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We study the asymptotic dynamics of the mixmaster universe, near the cosmological singularity,
considering fðRÞ gravity up to a quadratic correction in the Ricci scalar R. The analysis is performed in the
scalar-tensor framework and adopting Misner-Chitré-like variables to describe the mixmaster universe,
whose dynamics resembles asymptotically a billiard ball in a given domain of the half-Poincaré space. The
form of the potential well depends on the spatial curvature of the model and on the particular form of the
self-interacting scalar field potential. We demonstrate that the potential walls determine an open domain in
the configuration region, allowing the point universe to reach the absolute of the considered Lobachevsky
space. In other words, we outline the existence of a stable final Kasner regime in the mixmaster evolution,
implying chaos removal near the cosmological singularity. The relevance of the present issue relies both on
the general nature of the considered dynamics, allowing its direct extension to the Belinski-Khalatnikov-
Lifshitz conjecture too, as well as the possibility to regard the considered modified theory of gravity as the
first correction to the Einstein-Hilbert action as a Taylor expansion of a generic function fðRÞ (as soon as a
cutoff on the space-time curvature takes place).
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I. INTRODUCTION

The chaotic dynamics of the mixmaster universe [1–3] is
a basic prototype of the local (subhorizon) behavior of
the generic cosmological solution [the so-called Belinski-
Khalatnikov-Lifshitz (BKL) conjecture [4]]. Investigating
the stability of such a chaotic picture with respect to the
presence of matter [5–7] and space-time dimensions
number [8–10] has seen a great effort over the last four
decades and the most significant issue was the proof of
chaos removal when a massless scalar field is involved in
the dynamics [5]. Such a result is a consequence of the
capability manifested by the scalar field kinetic energy of
affecting the second (quadratic) Kasner condition, easily
restated in the Hamiltonian picture, as shown in [11]. This
property of the massless scalar field acquires intriguing
perspectives when fðRÞ modified theory of gravity is
considered [12–16]. In fact, these alternative formulations
of the gravitational field dynamics can be represented by an
equivalent scalar-tensor picture: the scalar degree of free-
dom associated to the form of the function f is expressed
via a self-interacting scalar field, coupled to the ordinary
general relativity [17–20]. When implementing this scalar-
tensor scheme to the mixmaster universe dynamics, a

natural question arises: the kinetic term of the scalar field
removes the chaotic behavior, but the presence of a
potential term could restore it? Thus we can study, for
specific modified theories of gravity, if the mixmaster chaos
survives or not, simply characterizing the corresponding
scalar field potential. Here we analyze the modified gravity
theory corresponding to a quadratic correction in the Ricci
scalar to the ordinary Einstein-Hilbert Lagrangian, both
because it is the simplest viable deviation from general
relativity (apart from a cosmological constant term), as well
as the first correction emerging from a Taylor expansion of
a fðRÞ theory for very small values of the space-time Ricci
scalar, i.e. for very law curvatures, like we observe today in
the Solar System [21]. The quadratic term in the Ricci
scalar provides an exponential-like potential term for the
self-interacting scalar field, when a scalar-tensor reformu-
lation of the model is considered. This case is particularly
appropriate to the analysis we pursue of the mixmaster
dynamics in terms of the Misner-Chitré-like variables
[7,22–24]. In fact, the kinetic term of the scalar field is
on the same footing of the anisotropy term contribution
and, for the considered Lagrangian, also the potential term
is isomorphic to the spatial curvature of the model; i.e. the
total potential term is constituted by equivalent exponential
profile. In the asymptotic limit toward the initial singularity
the total potential takes the form of four potential walls,
whose morphology determines if the configuration domain
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is closed or not. Indeed, we demonstrate how the whole
domain, available in principle, is a constant negative
curvature space (half-Poincarè space). We first analyze
the case of the mixmaster universe in the presence of a
massless scalar field, demonstrating the open nature of its
configuration space and the implied existence of a stable
Kasner regime to the initial singularity. Then, we face a
detailed study of the dynamics in the presence of the total
potential and the still open structure of the configuration
domain. Thus, we demonstrate the nonchaotic nature of the
mixmaster universe behavior, as it is described by the
scalar-tensor version of the R2 gravity.

