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We study the possibility of the existence of negative mass bubbles within a de Sitter spacetime
background with matter content corresponding to a perfect fluid. It is shown that there exist configurations
of the perfect fluid that satisfy everywhere the dominant energy condition, the Einstein equations and the
equations of hydrostatic equilibrium which asymptotically approach the exact solution of Schwarzschild—
de Sitter spacetime with a negative mass.
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I. INTRODUCTION

The Schwarzschild solution [1] is an exact vacuum
solution of the Einstein equations which contains one
free parameter, the mass. The solution is singular at
Schwarzschild coordinate r ¼ 0. For a positive mass, the
solution is called a black hole, and the singularity is hidden
behind a null surface called the event horizon. The
singularity, rather than being concentrated at a point,
actually occurs on a future spacelike hypersurface. If an
observer stays outside the event horizon, he is safe from the
singularity. However, if he crosses over the null surface and
enters the black hole he cannot avoid the singularity, just as
he cannot avoid aging, and in finite time he is ripped apart
by the infinite gravitational stresses that occur at the
singularity. On the other hand, for a negative mass, the
singularity is naked as it has no event horizon cloaking it.
However, it is pointlike, and occurs at a fixed spatial
position. An observer can view the singularity from a
distance, and in principle, every observer who chooses not
to impinge on the singularity can avoid it forever. Indeed,
the singularity of the negative mass Schwarzschild solution
appears to be relatively benign compared to the one of a
positive mass.
We are commonly exposed to singularities of the type

exhibited by the negative mass Schwarzschild geometry.
For example consider a point charge in electrodynamics.
The corresponding electric field is in principle, singular at
the location of the point charge, and the total energy is
infinite. We are content with the understanding that from a
large distance, a singular point charge is harmless, we can
simply avoid it, and at close distance we expect that the
singular nature of the charge will be smoothed out by a
concentrated but nonsingular charge density. The analo-
gous situation in the context of general relativity and the
negative mass Schwarzschild solution is to ask if there is a

nonsingular distribution of energy-momentum density that
smooths out its singularity. This question was analyzed in
[2] and it was concluded that for asymptotically Minkowski
spacetime, it is actually easy to remove the singularity in
the metric, but only at the expense of introducing other
pathologies in the system that are untenable.
The physical definition of the mass is subjective. It can

mean the total Arnowitt-Deser-Misner (ADM) mass [3] or
the Bondi mass [4] or the Komar mass [5], depending on
the symmetries and asymptotics of the metrics involved.
We take the very physical viewpoint of defining the mass
as that parameter which would appear in the Newton
dynamical equations in the limit of slowly moving sources
and weak gravitational forces. This mass is exactly the
Schwarzschild-like mass parameter that appears in the
metric, as shown by Bondi in [6] and Luttinger [7].
A nonsingular matter distribution that is physically

reasonable and not pathological must correspond to an
energy momentum tensor that is nonsingular but addition-
ally, satisfies everywhere the dominant energy condition
[8]. This condition is equivalent to the statement that no
Lorentz observer can observe the energy-momentum to be
moving out of the future directed light cone. It was
observed in [2] that any nonsingular matter distribution
that asymptotically approaches the negative mass
Schwarzschild metric must violate the dominant energy
condition. The reason is because of the positive energy
theorem [9], which states that in an asymptotically
Minkowski spacetime, any energy momentum tensor that
everywhere satisfies the dominant energy condition must
give rise to a metric that has positive ADM mass [3]. The
negative mass Schwarzschild metric evidently has a neg-
ative ADM mass. Therefore, there cannot exist a smooth
configuration of energy-momentum that everywhere sat-
isfies the dominant energy condition and asymptotically
approaches the negative mass Schwarzschild metric. Thus
the negative mass Schwarzschild solution remains an
unphysical solution and the question of its meaning is still
unanswered.
However, it is possible to evade the positive energy

