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We derive the Regge behavior for the forward scattering amplitude in scalar field theory using the
method of regions. We find that the leading Regge behavior to all orders can be obtained. Regge physics
emerges from a kinematic region that involves the overlap of several modes, so that a careful treatment of
the overlap regions is important. The most consistent and efficient approach utilizes graphs containing
collinear, anticollinear and Glauber modes, or modes of soft collinear effective theory with Glauber gluons
(SCETG).
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I. INTRODUCTION

One indication that our effective field theory for high
energy QCD is incomplete is that it presently does not
reproduce Regge phenomena. This is dangerous because
Regge behavior can convert logarithms in a scattering
amplitude into powers of the energy. In this paper we find
Regge behavior in a related effective field theory, and
explore the modes that are needed to produce it.
The soft collinear effective theory (SCET) [1] is an

effective field theory for QCD that is relevant for
describing the dynamics of highly energetic quarks
and gluons. In order to obtain the Lagrangian of
SCET one divides a single field into modes correspond-
ing to distinct kinematic behavior and keeps leading
terms consistent with the power counting. Using these
modes individually, one can reconstruct the behavior of
the Feynman diagrams of the full theory. Much of the
insight into which modes to include has been obtained
from original work by Collins, Soper, and Sterman on
all-order factorization theorem proofs [2] and from the
method of regions [3]. In this method one starts with the
QCD Lagrangian and writes down an amplitude to a
given order in the perturbation theory and expands it in
one of the momentum regions that are identified using
the pinch technique and power counting. Overviews with
further references can be found in the book by Smirnov
[4] or the review by Jantzen [5]. Sometimes the indi-
vidual modes are not fully kinematically distinct—there
are overlap regions where more than one mode is active
[6]. These must be carefully dealt with. It will turn out
that the Regge physics lives in these overlap regions and
involves a complicated interplay of regions and overlaps.
The most consistent and efficient way to describe it uses
SCET including Glauber modes (SCETG), as will be
described below.

The simplified model is that of a scalar field with a
trilinear interaction, which can be considered a scalar
model for QCD.1

L ¼ 1

2
∂μϕ∂μϕ −

g
3!
ϕ3: ð1Þ

The kinematic region where Regge behavior emerges
is s → ∞, t fixed. In such theory, the leading Regge
behavior appears from summing an infinite set of ladder
graphs, shown in Fig. 1 along with crossed ladder dia-
grams. The original calculation is due to Polkinghorne
[8,9]. It is also very useful to know that we can reconstruct
the Regge behavior of the ladder sum from consideration of
the s-channel discontinuities in the diagrams, where the
relevant discontinuities are those where the cut lines are the
rungs of the ladder, as in Fig. 2. In the cut analysis, it is
required that all the ladder rungs correspond to on-shell
modes, so this fact needs to be accommodated in the mode
expansion.
Our analysis will start with the mode expansion for the

scalar box diagram, the first diagram in Fig. 3. Along the
way we will resolve a paradox that exists in the usual
method of regions treatment of the box. In [4] Smirnov
demonstrates how the box diagram can be reconstructed by
the use of collinear modes for the vertical legs of the ladder,
although an extra “analytic regularization” in which the
propagators are modified is required. Indeed, we will also
find this result with our regularization. However, when the
legs are collinear modes, at least one of the horizontal rungs
of the box must be a hard mode which is far of shell. (We
will review the terminology and kinematics in more detail
below.) By unitarity, the off-shell mode should not be able
to produce the imaginary part of the box diagram. However,
we will show that the imaginary part arises from an overlap
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1For more on the relation of this model to Regge behavior in
QCD, see the book by Forshaw and Ross [7]. In this paper wewill
refer to the full theory as QCD and the effective theory alternately
as SCET without Glauber modes or SCETG with them.
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region which the collinear mode shares with Glauber
exchange. By removing the overlap, the box can be
reformulated in a version of SCET including the Glauber
mode, SCETG, in which case the horizontal rung is in fact
an on-shell (collinear) mode. The need to include Glauber
modes in SCET has been shown by [10] (see also [11]);
they have been shown to be important in the context of jets
in a medium [12], and the relevance of these modes for
Regge physics was first shown in [13].
The plan of this paper involves a brief overview of Regge

behavior in Sec. 2, and of SCET kinematics in Sec. 3. Then
in Sec. 4 (along with Appendix A) we provide a detailed

treatment of the box diagram, paying particular attention to
the overlap regions between modes and demonstrating the
importance of the Glauber mode. Section 5 treats the two-
loop ladder graph and shows how to count the modes and
match to the full theory. This is continued to higher orders
in Secs. 6 and 7. A conclusion summarizes what has been
accomplished. While this paper was being finalized, an
important related work by Fleming was released [14], and
we also discuss the relation of our work to his in the
conclusion. Three appendices provide some relevant tech-
nical details.

