaning the displacement noise becomes dominating
during the dynamical tuning detection.

C. Displacement-noise-limited dynamically tuned
detector vs reference detector with both
displacement and shot noise

The shot-noise-limited detection, considered in
Sec. VI A is not realistic, and it is interesting to find the
sensitivity improvement for the detector with the full noise
budget. The radiation pressure noise is negligible, but the
displacement noise is quite strong (see Fig. 10). Dynamical
tuning reduces the influence of shot noise, so the displace-
ment-noise-limited detector becomes a good approximation
for this regime. We could compare the sensitivity of the
displacement noise-limited dynamically tuned detector
and of the broadband reference detector with the full-noise
budget.

Since the sensitivity with respect to displacement noise is
independent from the operational regime, this comparison
is equivalent to the comparison of the broadband detector
with full noise and the same detector with displacement
noise only. Both SNRs may be found in the frequency
domain from (6) by substituting of the corresponding set
of noise.

102003-13



D. A. SIMAKOV
7.7 T T T

761 ° o

4 6 8 10

Binary mass, M Sol
FIG. 14 (color online). The SNR gain from the implementation
of narrow-banded dynamical tuning into a broadband detector
with both shot and displacement noise. Dynamical tuning is

assumed to remove the influence of shot noise and to make the
detector displacement noise-limited.

The improvement in SNR from the implementation of
dynamical tuning into the detector with displacement noise
(and caused by “removing” the shot noise) is presented in
Fig. 14. It is of the order of 7, insignificantly dependent on
the source binary mass. This value is the maximal possible
gain from dynamical tuning performed at the detector with
displacement noise. When the shot noise is not dominated
by the displacement noise, the SNR gain is smaller. The
reason for such strong influence of the shot noise could be,
e.g., the error in tracking of the signal frequency by the
SRM position or the use of squeezed shot noise in the
referent detector.

VII. DISCUSSION

The set of SNRs for the dynamical tuning we presented
in the previous section was obtained with very special
assumptions: (i) the SRM resonantly tracks the frequency
of the chirp signal (21), and (ii) the detector is considered
to be either displacement-noise or shot-noise-limited.
The inevitable error in the SRM position during its motion
makes perfect resonant tracking of the signal impossible,
preventing the signal and displacement noise from reaching
their maximal amplification in comparison to shot noise.
Even a small error, comparable to the bandwidth of the
dynamically tuned detector, i.e., 8 Hz, makes the influence
of shot and displacement noise of the same order.

The calculation of the SNR for both noise terms,
using (E7), requires numerically solving the integral
equation (E5) with the composite detector noise, which
can be in principle calculated with arbitrary precision,

B (1. t2) = By (11, 1) + By (t1. 12), (28)
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where the items from the sum are taken from Egs. (7) and
(18), respectively. The solution of (E5) also allows us to
estimate the influence from the signal tracking error, as it
was done in Ref. [12], giving us the realistic benefits of the
dynamical tuning.

In all the real GW detectors, dc readout is used instead of
homodyne detection [29]. The additional leak of laser light
from the power-recycling cavity, caused by the dark-fringe
offset, becomes an equivalent local homodyne oscillator.
The leaking power on the photodiode depends on the SRC
detuning and therefore becomes time dependent during the
dynamical tuning detection. The filtering of the new
time-dependent “dc” part of the photocurrent requires
new solutions in the signal processing.

The considered Michelson configuration is used only in
GEO 600, while the other GW detectors, namely, Advanced
LIGO, Advanced VIRGO, and the Einstein Telescope, will
have Fabry—Perot cavities in the arms. The time-domain
model for their layout may be obtained by the development
of the time-domain model described here. However, the
shot and the displacement noise of these detectors have
similar proportions as depicted in Fig. 10; therefore, the
displacement-noise-limited configurations will give a good
approximation for the maximal sensitivity gain that is
possible by the implementation of dynamical tuning.

VIII. CONCLUSIONS

In this paper, we have considered the problem of
dynamical tuning—a particular method of detecting a chirp
signal, when the GW detector is kept resonantly tuned to
the instantaneous frequency of the signal via properly
shifting the SRM in time.

We have developed a time-domain method of analysis
since the detector performing dynamical tuning operates in
a nonstationary regime (detuning of the SRC rapidly
changes in time to match the frequency of the signal).

