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In this paper, we describe an analysis of Apollo-era lunar seismic data that places an upper limit on an
isotropic stochastic gravitational-wave background integrated over a year in the frequency range 0.1–1 Hz.
We find that because the Moon’s ambient noise background is much quieter than that of the Earth,
significant improvements over an Earth-based analysis were made. We find an upper limit of
ΩGW < 1.2 × 105, which is 3 orders of magnitude smaller than a similar analysis of a global network
of broadband seismometers on Earth and the best limits in this band to date. We also discuss the benefits of
a potential Earth-Moon correlation search and compute the time-dependent overlap reduction function
required for such an analysis. For this search, we find an upper limit an order of magnitude larger than the
Moon-Moon search.
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I. INTRODUCTION

The use of astrophysical bodies, such as the Earth, Moon,
Sun, and other stars, as detectors of GWs is well motivated.
Siegel and Roth [1] recently used high-precision radial
velocity data for the Sun to place upper limits on a stochastic
gravitational-wave (GW) background in themillihertz band.
We recently used data from a network of modern global
broadband seismometers to set upper limits on a stochastic
background of GWs in the 0.05–1 Hz frequency range,
which bested previous limits by 9 orders of magnitude [2].
These studies complement GW detectors such as LIGO [3]
and torsion-bar antennas [4]. There are currently few
dedicated GW experiments in the frequency range
10−4–10 Hz. In this band, compact binaries in their inspiral
and merger phase are strong possibilities. Although inter-
esting in their own right, thesewould be a foreground for the
potential detection of primordial GWs. Although BICEP2’s
recent results [5] concerning the B-mode polarization of the
CMB background was shown to be consistent with dust [6],
further work in this area is important, as it would provide
confirmation of the theory of inflation. Assuming a slow roll
inflationary model, this signal would correspond to a GW
energy density spectrum ΩGW ≈ 10−15 in the 0.1 to 1 Hz
band. There are a number of GW experiments which could
probe this background. Space-based GW detectors will
target the frequency band 10−4–1 Hz [7]. There are also
concepts for a number of future low-frequency terrestrial
GW detectors with sensitivity goals better than 10−19=

ffiffiffiffiffiffi
Hz

p
in the 0.1 to 10 Hz band [8]. The currently valid upper limits
are summarized in Fig. 1.
One of the lessons from the previous study was that a

quieter seismic environment would increase the sensitivity

of the analysis. For this reason, we analyze lunar seismic
data taken during the Apollo missions. The Moon is the
only cosmic body in the Solar system (apart from the Earth)
for which seismic data are available. These seismometers
were placed on the Moon by the Apollo 12, 14, 15 and 16
missions from 1969 through 1972 and were functional until
they were switched off in September 1977. The network
was placed on the front center of the Moon in an
(approximately) equilateral triangle with 1100 km spacing
between stations. Each seismic station consisted of three
long-period seismometers aligned orthogonally to measure
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FIG. 1 (color online). Currently valid upper limits on GW
energy density. These limits were set by correlating data from
torsion-bar antennas [4], Doppler-tracking measurements of the
Cassini spacecraft [9], monitoring Earth’s free-surface response
with seismometers [2], measuring the normal modes of the Earth
[10], and correlating data from the first-generation, large-scale
GW detectors at LIGO [11].
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the three directions of motion. It also included a single-axis
short-period seismometer sensitive to vertical motion at
higher frequencies. Many important analyses have been
performed using this data set, including generation of the
first models of the Moon. (For a review of the differences
between the structures of the Earth, Moon, and Mars,
please see Ref. [12].)
The main sources of ambient noise on the Earth are

active tectonics as well as ocean microseisms and atmos-
pheric fluctuations. As the Moon has none of these, the
ambient noise background is quite different. Instead, the
Moon’s seismic noise is predominantly due to tidal forces,
thermal stresses, and impacts from asteroids [13]. Thermal
stresses are due to energy from the Sun, and thus their
amplitude is strongly correlated to the lunation period of
29.5 Earth days. They increase after the lunar sunrise and
gradually decrease after the sunset.
More than 12,000 moonquake events have been dis-