II. REGGE BEHAVIOR IN FIELD THEORY

For the purposes of this paper we will refer to Regge
behavior as the dependence of the scattering amplitude on a
power of the center-of-mass energy

MQCD ∼ sαðtÞ ð2Þ

in the limit s → ∞, t fixed. The Regge exponent αðtÞ is
dynamically generated through loop diagrams. At each
order in perturbation theory, the loops generate logs, but in
this kinematic region the logs exponentiate into a power. In
general one finds

MQCD ∼ a0sa
X∞
n¼0

βnðtÞ
n!

lnnsþ � � � → a0saþβðtÞ þ � � � :;

ð3Þ

where we have allowed an extra possible overall factor of sa

to the amplitude. (In our example a ¼ −1.) It is this
conversion of logs into powers that makes the phenomenon
important for phenomenology. In real QCD one sees a
variety of Regge exponents depending on the quantum
numbers, including the Pomeron with αð0Þ ∼ 1.
Polkinghorne [8] was the first to show how this behavior

emerges in a field theory, using a massive scalar field with
the ϕ3 interaction of Eq. (1). Although the ladder diagrams
cannot be calculated completely, the leading high energy
behavior emerges from a corner of the Feynman parameter
integration and this corner can be analyzed and summed.
For example, the direct box diagram shown in Fig. 3 after
momentum integration becomes

FIG. 2. The cut ladder graphs.

FIG. 1. The ladder graphs.

FIG. 3. One-loop Feynman diagrams with boxlike topology. We only show one internal momentum enough to clarify our conventions.
The graphs represent the (s, t), (u, t), and (s, u) channels respectively. The last graph is suppressed by t=s compared to the first two.
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iMbox
QCD ¼ i

g4

16π2

Z
dx1dx2dy1dy2

δð1 − x1 − x2 − y1 − y2Þ
½x1x2sþ y1y2t −m2ð1 − ðx1 þ x2Þðy1 þ y2ÞÞ�2

ð4Þ

where x1, x2 are the Feynman parameters associated with
the horizontal lines (rungs) in the diagram and y1, y2 are
associated with the vertical lines (legs). It is clear from this
that the amplitude falls as 1=s2 at large s, except for the
region of integrations where x1 and/or x2 are close to zero.
Polkinghorne noted that when only one of x1;2 is small, the
integrated amplitude falls as 1=s, but when both of the
parameters are small there is an extra logarithmic factor of
lnð−sÞ. In this corner the residual dependence on x1;2 can
be neglected and the result is

iMbox
QCD ¼ ig2βðtÞ 1

−s
lnð−sÞ ð5Þ

with s ¼ sþ i0 and

βðtÞ ¼ g2

16π2

Z
dy1dy2

δð1 − y1 − y2Þ
½m2 − y1y2t�

¼ g2

4π

Z
d2l⊥
ð2πÞ2

1

½l2⊥ þm2�½ðl⊥ þ q⊥Þ2 þm2� : ð6Þ

Note that the exponent depends on the transverse momenta
only—the longitudinal components have been integrated
out. The crossed-box diagram is obtained by the substitu-
tion s → u, and since s ≫ −t,m2 we have u ≈ −s. The sum
of the box and crossed box then becomes

Mboxþcrossed
QCD ¼ −g2βðtÞ

�
1

s
lnð−sÞ þ 1

−s
lnðsÞ

�
¼ iπ

s
g2βðtÞ:

ð7Þ

This is the n ¼ 0 term in the Regge sum of Eq. (3). In this
case, we see that the result emerges entirely from the
s-channel cut with both horizontal rungs being on shell.
The rest of the ladder sum is done in the same way. The

important region in the integration is the corner where all
the Feynman parameters associated with the horizontal
rungs becomes small. In this corner the correct lnnð−sÞ
behavior arises and the sum yields the Regge form with
amplitude and exponent being given by

a0 ¼
iπ
s
g2βðtÞ and αðtÞ ¼ −1þ βðtÞ: ð8Þ

In real QCD, the situation is somewhat more compli-
cated, but follows the same kinematic rules. Within
perturbative QCD, this has been demonstrated by
Balitsky, Fadin, Kuraev, and Lipatov (BFKL) [15] and
in related work [16].

III. KINEMATICS AND NOTATION

We consider the binary scattering of particles with
momenta p1 and p2, while the outgoing particles carry
momenta p3 and p4. The momentum transfer is defined as
q ¼ p3 − p1. We work in the center-of-mass frame and use
light-cone coordinates requiring the introduction of two
independent null vectors which read

nμ ¼ ð1; 0; 0; 1Þ; n̄μ ¼ ð1; 0; 0;−1Þ; n · n̄ ¼ 2: ð9Þ

Hence, four momenta are decomposed as follows:

pμ ¼ pþ n̄μ

2
þ p− n

μ

2
þ p⊥; pþ ≡ p · n;

p− ≡ p · n̄; p⊥ · n ¼ p⊥ · n̄ ¼ 0: ð10Þ

For later convenience, we note the following identity:

d4l ¼ 1

2
dlþdl−d2l⊥: ð11Þ

Regge physics is concerned with the kinematical limit

s → ∞; −t; m2 ≪ s ð12Þ

where s ¼ ðp1 þ p2Þ2 and t ¼ q2 are the usual
Mandelstam variables. The small parameter required for
employing the method of regions (SCET) then reads