We have considered the response of the detector to the
shot noise injected through the dark port and lossy optical
elements and differential motion of the end mirrors, in
particular, GW signal and displacement noise. We have
found that, although the optical fields describing vacuum
fluctuations transform nontrivially inside the nonstationary
detector, the output shot noise remains delta correlated for
arbitrary realistic motions of the SRM.

The fast changes of the signal frequency and amplitude
as well as of the SRM position cause transient effects.
However, by properly adjusting the mirror motion to the
signal frequency, i.e., by performing resonant tracking, the
transient effects, caused by these two parameters, are
cancelled by each other, leaving only amplitude transients
as dynamical effects. When the amplitude of the signal in
this case changes slowly enough, a virtually stationary
detection is established, and the output signal holds its
stationary values at each instance, although the detection
could occur far from quasistationary conditions.
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Using the time-domain model, the output signals from
dynamical tuning were calculated. They allowed us to give
the following estimations for sensitivity improvement.
Assuming a shot-noise-limited detector, the enhancement
factor in the SNR over the current broadband GEO 600
configuration s 17. The influence of dynamical effects in the
chirp signal detection is of the order of 15%. However, in the
realistic case, we can neglect them because then the resonant
tracking of a signal frequency makes the detector displace-
ment noise limited, and the components of the GW signal
and of the displacement noise are resonantly enhanced in the
same manner (both being the differential motion of the end
mirrors). The current level of displacement noise, being
considered as the sensitivity of a dynamically tuned detector
(dynamical tuning removes shot noise), reduces the possible
SNR enhancement factor down to 7.

The SNR for the displacment-noise-limited detector is the
upper limit for the SNR gain from dynamical tuning
considering the current level of theoretically predicted
displacement noise. The possible reduction of this noise
would increase the gain up to 17. These two values represent
the idealistic cases when the dynamically tuned detector is
either shot-noise or displacement-noise-limited. Taking into
account the possible error of the signal frequency for the
current level of displacement noise would make a sensitivity
even less than 7, causing a contribution of both shot and
displacement noise into the dynamical tuning sensitivity.
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APPENDIX A: THE IMPULSE RESPONSE
OF A FABRY-PEROT CAVITY

A Fabry—Perot cavity (Fig. 15) makes the simplest model
for a dynamically tuned gravitational wave detector, more
particularly for the SRC [11].

PHYSICAL REVIEW D 90, 102003 (2014)

Plane electromagnetic waves make a good approxima-
tion for the light inside the Fabry—Perot cavity:

2 . )
Ea(l) — 7Zlcwp [a(t)e—lwpl + a*(l)elwpt}.

Here, @, is the laser carrier frequency, A is the cross-
section of a laser wave, and a(¢) and a*(7) are the complex
amplitudes inside the cavity, considered in the signal range
spectrum Q < w,,. The point, considered inside the cavity,
is determined by denoting the field amplitude with the
corresponding letter (see notations in Fig. 15) instead
of a(t).

We consider two sources of light inside the cavity: (i) the
light converted from the carrier to sidebands by the
differential mirror motion originates at the end mirror with
the amplitude 2Ek,x.(¢) and (ii) the shot-noise injection
a(r) from the input mirror, corresponding to the SRM. The
complex behavior of the light inside the cavity, according to
the Maxwell equations, can be described, independently
from its source, described using the simple phenomena:
propagation of light through the distance x introducing
the additional phase shift kpx, and the reflection from
the mirrors with the transmission and the reflection
coefficients, denoted as {iT,—R} (see Fig. 15).

We can effectively consider the field c(7) at the point of
the tuned input mirror position as the result of the super-
position of three different fields: (i) the input shot noise a(7)
transmitted through the input mirror i7; (ii)) the GW
component injected half a round trip ago 2Ek,x.(1—7/2)
and reflected from the input mirror —R, the microscopic
displacement from the resonance position of which intro-
duces the phase shift e2%*(); and (iii) the field from the
same point a round trip ago a(¢ — ), propagated toward the
end mirror, reflected back —1 (the phase shift due to GW
end-mirror displacement is an effect of second order here),

returned back to the input mirror and reflected from it
R e2ikpx(t):

(A1)

input mirror end mirror
iT,—R iTg, —R¢
shot noise  d C N €
photo- b d < f]
detector h ‘

(I
GW >
Yo ()

X x(t) 0 —L

FIG. 15 (color online). Scheme of the simplest Fabry—Perot
cavity. T and Ty are the amplitude transmittances of the input and
of the end mirrors. R and R; are corresponding reflectivity
coefficients. a—f are the electromagnetic field amplitudes in
corresponding places. L is the length of the cavity, resonant to
laser frequency.