covered [14]. About 7,050 of these events have been
positively identified as deep moonquakes, 1,743 are mete-
oroid impacts, 28 are shallow moonquakes, and there are
some other events, such as thermal moonquakes and
artificial impacts, and unclassified events. The deep moon-
quakes are believed to be caused by tidal forces between
Earth and the Moon, unlike earthquakes, which are due to
tectonic plate movement. The energy loss due to both the
deep and shallow moonquake events has been analyzed
[15]. Deep moonquakes release several orders of magni-
tude less energy than shallow moonquakes. The moon-
quakes were analyzed in detail in order to study the shallow
seismic velocity structure under the seismometers [16–20].
More recently, analyses of these data suggested a presence
of a solid inner and fluid outer core, overlain by a partially
molten boundary layer [21]. There are proposals to place
a seismic array on the Moon to improve on these
analyses [22].
In this paper, we report on searches for an isotropic

stochastic background using Apollo lunar seismometers
from 1976. We perform two such analyses, a Moon-Moon
correlation search and an Earth-Moon correlation search.
The idea is to use the Moon and Earth as response bodies to
GWs. We analyze data from a network of seismometers
with near-optimal search pipelines. For the Moon-Moon
case, we find an upper limit approximately 3 orders of
magnitude smaller than the previous best limits in the
frequency range of interest. For the Earth-Moon case, the
upper limit is approximately an order of magnitude larger.
These are likely to remain the best limits in this frequency
band until second-generation torsion-bar antennas [23]. In
Sec. II, we outline the search pipeline. We describe the
Moon-Moon analysis and results in Sec. III. In Sec. IV, we
describe the time-dependent overlap reduction function for
an Earth-Moon search and perform a similar analysis. We
conclude with a discussion of topics for further study
in Sec. V.

II. FORMALISM

The response mechanism used here was first described
by Dyson [24]. A rederivation in modern terms was
presented in Ref. [2]. The idea is to measure displacement
at the surface due to GWs, given by

_ξzð~r; tÞ ≈ −
β2

α
~e⊤z · hð~r; tÞ · ~ez; ð1Þ

where ~ξð~r; tÞ is ground displacement, ~ez the normal vector
to the surface, and hð~r; tÞ the spatial part of the GW strain
tensor (i.e., a 3 × 3 matrix), β is the speed of shear waves,
and α is the speed of compressional waves.
There are two calibration steps required to calibrate raw

seismometer data into GW strain. The first is to calibrate
raw data of seismometers into ground velocity. Apollo
lunar data are sampled in displacement, and so a derivative
is first taken to convert to velocity. The second is to
calibrate from ground velocity into GW strain. From,
Eq. (1), this requires calculation of β2=α. To do so, we
use a combination of the Poisson’s ratio ν and Rayleigh-
wave velocities cR calculated from Weber’s lunar seismic
speed model [21]. Between 1 and 15 km, ν assumes values
between 0.24 and 0.27 calculated from the estimates of
seismic speeds in each layer. The reason why we do not
directly calculate the calibration factor from estimates of α,
β is that these parameters vary with depth, and therefore
one needs an effective value of β2=α characterizing the
coupling to a surface source (the GW excitation) in a
specific frequency range. The corresponding averaging
over near-surface layers is equivalent to calculating the
Rayleigh-wave velocity as a function of frequency. The
Rayleigh-wave dispersion curve is obtained using Geopsy’s
gplivemodel [25], which computes dispersion curves from
a layered model, and is plotted on the right of Fig. 2. From
0.05 to 0.2 Hz, the velocities decrease approximately
linearly by a factor of 2. From 0.2 to 0.3 Hz, the velocities
decrease rapidly by another factor of 2. Above 0.3 Hz, the
dispersion is minor. As was argued in Ref. [2], only a rough
independent estimate of the Poisson’s ratio is required to
obtain the calibration factor, since variations Δν of the
Poisson’s ratio are expected to be minor (as seems to be the
case as well for the Moon given the range of values
obtained from all Moon layers). Expanding the calibration
term into linear order of the variation around a reference
value of ν0 ¼ 0.27, one can estimate the systematic
calibration error according to