λ ¼
ffiffiffiffiffi
−t
s

r
: ð13Þ

All external particles are treated as massless and on shell, in
particular p2

i ¼ 0. Note that the scattering of two high
energy on-shell particles, one in the n direction and the
other in the n̄ always involves an exchange in the so-called
Glauber region. This can be readily seen from the on-shell
conditions

p2
3 ¼ 0 ¼ ðp1 þ qÞ2 ¼ 0þ p−

1 q
þ þ t

p2
4 ¼ 0 ¼ ðp2 − qÞ2 ¼ 0 − pþ

2 q
− þ t: ð14Þ

Because p−
1 , pþ

2 ∼
ffiffiffi
s

p
, this forces q to scale as q ∼ffiffiffi

s
p ðλ2; λ2; λÞ in the ðþ;−;⊥Þ directions. The Glauber
region is characterized by having momentum dominantly
in the transverse direction. The overall momentum transfer
of Regge exchange is Glauber-like. In addition, one can
include modes in the mode expansion which correspond to
Glauber kinematics. Such modes are always off shell; thus,
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in the effective theory language they can be treated as an
effective potential.
There is an array of possibilities in the choice of infrared

regulators for our calculation. Among them is the analytic
regulator used in [4], off shellness of external momenta
p2
i ≠ 0, or internal masses mi ≠ 0. If one uses off shellness

as a regulator with vanishing internal masses within the
loop, one finds that the modes in the effective theory or
method of regions are not regularized in four dimensions.
Hence, off shellness by itself fails to regulate the infrared
behavior of the theory and one needs to add a dimensional
regulator in order to regulate the infrared divergences.
In this paper we regulate the infrared through the use of

an internal mass for each internal line in any graph, keeping
the external four-vectors on shell with zero invariant mass.
This fully controls the infrared region. For the leading high
energy behavior the answer is the same if one uses massive
external four-vectors with the same m2 as in the original
Polkinghorne calculation.
In the remainder of this paper we study how Regge

behavior in the toy scalar theory arises in the effective theory.
It has to be noted however that this paper is lacking a
complete consistent effective theory derivation of Regge
behavior for QCD. This understanding is very important and
is beyond the scope of this paper.What this paper contains is
the method of region derivation of Regge behavior and is
supposed to pave the way into a consistent effective field
theory (EFT) formulation of Regge physics. The modes that
we consider in the method of regions are those of SCET
and SCETG.
For concreteness we present the Lagrangians of effective

theories for the toy scalar QCD theory. Pulling out the label
momentum from the scalar field ϕðxÞ ¼ P

~pe
−i ~p·xϕn;p,

where ~p ¼ ð0; n̄ · p; p⊥Þ, we get2

LSCET ¼
X
n

LðnÞ
c þ Ls þ Lcs;

LðnÞ
c ¼

X
~p

1

2
½j∂μϕn;pj2 −m2jϕn;pj2�

þ g
3!

X
~p1; ~p2; ~p3

e−ið ~p1− ~p2− ~p3Þ·xϕn;p1
ϕ†
n;p2

ϕ†
n;p3

: ð15Þ

We only specify the collinear sector of SCET because for
reasons that are spelled out in the next section we do not
consider graphs with soft gluons. The Lagrangian of
SCETG has an additional four-point interaction where
the Glauber gluon is integrated out:

LSCETG
¼ LSCET −

X
~p1; ~p2; ~p3; ~p4

g2e−ið ~p1þ ~p2− ~p3− ~p4Þ·x

ðp1⊥ − p3⊥Þ2

× ϕn;p1
ϕn̄;p2

ϕ†
n;p3

ϕ†
n̄;p4

: ð16Þ

In what follows we identify the contributions to the
Regge behavior using the method of regions by keeping
modes of either of the two effective theories mentioned
above. We emphasize that SCETand SCETG in our case are
understood in the sense of the toy theory and should not be
confused with effective theories for real QCD like Ref. [1]
and an effective theory for jets in medium [12].

IV. ONE-LOOP BOX

In this section we calculate the one-loop Oðg4Þ con-
tribution to Regge physics of the binary scattering
explained above. We start off by computing the appropriate
graphs in the full theory and then repeat the calculation
using the method of regions to isolate the modes respon-
sible for Regge behavior. The graphs at the one-loop level
which concern Regge physics are the ones with boxlike
topology shown in Fig. 3. In fact, the last graph has a
suppressed leading behavior (by a power of s) compared to
the first two and thus we neglect this graph all together. To
fix the nomenclature, we refer to the first graph as the
“direct box” and the second as the “crossed box.”