102003-15



D. A. SIMAKOV
c(t) = iTsa(t) + 2Re™>* D Ek x,(t —
+ Re¥kox(¢(r — 7).

7/2)
(A2)

Now, we consider the fields from the shot noise and from
the GW signal separately.

1. Impulse response to the GW end-mirror motion

The fields from (A2) caused by only the gravitational
wave read
Cow(f) = 2Re™ D Ek x,(1

—17/2) + Re**ey, (1 — 1),

(A3)

and “gw” stands here for “gravitational waves.”

From the solution, obtained by the recursive substitution
of ¢y () into the right part of the equation, the light
reflected from the cavity b(¢) reads

by (1) = =2iTEkyx.(t — 7/2)

- Z 2iTEk,R§ exp [Z 2ikpx(t — kr)]
=1

n=1

X X (t — bt —7/2). (A4)

The photocurrent after homodyne detection with the
local oscillator (B12) is

1) = i CP cos(EP(1))xo(t —nt —7/2),  (A5)
n=0
where
=42 ”hcng\Emp, (A6a)
CP = CyR", (A6b)
C(1) = o, (Abce)
P(1) = o + 2k, zn:x(t — kr). (A6d)

k=1

The impulse response of the detector to the GW end-mirror
motion is the photocurrent, caused by a delta-impulse GW
signal:

Lo .(t,t))= ZC,; cos( <t—t1 +nr+2> (A7)

2. Impulse response to the input shot noise

The quantum annihilation and creation operators of shot
noise obey Eq. (A2), since the Maxwell equations describes
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the evolution of quantum fields in the same way as of the
classical fields. Using the same algebraic considerations, as
in the previous subsection, for the solution of (A2) with the
shot-noise only influence, one gets the field on the output,

by, (1) = ZTzexp i@, (t))R"™ e 1=Da(t — nr)

— Re®»(=Da(t) exp igy(t) + H.c., (AB)
where
@o(t) = =2k, x(1), (A9a)
pi1(1) =0, (A9b)
on(t) = 2 S " x(1 - k) (A9¢)

~
Il

1

and “ip” stands for “input port.”

By setting a deltalike impulse on the field amplitude, we
get the impulse response equivalent to L¢(¢, 7;), defined in
(11). The photocurrent of this field after the homodyne
detection reads

I (1) = /_ " Le(t. 1) exp (iwy (1 — 11))2(r))dry + Hc.

(A10)
Here, we introduce, equivalently to (13)—(B19),
(1) Z T? exp (i, (1))R"'5(t, — t + nt)

— R5(t; — 1) exp igy(1). (A11)

The autocorrelation function of the output noise may be
obtained from the known input noise (10), using the
impulse response (A10), (A9):

By(t), 1)) = C,8(t) — 1). (A12)
So, the output shot noise of the Fabry—Perot cavity with

dynamically tuned SRM stays white independently from
the input-mirror motion.

3. Equivalent Fabry—Perot cavity

The Fabry—Perot cavity, which is equivalent to the SRC,
differs from the simplest cavity, considered in the previous
subsection of the Appendix, by the nonideal end mirror
with transmittance T, equivalent to the optical losses in the
cavity, and the corresponding reflectivity R;. The mirror
modifies the equations for the impulse response to the
signal (A6) into
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P = 42 ”Z(‘C)"TRf|E|kp, (Al3a)
CP = Cy(RR;)", (A13b)
0(1) = o (Al3c)
P(1) = o + 2k, zn:x(t - kr). (A13d)

k=1

The equation for the auxiliary impulse response to the input
mirror shot-noise injection (A11) becomes

(1,11) Z T? exp (i, (¢

— RS(t; — 1) exp i (1).

)R™IRES(t) — t + n7)
(A14)

The additional influence of the shot noise injected into
the end mirror, equivalent to the noise from the optical
losses, reads

0

= TeTse'™ Z (R¢R)" explig, 41 (1)]
n=0

X5<t1—t+%—|—nr>.

