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Phase transition in UðnÞ ×UðnÞ models is investigated for arbitrary flavor number n. We present a
nonperturbative, 3þ 1 dimensional finite temperature treatment of obtaining the effective potential, based
on a chiral invariant expansion of the functional renormalization group flows. The obtained tower of
equations is similar but not identical to that of the Dyson-Schwinger hierarchy and has to be truncated for
practical purposes. We investigate the finite temperature behavior of the system in an expansive set of the
parameter space for n ¼ 2; 3; 4 and also perform a large-n analysis. Our method is capable of recovering
the one-loop β functions of the coupling constants of the ϵ expansion; furthermore, it shows direct evidence
that regardless of the actual flavor number, within our approximation, the system undergoes a fluctuation
induced first order phase transition.
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I. INTRODUCTION

Spontaneous breaking of chiral symmetry of quantum
chromodynamics (QCD) can be studied efficiently via
effective scalar theories. TheUðnÞ ×UðnÞ family of meson
models, based on (approximate) n-flavor chiral symmetry,
is a popular starting point of investigating low-energy
strong interaction [1–10], giving account of the sponta-
neous breakingULðnÞ ×URðnÞ ⟶ UVðnÞ. Depending on
the actual energy scale, flavor numbers n ¼ 2; 3 have
phenomenological relevance, with an unlikely extension
to n ¼ 4. Temperatures around the scale of QCD,ΛQCD, the
symmetry restores, but the details of this transition are far
from being understood theoretically, especially in high
density regions. For instance, its properties strongly depend
on the strength of the anomalous breaking of the UAð1Þ
subgroup and its temperature dependence [11]. One might
also be interested in the quark mass sensitivity of the
properties of the transition; see discussions on the
Columbia plot [11].
With the use of the ϵ expansion, in the pureUðnÞ ×UðnÞ

model [i.e., without explicit symmetry breaking terms and
vanishing UAð1Þ anomaly] Pisarski and Wilczek calculated
the β functions and showed that there was no infrared stable
fixed point for any flavor number n ≥ 2 [12]. This serves as
indirect evidence of a phase transition, if it exists, being
fluctuation induced and of first order. This conjecture has
been confirmed by various nonperturbative studies for the
n ¼ 2 case, especially with the use of the functional
renormalization group (FRG) [13,14]; however, investiga-
tions of this issue for flavor numbers n > 2 are virtually
missing from the literature.
Even though correctness of the ϵ expansion is widely

accepted, its conclusions have to be treated cautiously.

There are counterexamples in which the method breaks
down and its prediction of a fluctuation induced first order
transition fails; see the example of superconductivity [15].
Concerning the current model at n ¼ 2, there are also signs
of having a stable infrared fixed point after all; see
investigations based on perturbative [16] and conformal
bootstrap methods [17]. We also note that recently this
issue has been under investigation concerning two-flavor
QCD itself [18,19].
In this paper we are looking for a direct evidence of a

fluctuation induced first order transition in the UðnÞ ×
UðnÞ models, irrespective of the flavor number character-
izing the group structure. We wish to confirm the results of
the ϵ expansion and gain a deeper understanding of the
mechanism from a nonperturbative point of view. We are
going to work in the functional renormalization group
formalism and solve the resulting flow equations non-
perturbatively. By nonpertubativity we mean that fully
functional solutions will be considered, not only the flow
of Taylor coefficients as individual coupling constants. We
would like to emphasize the importance of this procedure,
since as argued in [14,20], Taylor-expanding the flow
equations up to a few orders around the minimum of the
effective potential might give qualitatively correct insight
of its evolution, but in the case of a first order transition, it
cannot reproduce the full solution in a quantitative way.
Unlike earlier studies carried out in 3 dimensions with

formally temperature dependent parameters [13,14], our
treatment is formulated in 3þ 1 dimensions, with the
explicit presence of the temperature. This is motivated
by the fact that strictly speaking, in the compactified
(Euclidean) time direction of the path integral, long range
fluctuations are unable to propagate only when the system
is close to criticality; therefore, the dimensionally reduced
theory can only be relevant if a second order transition is*fejos@riken.jp
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present. If criticality is absent in the model, in order to
develop a reliable method for phenomenological applica-
tions, explicit introduction of the temperature is necessary.
As implied, the paper is also trying to contribute as a
methodological study towards phenomenology, but leaves
the completion of this task for a further publication.
The paper is organized as follows. In Sec. II, we define

the model and the corresponding notations. We derive the
flow equation of the scale dependent effective potential Vk
and present a systematically improvable approximation
scheme based on a chiral invariant expansion. With the use
of this formulation, we reproduce the one-loop results of
the ϵ expansion for arbitrary flavor number n using the
FRG method. In Sec. III, we solve the resulting equations
numerically, present the results, and map an expansive set
of the parameter space of the model for flavor numbers that
might be relevant for phenomenology (i.e., n ¼ 2; 3; 4). We
also investigate briefly the order of the transition for higher
flavor numbers and perform a large-n analysis. Finally,
in Sec. IV, the reader can find some remarks and the
conclusions.