A. The box diagram in the full theory

The full Regge amplitude is simply obtained by sum-
ming the two graphs to find

Mð1Þ
QCD¼ð−iÞg4 1

2

Z
d4l
ð2πÞ4

1

ðl2−m2þ i0ÞððlþqÞ2−m2þ i0Þ

×

�
1

ðl−p1Þ2−m2þ i0
þ 1

ðlþp3Þ2−m2þ i0

�

×

�
1

ðlþp2Þ2−m2þ i0
þ 1

ðl−p4Þ2−m2þ i0

�
:

ð17Þ

In the above expression we combined the graphs after
symmetrizing each under the interchange l↔ − ðlþ qÞ,
and hence the factor of half. This does not prove useful for
the full theory calculation but considerably simplifies the
calculation in the method of regions. The intermediate steps
of the computation are rather complicated and we move the
details to Appendix A but the final result in the limit
s ≫ −t, m2 takes the simple form

Mð1Þ
QCD ¼ iπg2βðtÞ

s
; ð18Þ

where βðtÞ is defined in Eq. (6) and explicitly reads

βðtÞ ¼ g2

8π2ð−tÞχðtÞ ln
χðtÞ þ 1

χðtÞ − 1
; and

χðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
> 1: ð19Þ2For real field ϕðxÞ we have ϕn;p ≡ ϕ†

n;−p.
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To arrive at this expression we have kept all the finite terms
in the expansion t=s, m2=s and only dropped power-
suppressed ones.
Below we concentrate on the method of regions for the

calculation of the Regge behavior using the modes of two
effective theories, SCET and SCETG. Usually the power
counting and pinch analysis are used to determine which
modes to include into the method of region. For the massive
one-loop QCD box integral such analysis identifies only
two regions: collinear and anticollinear. The ultrasoft mode
ðλ2; λ2; λ2Þ is power suppressed and the soft mode ðλ; λ; λÞ
is leading order but is not pinched. As is well known, the
Glauber mode is not pinched for the box topology. This
mode only becomes pinched in the pentagon topology.
Based on these facts we first consider only the two collinear
graphs, which we refer to as the modes of SCET (in this
case all leading modes of SCETI-EFT with collinear and
ultrasoft particles). As will be mentioned later, there is a
paradox in reproducing the Regge behavior with only these
two modes, because of the imaginary part of the combined
result and unitarity issues. As we will see below, including
the Glauber mode resolves this issue, and our second EFT
of choice is SCETG, where again only leading graphs of
SCETI are considered plus Glauber region.

B. The box diagram in SCET without Glauber modes

Using the modes of SCET we get two leading graphs,
when the loop momentum is either n collinear or n̄
collinear. An ultrasoft loop momentum ðλ2; λ2; λ2Þ on the
other hand is power suppressed because m2 scales as λ2.
With some details in Appendix A, we find that both n- and
n̄-collinear graphs shown in Fig. 4 are equal

Mð1Þ
n ¼ Mð1Þ

n̄ ¼ Mð1Þ
QCD: ð20Þ

Hence, summing both contributions gives a result twice as
big as the full theory. It turns out that the overlap
contribution of these two modes is nonvanishing and must
be taken into account in order to correctly reproduce the full
theory result

Mð1Þ
n=n̄ ¼ Mð1Þ

QCD: ð21Þ

We derive a master formula in Appendix C that takes into
account correct subtraction terms when combining N

momentum regions in the method of regions. Applying
it for two modes, we reproduce the QCD result

Mð1Þ
SCET ¼ Mð1Þ

n þMð1Þ
n̄ −Mð1Þ

n=n̄ ¼ Mð1Þ
QCD: ð22Þ

We have found that using the modes of SCET we recover
the full QCD loop integral. This should not be surprising
since for the box integral the pinch analysis leads to no
Glauber pinch [10,17], i.e., modes of SCET are sufficient.
However, there is something strange with this result. Indeed
the full answer for the QCD integral (defined by including
the crossed-box graph) is purely imaginary; see Eq. (18).
This imaginary part can be obtained from the discontinuity
of the direct box integral. This discontinuity comes from
on-shell intermediate states; however, both collinear graphs
Mn and Mn̄ have one propagator far off shell. Thus, the
imaginary part should come from the subregion of these
two modes and is contained in a different kinematic region.
In the book [4], the one-loop box integral with the Regge
kinematics was calculated using an analytic regulator. It
was found that the box integral is recovered from two
collinear graphs, similarly to our finding in this section with
our regularization. Note, that with their regulator the
overlap contribution vanishes and does not play role.
Thus, the same comment that the imaginary part of the
box graph is coming from a different kinematic region and
is outside of collinear graphs holds for the calculation in
[4]. Below we repeat the one-loop calculation with our
regulator by including all the modes of SCETG with their
overlaps and this paradox is resolved.