β2=α ≈ 0.5682cR · ð1 − 1.5377ΔνÞ: ð2Þ

Since the Rayleigh-wave speed varies with frequency, the
calibration factor is a function of frequency. The gravita-
tional-wave energy density spectrum is defined as
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ΩGWðfÞ ¼
1

ρc

dρc
dlnf

; ð3Þ

where the critical density of the Universe is ρc ¼
3H2

0=8πG. Expressing this in terms of the one-sided power
spectral density, ShðfÞ yields

ΩGWðfÞ ¼
�
2π2

3H2
0

�
f3ShðfÞ: ð4Þ

We use a cross-correlation method optimized for detecting
an isotropic SGWB using pairs of detectors [26]. This
method defines a cross-correlation estimator

Ŷ ¼
Z

∞

−∞
df

Z
∞

−∞
df0δTðf − f0Þ~s�1ðfÞ~s2ðf0Þ ~Qðf0Þ ð5Þ

and its variance

σ2Y ≈
T
2

Z
∞

0

dfP1ðfÞP2ðfÞj ~QðfÞj2; ð6Þ

where δTðf − f0Þ is the finite-time approximation to the
Dirac delta function, ~s1 and ~s2 are Fourier transforms of
time-series strain data from two seismometers, T is the
coincident observation time, and P1 and P2 are one-sided
strain power spectral densities from the two seismometers.
The signal-to-noise ratio (SNR) can be enhanced by
filtering the data [26,27]. The optimal filter spectrum
~Q12ðfÞ depends on the overlap reduction function (ORF)
γ12ðfÞ [28], the noise spectral densities S1ðfÞ; S2ðfÞ of the
two seismometers, and also takes into account the relation
between the GW spectral density and ΩGW:

~Q12ðfÞ ¼ N
γ12ðfÞ

f3S1ðfÞS2ðfÞ
; ð7Þ

where N is a normalization constant [29]. In this form, the
filter is optimized for a frequency-independent energy
density ΩGW. The ORF incorporates the dependence of
the optimal filter on the relative positions and alignments of
detector pairs. The Appendix derives and gives an expres-
sion for the ORF in Eq. (A5), where

Φ≡ 2πfD
c

; ð8Þ

where D is the distance between the seismometers, f is the
GW frequency, and c is the speed of light. The angle δ
denotes the relative orientation of two vertical sensors. In
the Moon-Moon case, the distance depends on the location
of the seismometers on the Moon:

D≡ 2 sinðδ=2ÞR∘
sin2ðδ=2Þ ¼ sin2ðΔλ=2Þ þ cosðλ1Þ cosðλ2Þsin2ðΔϕ=2Þ;

ð9Þ
where R∘ is the Moon’s radius, and Δλ ¼ λ2 − λ1, Δϕ ¼
ϕ2 − ϕ1 are the differences in latitude and longitude. The
distance between a seismometer on Earth and one on
the Moon is well approximated by the distance between the
centers of the Earth and Moon, and so that distance is used
in the analysis. The change in distance between the Earth
and Moon as a function of time is predominantly due to the
eccentricity of the Moon’s orbit. It is calculated from an
implementation of the method described in Ref. [30]. The
relative orientation angle δ needs to be calculated as a
function of time for the Moon-Earth analysis as outlined
in Sec. IV.