II. FLOW EQUATIONS AND APPROXIMATION
SCHEMES

A. Basics

The UðnÞ ×UðnÞ symmetric scalar model is a theory of
a matrix field M ∈ GðUðnÞÞ

M ¼ ðsa þ iπaÞTa; ða ¼ 0…; n2 − 1Þ; ð1Þ

where sa, πa coefficients are the scalar and pseudoscalar
fields, respectively, with Ta being the group generators
following the convention TrðTaTbÞ ¼ δab=2. The
Lagrangian is

L ¼ ∂μM∂μM† − μ2TrðMM†Þ − g1
n2

½TrðMM†Þ�2

−
g2
n
TrðMM†MM†Þ; ð2Þ

where we choose μ2 < 0. Expression (2) is symmetric
under UðnÞ ×UðnÞ rotations

M ⟶ RML† ðL;R ∈ UðnÞÞ; ð3Þ
or in terms of pure vector and axial-vector transformations,

M ⟶ V†MV; M ⟶ A†MA†; ½A; V ∈ UðnÞ�; ð4Þ

where the following relations hold between the trans-
formation parameters: θaV;A ¼ ðθaL � θaRÞ=2. The classical
potential has to be bounded from below, which restricts
the coupling space as g1 þ g2 > 0 and g1 þ ng2 > 0 [21].
It is known that in terms of symmetry breaking the
model is divided into two parts: if g2 > 0, the symmetry
breaks as UðnÞ ×UðnÞ ⟶ UðnÞ, while g2 < 0 leads to

UðnÞ×UðnÞ⟶Uðn−1Þ×Uðn−1Þ [22]. Even though in
this paper the pure UðnÞ ×UðnÞ model [i.e., without
explicit symmetry breaking terms and UAð1Þ anomaly]
is investigated, our final goal is to see the applicability of
the extensions of the model to low-energy QCD; therefore,
we restrict ourselves to g2 > 0, which obeys the observed
(approximate) chiral symmetry breaking of nature.
As already stressed in the Introduction, in the present

work we investigate the finite temperature properties of the
system (2) in 3þ 1 dimensions, with the use of the func-
tional renormalization group method [23,24]. The main
concept of the formalism is to introduce a scale dependent
effective action Γk, which obeys the flow equation

∂kΓk ¼
1

2
STr

"
1

Γð2Þ
k þ Rk

∂kRk

#
; ð5Þ

where the STr operation has to be taken both in functional

and matrix sense; Γð2Þ
k is the second functional derivative of

Γk with respect to the dynamical fields and Rk is a regulator
function. The scale dependent effective action Γk interpo-
lates between the classical (microscopic) action (at k ¼ Λ,
being an appropriately high UV scale) and the quantum
effective action (at k ¼ 0). Equation (5) is an exact relation if
the regulator function is chosen to be suppressing IR modes
below scale k, but it has to be approximated for practical
purposes. In this study we use the local potential approxi-
mation (LPA), which is the leading order contribution of the
derivative expansion; therefore, Γk is approximated as an
integral of a local function depending on the average fields
M̄ as

Γk½M̄� ¼
Z

d4xð∂μM̄ðxÞ†∂μM̄ðxÞ − Vkðx; M̄ÞÞ: ð6Þ

We use Litim’s 3D regulator [25]:

RkðpÞ ¼ ðk2 − p2ÞΘðk2 − p2Þ; ð7Þ

where we note immediately that this regulator does not lead
to any scale separation in the timelike direction (i.e., the
frequency space), and therefore ∂kRk in the flow equation (5)
serves as a UV cutoff only in spacelike directions. This may
raise doubts on the applicability of the derivative expansion;
nevertheless, it has been shown that in OðNÞ symmetric
theories LPAworks extremely accurately with even this type
of regulator [26,27]. We expect that it might lead to
reasonable results in the current model as well. Similarly
as it was done in the case of the OðNÞ model [27], the
clarification of this issue would require mapping the regu-
lator dependence, but we leave this question for further
studies.
Using (7) in (5), in d (spatial) dimensions, at finite

temperature T, we get the following flow equation for the
potential Vk½M̄�:
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∂kVk½M̄� ¼ kdþ1KdT
X
ωm

X
i

1

ω2
m þ k2 þ μ2i ðkÞ

; ð8Þ

where K−1
d ¼ 2d−1πd=2Γðd=2Þd. We have to sum over

bosonic Matsubara frequencies ωm ¼ 2πmT, and μ2i ðkÞ
denotes the eigenvalues of mass matrices ∂2Vk=∂si∂sj
and ∂2Vk=∂πi∂πj.
The Vk local potential cannot depend on arbitrary M̄

configurations, it has to reflect the UðnÞ ×UðnÞ symmetry,
which means that its actual variables are UðnÞ ×UðnÞ
invariants in a background field M̄:

VkðM̄Þ≡ VkðI1; I2…; InÞ: ð9Þ

A possible set of independent chiral invariants has been
denoted by Ii. We use the following basis:

I1 ¼ TrðM̄†M̄Þ; I2 ¼ Tr½M̄†M̄ − TrðM̄†M̄Þ=n�2;
… In ¼ Tr½M̄†M̄ − TrðM̄†M̄Þ=n�n: ð10Þ

Before solving (8), a particular symmetry breaking pattern
has to be chosen as well. One may start with the most
general scenario and build up the condensate M̄ as a linear
combination of diagonal generators (as M̄ can always be
thought as a diagonal matrix, since with the application of
appropriate vector transformations it is possible to diago-
nalize it without changing the Lagrangian):

M̄ ¼
X
i¼diag

viTi: ð11Þ

However, it was shown in [21] that even though there are
multiple (2n) minima of the effective potential in the
diagonal condensate space, they are equivalent and their
corresponding directions are connected via axial-vector
transformations. We can therefore assume that for searching
symmetry breaking minima, without the loss of generality,

M̄ ¼ v0T0; ð12Þ
and investigate the flow of Vk in a one-component con-
densate space. This seems to be particularly convenient as all
invariants but I1 are zero in the background field (12).
Concerning Vk, one nevertheless also needs the dependence
on Ii≥2, as it is shown in the next subsection.