C. The problem of the imaginary part

The imaginary part of the collinear amplitudes hints that
we are missing insight into Regge physics. The imaginary
part of the full theory should not be expected to come from
collinear exchange. In simple words, this is because the
collinear graphs indeed have one intermediate state off
shell. To elucidate this point, we directly employ Cutkosky
rule to compute the imaginary part of the direct-box graph.
Hence,

ImMð1Þ
QCD¼

g4

8π2

Z
d4l

δþððp1−lÞ2−m2Þδþððlþp2Þ2−m2Þ
ðl2−m2ÞððlþqÞ2−m2Þ

ð23Þ

FIG. 4. Direct-box diagrams in SCETG. The box represents an off-shell propagator and the dashed lines refer to Glauber modes. The
momentum routing is identical to the box in Fig. 3. In SCET, only the first two graphs appear.
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where δþðp2 −m2Þ ¼ δðp2 −m2ÞΘðp0Þ. This integral is
easily rewritten as

ImMð1Þ
QCD ¼ g4

16π2
ffiffiffi
s

p
Z

d4l

×
δððp1 − lÞ2 −m2Þδðl0Þffiffiffi

s
p ðl0 − lzÞð

ffiffiffi
s

p ðl0− lzÞþq2− 2~l · ~qÞ
: ð24Þ

Notice that q0 ¼ 0 since we work in the center-of-mass
frame. The integral over l0 is readily done to absorb the
second delta function and forces l0 ¼ 0. This is very
interesting because this means that l� ¼ ∓lz, which shows
that the mode responsible for generating the leading Regge
behavior ought to have longitudinal components of equal
scaling, a condition clearly violated by collinear modes. We
continue the calculation by performing the lz integral where
a quadratic form appears in the argument of the delta
function with the following roots:

l�z ¼
ffiffiffi
s

p
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Δ
s

r �
; Δ ¼ l2⊥ þm2: ð25Þ

The “þ=−” refers to large/small root, respectively. Clearly,
the transverse integral has to be constrained since 4Δ ≤ s
for l�z to be real. The large root yields a result proportional
to 1=s2, and hence is power suppressed. On the other hand,
the small root can be Taylor expanded

l−z ¼ Δffiffiffi
s

p
�
1þ Δ

s
þ � � �

�
: ð26Þ

The first term in the expansion yields the leading result in
the Regge limit, and hence l−z ≈ Δ=

ffiffiffi
s

p
. This is the second

piece of information we need to pin down the Regge mode;
it has an excess in the transverse direction identical to the
momentum transfer. We conclude that Glauber scaling
l ∼

ffiffiffi
s

p ðλ2; λ2; λÞ is genuinely responsible for Regge behav-
ior. Finally, the result agrees with the full calculation

ImMð1Þ
QCD ¼ πg2βðtÞ

s
: ð27Þ

D. The box diagram in SCETG

In soft collinear effective theory with Glauber modes an
additional graph appears where the loop momentum is that
of Glauber scaling lðλ2; λ2; λÞ. With details provided in
Appendix A, the box integral in this momentum region is
equal to

Mð1Þ
G ¼ Mð1Þ

QCD: ð28Þ

When adding the Glauber as an independent mode, over-
laps with collinear modes must be taken into account, we
calculate these in Appendix A. The result is

Mð1Þ
n=G ¼ Mð1Þ

n̄=G ¼ Mð1Þ
n=n̄=G ¼ Mð1Þ

G ¼ Mð1Þ
QCD: ð29Þ

Our calculation indicates that the imaginary part of the full
theory is coming precisely from the Glauber region (at the
one-loop order). In other words, the matching in SCETG
after all zero-bin (overlap) subtractions gives the same
result as just the Glauber mode

Mð1Þ
SCETG

¼ Mð1Þ
n þMð1Þ

n̄ þMbox
G −Mð1Þ

n=n̄ −Mð1Þ
n=G

−Mð1Þ
n̄=G þMð1Þ

n=n̄=G ¼ Mð1Þ
G ¼ Mð1Þ

QCD: ð30Þ

As is well known from factorization proofs of the Drell-Yan
process, the Glauber region is not pinched for the box
topology [17], (see also [10]). Thus, it is no surprise that we
get the same answer in SCETG as in SCET. When one uses
the modes of SCET, the collinear integrals each contain at
least one of the intermediate propagators off shell; thus, the
imaginary part3 ought to come from a subregion inside
them. Our calculation above precisely shows that the
correct momentum region for the full box integral in the
Regge kinematics (when the direct and crossed box are
added) is the Glauber region. What we mean by this is that
the QCD box integral with the crossed box added at one
loop can be reproduced by a single Glauber mode, which
does not violate unitarity. As one adds the collinear graphs
and Glauber one together, the interpretation can be made
that the true collinear mode obtained from the naive
collinear mode after zero-bin subtraction becomes purely
real (as it should be due to unitarity) and cancels out
between box and crossed box. Thus, we resolve the
paradox of the imaginary part coming from collinear
graphs. We will see below in this paper that this generalizes
straightforwardly to higher orders in perturbation theory.