III. MOON-MOON CORRELATION

Long-period Apollo PSE ALSEP seismometers were run
in two modes of data acquisition. The “peak” mode has a
peak sensitivity at about 0.5 Hz. The “flat-response” mode
is about flat from 0.1–1 Hz in units of ground displacement.
There were four seismometers taking data during this
period. Three of the seismometers took coincident broad-
band data from July 1975 to March 1977. These seismom-
eters form an approximately 1100 km equilateral triangle.
From this period, we took a year of data from 1976. The
original data were converted into MiniSEED and supplied
by GEOSCOPE. During the conversion process, a constant,
nominal sample rate was assumed, when in reality the
sample rate varied with time because the timing oscillator
on board the central station was not temperature controlled.
This generates a small timing error and increases the

0 10 20 30 40 50
0

2

4

6

8

Depth [km]

α,
β 

[k
m

/s
], 

ρ 
[k

g/
m

3 ] ρ
α
β

10
−1

10
00

0.5

1

1.5

2

Frequency [Hz]

c R
 [k

m
/s

]

FIG. 2 (color online). On the left are the P- and S-wave velocities and density structure for the whole-Moon model displayed for the
near-surface layers (0–50 km) [21]. On the right is the dispersion curve calculated using Geopsy’s gplivemodel for this layered model.
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correlation between stations with a 24 hour periodicity
slightly. ALSEP seismometer data was also binned in 54 s
records. Blocking of the entire ALSEP data into 54 s blocks
affected the reference voltage of the analog-to-digital
converter through the power supply. This is the likely
cause of the small spectral line at about 0.81 Hz, which is
about half the period of a logical record of the ALSEP data
(64=106 ≈ 0.604 seconds).
For the analysis, we divide the strain time series data into

50% overlapping 100 s segments that are Hann windowed.
It is found that the seismometers show high seismic
correlations due to transient events. These are likely
predominantly due to moonquakes and asteroids hitting
the Moon. For this reason, we remove the data surrounding
all known moonquakes. This removes about 13% of the
original data and greatly reduces seismic correlation
between stations. To minimize remaining correlations,
we apply stationarity cuts to the data. We calculate the
signal-to-noise ratio of each 100 s segment and find the
signal-to-noise ratio threshold required to bring the point
estimate to half of the sigma error bars. We then remove the
segments with signal-to-noise ratios that exceed this limit.
This removes about 1% of the data. Ultimately, these vetoes
were exclusively related to strong events that contributed to
the high-energy tail of the distribution.
The vetoed data are excluded from any of the presented

results. As a first step, we give a simple characterization of
the seismic data in terms of observed seismic spectra.
Measuring a seismic spectrum every 128 s for each
seismometer used in the analysis, and combining all these
spectra into one histogram, one obtains the result shown in
Fig. 3. This demonstrates the sensitivity of the lunar
seismometers. One can see that the median of the spectra
is well below the global new low-noise model [31]. This
low-noise floor of the Earth’s ambient noise determined
the ultimate noise limit for the Earth analysis. This
demonstrates the significant benefit of a lunar search.

To combine the measured Ŷ for each of the seismometer
pairs, we follow Ref. [26] and average results from detector
pairs weighted by their variances. The optimal estimator is
given by

Ŷ tot ¼
P

lŶlσ
−2
lP

lσ
−2
l

; ð10Þ

where l sums over detector pairs. The total variance, σ2tot, is

σ−2tot ¼
X
l

σ−2l : ð11Þ

The resulting combined upper limit of a frequency-
independent energy density using the three seismometer
pairs, and integrating over frequencies between 0.1 and
1 Hz, including calibration errors, is

ΩGW < 1.2 × 105: ð12Þ
Figure 4 demonstrates the upper limits from the individual
and combined seismometer pairs. We assumed a value
H0 ¼ 67.8 km=s=Mpc for the Hubble constant [32]. Using
SGWðfÞ ¼ 3H2

0ΩGW=ð10π2f3Þ, this translates into a strain
sensitivity of about 4.1 × 10−15 Hz−1=2 at 0.1 Hz.