B. Invariant expansion and flow hierarchy

Since we are interested in a symmetry breaking pattern
where the condensate is proportional to the unit matrix, it is
expected to be useful expanding Vk around this configu-
ration. In terms of chiral invariants, this leads to the
following expression:

VkðI1; I2;…InÞ ¼ UkðI1Þ þ
X
fαg

CðαÞ
k ðI1Þ

Yn
i¼2

Iαii ; ð13Þ

where α is a multi-index with n entries, denoting the
occurrences of invariants in each term of the expression.
For the sake of an example, α ¼ ð0; 3; 2; 1; 0;…; 0Þ refers
to the term Cð0;3;2;1;0;…0Þ

k ðI1Þ · I32I23I4 (the first entry of a
given α is always zero, since the expansion is realized as a
power series in Ii≥2). Note that I1 is the only nonzero
invariant in a background field defined by v0. The reason
for keeping terms besidesUkðI1Þ is because, as we will see,
its flow entangles with the flow of other CðαÞ

k coefficients.
For the evaluation of Vk in the background field (12), only
UkðI1Þ is needed, since Ii≥2jv0 ≡ 0.
The invariant expansion (13) is very convenient from a

numerical point of view, since instead of calculating a
function in an n-dimensional grid, we build up flow
equations for 1-dimensional coefficient functions. The
most general steps of obtaining these equations are as
follows. At first one has to consider the most general
symmetry breaking pattern (11) and calculate the mass
matrices and their eigenvalues from the effective potential.
After substituting these eigenvalues into the right-hand side
of (8), it has to be expanded around ∂kVkðI1; 0; 0;…Þ≡
∂kUkðI1Þ. Since the masses are not chiral invariants, as
opposed to the flow equation, the obtained terms (yet in the
language of condensates) must be combinable into a
UðnÞ ×UðnÞ invariant expression [28], ultimately taking
the form of (13). This completes the construction; the flow

of coefficients CðαÞ
k ðI1Þ are now ready to be identified.

Let us see how this works in practice. At first, let us start
with the flow of Uk. To obtain this, we do not actually have
to consider the most general background field; inserting
(12) into (8) is sufficient, since Ii≥2jv0 ¼ 0. Using that
I1jv0 ¼ v20=2, we get the following spectrum:

μ2a0ðkÞ ¼ U0
kðI1Þ þ

4I1
n

Cð0;1;0;0…Þ
k ðI1Þ; ð14aÞ

μ2σðkÞ ¼ 2I1U00
kðI1Þ þ U0

kðI1Þ; ð14bÞ

μ2πðkÞ ¼ U0
kðI1Þ; ð14cÞ

where the multiplicities are n2 − 1 ða0Þ, 1 ðσÞ, and n2 ðπÞ,
respectively. The pseudoscalars (π) receive the same mass,
whereas the scalars (a0, σ) split. Inserting (14) into (8), we
obtain

∂kUkðI1Þ ¼ kdþ1KdT

×
X
ωm

�
n2

ω2
m þ E2

π
þ n2 − 1

ω2
m þ E2

a0

þ 1

ω2
m þ E2

σ

�
;

ð15Þ

where E2
i ¼ k2 þ μ2i ðkÞ ði ¼ π; a0; σÞ. Note that the mass

of a0 contains the coefficient Cð0;1;0;0…Þ
k ðI1Þ; therefore,

evaluating the functional flow equation (5) in the
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background field v0 does not give a closed equation for
UkðI1Þ, as one also needs to know the flow of

Cð0;1;0;0…Þ
k ðI1Þ. One can easily see that a flow of a given

coefficient in the invariant expansion (13) always includes
flows of higher order invariants. The structure of hierarchy
built this way reminds us of that of the Dyson-Schwinger
equations for the n-point functions; however, the concept
here is somewhat different.
Obtaining the flow equations for higher order coeffi-

cients is more complicated. For practical purposes, one
must close the tower of flow equations anyway, and solve
the problem in a restricted coefficient space. One might

start with substituting the classical value of Cð0;1;0;0…Þ
k into

(15); however, we wish to go one step further and derive a
flow equation for it, and only use classical values for higher
order coefficients. Since classically those are identically
zero, the approximation scheme described here actually
corresponds to the following approximate chiral invariant
expansion of Vk:

VkðI1; I2Þ ¼ UkðI1Þ þ CkðI1Þ · I2; ð16Þ

where the notation Cð0;1;0;0…Þ
k ðI1Þ≡ CkðI1Þ is used. As

described earlier in this subsection, in order to obtain the
flow equation for CkðI1Þ, one must identify the correspond-
ing coefficient (i.e., of I2) on the right-hand side of the
chiral invariant expanded version of (8). Since in the
background field defined by (12) I2 vanishes, one needs
to extend the background field with more condensate
components. Instead of considering the most general
scenario (11), as described earlier in this subsection, due
to the approximation (16), on top of v0, it is sufficient to
introduce only a single, infinitesimal condensate piece. We

choose it to be proportional to T8, which refers to the
longest diagonal generator (the index notation is just a
convention regardless of the actual flavor number n; see
also the Appendix):