theorem by relaxing any of the assumptions that it requires.
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In [2], it was pointed out that removing the condition that
the spacetime be asymptotically Minkowski is a useful
reduction. In this paper we consider asymptotically de
Sitter spacetimes. Positive energy theorems and the analy-
sis of the positivity of the mass have been done in such
spacetimes [10–14], but our analysis avoids their conclu-
sions. The papers [10] prove the positivity of the mass
associated with the conformal time translation Killing
vector. Although positive, this mass is time dependent as
far as the static time coordinate is concerned, and thus not
what we would like to consider as the mass. The papers
[11] and [13] prove the positivity of the Abbot-Deser (AD)
mass as defined by [12], but only if it is assumed to be
positive on an initial surface. We do not make that
assumption. The paper [14] makes stringent conditions
on the asymptotic spacetime, which also guarantees the
positivity of the mass, however we do not impose the same
conditions. Finally the paper [15] gives a nice counterex-
ample to the conjecture that locally asymptotically flat
spacetimes must also have positive mass. But none of these
papers consider our specific, physical problem of a perfect
fluid in an asymptotically de Sitter spacetime.
The Schwarzschild–de Sitter solutions are exact solu-

tions of the Einstein equations in the presence of a constant,
background energy-momentum density (or equivalently
with cosmological constant), which correspond to an
exponentially evolving spacetime geometry with a singular,
pointlike mass. Explicitly the metric is given by

ds2 ¼
�
1 −

2ðΛr3=6þMÞ
r

�
dt2

−
�
1 −

2ðΛr3=6þMÞ
r

�−1
dr2 − r2dΩ2: ð1Þ

The solutions contain two parameters, the value of the
mass M, and the value of the constant energy density
(or cosmological constant), Λ. Either can be positive or
negative. Negative Λ gives rise to anti–de Sitter spacetime,
which, although of great interest recently [16], already on
its own does not satisfy the dominant energy condition.
Positive Λ gives rise to de Sitter spacetime. The mass
parameter, M, as expected describes a positive or negative
pointlike mass depending on its sign. The positive mass is
hidden behind an event horizon, while the negative mass
singularity is naked, and occurs at a fixed spatial point.
The positive energy theorem [9] is not applicable since the
spacetime is not asymptotically Minkowski. The negative
mass singularity can be smoothed out in a de Sitter
background while maintaining the dominant energy con-
dition everywhere, as was shown in [2], however, no
attempt was made to find any type of energy-momentum
which could give rise to the deformation that is required. In
this paper we show that energy-momentum corresponding
to a perfect fluid can be used to provide a suitable
deformation. We find bubblelike configurations which

are nonsingular, satisfy the dominant energy condition
everywhere and give rise to a metric that asymptotically
approaches the negative mass Schwarzschild–de Sitter
geometry.

II. EQUATIONS OF MOTION

The metric of a spherically symmetric spacetime can be
taken as

ds2 ¼ BðrÞdt2 − AðrÞdr2 − r2dθ2 − r2sin2θdϕ2: ð2Þ

This metric is required to be a solution of the Einstein field
equations:

Gμν ¼ 8πTμν ð3Þ

where we take that c ¼ G ¼ 1. It has been commonly
understood that the left-hand side of Eq. (3) depends on the
geometry of the spacetime and the right-hand side depends
on the matter content of the Universe and its distribution.
We wish to solve the Einstein field equations for matter
corresponding to a perfect fluid, where the metric asymp-
totically approaches the exact solution corresponding to a
negative mass Schwarzschild–de Sitter geometry. A perfect
fluid is described by a stress-energy tensor of the form

Tμν ¼ −pgμν þ ðpþ ρÞUμUν ð4Þ

where p and ρ are respectively the pressure and the density
of the perfect fluid when Uμ is its four vector velocity. We
choose a frame of reference where the fluid is at rest, then
this four vector velocity is defined by Uμ ¼ ð ffiffiffiffi

B
p

; 0; 0; 0Þ,
so that it obeys UμUμ ¼ 1. This means that the only
nonzero terms of the stress-energy tensor are

T00 ¼ Bρ T11 ¼ Ap T22 ¼ Apr2 T33 ¼ sin2θT22: ð5Þ

The Einstein equations in the presence of a perfect fluid are
well known, for example in [17], or in any other standard
reference on general relativity, however, we record them
here for completeness. We get three independent equations:

B00

2A
−

B0

4A

�
B0

B
þ A0

A

�
þ B0

rA
¼ 4πð3pþ ρÞB; ð6Þ

−
B00

2B
þ B0

4B

�
B0

B
þ A0

A

�
þ A0

rA
¼ 4πðρ − pÞA; ð7Þ

1 −
r
2A

�
B0

B
−
A0

A

�
−
1

A
¼ 4πðρ − pÞr2: ð8Þ

These equations are underdetermined as they correspond to
three equations among four fields in one independent
variable, however, we will use them to determine the
pressure p, the density ρ, and the time component of the
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metric B as a function of the gravitational effective mass
function mðrÞ. A fourth equation corresponding to the
condition of hydrostatic equilibrium is actually not an
independent equation, and in fact a consequence of the
covariant conservation of the energy-momentum tensor,
which in turn is equivalent to the consistency requirement
of the Einstein equation with the Bianchi identities. It
corresponds to

B0

B
¼ −2p

pþ ρ
: ð9Þ

Usually, to render the system of equations deterministic, a
further equation is introduced corresponding to the equa-
tion of state, p ¼ pðρÞ, which then picks out a unique
solution. However we will not impose such an equation, we
will instead parametrize

A ¼
�
1 −

2mðrÞ
r

�
−1
; ð10Þ

and choose mðrÞ explicitly, which has the interpretation as
the mass inside the radius r. We then find the solution
(numerically) for pðrÞ, ρðrÞ and BðrÞ dependent on our
choice of mðrÞ. It will be clear from our solution that an
equation of state connecting pðrÞ and ρðrÞ must exist
implicitly.
We can calculate the expression for the density through

the operation Eq:ð6Þ
2B þ Eq:ð7Þ

2A þ Eq:ð8Þ
r2 to obtain

ρðrÞ ¼ 1

4π

�
m0ðrÞ
r2

�
ð11Þ

and we can also get an equation for the time component of

the metric B using the operation Eq:ð6Þ
2B þ Eq:ð7Þ

2A − Eq:ð8Þ
r2 to

obtain

B0

B
¼ 2

r2
½mðrÞ þ 4πr3p�A: ð12Þ

Finally, we can combine Eq. (12) with Eqs. (6)–(8) to get

p0ðrÞ ¼ 4πr2

2mðrÞ − r
p2ðrÞ þmðrÞ þ rm0ðrÞ

rð2mðrÞ − rÞ pðrÞ

þ m0ðrÞmðrÞ
4πr3ð2mðrÞ − rÞ : ð13Þ

To be able to numerically solve the equations, we need to
define the gravitational effective mass function mðrÞ. We
obtain a smooth function through the following steps. We
start with the function

~mðrÞ ¼

8>><
>>:

0 if r < x

aðr − xÞ3 if x < r < y
Λr3
6
−M if r > y

ð14Þ

where x, y and a are parameters which are constrained by
imposing that the interpolation be C2 at x and y, and we
have redefined M → −M, see [18]. This implies

y ¼
ffiffiffiffiffiffiffi
6M
Λx

r
a ¼ Λy2

6ðy − xÞ2 : ð15Þ

In the region r > y the spacetime becomes the exact
negative mass Schwarzschild–de Sitter spacetime. Then
we define a C∞ interpolation by

mðrÞ¼
�
1þ tanhωðr−xÞ

2

��
1− tanhωðr−yÞ

2

�
aðr−xÞ3

þ
�
1þ tanhωðr−yÞ

2

��
Λr3

6
−M

�
ð16Þ

for a suitable value of ω, as shown in Fig. 1.
Our choice for ~mðrÞ is motivated by the analysis done in

[2] where it was shown that the dominant energy condition
is satisfied if

d
dr

�
~m0ðrÞ
r2

�
≤ 0

d
dr

ð ~m0ðrÞr2Þ ≥ 0: ð17Þ

Although the analysis done in [2] does not exactly apply
since there it was further assumed that B ¼ 1 − 2 ~mðrÞ=r,
which we do not assume here, ~mðrÞ satisfies the conditions
of Eq. (17). The dominant energy condition for energy-
momentum described by an ideal fluid simply requires

ρðrÞ ≥ 0 ρðrÞ ≥ jpðrÞj; ð18Þ

which we will find are respected by our solution of the field
equations.
The de Sitter horizon is given by

2mðrÞ − r ¼ 0; ð19Þ

which must be at a much larger radius than the size of the
bubble given by y for a sensible configuration. The solution
of Eq. (19) must occur when r is in the Schwarzschild–de
Sitter region of the spacetime, r ≫ y. Neglecting M then
gives