IV. EARTH-MOON CORRELATION

In the analyses that have been performed thus far, first on
the Earth and now with the lunar seismometers, the relative
orientation of the seismometers analyzed were in a constant
orientation. These studies have benefited from the years of
seismic data available, both from the vast seismic arrays on
Earth as well as the lunar seismic array. A shortcoming of
these analyses is the potential for residual seismic corre-
lation due to seismic activity present at both seismometers.
A potential way around this is to correlate seismometers

from the Moon and the Earth. First, we calculate the relative
orientation of seismometers on the Earth and the Moon,
accounting for the rotation of the bodies. We will then use

FIG. 3 (color online). Spectral variation of combined lunar
seismic spectra. The dash-dotted lines in gray represent the global
new low- and high-noise models [31].
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FIG. 4 (color online). Point estimate and error bars for the three
seismometer pairs, aswell as for the combination of the three pairs.
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these orientations to calculate a time-dependent ORF using
Eq. (A5). This calculation will be useful for any situation
where detectors have a time-dependent orientation. We
begin with the geometry shown in Fig. 5 and define the
coordinate system we will work in. A convenient coor-
dinate system to work in is known as the EME2000 system,
which is an Earth-centered frame. It defines its epoch to be
January 1, 2000, 12 hours Terrestrial Time, which has a
Julian Date of 2451545.0. Its z axis is orthogonal to the
Earth’s mean equatorial plane at this epoch, the x axis is
aligned with the mean vernal equinox, and the y axis is
orthogonal to both, rotated 90° about the celestial equator.
We denote the unit vectors along these coordinate axes by ẑ,
x̂, and ŷ, respectively. The orientation of the Moon as a
function of time is well known in this system, and therefore
provides an ideal coordinate system on which to base these
calculations. We make the approximation that the Earth
rotation axis has changed negligibly between 1970 and
2000, which is reasonable because the Earth’s precession
has a period of 26,000 years.
We compute each seismometer location as the sum of

two orthogonal vectors. For convenience, we will denote
three dimensional rotations by Rðθ; ~vÞ, where θ is the angle
of rotation and ~v is the vector being rotated around. We
denote the longitudes of the Earth and Moon seismometers
by ϕE and ϕM respectively, and the latitudes by λE and λM.
We begin with the vectors for the Earth seismometer, ~v1 and
~v2. The first vector, ~v1, is orthogonal to the Earth’s
equatorial plane. Because the coordinate system is fixed
such that the equator is always in the x-y plane, this vector
is a constant in the z direction with a length of sinðλEÞ. The
second vector, ~v2, points from the tip of ~v1 to the
seismometer. Because of the Earth’s axial rotation, this
vector is time-dependent and traces out a circle in the x-y
plane, with a radius equal to cosðλEÞ. The vector’s angle in
this plane can be computed as the sidereal time at the
longitude of the seismometer, which corresponds to the
seismometer’s right ascension in this system. We denote

this angle by αðϕE; tÞ. Therefore, ~v2 results from a rotation
of a vector in the x direction around the z axis by this
angle, RðαðϕE; tÞ; ẑÞ.
We now perform the same calculation for the lunar

seismometer vectors, ~v3 and ~v4. In this system, the axis
orthogonal to the Moon’s equator is slightly more com-
plicated than that of the Earth. There are equations
describing the right ascension, αM, and declination, δM,
of the lunar pole as a function of time in the EME2000
coordinate system [33]. We denote the vector normal to
the Moon’s equator, computed from these coordinates
using the usual spherical-to-Cartesian conversion, as
ẑMðtÞ. ~v3 is then in the direction of ẑMðtÞ with a length
sinðλMÞ. To calculate ~v4, we first compute the vector
known as the IAU node, which is the vector orthogonal to
ẑM and the z axis, ẑMðtÞ × ẑ. There are also equations
describing the angle WðtÞ between the prime meridian of
the Moon and the IAU node vector [33]. We use the code
in Ref. [34], which provides αM, δM, and W, to compute
these quantities. To account for the difference between the
prime meridian and the longitude, we add the lunar
seismometer’s longitude to WðtÞ. ~v4 is then computed
by rotating the IAU node by this angle, RðWðtÞþ
ϕM; ẑMðtÞÞ. It has a length of cosðλMÞ.
We can now succinctly summarize the computation of