M̄ ¼ v0T0 þ v8T8: ð17Þ

Due to (17), the mass spectrum changes. One has to
calculate the modified mass matrices ∂2VkðI1; I2Þ=
∂si∂sjjv0;v8 and ∂2VkðI1; I2Þ=∂πi∂πjjv0;v8 and diagonalize
them in the 0–8 subspace. Detailed formulas can be found
in the Appendix. After inserting the recalculated masses
into the right-hand side of (8), one expands the obtained
expression around v8 ¼ 0, while keeping v0 nonzero. Since

I1jv0;v8 ¼
v20 þ v28

2
þOðv48Þ; ð18aÞ

I2jv0;v8 ¼
v20v

2
8

n
þOðv48Þ; ð18bÞ

it is easy to identify these invariants and write the flow
equations of UkðI1Þ and CkðI1Þ in an invariant form [higher
order terms are negligible based on (16)]. We note that, in
order to get the flows of higher order coefficients, one
gradually has to introduce more and more components of the
condensate and eventually use the most general procedure
described in the beginning of the subsection. This makes a
direct calculation a lot more complicated, but in general there
is no restriction to improve the approximation scheme and
take into account all invariants. The I2 independent part does
not change compared to (15), whereas we obtain a new
equation from the linear coefficient:

∂kCkðI1Þ ¼ kdþ1KdT
X
ωm

�
4ð3Ck þ 2I1C0

kÞ2=n
ðω2

m þ E2
a0Þ2ðω2

m þ E2
σÞ

þ 128C5
kI

3
1=n

ðω2
m þ E2

πÞ3ðω2
m þ E2

a0Þ3
þ 4Ckð4Ckðn2 − 3Þ þ ð1 − 4n2ÞI1C0

kÞ=n
ðω2

m þ E2
a0Þ3

þ 4ð3CkC0
kI1 þ 4I21C

0
k þ Ckð3Ck − 2C00

kI
2
1ÞÞ=n

ðω2
m þ E2

a0Þðω2
m þ E2

σÞ2
þ 64C3

kI
2
1ðCk − I1C0

kÞ=n
ðω2

m þ E2
πÞ2ðω2

m þ E2
a0Þ3

−
48C2

kI
2
1C

0
k

ðω2
m þ E2

πÞðω2
m þ E2

a0Þ3

þ 6Ck þ ð1 − 2n2ÞI1C0
k

ðω2
m þ E2

a0Þ2
1

I1
−
6Ck þ 9I1C0

k þ 2I21C
00
k

ðω2
m þ E2

σÞ2
1

I1
þ 4Ckð6Ck þ 9I1C0

k þ 2I21C
00
kÞ=n

ðω2
m þ E2

a0Þðω2
m þ E2

σÞ2

−
2Ckð12Ck þ 2ð1 − 2n2ÞI1C0

kÞ=n
ðω2

m þ E2
a0Þ3

�
: ð19Þ

All Matsubara sums can be performed analytically with the
corresponding formulas presented in the Appendix. Equa-
tion (19), together with (15), can now be solved numerically.

C. Large-n analysis

The flow equations (15) and (19) become more simple if n
approaches infinity. In order to obtain the appropriate limit,

one has to introduce scaling functions instead of Uk and Ck.
Since the potential Vk itself has to scale with the number of
degrees of freedom (Vk ∼ n2), in the large-n limit one has

UkðI1Þ ¼ n2ukði1Þ; CkðI1Þ ¼ ckði1Þ=n; ð20Þ
where i1 ¼ I1=n2, since through the condensate, I1 is also
scaling with n2. For the derivatives we get
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U0
kðI1Þ ¼ u0kði1Þ; C0

kðI1Þ ¼ c0kði1Þ=n3; ð21aÞ

U00
kðI1Þ ¼ u00kði1Þ=n2; C00

kðI1Þ ¼ c00kði1Þ=n5; ð21bÞ

showing that they gradually become negligible as the
flavor number increases. Inserting (20) and (21) into (15)
and (19), at the leading order in the large-n expansion we
obtain

∂kukði1Þ ¼ kdþ1KdT
X
ωm

�
1

ω2
m þ E2

a0

þ 1

ω2
m þ E2

π

�
; ð22aÞ

∂kckði1Þ ¼ kdþ1KdT
X
ωm

�
16c2k

ðω2
m þ E2

a0Þ3
−

2c0k
ðω2

m þ E2
a0Þ2

−
8ckc0ki1

ðω2
m þ Ea0Þ3

þ 128c5ki
3
1

ðω2
m þ E2

πÞ3ðω2
m þ E2

a0Þ3

þ 64c3ki
2
1ðck − c0ki1Þ

ðω2
m þ E2

πÞ2ðω2
m þ E2

a0Þ3

−
48c2kc

0
ki

2
1

ðω2
m þ E2

πÞðω2
m þ E2

a0Þ3
�
: ð22bÞ

Note that now E2
π ¼ k2 þ u0kði1Þ and E2

a0 ¼ E2
π þ 4i1ckði1Þ.