E. The imaginary part via the Cutkosky rule

For completeness and as a prelude to the next section, we
directly use the Cutkosky rule to recalculate the imaginary
part albeit taking the loop momentum in the Glauber
region. The computation is very simple and the correct
result is obtained effortlessly. Expanding the integrand of
(23) and explicitly employing light-cone coordinates

ImMð1Þ
G ¼ g4

16π2

Z
d2l⊥dlþdl−

×
δð−l2⊥ −

ffiffiffi
s

p
lþ −m2Þδð−l2⊥ þ ffiffiffi

s
p

l− −m2Þ
ðl2⊥ þm2Þððl⊥ þ q⊥Þ2 þm2Þ :

ð31Þ
The step functions are automatically satisfied. The longi-
tudinal momenta integrals are used trivially to absorb the
delta functions and we find

3Note that the entire one-loop expression of the QCD ampli-
tude is imaginary; see Eq. (18).
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ImMð1Þ
G ¼ πg2βðtÞ

s
: ð32Þ

As previously mentioned, the kinematic exercise of
Eq. (14) combined with the Cutkosky rule for the on-shell
intermediate states of the box diagram requires that the
exchanged mode be in the Glauber region.4

V. TWO-LOOP LADDER

We saw at one loop that the underlying physics behind
Regge behavior is the imaginary part of the direct-box
graph caused by the s-channel discontinuity. This picture is
valid at any loop order as confirmed by the Polkinghorne
analysis [8]. Hence, we confine the subsequent discussion
to only the imaginary part of higher loop graphs that
contribute to Regge physics, i.e., ladder graphs.

A. The double box ladder in the full theory

The imaginary part of the two-loop ladder graph shown
in Fig. 5 is given by

ImMð2Þ
QCD ¼ g6

64π5

Z
d4l1d4l2

δþ½ðp1 − l1Þ2 −m2�δþ½ðl1 − l2Þ2 −m2�δþ½ðp2 þ l2Þ2 −m2�
ðl21 −m2Þðl22 −m2Þððl1 þ qÞ2 −m2Þððl2 þ qÞ2 −m2Þ ; ð33Þ

where δþ is defined as before. This integral has extensively
been studied before with the result

ImMð2Þ
QCD ≈

πg2β2ðtÞ
s

ln s: ð34Þ
For example, see the derivation in [7,13], where it is
shown that the leading region is the so-called strongly
ordered one. The formula above contains the leading

logarithm as s → ∞. There are finite terms beyond
this logarithm that are the same order in the t=s expansion
and thus are expected to be captured by the method
of regions or the mode expansion. For this reason we
derived such terms in Appendix B, but for simplicity we
have set t ¼ 0. This leads to a finite answer in four
dimensions because our massive theory is infrared safe.
The result is

ImMð2Þ
QCDðt ¼ 0Þ ¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sðΔ1Δ2Þ2
�
ln

s
Δ12

− 2

�
θðs − ð

ffiffiffiffiffiffi
Δ1

p
þ

ffiffiffiffiffiffi
Δ2

p
þ

ffiffiffiffiffiffiffiffi
Δ12

p
Þ2Þ: ð35Þ

In the equation above we have made the following definitions in terms of transverse momenta:

Δ1 ¼ l21⊥ þm2; Δ2 ¼ l22⊥ þm2; Δ12 ¼ ðl1⊥ − l2⊥Þ2 þm2: ð36Þ

B. Matching in SCETG

So far we have learned from the one-loop calculation
that the correct momentum region to understand the
Regge behavior is when all intermediate states are on
shell. The only way to do this at two loops is one
of the three possibilities ðl1; l2Þ is ðn;GÞ, ðG; n̄Þ,
ðG;GÞ. Power counting the mode integrals shows that
ðG;GÞ must be suppressed, due to the higher power
of the momentum-space volume factor d4lG ∼ λ6 as

opposed to d4lcoll ∼ λ4. The fact that there are two
leading modes (shown in Fig. 6) means that their
overlap must be taken into account. The first of our
modes equals to

FIG. 5. Two-loop direct graph in full theory (QCD).

FIG. 6. Two-loop graphs in SCETG. From left to right these
amplitudes are MnG, MGn̄. All other two-loop graphs in the
method of regions, for example Mn̄n, are power suppressed or
lead to intermediate off-shell propagators, such as Mnn.