the four vectors in equation form:

~v1 ¼ sinðλEÞẑ;
~v2 ¼ cosðλEÞRðαðϕE; tÞ; ẑÞ · x̂;
~v3 ¼ sinðλMÞẑMðtÞ;

~v4 ¼ cosðλMÞRðWðtÞ þ ϕM; ẑMðtÞÞ ·
ẑMðtÞ × ẑ

‖ẑMðtÞ × ẑ‖
; ð13Þ

where the Moon’s rotation axis vector is given in terms of
the time-dependent right-ascension and declination angles
according to

ẐM ¼ ½cosðαMÞ cosðδMÞ; sinðαMÞ cosðδMÞ; sinðδMÞ�: ð14Þ

We now have the required quantities to calculate the angle δ
in Eq. (A5) between the two seismometers. This corre-
sponds to finding the angle between ~v1 þ ~v2 and ~v3 þ ~v4.
The final ingredient for computing the ORF is determining
the vector between the two seismometers. ~v5 shows the
vector connecting the center of the Earth to the center of the
Moon. It is assumed that the vector between the seismom-
eters on the Earth and on the Moon is well approximated by
the vector between the centers of the Earth and the Moon.
Expanding the ORF in small changes of the seismometers’
distance, one finds that it depends linearly on the change in
distance in general. Since the relative change in distance is
about 0.03, the relative change in ORF is of similar order.
This lies well below other modeling errors, such as the
seismic-speed-dependent calibration term in Eq. (1), and

Ẑ
ẐM

FIG. 5 (color online). Geometry of the Earth-Moon correlation
derivation. The sum of ~v1 and ~v2 corresponds to the Earth
seismometer, while the sum of ~v3 and ~v4 corresponds to the Moon
seismometer.
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therefore we can conclude that the approximation does not
introduce significant systematic errors.
Figure 6 shows the ORF between example Earth and

Moon seismometers as a function of time at 0.1 Hz. The
ORF displays both a daily cycle, due to the rotation of the
Earth, as well as a monthly cycle, due to the Moon’s
libration, which has a 28 day period. Due to tidal locking,
the Moon has only one face pointing towards the Earth at
all times. The face pointing towards the Earth oscillates
slightly with time, and this effect is called libration.
Slightly more than half of the Moon’s surface can be
seen from Earth. Libration in longitude results from the
eccentricity of the Moon’s orbit around Earth, while
libration in latitude results from the inclination between
the Moon’s axis of rotation and the normal of its
orbital plane.
We perform an analysis as described above using the

lunar seismic array and seismometers on Earth. The Earth
seismometers used are Geotech KS-36000 Borehole seis-
mometers located in Albuquerque, New Mexico, USA
(ANMO); Guam, Marianas Islands (GUMO); and
Mashhad, Iran (MAIO). To calibrate these data, we convert
from displacement to velocity by first taking a derivative.
Following Ref. [2], we use a global phase velocity map of
cR to calculate β2=α for the Earth seismometers [35]. We
perform the analysis on the coincident data from 1976 for
all nine possible pairs, which yields the following upper
limits for all pairs and the single best pair:

Ωtot
GW < 1.1 × 106; Ωsgl

GW < 1.5 × 106: ð15Þ

Although this is an order of magnitude higher than that
obtained for the Moon-Moon analysis, it is in some sense
a more robust upper limit, since correlation between
seismometers can only exist due to a GW signal.