The nature of these equations is similar to that of (15) and
(19). In the next section we will explore how quickly the
large-n solution is reached, when the flavor number is varied
towards infinity.

D. β functions

If one seeks for critical behavior in a system, it is
sufficient to search fixed points of the couplings in the
dimensionally reduced theory, without the explicit pres-
ence of the temperature. Formally it can be obtained by
taking the T → ∞ limit, since in this case the compacti-
fied timelike direction disappears (note that after dimen-
sional reduction the left-hand sides of the flow equations
are also multiplied by the temperature). In the sums only
the m ¼ 0 term contributes; therefore, (15) and (19)
lead to

∂kUkðI1Þ ¼ kdþ1Kd

�
n2

k2 þ μ2π
þ n2 − 1

k2 þ μ2a0
þ 1

k2 þ μ2σ

�
;

ð23aÞ

∂kCkðI1Þ ¼ kdþ1Kd

�
4ð3Ck þ 2I1C0

kÞ2=n
ðk2 þ μ2a0Þ2ðk2 þ μ2σÞ

þ 128C5
kI

3
1=n

ðk2 þ μ2πÞ3ðk2 þ μ2a0Þ3
þ 4Ckð4Ckðn2 − 3Þ þ ð1 − 4n2ÞI1C0

kÞ=n
ðk2 þ μ2a0Þ3

þ 4ð3CkC0
kI1 þ 4I21C

0
k þ Ckð3Ck − 2C00

kI
2
1ÞÞ=n

ðk2 þ μ2a0Þðk2 þ μ2σÞ2
þ 64C3

kI
2
1ðCk − I1C0

kÞ=n
ðk2 þ μ2πÞ2ðk2 þ μ2a0Þ3

−
48C2

kI
2
1C

0
k

ðk2 þ μ2πÞðk2 þ μ2a0Þ3

þ 6Ck þ ð1 − 2n2ÞI1C0
k

ðk2 þ μ2a0Þ2
1

I1
−
6Ck þ 9I1C0

k þ 2I21C
00
k

ðk2 þ μ2σÞ2
1

I1
þ 4Ckð6Ck þ 9I1C0

k þ 2I21C
00
kÞ=n

ðk2 þ μ2a0Þðk2 þ μ2σÞ2

−
2Ckð12Ck þ 2ð1 − 2n2ÞI1C0

kÞ=n
ðk2 þ μ2a0Þ3

�
: ð23bÞ

We note that these equations are generalizations of (39)
and (43) of [14] for arbitrary n. If we further assume that Vk
has the form of (2) but with k-dependent couplings,

VkðI1; I2Þ ¼ μ2kI1 þ
4π2

3

�
g1;k þ

g2;k
n

�
I21 þ

4π2

3
g2;kI2; ð24Þ

[note the rescalings g1;k ⟶ 4π2n2g1;k=3, g2;k ⟶
4π2ng2;k=3 compared to (2)] or equivalently

UkðI1Þ ¼ μ2kI1 þ
4π2

3

�
g1;k þ

g2;k
n

�
I21; ð25aÞ

CkðI1Þ ¼
4π2

3
g2;k; ð25bÞ

and then the flow equations (23) determine the β func-
tions of g1;k and g2;k. Introducing scaling variables

ḡ1;k ¼ g1;kkd−4, ḡ2;k ¼ g2;kkd−4, and setting m2
k ≡ 0, in

d ¼ 4 − ϵ dimensions we get

β1 ¼ −ϵḡ1;k þ
n2 þ 4

3
ḡ21;k þ

4n
3
ḡ1;kḡ2;k þ ḡ22;k; ð26aÞ

β2 ¼ −ϵḡ2;k þ
2n
3
ḡ22;k þ 2ḡ1;kḡ2;k; ð26bÞ

where the β functions are defined as β1 ¼ k∂ḡ1;k=∂k,
β2 ¼ k∂ḡ2;k=∂k and we are using the approximation
Kd ¼ K4−ϵ ≈ K4 ¼ ð32π2Þ−1. Equations (26) recover the
well-known results of ϵ expansion [12], which show that
the system has no stable IR fixed point; therefore, no
second order transition can occur. This argument serves as
indirect evidence of a transition (if it exists) being fluc-
tuation induced and of first order. In the next section, we
shall investigate the solution of the coupled equation
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system (15) and (19) to see directly if this argument
remains valid for arbitrary n. For the sake of completeness,
we also list here the flow equation of the mass parameter:

∂μ2k
∂k ¼ −kdþ1

ðn2 þ 1Þg1;k þ 2ng2;k
6ðk2 þ μ2kÞ2

: ð27Þ

Note that Eqs. (26), (27) are one-loop expressions. To
obtain two-loop (or more) results of the perturbative
expansion of the β functions, one has to go beyond LPA
and take into account the momentum dependence of the
proper vertices.