4We note that the analytic regulator used in [4] sets the Glauber
region to zero. It is then not consistent with the Cutkosky rule and
we view this as a disadvantage of this regulator.
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ImMð2Þ
nG ¼ g6

64π5

Z
d4l1d4l2

δþ½ð−lþ1 Þð
ffiffiffi
s

p
− l−1 Þ − Δ1�δþ½ðlþ1 − lþ2 Þl−1 − Δ12�δþ½

ffiffiffi
s

p
l−2 − Δ2�θð

ffiffiffi
s

p þ lþ2 Þ
ðlþ1 l−1 − Δ1Þð−Δ2Þððlþ1 þ qþÞl−1 − Δ1qÞð−Δ2qÞ

; ð37Þ

where the theta function in each of the δþ that appear above
is the expanded expression in the QCD integral. We note
that with such strict manifest power counting the limits of
integration on the l−1 after the lþ1 , lþ2 , l−2 integrals are
performed using the delta functions are not regulated and
lead to a divergent result. To overcome this shortcoming we
restore the unexpanded theta function in the δþ½ðp2 þ
l2Þ2 −m2� present in QCD expression. We made this
explicit by inserting θð ffiffiffi

s
p þ lþ2 Þ in Eq. (39). This ad hoc

solution would not be satisfactory for a consistent EFT
description of Regge physics. A more rigorous and prom-
ising approach seems to be introducing a rapidity regulator
in the EFT; see Ref. [18]. In Ref. [14], the Regge behavior
was derived from using rapidity renormalization group
techniques developed in [18]. This approach is being
further developed in the ongoing work by Rothstein and
Stewart [19].
In the equation above we made the following definitions:

Δ1q ¼ ðl1⊥ þ q⊥Þ2 þm2; Δ2q ¼ ðl2⊥ þ q⊥Þ2 þm2:

ð38Þ

With details explained in Appendix B we derive the
expression for this mode for arbitrary values of t:

ImMð2Þ
nG ¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sΔ1Δ2Δ1qΔ2q

×

�
ln

s
Δ12

þ 1

2
ln
Δ1q

Δ1

−
arctanU

U

�
θ

× ðs − ð
ffiffiffiffiffiffiffiffi
Δ12

p
þ

ffiffiffiffiffiffi
Δ1

p
Þ2Þ; ð39Þ

where

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Δ1Δ1q

ðtþ Δ1 þ Δ1qÞ2
− 1

s
: ð40Þ

In the entire domain of integration over l1⊥, l2⊥ the value of
U > 0 and the answer is well behaved. By the same
argument as above it is clear that in the leading limit in
the power expansion as s → ∞ the theta function in
Eq. (39) can be ignored. Taking the leading logarithmic
limit of Eq. (39) we get

ImMð2Þ
nG ≈

πg2β2ðtÞ
s

ln s: ð41Þ

The calculation of the second mode ðG; n̄Þ proceeds
analogously and leads to the identical result:

ImMð2Þ
Gn̄ ¼ ImMð2Þ

nG: ð42Þ

The fact that both modes yield identical results can also be
seen from the following change of variables in the loop
integrals:

l�1 ↔ − l∓2 ; l1⊥↔l2⊥: ð43Þ

This change of variables transforms the integrand of the
ðG; n̄Þ mode with the one of the ðn;GÞ mode. Note that
both modes that we considered reproduce exactly the
leading Regge behavior of QCD, so if one adds them
together the result is that of twice of QCD. We should
remember from our one-loop computation that overlaps
need to be included, and thus we proceed to calculate the
ðnG;Gn̄Þ overlap.

C. The Regge mode

Here, we show that the overlap is the generator of Regge
physics. Expanding the integrand of (33) subsequently with
the scaling of the modes nG and Gn̄, all propagators
become transverse and factor out of the longitudinal
integration

ImMð2Þ
nG=Gn̄ ¼

g6

64π5

Z
d4l1d4l2

δþ½ð−lþ1 Þ
ffiffiffi
s

p
− Δ1�δþ½ð−lþ2 Þl−1 − Δ12�δþ½

ffiffiffi
s

p
l−2 − Δ2�θð

ffiffiffi
s

p
− l−1 Þθð

ffiffiffi
s

p þ lþ2 Þ
ð−Δ1Þð−Δ2Þð−Δ1qÞð−Δ2qÞ

: ð44Þ

Note that the theta functions in δþ are also expanded in this momentum region and similarly to the nG mode considered
above we inserted additional theta functions present in the full QCD expression that help regulate integrals. Using the delta
functions yields

l̄þ1 ¼ −
Δ1ffiffiffi
s

p ; l̄−2 ¼ Δ2ffiffiffi
s

p ; l̄þ2 ¼ −
Δ12

lþ2
: ð45Þ
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As a result the overlap integral is equal to

ImMð2Þ
nG=Gn̄ ¼

g6

256π5
1

s

Z
d2l1d2l2

1

Δ1Δ2Δ1qΔ2q
Il−

1
; ð46Þ

where

Il−
1
¼

Z ffiffi
s

p

Δ12=
ffiffi
s

p dl−1
1

l−1
¼ ln

�
s

Δ12

�
: ð47Þ

Thus, the overlap correctly captures the subregion
l−1 ≪

ffiffiffi
s

p
and thus the final result in the Regge limit

reads

ImMð2Þ
nG=Gn̄ ¼

πg2β2ðtÞ
s

ln s: ð48Þ

This is same answer as in the Regge limit of QCD.