APPENDIX B: THE IMPULSE RESPONSE
OF GEO 600

Ls,em(t’ tl)

(A15)

The object of consideration in this paper is GEO 600. Its
considered layout is presented in Fig. 1. The actual detector
has the folded arms, but for simplicity, we replace each of
them by a straight arm with the same optical length. The
considered parameters of the detector are presented in
Tables II and III. In GEO 600, we may choose four sources
of the light inside the SRC: (i) the signal input of the
differential motion of the end mirrors

xe(t) B xn(t)

e (B1)

xq(1) =

(ii) the injections of shot noise into the dark port z(z) of
GEO 600, and (iii,iv) two pieces of shot noise injected at
the end mirrors u(z), r(z).

In contrast to Appendix A, we divide the light inside
interferometer into the strong part with field amplitude
A, A*, belonging to the PRC, and the weak one a(r), a*(7),
belonging to the SRC:
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2rhw
Ac
2ﬂha)p
Ac

EA(I) _ P(Ae—ia)pt +A*eiwpt)

[a(t)e~! +a*(t)e'™'].  (B2)

All the other notations here are similar to those in (Al).

1. Input-output relations

Here, the ordered input-output relations for the basic
optical elements in the different arms are presented:
(1) North arm (upward from the beamsplitter).
(a) Common mode:

K= £H - %’E (B3a)
N = Kelobn, (B3b)
M = iA,R — RN, (B3c¢)
L = Meoln, (B3d)
(b) Differential mode:
k(1) = iéh(t) - Qe(t), (B4a)
2 2
n(t) =k(t—L,/c)eobn, (B4b)
m(t) = iA,r(t) — Ryn() — 2iR,kpx, ()N
(B4c)
1(t) = m(t = L,/c)e*okn, (B4d)

(2) East arm (right-hand side from the beamsplitter).
(a) Common mode:

J= £E - gH (B5a)

S = Jeikle, (B5b)

T = iAU - R.S. (B5¢)

[ = Teikole, (B5d)

(b) Differential mode:
2 2
0 -2 -he. (o)
s(t) =j(r = Le/c)eete, (B6b)
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t(r) = iAcr(1)
i(t) = t(t — Lo/ c)etoLe.
(3) Signal-recycling arm (downward from the beam-

splitter).
Here, we have the differential mode only:

V2 V2.

— Res(t) = 2iRckyx(1)S.  (B6c)

(B6d)

2() = 15210 - i) (B7a)
w(t) = gt = L/c)e), (B7b)
o(1) = iTya(r) — Rw(1). (B70)
h(1) = oft = L/c)esh (B74)
y(1) = iTw(t) = Rzl1). (B7e)

L(¢) here is the time-dependent distance from the SRM
position to the beamsplitter, setting the dynamical tuning.
The change of this distance during the time of light travel
between the beamsplitter and the SRM is insignificant. L,
and L, are the unperturbed lengths of the arms. The terms
describing the information about the GW influence in the
field reflected from the arms are obtained from the fields of
the power-recycling mode by the linearization (like in, e.g.,
Ref. [13]). The losses in the end arms are reduced to the
equivalent transmittances of the end mirrors, denoted by A,
and A,.

2. Fields in the signal-recycling cavity

Using Egs. (B4), (B6), and (B7) and the light trajectories
from Fig. 1, the field h(#) of the signal-recycling mode
can be effectively considered as the superposition of the
following rays:

(1) The shot-noise field injected through the SRM
iT,z(t). Its phase is independent from the SRM
position because it is transmitted by it. For conven-
ience, we assume the phase of h(z) to be in phase
with z(¢) by choosing an appropriate microscopic
position of this point.

(2) The field coming from the north mirror consists of
the two parts: (i) the equivalent shot-noise injection
due to the optical losses in the arm iA,r(¢) and
(ii) the signal part carrying the information about the
north end-mirror position —2iR, k,x, (#)N. This field
passes once through the north arm and the beam-
splitter, followed by the reflection from the SRM
with two corresponding passes through the signal-

recycling arm e®*e(La+2Ls) x (l\/TE) x (=Ry), and its
time delay is L,/c + 2L/c.