II. f ðRÞ GRAVITY

The fðRÞ theories of gravity are a direct generalization of
the Einstein-Hilbert Lagrangian consisting in a replacement
of the Ricci scalar R by a general function fðRÞ [13–15,25]:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ; ð1Þ

where g is the determinant of the metric.1 The introduction
of the additional degree of freedom, related to the presence
of the fðRÞ term, can be translated into a dynamics of a
self-interacting scalar field coupled with the Einstein-
Hilbert action, the so-called scalar-tensor framework. In
this approach, a new auxiliary field χ is introduced to get
the following equivalent version of the action (1):

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðχÞ − f0ðχÞðR − χÞ�: ð2Þ

The variation of the action (2) with respect to χ provides
f00ðχÞðR − χÞ ¼ 0, implying χ ¼ R if f00ðχÞ ≠ 0. By a
redefinition of the auxiliary field χ in the form φ ¼
f0ðχÞ the action becomes

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½φR − χðφÞφþ fðχðφÞÞ�: ð3Þ

It is now possible to perform a conformal transformation on
the metric gμν → ~gμν ¼ φgμν and a scalar field redefinition

φ≡ f0ðRÞ → ϕ ¼
ffiffiffiffiffiffi
3

16π

q
ln f0ðRÞ in order to obtain

S ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p �
~R

16π
−
1

2
∂αϕ∂αϕ −UðϕÞ

�
; ð4Þ

where the potential term UðϕÞ has the form

UðϕÞ ¼ Rf0ðRÞ − fðRÞ
16πðf0ðRÞÞ2 : ð5Þ

For small values of the Ricci scalar, the first-order correc-
tion to the Einstein-Hilbert Lagrangian is represented by a
quadratic correction, i.e.

fðRÞ ¼ Rþ qR2: ð6Þ

By this choice, the potential term (5) takes the form

UðϕÞ ¼ 1

64πq

�
1 − 2exp−4

ffiffi
π
3

p
ϕ þ exp−8

ffiffi
π
3

p
ϕ
�
: ð7Þ

This is the effective potential that emerges in the so-called
Starobinsky-inflation model [21]. Such a model ensures a
“slow-rolling” face and it is an inflationary model passing
the latest inflation constraint [26].

III. THE MIXMASTER MODEL DYNAMICS

Following the standard representation of the Bianchi IX
model [27] in the Misner variables [2,3] the Einstein-
Hilbert action takes the form

Sg ¼
Z

dt

�
pα _αþ pþ _βþ þ p− _β− −

Ne−3α

24π
HIX

�
; ð8Þ

where the dynamics of the model implies the super-
Hamiltonian constraint

HIX ≡ −p2
α þ p2þ þ p2

− þ 12π2e4αVIXðβ�Þ ¼ 0: ð9Þ

Here α expresses the isotropic component of the Universe
(i.e. the volume of the Universe) and the initial singularity
is reached for α → −∞, while the traceless matrix βab ¼
diagðβþ þ ffiffiffi

3
p

β−; βþ −
ffiffiffi
3

p
β−;−2βþÞ accounts for the

anisotropy of this model. Furthermore, pα; p� are the
conjugated momenta to α; β�, respectively, and VIXðβ�Þ
is the potential term depending only on β�, corresponding
to the spatial curvature. If we execute an Arnowitt-Deser-
Misner reduction of the dynamics [28], the Bianchi IX
model resembles the behavior of a two-dimensional
particle, evolving with respect to the timelike variable α
in the βþ; β− plane. In other words, the system dynamics is
summarized by the time-dependent Hamiltonian HIX:

−pα ¼ HIX ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ þ p2

− þ 12π2e4αVIXðβ�Þ
q

: ð10Þ

Looking at the form of the potential term VIXðβ�Þ, it is
possible, taking into account the three leading terms, to
parametrize it as an infinitely steep potential well [3]. This
way, the point universe lives inside the triangular region of
the configuration space where the potential term is negli-
gible; such a region is individuated when the following
three conditions hold:

1We use the ð−;þ;þ;þÞ signature of the metric and the
geometric unit system ðc ¼ G ¼ ℏ ¼ 1Þ.
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1

3
þ βþ þ ffiffiffi

3
p

β−
3α

> 0;