III. NUMERICAL RESULTS

In this section, we present the properties of the numerical
solution of the coupled flow equations (15) and (19). For a

given scale k, the functionsUkðI1Þ and CkðI1Þ are stored on
a grid, typically in the region I1=Λ2 ∈ ½0; 2�, using a step
size of 10−3. For solving the flow of the equation system
(i.e., obtaining the k dependence), we used the Runge-
Kutta method, for which a typical step size was chosen to
be Δk=Λ ¼ 10−5. The field derivatives necessary for the
calculation of the masses were obtained with the 7-point
formula, except at the boundaries of the grid, where the
5- and 3-point formulas were used.
One of the most important features of the evolution of the

effective potential is that it is gradually becoming convex as
k → 0, already confirmed by several studies in the literature
[13,14,29,30]. This phenomenon is not surprising, since
unlike perturbation theory, FRG formalism does obey the
convexity of the effective potential, which can be directly
shown from the flow equation (5), and which is respected
by LPA. Since the obtained full quantum effective action is
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convex, the question arises that, if the transition is of first
order, how one can determine the transition temperature
and the discontinuity of the order parameter. The answer

lies in the fact that even though at k ¼ 0 the potential is
convex, it is not true for any nonzero scales [31] (see typical
examples in Fig. 1). Depending on the physical system in
question, it might be appropriate to stop the RG flow before
reaching k ¼ 0, since the inverse of the flow parameter
may be identified with a finite correlation length, serving
as a physical infrared cutoff and leading Vk to the
corresponding coarse grained free energy density. In this
case, the transition temperature Tc can be directly defined
by requiring both minima to have the same energy.
Mathematically, Tc and the discontinuity of the order
parameter are defined through the equations

Vkð0;TcÞ − Vkðv�0;TcÞ ¼ 0;
∂Vk

∂v0 ðv
�
0;TcÞ ¼ 0: ð28Þ

The second equation implies that v�0 is the discontinuity of
the order parameter at the transition point (note thatffiffiffiffiffiffiffiffiffiffiffiffi
2I1jv0

q
¼ v0). These quantities depend on the actual scale

k; nevertheless, we shall obtain a prediction independently
of the infrared cutoff of the system. Considering this
purpose, the critical temperature and the discontinuity of
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the order parameter are defined as the following limits:
limk→0TcðkÞ and limk→0v�0ðkÞ, respectively. Since from a
numerical point of view, it requires an unreasonably long
computational time to reach k ¼ 0 itself, we extrapolate our
results from nonzero scales to k ¼ 0. For both curves TcðkÞ
and v�0ðkÞ, a function of the form fðkÞ ¼ aþ b · kc has
been identified as a good approximation for fitting, leading
to reliable values of Tcðk ¼ 0Þ and v�0ðk ¼ 0Þ. A typical
evolution of the effective potential can be seen in Fig. 2,
together with the flow of the CkðI1Þ coefficient function of
the invariant expansion (16) in Fig. 3. The latter shows
that approximating CkðI1Þ with a constant [i.e., CkðI1Þ≈
g2;k=n] is rather crude, given that the function starts to
develop a structure as k → 0.
Now we review the results concerning the transition

temperature Tc and the v�0 discontinuity of the order
parameter. The results for several flavor numbers and
model parameters are shown in Figs. 4 and 5, respectively.
First we observe that, for a given mass parameter, smaller
g1 leads to smaller Tc, as a function of g2. Secondly, we see
that increasing the flavor number does not change consid-
erably the dependence of the critical temperature with

respect to any of the couplings g1; g2. Note that had we not
included the proper n-scalings of these couplings from the
beginning in (2), this statement would not be true. On the
contrary, if we increase the absolute value of the mass
parameter, the Tc ¼ Tcðg2Þ curves do change; for fixed
g1; g2, the transition temperature monotonically grows, as
expected, since at zero temperature, the symmetry breaking
minimum gets deeper. Concerning v�0, it is more sensitive to
the flavor number than the transition temperature. For a
given set of coupling constants, the higher n is, the higher
the discontinuity of the order parameter will be, and the
same tendency is observed regarding the mass parameter.
Otherwise, the curves are very similar to that of the
transition temperature: at fixed g1, the v�0 ¼ v�0ðg2Þ function
is decreasing. Note that stability requires g1 þ g2 > 0;
therefore, if g1 < 0, at g2 ¼ jg1j, both Tc and v�0 diverge,
as they should.
Finally let us compare the large-n solution [i.e., solution

of Eqs. (22)] with the results for finite flavor numbers. In
Fig. 6, the critical temperature for increasing flavor
numbers is demonstrated, together with the convergence
to the large-n value. What we observe is that even at n ¼ 3,
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the difference between the large-n and the n ¼ 3 results is
less than 3% for our particular set of parameters. The same
results apply for the discontinuity v�0 (note that it scales as
v�0 ∼ n). This suggests that in the UðnÞ ×UðnÞ models,
even a leading order result in the large-n expansion might
be valuable for the phenomenologically most important
n ¼ 3 case.