(3) The field coming from the east mirror consists of
two parts: (i) the equivalent shot-noise injection due
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to the optical losses in the arm iA.u(¢) and (ii) the
signal part carrying the information about the east
end-mirror position —2iR.k,x.()S. This field passes
once through the east arm and the beamsplitter,
followed by the reflection from the SRM with two
corresponding passes through the signal-recycling
arm etfp(Let2Ls) 5 (— ‘/75) x (=Ry), and its time delay
is Le/c +2Ly/2.

(4) The field coming from the same point h(z — 7) has
two ways of propagation through the arms inside
the SRC:

(a) The part going through the north arm passes
twice through the beamsplitter, is once reflected
from each of the north and the SRM, and twice
passes through each of the north and the signal-
recycling arms: (i@)x(i@)x(—Rn)x(—Rs)x
ek (LitLs) Tts time delay is 2L/c + 2L, /c.

(b) The part going through the east arm is reflected
twice from the beamsplitter, is once reflected
from each of the east and the SRM, and
passes twice through each of the east and the

output arms: (—‘/75) X (—‘/72) X (—R,) X (—R,) x
ek (LstLe) Tts time delay is 2L/c + 2L, /c.

The light has two clearly distinguishable time evolution
processes: the microscopic change of the phase and the
macroscopic time delay of the signal amplitude. The
change of the phase, which is significant on the distance
scales of the laser wavelength, determines the dark-port
condition,

ei2kPL“ — _ei2kae, (Bg)

and the detuning of the SRM, which is taken into account in
the expression L.+ L(t) = L 4+ x(¢) as a microscopic
displacement x(7) from the length L of the equivalent
cavity, resonant to the laser frequency. The delays of the
signal are caused mainly be the round trips with durations
t=2L/c, while the delays, introduced by the other
distance scales in this model, can be neglected.

After the construction and simplification of the expres-
sion for the h(z) considered above, we get the following
expression for o(?):

o(t) ® 2R R;Ekpx4(t — 7/2)e ikyx(1)
V2

+ iTz(t)e *o¥(0) 1 lTR Ace® Wy (t—1/2)

2
+ z%R Aye ot — 7/2)

+ RSRfeikp[x(t)er(t—f)]O(t _ T),

where equivalent end-mirror reflectivity is
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_ R+ R,

R‘
f 2

(B10)

The terms in its right-hand side describe the contribu-
tions during one round trip from different sources corre-
spondingly: (i) from the signal end-mirror motion, (ii) from
the shot-noise injected into the dark port, (iii) from the shot
noise from the losses in the east mirror, and (iv) from the
shot noise from the losses in the north mirror. The fifth term
of this formula describes the transformation of the field
during a full round trip in the SRC.

To get the impulse response to different signal sources,
we treat them separately.

3. Impulse response to the differential
end-mirror motion

The solution for the output field amplitude y(7) obtained
from the corresponding part of (B9), using (B7), is

Yam(t) = —2iR; T Ek, x4 <z - %)

~2i Y RIFIRIT Ekyxy <t —nr— %)

n=1

X exp {mp :leo - kr)] , (B11)

where “dm” stands here for “differential motion.”
The photocurrent after the homodyne detection with
the LO,

Yo = Sin(wpt + ¢lo)’ (B12)

of the field (B2) with this amplitude reads
I,(t) = Cycos[&,(N)xg(t —nt+17/2).  (BI3)
n=0

where

)

Co= —4V2 ”ZCPRfTS|E|kP, (B14a)
C, = Co(RiR,)". (B14b)
&o(t) = n. (Bl4c)
$a(t) = n + 2k, zn:x(t — kt). (B14d)

k=1

In these expressions, ¢y, is a homodyne angle specifying the
quadrature of the modulation we detect,

hh = o + Pe. (B15)
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where ¢, is a phase of the LO and ¢, is the phase of field
incident on the beamsplitter E.

The impulse response (4) is obtained from (B13) by
setting a delta impulse as the end-mirror differential
motion.