1

3
þ βþ −

ffiffiffi
3

p
β−

3α
> 0;

1

3
−
2βþ
3α

> 0: ð11Þ

The presence of the “time” variable α in the relations (11)
causes the outside motion of the potential walls and the
corresponding time dependence of the domain allowed to
the point-universe motion. Such a dependence can be
removed in the framework of the Misner-Cithrè variables
τ; ζ; θ [24,27] as standing in the Poincaré half-plane:

α − α0 ¼ −eτ
1þ uþ u2 þ v2ffiffiffi

3
p

v
;

βþ ¼ eτ
−1þ 2uþ 2u2 þ 2v2

2
ffiffiffi
3

p
v

;

β− ¼ eτ
−1 − 2u

2v
; ð12Þ

where −∞ < τ < ∞, −∞ < u < þ∞, and 0 < v < þ∞.
In this scheme the role of the Hamiltonian time is assigned
to τ and the singularity is approached for τ → ∞. The
transformations (12) permit one to rewrite the conditions
(11) as independent of the variable τ and thus the domain
within which the particle lives is fixed with respect to the
time variable. Making use of the transformations (12), the
Hamiltonian (10) in the free-potential case rewrites as

−pτ ¼ HIX ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðp2

u þ p2
vÞ

q
; ð13Þ

and the point universe lives in the u; v plane inside the region
individuated when the following three conditions hold:

−u
1þ uþ u2 þ v2

> 0;

1þ u
1þ uþ u2 þ v2

> 0;

uðuþ 1Þ þ v2

1þ uþ u2 þ v2
> 0: ð14Þ

As shown by [23], the asymptotic evolution towards the
singularity is covariantly chaotic because it is isomorphic to
a billiard on the Lobachevsky plane. This demonstration is
based on three points: (i) the Jacobi metric in the u; v plane
has a negative constant curvature; (ii) the Lyapunov expo-
nent, defined as in [29], is greater than zero; (iii) the
configuration space is (dynamically) compact. The occur-
rence of these three properties ensures that the geodesic
trajectories cover the whole configuration space.

IV. MIXMASTER UNIVERSE IN THE R2 GRAVITY

Now we analyze the case of the gravitational Lagrangian
(6) when the Bianchi IX model is considered. As a starting

point we consider the modified gravity model (4) in terms
of the variables α; βþ; β−;ϕ. Following the same procedure
of the previous section we get the generalized reduced
Hamiltonian −pα ¼ H of the form

H ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þ þ p2

− þ p2
ϕ þ 12π2e4αVIX þ 4e6αU

q
: ð15Þ

In Eq. (15), we rescaled the zero point of α → α − α0, so that
the spatial metric factor e3α → 1

ð6πÞ e
3α, and a redefinition of

the scalar field amplitude ϕ →
ffiffiffi
2

p ð6πÞϕ is considered
too. A natural parametrization, in the Misner-Cithrè-
Poincaré half-plane scheme, that reduces to the relations
(12) if the scalar field is turned off reads as follows:

α − α0 ¼ −eτ
1þ uþ u2 þ v2ffiffiffi

3
p

v
;

βþ ¼ eτ
−1þ 2uþ 2u2 þ 2v2

2
ffiffiffi
3

p
v

;

β− ¼ eτ
−1 − 2u

2v
cos δ;

ϕ ¼ eτ
−1 − 2u

2v
sin δ; ð16Þ

where −∞ < τ < ∞, −∞ < u < þ∞, 0 < v < þ∞ and
0 < δ < 2π. In this new system of variables the reduced
Hamiltonian takes the form