2

�
Λr3

6
−M

�
− r ¼ 0 ⇒ r ≈

ffiffiffiffi
3

Λ

r
: ð20Þ

Comparing this with the expression for y from Eq. (15)
yields
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ffiffiffiffiffiffiffi
6M
Λx

r
≪

ffiffiffiffi
3

Λ

r
: ð21Þ

Using these conditions combined with the expression
of mðrÞ, we get the numerical solution for the density and
the pressure of the perfect fluid, ρðrÞ and pðrÞ, given
respectively in Figs. 2 and 3.
We note that the pressure is negative and interpolates

from pðrÞ ¼ 0 in the interior where the spacetime is
Minkowski to pðrÞ ¼ −ρðrÞ, which is the normal solution

for de Sitter spacetime. The numerical solution for BðrÞ is
not particularly simple to obtain because of numerical
instability. Instead of directly numerically integrating
Eq. (9), or Eq. (12), it is better to find an expression for
AB, which comes straightforwardly from adding
Eq:ð6Þ

A þ Eq:ð7Þ
B :

ðlnABÞ0 ¼ 8πGðρðrÞ þ pðrÞÞrA: ð22Þ

Numerically integrating Eq. (22) yields the curve in Fig. 4.
Thus our solution for the metric is given by Eq. (10) for

AðrÞ, where mðrÞ is explicitly chosen as in Eq. (16) and
BðrÞ obtained from numerically integrating Eq. (22) for
lnðABÞ and then trivially solving BðrÞ ¼ elnðABÞ=A.
To perform this integration, we need to first find ρðrÞ,
which is given by Eq. (11) and pðrÞ, which is obtained by
numerically integrating Eq. (13) and shown in Fig. 3.
From Figs. 3 and 2 we can see the combination ðρðrÞ þ

pðrÞÞ vanishes as r becomes large. Thus the expectation is
that AB becomes a constant for large r as can be seen from
Fig. 4. This constant can be taken to be 1, although it is not
so in Fig. 4 as the integration of Eq. (22) is only determined
up to a constant. Notice that the Einstein equations,
Eqs. (6)–(9), all are homogeneous in B. If B is a solution
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FIG. 1 (color online). mðrÞ for the parameters x ¼ :1,
Λ ¼ :001, M ¼ :01, y ≈ 245.
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FIG. 2 (color online). Density ρðrÞ for the parameters x ¼ :1
G ¼ 1, Λ ¼ :001, M ¼ :01, y ≈ 245.
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FIG. 3 (color online). Pressure pðrÞ for the parameters x ¼ :1
G ¼ 1, Λ ¼ :001, M ¼ :01, y ≈ 245.
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FIG. 4 (color online). lnAB for the parameters x ¼ :1 G ¼ 1,
Λ ¼ :001, M ¼ :01, y ≈ 245.
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FIG. 5 (color online). pðrÞ=ρðrÞ for the parameters x ¼ :1
G ¼ 1, Λ ¼ :001, M ¼ :01, y ≈ 245.
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then so is αB for any constant (positive) α. Thus asymp-
totically, B ¼ 1=A and the solution approaches the exact
negative mass Schwarzschild–de Sitter solution.
If we plot pðrÞ=ρðrÞ we find the curve given by Fig. 5,

which is bounded between 0 and −1. It is clear then, within
the limits of numerical accuracy, that the constraints of the
dominant energy condition, Eq. (18) are satisfied.

III. CONCLUSIONS

We have shown that there exist very physical configu-
rations of an ideal fluid which give rise to solutions of the
Einstein equations that correspond asymptotically to neg-
ative mass Schwarzschild–de Sitter spacetimes. The
energy-momentum tensor that gives rise to such spacetimes
is perfectly physical, it satisfies everywhere the dominant
energy condition. Since the spacetime is not asymptotically

flat, we evade the positive energy theorems which would
not allow for negative mass. Negative mass configurations
therefore can exist in de Sitter backgrounds, exactly as have
been proposed for the inflationary phase of the early
Universe. If a mechanism for production of pairs of
particles with positive and negative mass can be deter-
mined, in the early Universe there would be a plasma of
positive and negative mass particles. Such a plasma would
in principle cause an effective screening of gravitational
waves, being essentially opaque for frequencies below the
plasma frequency.
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