For the stationary case, one can find the transfer function
of the detector from the linear impulse (4) by setting a
constant detuning 2k,x(t) = &, and making a Fourier
transform from it:
Coei((/’h—gf/z) Coe_i(¢h+§21/2)

1— RfRse—i(50+Qr)

R, (Q‘) =

R . (BI6)

4. Inverse impulse response to the differential
end-mirror motion

The inverse impulse response allows us to restore the
motion of the end mirrors from the measured output
photocurrent. It may be found from the expression for
the direct impulse response (4). Here helps its alternative
representation (F1) with M = 0, which depicts how the
GW injection during the last round trip changes the field
inside the cavity and, therefore, defines the difference
between the latest output value and the previous one.
From this expression, one can derive the last injection itself
and the mirror displacement causing it. The result is (25)
with the following coefficients:

Ag(1) = éo (B17a)
A() = —Cﬂcos 2k x(t -7+ 7/2)] (B17b)
0

- R?
Ay(1) = C—Osin [2kpx(t — 74 17/2)]

x sin [2k,x(t — 27 + 7/2)] (B17c¢)
5 R" n—1
A, (1) = o cos[2k,x(t — It +7/2)]

07=2
x sin [2kpx(t — 74 7/2)]
x sin 2kpx(t —nt+17/2)],n > 3. (B17d)

S. Impulse response to the injection of shot noise
into the dark port and into the end mirrors

The field caused by the injection of the shot noise into
the dark port is obtained considering the second term and
the fifth term in (B11),

Yap() = D Byexplign(1)e”a(1—nz) +He., (BIS)
n=0

where “dp” stands for “dark port” and
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By = —R,. (B19a)

B, = T2RIR", (B19b)

@o(t) = =2k,x(1), (B19c)

(1) =0, (B19d)
n=1

@ (1) =2k, »  x(t—kz). (B19e)

»-
Il
=

The terms ¢, () here are equivalent to those in (A9).
The corresponding photocurrent reads

Ioy(1) = /_ " LGty expliwy (1 — 1))2(1y)d, + He,
(B20)

The impulse response L(z,1,) (14), (B19), defined in
(13), is obtained explicitly from (B18) and (B20).

The transfer function for the field amplitude can be
obtained from (14) by setting a constant detuning
2k,x(t) = 8, and Fourier transformation:

) T2R e_i(50_97)
— =i [ _ s M
Ryp(Q) = e 0< Ry + I~ RR.c 10r o)

). (B21)

In the case of the ideal end mirrors, the expression turns
into

. —R, + ¢7i(60—)
Y e N ——
de(Q) =e 0( R, + 1 — Rse—i(ﬁo—ﬂr)

). (B22)

The fields caused by the injection of the shot noise
through the end mirror are

V2 o\
Youm = AnT, Texp (lwp E) (RfRs)n
n=0

X explig,1(1)]z <t1 -+ % + nr) (B23a)

and

V2 AR
Yem = AeTSTGXp <la)p 2) Z (RfRs)n

n=0

x expligns1 (]2 (rl — 1+ % + nr), (B23b)

where “nm” and “em” stand for “north mirror” and “east
mirror,” correspondingly. One gets (16) from this equation
by substituting a delta-function input field with the follow-
ing coefficients:
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V2 Rk

Bn = AnTST (R¢Ry)", (B24a)
2
By = AT \2[ (R¢R,)*. (B24b)

The corresponding transfer functions, obtained from (16),
for the stationary case reads

V2 A, T
R,(Q)=—"F—""° B25
n(€) 2 1 — RiR,e!*%0) (B25a)
2 AT
R.(Q) = V2 e (B25b)

7 1— RfRsei((S—Qf) :

6. Autocorrelation function of the electromagnetic
ground-state oscillations

The shot noise of the electromagnetic field in vacuum
may be measured by the joint detection of the ground-state
field (8) and a local oscillator (B12). The result of
measurement is photocurrent /,. The noise of this photo-
current is characterized by autocorrelation function:

B(1. 1) = 1y(1)1y(12). (B26)

The autocorrelation function for shot noise is then

described by Eq. (10) with the following coefficient:

B ﬂha)p
2 2Ac

(B27)

The output shot noise in the detector is described as the
response to the injection of vacuum ground-state oscilla-
tion. The autocorrelation function of such an output of the
detector is then defined by the general formula (12). The
substitution of the explicit expression of the corresponding
linear impulse (14) into it is

~1 4 R?
D, = RI'T2RIM [N
1 - RZR?

(B28)

Similarly, the output shot noise caused by the ground-
state oscillations at the optical losses may be found. The
result is Eqgs. (17).