V. CONCLUSION

The results presented in this paper using the Apollo lunar
seismometers are likely the best upper limits that can
currently be achieved with seismometers in the frequency
range 0.1–1 Hz. As the Moon has the lowest ambient
seismic noise currently measured, future improvements on
this upper limit using seismic measurements should not be
expected. For this reason, these constraints are likely to
remain the best in this frequency band until second-
generation torsion-bar antennas [23]. Unlike indirect limits
that exist on cosmological backgrounds, our method
directly constrains the astrophysical and cosmological
components of the stochastic GW background. This
complements the direct upper limits in other frequency
bands and the integrated, indirect upper limits in the same
frequency regime.
There are proposals to create a network of lunar

geophysical stations, such as SELENE2 [36], and the
development of a network of broadband seismometers
on the surface of the Moon [37]. These are in conjunction
with space missions being planned to create a lunar station
as well as to do fundamental science, including construct-
ing a theory of the formation of the Earth, and its initial
state and evolution. The use of an array of modern
seismometers placed in an antipodal network array would
likely improve the result, although not likely more than an
order of magnitude.
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APPENDIX: CALCULATION OF OVERLAP
REDUCTION FUNCTION

The overlap reduction function (ORF) can be calculated
using the results published in Ref. [26]. The main
calculation is summarized here also to emphasize that
the solution presented in Ref. [2] is not fully general as
implied in their paper. It is an accurate approximation to
the fully general ORF in the case of antipodal seismometer
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FIG. 6 (color online). Overlap reduction function between
example Earth and Moon seismometers as a function of time
at 0.1 Hz. This is computed for the S12 lunar station and
Albuquerque, New Mexico, USA (ANMO) seismic stations at
the beginning of 1976. It displays a daily variation due to the
rotation of the Earth, as well as a monthly cycle, due to the
libration of the Moon.
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pairs. In the following, we outline the calculation of the
fully general solution. The goal is to calculate the
correlation of GW signals between two seismometers
measured according to Eq. (1). The method is to express
this correlation for GWs incident from a specific direction
and with specific polarization, and then to average the
expression over propagation directions and wave polar-
izations. Without applying further weights, this yields the
overlap reduction function relevant to an isotropic, sto-
chastic GW background. We will provide an explicit
solution for the case of two seismometers on the Moon
(or Earth). This, however, cannot be applied to the
Moon-Earth analysis, since the explicit solution is only
for the specific geometry of two seismometers on the
same sphere. Generalized expressions of the results in
Ref. [26] have to be employed for the Moon-Earth
correlations.
We start with the Moon-Moon correlation. In a Moon-

centered spherical coordinate system, the spatial compo-
nents of the strain tensor for the two polarizations of a GW
can be written as

hþð~r; tÞ ¼ ðθ̂ ⊗ θ̂ − ϕ̂ ⊗ ϕ̂Þhþeiðωt−~r·~kÞ

¼ eþhþeiðωt−~r·
~kÞ;

h×ð~r; tÞ ¼ ðθ̂ ⊗ ϕ̂þ ϕ̂ ⊗ θ̂Þh×eiðωt−~r·~kÞ

¼ e×h×eiðωt−~r·
~kÞ; ðA1Þ

where θ̂, ϕ̂ are the unit normal vectors of the two angular
coordinate axes. There are various ways to average over
polarizations. One can either introduce a polarization
angle that mixes these two elementary polarizations and
average over it, or one can follow the usual recipe to
calculate the correlation between the two detector signals
for each polarization, and then add the terms (different
polarizations are mutually uncorrelated). Following the
latter method, the ORF for a seismometer pair can be
written as

γ12ðfÞ

¼ 15

32π

X
A¼þ;×

Z
dΩkðẑ⊤1 · eA · ẑ1Þðẑ⊤2 · eA · ẑ2Þei2πfk̂·Δ~r=c:

ðA2Þ

The normalization factor is chosen such that the ORF for
two collocated seismometers is equal to 1. The unit
vectors ẑ1, ẑ2 denote the surface normals at the two
seismometer locations, and Δ~r is the separation vector
between the two seismometers. The simplest way to
calculate the integrals is to choose Δ~r as the z axis of
the spherical coordinate system so that

k̂ · Δ~r ¼ jΔ~rj cosðθÞ: ðA3Þ

The integrals are easy to carry out now, and the remaining
problem is to transform the result into an elegant form in
terms of the angle δ subtended by the great circle
connecting the two seismometers. Substituting Moon
coordinates for the two unit vectors ẑ1, ẑ2, one has to
keep in mind that the z axis was chosen to lie in the
direction of the separation line. Therefore, to derive the
final result in an elegant way, one needs to choose Moon
coordinates of the two seismometers such that this
condition is fulfilled. This means that the two longitudes
have to be the same, and the two latitudes must have
opposite sign. Inserting these angles into the Moon-
coordinate expressions of ẑ1, ẑ2, and with δ being the
difference between the two latitudes, one directly obtains
the equation

γ12ðfÞ ¼
15

64Φ2
ð8Φ2cos4ðδ=2Þj0ðΦÞ

þ 8Φ cos2ðδ=2Þð3 cosðδÞ − 5Þj1ðΦÞ
þ ð41 − 20 cosðδÞ þ 3 cosð2δÞÞj2ðΦÞÞ: ðA4Þ

It can be verified that for δ ≈ π, i.e., near-antipodal
seismometers, the ORF is well approximated by the
expression given in Ref. [2], and the result here is identical
to the expression one obtains applying the equations of
Ref. [26] to a seismometer pair. An example of the ORF is
plotted in Fig. 7 for two Moon seismometers separated by
δ ¼ 0.4 rad. Due to the small size of the Moon with
respect to the length of a GW, the correlation between the
two seismometers is constantly high up to about 10 Hz.
Above 10 Hz, we can see the typical oscillations produced
by the spherical Bessel functions.
An explicit expression of the correlation between Moon

and Earth seismometers will not be given here, but instead,
we will use a generalized form of Eq. (3.42) in Ref. [26].
Their result can be expressed in terms of the surface normal
vectors ~e1z , ~e2z at the two seismometers, and the unit
separation vector ŝ≡ Δ~r=Δr. In this case, the ORF can
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FIG. 7 (color online). Overlap reduction function between two
seismometers on the Moon separated by 0.4 rad.
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be written in terms of the detector response matrices
d1 ≡ ~e1z ⊗ ~e1z , d2 ≡ ~e2z ⊗ ~e2z :

γ12ðfÞ ¼
3

4
ðAðΦÞTrðd1ÞTrðd2Þ þ 2BðΦÞTrðd1d2Þ

þ CðΦÞððŝ⊤d1ŝÞTrðd2Þ þ Trðd1Þðŝ⊤d2ŝÞÞ
þ 4DðΦÞs⊤ðd1d2Þŝþ EðΦÞðŝ⊤d1ŝÞðŝ⊤d2ÞŝÞÞ:

ðA5Þ

The original result given in Ref. [26] is obtained for trace-
free detector matrices d1, d2. As usual, the ORF is
normalized to be equal to 1 for collocated seismometers.
The coefficients AðΦÞ, BðΦÞ, CðΦÞ, DðΦÞ, EðΦÞ are linear
combinations of the three spherical Bessel functions j0ðΦÞ,
j1ðΦÞ, j2ðΦÞ. This expression can be applied to arbitrary
seismometer locations and orientations, and for the Earth-
Moon analysis, depending on the chosen coordinate frame,
potentially all three vectors ŝ, ~e1z , ~e2z are functions of time.
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