IV. CONCLUSIONS

We have used the functional renormalization group
method equipped with the local potential approximation
to analyze the phase transition in the family of UðnÞ ×
UðnÞ symmetric scalar theories. Based on the expectation
that the system undergoes a first order transition, we have
worked in 3þ 1 dimensions, with an explicit presence of
the temperature, since dimensional reduction can only take
place if the system is close to criticality. We have proposed
to calculate the effective potential via a chiral invariant
expansion, leading to field dependent coefficients of each
term in the expansion, for which coupled functional flow
equations have been derived. The hierarchy they form is
similar but not identical to that of the Dyson-Schwinger
equations for the n-point functions. With approximating the
chiral invariant expansion with field independent couplings,
the resulting flow equations reproduced the well-known
ϵ-expansion results of the β functions at one-loop level. This
showed that at least within this approximation, there was no
stable infrared fixed point for any flavor number. Note that
for n ¼ 2, however, there are other methods showing a
second order transition in the system [16,17].
The flow equations were solved numerically on a grid,

and regardless of the flavor number and directions in the
parameter space, first order transitions have been observed.
The properties of the transition have been mapped in a large
region of the parameter space, extended with a large-n
analysis. It has been shown that the effective potential is
getting convex in the IR limit; therefore, the transition

temperature and the discontinuity can be defined only as
appropriate limits of the flows. We have also solved the
coupled flow equations in the leading order of the large-n
expansion and found that even at lower flavor numbers (i.e.,
n≳ 3), the obtained results for the critical temperature and
discontinuity are already close to those obtained for definite
flavor numbers. This suggests that the large-n expansion is
quite robust, and combining it with more sophisticated
approximations of the FRG flows could give reliable results
even for lower flavor numbers.
The method of the chiral invariant expansion can be

systematically improved by taking into account more
invariant tensors. This would be particularly interesting
for n ¼ 3, where only three invariant tensors are present,
but the role of the cubic one in M†M has not been
investigated before. Furthermore, the method can be
directly extended to theories with UAð1Þ anomaly and/or
finite quark masses included. One may check the temper-
ature dependence of the anomaly around the critical point,
investigate the order of the transition with respect to light
and heavy quark masses, and build phenomenology upon
the scheme presented here. These represent future studies to
be reported.
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APPENDIX A: PROPERTIES OF THE
U(N) GROUP

The UðnÞ group has n diagonal and nðn − 1Þ non-
diagonal independent generators leading to n2 in total.
They are traceless and normalized as TrðTaTbÞ ¼ δab=2.
The diagonal ones read as

Tð0Þ ¼ 1ffiffiffiffiffiffi
2n

p

0
BBB@

1

1

…

1

1
CCCA;

Tð1Þ ¼ 1

2

0
BBB@

1

−1
0

…

1
CCCA;

…

Tðn−1Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðn − 1Þp

0
BBB@

1

1

…

−ðn − 1Þ

1
CCCA: ðA1Þ
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FIG. 6 (color online). Critical temperature for increasing flavor
number in comparison with the large-n result (straight line).
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We note that throughout the paper we follow the notation
Tðn−1Þ ≡ T8, irrespective of the actual value of the flavor
number n. The nondiagonal generators form two groups, as
generalizations of ðxÞ- and ðyÞ-type of Pauli matrices in the
following sense:

ðTðx;jkÞÞab ¼
1

2
ðδakδbj þ δajδbkÞ; ðA2aÞ

ðTðy;jkÞÞab ¼
i
2
ðδakδbj − δajδbkÞ; ðA2bÞ

where the obvious index notations ðx; jkÞ and ðy; jkÞ
(j < k) have been introduced. The dabc symmetric, and
the fabc antisymmetric structure constants of the UðnÞ Lie
algebra are defined via the relation

TaTb ¼ 1

2
ðdabc þ ifabcÞTc: ðA3Þ

The following identities are useful for obtaining the
structure constants:

½Ta; Tb� ¼ ifabcTc ⇒ Tr½½Ta; Tb�Tc� ¼ ifabc=2; ðA4aÞ

fTa; Tbg ¼ dabcTc ⇒ Tr½fTa; TbgTc� ¼ dabc=2; ðA4bÞ

where ½:; :� and f:; :g refer to commutation and anticom-
mutation, respectively. Alternatively, we can write

fabc¼ 4ℑTrðTaTbTcÞ; dabc¼ 4ℜTrðTaTbTcÞ: ðA5Þ

For determining various invariants and their derivatives,
the following structure constants are necessary to be
computed:

d0ij ¼
ffiffiffi
2

n

r
δij; d888 ¼ ð2 − nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

nðn − 1Þ

s
; d8ij≠0;8 ¼

8>><
>>:

ð2 − nÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

1
2nðn−1Þ

q
δij; if i; j ∈ fðx; jnÞ; ðy; jnÞgffiffiffiffiffiffiffiffiffiffiffi

2
nðn−1Þ

q
δij; else

;

di88 ¼
ffiffiffi
2

n

r
δi0 þ d888δi8; fu8v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2ðn − 1Þ
r

ðδu;ðy;jnÞδv;ðx;jnÞ − δu;ðx;jnÞδv;ðy;jnÞÞ: ðA6Þ

APPENDIX B: MASS MATRICES AND GROUP INVARIANTS

Here we list the elements of the mass matrices μ2s;ab and μ
2
π;ab, which are necessary to be computed in order to obtain the

flow equation (19). Note that the effective potential is approximated as Vk ¼ UkðI1Þ þ CkðI1Þ · I2.