−pτ ¼H≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
�
p2
uþp2

vþ4
p2
δ

ð1þ2uÞ2
�
þe2τV

s
: ð17Þ

The introduction of the degree of freedom related to the
scalar field implies that the point universe lives inside a
three-dimensional domain in the configuration space u; v; δ
determined by the potential term:

e2τV ¼ e2τ½12π2e−4eτξðu;vÞVIXðu; v; δ; τÞ
þ 4e−6e

τξðu;vÞUðu; v; δ; τÞ�
¼ 12π2e2τ

�
e−

12eτffiffi
3

p
v
ðuþu2þv2Þ þ e−

6eτffiffi
3

p
v
ð1þð1þ2uÞ cos δÞ

þ e−
6eτffiffi
3

p
v
ð1−ð1þ2uÞ cos δÞ�þ e2τ

8πq

�
e−

12eτffiffi
3

p
v
ð1þuþu2þv2Þ

− 2e−
6eτffiffi
3

p
v
ð1þuþu2þv2−2

ffiffiffiffiffi
2π3

p
ð1þ2uÞ sin δÞ

þ e−
6eτffiffi
3

p
v
ð1þuþu2þv2−4

ffiffiffiffiffi
2π3

p
ð1þ2uÞ sin δÞ�; ð18Þ

where ξðu; vÞ ¼ 1þuþu2þv2ffiffi
3

p
v

. Because of the exponential

forms of the terms in Eq. (18), when the singularity is
approached (τ → ∞) the point universe is confined to live
inside a three-dimensional domain defined as the region
where all the exponents of the six terms are simultaneously
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greater than zero. Looking at Eq. (18), the potential term V
behaves as an infinitely steep potential well as in the
Poincarè variables (14). So for the evolution of the point
universe it is possible to neglect the potential everywhere in a
suitable domain. As a first step we study the case in the
absence of all the potential terms (V ¼ 0); i.e. we deal with
the Hamiltonian problem:

H ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
u þ p2

v þ 4
p2
δ

ð1þ 2uÞ2

s
: ð19Þ

The Hamiltonian equations for this potential-free system
(Bianchi I model with the massless scalar field) are

_u ¼ ∂H
∂pu

¼ v2

ϵ
pu; _pu ¼ −

∂H
∂u ¼ 8v2

ϵ

p2
δ

ð1þ 2uÞ3 ;

_v ¼ ∂H
∂pv

¼ v2

ϵ
pv; _pv ¼ −

∂H
∂v ¼ −

ϵ

v
;

_δ ¼ ∂H
∂pδ

¼ 4v2

ϵ

pδ

ð1þ 2uÞ2 ; _pδ ¼ −
∂H
∂δ ¼ 0: ð20Þ

It is possible to demonstrate, as we approach the singularity,
that H is a constant of motion with respect to the “time”
variable τ, following [23]. Thus, we perform the substitution
H ≃ ϵ ¼ const inside Eqs. (20). It is now possible, by
following the Jacobi procedure [30] and using the equations
of motion (20), to write down the line element for the three-
dimensional Jacobi metric in terms of the configuration
variables, i.e.

ds2 ¼ ϵ

v2

�
du2 þ dv2 þ ð1þ 2uÞ2

4
dδ2

�
: ð21Þ

By a direct calculation we see that this metric has a negative
constant curvature (the associated Ricci scalar is R ¼ − 6

ϵ)
and then the point universe moves over a negatively curved
three-dimensional space. Furthermore, we can find two
singular values for the metric in correspondence to
u ¼ − 1

2
, v ¼ 0. This feature allows us to restrict the domain

of the configuration space in which we will study the
trajectories of the point universe to the fundamental one
identified by the inequalities− 1

2
< u < þ∞, 0 < v < þ∞,

and 0 < δ < 2π. Indeed there is no way for the point-
universe trajectories to cross over the two planes u ¼ − 1

2
,

v ¼ 0 (each choice of the Lobachevsky “half-space” is
equivalent with respect to the other one). The intermediate
step toward the general case of the potential (18), corre-
sponding to the ordinarymixmastermodel in the presence of
a massless scalar field, takes place when we retain only the
exponential terms due to the spatial curvature, namely
V ≃ 12π2e−4e

τξðu;vÞVIXðu; v; δ; τÞ. Then, the point universe
lives in the region where are simultaneously satisfied the
three following conditions:

1þ ð1þ 2uÞ cos δ > 0;