7. Correspondence between the Fabry—Perot cavity
and the GEO 600 models

The equivalence between the time-domain models of the
Fabry—Perot cavity (Fig. 15) and of the GEO 600 layout
(Fig. 1) may be established based on the comparison of the
impulse responses, correspondingly (A6) and (A7) and (4),
(B14), in the following characteristic cases:
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(1) the end-mirrors signal motion:
h(t)
2 bl

xe(t) - xn(t) o h(t) .
Ty Tl

xe(t) = Ly, (B29)

xfp(t)
xgeo(t) =

(ii) the injection into the cavity due to the signal motion:

ep(1) = egy (1) = —2iEpkyx (1), (B31a)
tgw(t) - mgw(t)

5 = —2iR(EqgeokyXeeo(1);

egeo (t) = ptgeo

(B31b)

(iii) the evolution of the fields inside the cavity during
single round trips:

eg (1) = egy(t — 7)Re>koX1=7/2), (B32a)

egeo(t) = egeo(t - T>RSRF62ikpX([_T/2>; (B32b)

(iv) the transmittance through the mirror toward the
homodyne detector:
Yfp(t) = bgw(t)

= iTeg(t — 1), (B33a)

Ygeo(t) = ydm(t) = iTSegeo(t - T)' (B33b)

From these relations, we get the following parameters of
the equivalent Fabry—Perot cavity:

Liy = Lyeo. (B34a)
Ejy = RiE e, (B34b)
R = R.R;, (B34c)
T=T,. (B34d)

APPENDIX C: QUASISTATIONARY
APPROXIMATION

In the quasistationary approximation, used in this paper,
we assume that all the fields at every moment of time equal
their stationary values. The value for the output signal for
every instance ¢ in this case could be obtained by the
integrating of linear impulse (4) with a GW signal x4(7)
with all the time-dependent parameters considered at the
same instance of time.
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Meers et al. have shown in Ref. [12] how slow the
changes of the signal parameters should be in order to keep
the detector in a quasistationary regime. The boundaries are
the following: (i) the amplitude and the frequency of a GW
change insignificantly with respect to their absolute values
during the photon lifetime inside the SRC 7y, [see the
definition in (19)],

X ()2 < X(1), (Cla)

Q(1)7,, < Q(1), (Clb)
and (ii) the change of the detuning of the SRC during
a round trip is insignificant with respect to the laser
wavelength,

208 (1) Tty < 1, (Clc)
where d; is a frequency detuning of the SRC from the
resonance of the laser frequency and 2z6¢(¢)7 is its phase
detuning.

Meers et al. state in Ref. [12] that for the wide variety of
binary parameters the frequency f = 500 Hz is a reason-
able upper boundary for quasistationary dynamical tuning.

The main idea of the dynamical tuning is to follow the
frequency f(¢) of the chirp signal with the SRC detuning
5¢(1). In a quasistationary approximation, both values can
be considered as stationary at each moment of time. So, the
resonant condition is

&¢(2) = f(2).

If we consider the output signal under this condition,
keeping only resonance terms, we get

0=y

n=0

(€2)

Co(RR)"x(1). (C3)

N[ =

This geometric series turns simply in (20) with the
frequency-independent coefficient:

G

Cpo == .
%7 21— RR,

(C4)

APPENDIX D: RESONANT TRACKING

Now, let us assume a nonstationary case with parameters
changing in time correctly. This time, we integrate the
linear impulse (4) with a chirp signal (19) in order to get the
output signal. Under assumption of the resonance condition
(21) and keeping only the resonant terms, one gets the
expression

Y(t)cosé(t—1/2), (D1)

Iy(t) =
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where the amplitude of the output signal is bound with the
amplitude of a GW signal through

Co(RiR)"X(t —nt—7/2).  (D2)

=
=
I

[z
N =

The Fourier transform of this equation leads us to (23) with
the transfer function:

CoeiQT/Z

1
RQ)=-—
(@) 21— R.R;e™

(D3)

The transfer function here is an Airy function for the
equivalent Fabry—Perot cavity with the frequency band-
width determined as the round frequency Q in (D3)
reducing the modulus of R(Q) by factor of /2:

y:T§+T%

e (D4)

APPENDIX E: SNR IN THE TIME-DOMAIN
CONSIDERATION

The calculation of the SNR for the dynamically tuned
detection of a chirp signal is based on the maximum
likelihood principle, first described by Neyman and
Pearson [30] and applied for the detection of known signals
in the Gaussian noise, which is a good approximation after
vetoing, e.g., in Ref. [31].