μ2s;ab ≡ ∂2Vk

∂sa∂sb
����
v0;v8

¼ ∂I1
∂sa

∂I1
∂sb

����
v0;v8

ðU00
kðI1Þ þ C00

kðI1Þ · I2Þ þ
∂2I1

∂sa∂sb
����
v0;v8

ðU0
kðI1Þ þ C0

kðI1Þ · I2Þ

þ
�∂I1
∂sa

∂I2
∂sb þ

∂I1
∂sb

∂I2
∂sa

�����
v0;v8

C0
kðI1Þ þ

∂2I2
∂sasb

����
v0;v8

CkðI1Þ; ðB1aÞ

μ2π;ab ≡ ∂2Vk

∂πa∂πb
����
v0;v8

¼ ∂I1
∂πa

∂I1
∂πb

����
v0;v8

ðU00
kðI1Þ þ C00

kðI1Þ · I2Þ þ
∂2I1

∂πa∂πb
����
v0;v8

ðU0
kðI1Þ þ C0

kðI1Þ · I2Þ

þ
�∂I1
∂πa

∂I2
∂πb þ

∂I1
∂πb

∂I2
∂πa

�����
v0;v8

C0
kðI1Þ þ

∂2I2
∂πaπb

����
v0;v8

CkðI1Þ: ðB1bÞ

The necessary invariants and their derivatives in the background field M̄ ¼ v0T0 þ v8T8 up to Oðv28Þ (note that calculating
higher order contributions are negligible in our scheme) are as follows:

I1jv0;v8 ¼
v20 þ v28

2
; I2jv0;v8 ¼ v20v

2
8=n; ðB2aÞ

∂I1
∂sa

����
v0;v8

¼ v0δa0 þ v8δa8;
∂I1
∂πa

����
v0;v8

¼ 0; ðB2bÞ
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∂I2
∂sa

����
v0;v8

¼ 2v0v28
n

δa0 þ
�
2v20v8
n

−
3ðn − 2Þv0v28
n

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
�
δa8;

∂I2
∂πa

����
v0;v8

¼ 0; ðB2cÞ

∂2I1
∂sa∂sb

����
v0;v8

¼ δab;
∂2I1

∂πa∂πb
����
v0;v8

¼ δab; ðB2dÞ

∂2I2
∂sasb

����
v0;v8

¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

2
n v

2
8; if a ¼ b ¼ 0

− 3ðn−2Þ
n
ffiffiffiffiffiffi
n−1

p v28 þ 4
n v0v8; if a ¼ 0; b ¼ 8 or a ¼ 8; b ¼ 0

2
n v

2
0 þ 3ðn−2Þ2

nðn−1Þ v
2
8 −

6ðn−2Þ
n
ffiffiffiffiffiffi
n−1

p v0v8; if a ¼ b ¼ 8

2
n v

2
0 þ 4−n

nðn−1Þ v
2
8 þ 6

n
ffiffiffiffiffiffi
n−1

p v0v8; if a ¼ b ∈ pion index

2
n v

2
0 þ ðn−2Þ2

nðn−1Þ v
2
8 −

3ðn−2Þ
n
ffiffiffiffiffiffi
n−1

p v0v8; if a ¼ b ∈ kaon index

0; else

ðB2eÞ

∂2I2
∂πaπb

����
v0;v8

¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0; if a ¼ b ¼ 0

− n−2
n
ffiffiffiffiffiffi
n−1

p v28 þ 2
n v0v8; if a ¼ 0; b ¼ 8 or a ¼ 8; b ¼ 0

ðn−2Þ2
nðn−1Þ v

2
8 − 2 n−2

n
ffiffiffiffiffiffi
n−1

p v0v8; if a ¼ b ¼ 8

− n−2
nðn−1Þ v

2
8 þ 2

n
ffiffiffiffiffiffi
n−1

p v0v8; if a ¼ b ∈ pion index

n2−2nþ2
nðn−1Þ v28 − n−2

n
ffiffiffiffiffiffi
n−1

p v0v8; if a ¼ b ∈ kaon index

0; else:

ðB2fÞ

An index “a” is denoted as kaon type, if a ¼ ðx; jnÞ or a ¼ ðy; jnÞ, where j ¼ 0;…n − 1. If “a” is not kaon type and
a ≠ 0; 8, then it is called pion type.

APPENDIX C: MATSUBARA SUMS

The right-hand side of the flow equations (15) and (19) contains several different types of Matsubara sums. Using the
notation

Sði; jÞ ¼
X
ωm

1

ðω2
m þ E2

1Þiðω2
m þ E2

2Þj
; ðC1Þ

the sums to be calculated are Sð1; 0Þ, Sð2; 0Þ, Sð3; 0Þ, Sð2; 1Þ, Sð1; 3Þ, Sð2; 3Þ, and Sð3; 3Þ. At first, it is sufficient to
calculate only Sð1; 0Þ and Sð1; 1Þ,

Sð1; 0Þ ¼ cothðE1=2TÞ
2E1

; ðC2Þ

Sð1; 1Þ ¼ 1

2E1E2

E1 cothðE2=2TÞ − E2 cothðE1=2TÞ
E2
1 − E2

2

; ðC3Þ

since from these the rest can be obtained via differentiation:

Sðn > 1; 0Þ ¼ ð−iÞn−1
ðn − 1Þ!

∂n−1Sð1; 0Þ
∂ðE2

1Þn−1
; ðC4Þ
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Sðn> 1;m > 1Þ ¼ ð−iÞn−1
ðn− 1Þ!

ð−iÞm−1

ðm− 1Þ!
∂n−1

∂ðE2
1Þn−1

∂m−1Sð1;1Þ
∂ðE2

2Þm−1 :

ðC5Þ

Some terms in (19) contain sums in which the two energy
values might be equal: E1 ¼ E2. These terms however are
always multiplied by zero; therefore the appropriate limits
are not listed here.
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