1 − ð1þ 2uÞ cos δ > 0;

uðuþ 1Þ þ v2 > 0. ð22Þ
We now implement a numerical integration of the system
(20) in order to analyze the behavior of the trajectories in the
potential-free region and then use this result for interpreting
the effect of the scalar curvature. As we can see in Fig. 1 an
opening of the domain emerges due to the presence of the
scalar field and it is possible to individuate two families of
trajectories: those ones corresponding to a point universe that
bounces against the walls and turn back inside the domain
(the black ones) and those corresponding to a particle that
approach the so-called “absolute” [31] (the red ones), for
values v → 0;∞, with no other bounces until the singularity.
The presence of the trajectories of the second family shows
the removal of the oscillatory behavior of the mixmaster
model coupled with a massless scalar field [4,11]. Let us see
what happens ifwe consider the complete potential term (18).
This time the restrictions on the dynamics imply that the
particle is confined inside a region where all six exponential
terms in Eq. (18) are simultaneously greater than zero. We
can immediately remove one of the six conditions because
the first exponent related to the potential of the scalar field
1þ uþ u2 þ v2 is always greater than zero for any values of
u; v taking in consideration. Thus, the five conditions that
identify the domain are

1þ ð1þ 2uÞ cos δ > 0;

1 − ð1þ 2uÞ cos δ > 0;

uðuþ 1Þ þ v2 > 0;

1þ uþ u2 þ v2 − 2
ffiffiffiffiffiffiffi
2π3

p
ð1þ 2uÞ sin δ > 0;

1þ uþ u2 þ v2 − 4
ffiffiffiffiffiffiffi
2π3

p
ð1þ 2uÞ sin δ > 0. ð23Þ

FIG. 1 (color online). The black lines represent the trajectories
associated to a point universe that bounce against the walls.
Instead, the red lines describe the point universe which directly
approaches the singularity.
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We observe that the last of the conditions above naturally
implies the validity of the fourth one too. Thus, we indeed
deal with four potential walls only. As we can see in Fig. 2,
taking into account also the potential term Uðu; v; δ; τÞ
implies that the available configuration space for the point
universe is clearly reduced with respect to the case U ¼ 0
(see Fig. 1). However, trajectories yet exist (the red lines in
Fig. 2) corresponding to a point universe that is able to reach
the absolute for v → 0;∞. For this reason we can firmly
conclude that a quadratic correction in the Ricci scalar to the
Einstein-Hilbert action, that in the scalar-tensor theory is
equivalent to the dynamics of a self-interacting scalar field
[with potential terms of the form (7)], is able to remove the
never-ending bounces of the point universe against thewalls.
As a result of the bounces against the infinite potential walls
(which can be described by a reflection rule [22,32]), sooner
or later the point universe reaches a trajectory connectedwith
the absolute. It is worth noting that the analysis above is
referred to the choice q > 0, in which case the sign of the
scalar field potential is the same one of the scalar curvature.
This choice is forced by the request that the additional scalar
mode, associated to the quadratic modification, be a real
(nontachyonic) massive one, accordingly to the original
Starobinsky approach in [21] and demonstrated also in
[33]. However, in the case q < 0, the scalar field potential
would not contribute an infinite positive wall, but an infinite
depression. Since in the region of zero potential, the point
universe has always positive “energy,” we can easily con-
clude that such a case overlaps the nonchaotic potential-free
one. We now observe that, in correspondence to the con-
figuration region v ¼ 0;∞ and δ ¼ 3π

2
, the scalar field

acquires negative diverging values and its potential terms
manifests a diverging behavior. Such a profile of the scalar
field is typical of a Bianchi I solution near the singularity [5]
and the diverging character of the potential term means that
general relativity can not be asymptotically recovered.
Rigorously speaking, the present result on the chaos structure
applies to a quadratic correction in the Ricci scalar only,
because it is the first terms of the Taylor expansion of the
function fðRÞ working nearby the singularity. Nonetheless,
our analysis has a general validity, as soon as we take into
account a physical cutoff at the Planck time, where classical
theory starts to fail and a quantum treatment is required. In
fact, the Planckian cutoff would remove the ϕ and UðϕÞ
divergences, allowing the Taylor expansion for q ≲ ðctcutÞ2

l2P
,

where tcut is the cutoff time and lP the Planck length. Since
tcut >

lp
c , we deal with the (nonsevere) restriction q ≲ 1 for

preserving the general nature of our result. This estimation
follows requiringR > qR2 and remembering that for the case
of a Kasner solution, in the presence of a potential-free scalar
field, the Ricci scalar behaves as R ∼ 1