Assume the two hypotheses about the measured signal
x(1): (1) Hy, assuming a pure Gaussian noise n(z) with the
autocorrelation function B(f, u), generally speaking non-
stationary, without any signal; (ii) H, assuming the known
signal s(7) on the background of this noise,

if Hyis true,

(6 = {n(t),() >1>T, (E1)

s(t) +n(t),0>t>T, if H,is true.

For these hypotheses, the distribution of probability of
measuring the discrete number of signal values x; = x(¢;),
0 > i > N at the corresponding instances of time

- 1
Pol%i) = s, I

X exp {—% Z[x,- — 5(2)]8;' [x; = s(tj)}},

i.j=0

1 1 &
_ __E o=l
Pr(x) = (27)N2|Sy |/ exp{ 2; i:o%su xj}, (20
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where S;; = E[(x; — s(t;))(x; — s(¢;))] is the covariation
matrix that describes the noise statistics.

The likelihood ratio for this signal is

(E3)

The logarithm of likelihood for the continuous meas-
urement may be obtained by the change of the sum over
each index to the integration over the corresponding
moment of time and the auxiliary substitution g(z) =

Jo ST 1)s(ey)dry,
togAlx(n)] = ["st0aloar=3 [*stoatar ()

where ¢(r) is the solution of the following integral
equation:

s(t) = /OT q(u)B(t, u)du. (ES)

The likelihood ratio A[x(z)] depends on the measured
data only through an integral called a detection statistics:

G— A " M0yt (E6)

According to assumptions, every measured value x() is
Gaussian; therefore, G, being their linear combination, is
also Gaussian, and the parameters of its distribution are
(G) = d? (for H,) and o = (G* — (G)?) = d*, where

&= /O " s(0)q()dr (E7)

is the signal-to-noise ratio.

In a dynamic tuning detection task, s(7) is the response of
the photodetector current to the GW from a CBC coales-
cence, and B(t,u) is an autocorrelation function of noise.
The integral equation (ES) in the case of white shot noise
(18) reads

T
s(1)=C, / g(w)s(t — wydu = Cyq(r),  (ES)

and its solution is therefore
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g =", (£9)

The SNR, obtained from (E7), for the white shot noise is

1 [T
Jzz—/ s2(t)dt.
0

3 (E10)

APPENDIX F: THE ALGORITHM
OF SIGNAL SIMULATION

The expression for the output (4) consists of a very large
number of summands, compared with the number of round
trips during the signal detection, and therefore its numerical
calculation inevitably requires the cutoff of this sum at
some rather high number. We can use the algorithm

N-1

Iy = ZAnxd(N—n) cos(¢py = Pn-n + Pn)

n=0
M

= ZAnxd(N—n) COS(¢N = non + ¢h)
n=0

+ RM*cos(py — Py-p—1)In-p-1

— sin(¢py — Py_p-1 )IN—M—l(sin)] (F1)
instead, where,
R = R{R,, (F2a)
N-1
IN(sin) = ZAnxd(N—n) Sin(¢N —¢n_nt+ ¢h)
n=0
M
= ZAnxd(N—n) Sin(¢N - ¢N—n + ¢h)
n=0
+ RM*[cos(py — n-p—1)IN-m—1(sin)
+ sin(¢y — py-y—1) In-p—1)- (F2b)
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The whole information about the infinite decaying “tail”
of the signal is used here to calculate the signal by including
the phase shift and the information about new echoes.

The indices in (F1) are chosen in the following way:

Ay = 2kyx((k = 1)7) + ¢y (F3)

The whole chain of phase shifts from the beginning of the
measurement, cut after j round trips:

j-1
b= Ag (F4)

i=1
¢ =0, (F5)
Iy=1,((N-1)7), (F6a)
Xay = Xxq((N = )z —17/2). (F6b)

The dynamical tuning resonance condition is
n— + n
G — Pp1 = 2kpxn—l = f%fv (F7)
where

fv=f(N-1)r-7/2) (F8)

is an instantaneous chirp frequency.
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