t2s
, where ts is the

synchronous time. We stress that qualitatively, a similar
argument is at the ground of the nonchaotic nature of the
Bianchi IX loop quantum dynamics in the semiclassical limit
[34]. However, the fieldϕðtsÞ admits, both for v → 0;∞ and
δ ¼ π=2, trajectories implying its positive divergence. For
such behaviors, corresponding to an open region in the initial
condition, the potential UðϕÞ approaches a constant value
and ϕ is effectively massless. It is just the existence of these
diverging profiles at the ground of the chaos removal in the
present model. The massless nature of the potential along
specific trajectories is a good criterion for determining the
chaotic properties of the mixmaster universe in a specific
nonexpanded fðRÞ model. In fact, the behavior of the free
scalar field readsϕfðtsÞ ∝ ln ts and the correspondingkinetic
energy density stands as 1=t2s . Then, for a given fðRÞmodel,
fixing thepotentialUðϕÞ, the chaos removal is ensuredby the
validity of the condition limts→0UðϕfðtsÞÞt2s ¼ 0. Clearly,
the nonchaoticity is ensured if such a limit holds for a nonzero
measure set of trajectories.

V. CONCLUSIONS

The analysis above demonstrated how including a quad-
ratic correction in the Ricci scalar to the Einstein-Hilbert
Lagrangian of the gravitational field gives a deep insight on
the nature of the mixmaster singularity: the evolution of the
scale factors is no longer chaotic and a stable Kasner regime
emerges as the final approach to the singular point.
The relevance of this result is in its generality with

respect to the behavior of the cosmological gravitational
field. In fact, on one hand, the result we derived in the
homogeneous cosmological setting can be naturally
extended to a generic inhomogeneous universe, simply
following the line of investigation discussed in [4,5].
The basic statement, at the ground of the BKL con-

jecture, is the space point decoupling in the asymptotic

FIG. 2 (color online). The point universe lives inside the region
marked by the walls, where the conditions (23) are verified. We
also sketch the trajectories reaching the absolute.

CHAOS REMOVAL IN Rþ qR2 GRAVITY: THE … PHYSICAL REVIEW D 90, 101503(R) (2014)

101503-5

RAPID COMMUNICATIONS



dynamics toward the cosmological singularity. Such a
dynamical property of a generic inhomogeneous cosmo-
logical model allows one to reduce the behavior of a
subhorizon spatial region [4,35] to the prototype offered by
the homogeneous mixmaster universe. We are actually
stating that the time derivatives of the dynamical variables
asymptotically dominate their spatial gradients, limiting the
presence of the spatial coordinates in the Einstein equation
to a pure parametrical role. We are speaking of a conjecture
because the chaotic features of the pointlike dynamics
induce a corresponding stochastic behavior of the spatial
dependence and the statement above requires a nontrivial
treatment for its proof. Nonetheless a valuable estimation of
the spatial gradient behavior, when the space-time takes the
morphology of a foam, is provided in [36]. When a scalar
field is present the situation is even more simple, because,
after a certain number of iterations of the BKL map, in
each space point, a stable Kasner regime takes place [37]
and the validity of the solution is rigorously determined
[38]. Thus, we can extend our result to a generic inhomo-
geneous cosmological model simply considering the

dynamical variables as space-time functions u ¼ uðτ; xiÞ,
v ¼ vðτ; xiÞ and δ ¼ δðτ; xiÞ, which, in each space point,
live in a half-Poincarè space and are governed by an
independent and morphologically equivalent dynamics.
On the other hand, the extension of general relativity we
considered here is the most simple and natural one, widely
studied in the literature in view of its implications on the
primordial Universe features. Since the classical evolution
is expected to be predictive up to a finite value of the
Universe volume, i.e. up to a given amplitude of the space-
time curvature, for sufficiently small coupling constant q
values, the present model can be considered as the
quadratic Taylor expansion of a generic fðRÞ theory and
we can then guess that the nonchaotic feature is a very
general dynamical property, at least within the classical
domain of validity of the fðRÞ theory. In this sense we
traced very general and reliable properties of the cosmo-
logical gravitational field in modified theories of gravity of
significant impact on the so-called billiard representation of
the generic primordial Universe [8,22,32].
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