D. Combining the modes of SCETG

Combining all the modes in the effective theory under
consideration, we get

ImMð2Þ
SCETG

¼ ImðMð2Þ
nG þMð2Þ

Gn̄ −Mð2Þ
nG=Gn̄Þ

¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sΔ1Δ2Δ1qΔ2q

×

�
ln

s
Δ12

þ ln
Δ1q

Δ1

− 2
arctanU

U

�
: ð49Þ

This combined answer reduced to the case t ¼ 0 repro-
duces the QCD result exactly

ImMð2Þ
SCETG

ðt ¼ 0Þ ¼ g6

256π5

Z
d2l1⊥d2l2⊥

1

sðΔ1Δ2Þ2

×

�
ln

s
Δ12

− 2

�

¼ ImMð2Þ
QCDðt ¼ 0Þ: ð50Þ

It also reproduces the leading Regge behavior of the QCD
integral for arbitrary t. The fact that the leading Regge
behavior is present in both modes and in the overlap as
well, simply means that the true region from which the
leading logarithm is coming is the overlap region. This
result must be intimately connected to the strong ordering
in the leading Regge limit. Indeed, strong ordering is a very
special region in the momentum space with the hierarchy of
energies, and we argue that our observation that the leading
mode is the overlap has the same roots. In the remaining
sections we provide arguments why this conclusions
persists to higher orders.

VI. THREE-LOOP LADDER

In this section, we demonstrate that the full overlap
between all “on-shell” modes immediately yields the
leading Regge behavior similar to the two-loop case. At
three loops we find three leading modes: ðn; n;GÞ
ðn;G; n̄Þ, ðG; n̄; n̄Þ. The imaginary part of the three-loop
ladder is obtained via the Cutkosky rule and the expression
is similar to (44). The three-fold overlap between the
leading modes forces all the propagators to become trans-
verse and factor out as before. A close look at the expansion
of the arguments of the delta functions for this multiple
overlap momentum region leads to

ImMð3Þ
nnG=nGn̄=Gn̄ n̄ ¼

g8

512π8

Z
d4l1d4l2d4l3

δþð−
ffiffiffi
s

p
lþ1 − Δ1Þδþð−l−1 lþ2 − Δ12Þδþð−l−2 lþ3 − Δ23Þδþð

ffiffiffi
s

p
l−3 − Δ3Þ

Δ1Δ2Δ3Δ1qΔ2qΔ3q

¼ g8

512π8
1

23
1

s

Z
d2l1⊥d2l2⊥d2l3⊥

1

Δ1Δ2Δ3Δ1qΔ2qΔ3q
Il−

1
l−
2
: ð51Þ

Notice the nice feature that the appearance of Δi terms
inside the δ functions follows from the consistent power
counting of the multi-overlap region. We use the delta
function to integrate over all plus components in addition to
l−3 , and the remaining nontrivial integrals read 5

Il−
1
l−
2
¼

Z ffiffi
s

p

Δ=
ffiffi
s

p
dl−2
l−2

Z ffiffi
s

p

l−
2

dl−1
l−1

ð52Þ

¼ 1

2
ln2

�
s
Δ

�
; ð53Þ

where Δ is a function of transverse momenta, but in the
leading logarithmic approximation the answer does not
depend on it. Finally, we get keeping only leading in the
Regge limit term:

ImMð3Þ
nnG=nGn̄=Gn̄ n̄ ¼

πg2βðtÞ3
s

ln2s
2

: ð54Þ

This matches the QCD result.

5The prescription adopted to get these limits of integration
relies on unexpanded theta functions adopted from full the QCD
expression. See the comment below Eq. (37) for a better way to
regulate such loop integrals in the effective field theory.
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VII. GENERALIZATION TO ALL ORDERS

From our explicit calculations at one- and two-loop
orders it is easy to guess the answer for higher orders.
We first guess the answer and then prove it further
below. We expect that the true momentum region for the
Regge kinematics at N-loop order is N leading graphs
which are subset of SCETG graphs with on-shell inter-
mediate states. These are the graphs with a number of
n-collinear gluons in the loops, a single Glauber gluon,
and after it a number of n̄-collinear momentum in the
loops

MðNÞ
n…nG; MðNÞ

n…nGn̄…n̄;…MðNÞ
Gn̄…n̄: ð55Þ

Each of these amplitudes includes, by our definition,
both the direct box and the crossed box. Each of these
amplitudes reproduces the leading Regge behavior as
s → ∞ and also any overlap of any subset of these
amplitudes reproduces the Regge behavior. Thus, once
one combines all the modes, the answer is identical to
only including a single mode which is the overlap of all
N momentum regions.
In order to prove the above statements we use the

strong ordering derivation to show that the arbitrary graph
in the method of regions gives an identical result as a
single loop integral in QCD. Consider, for example, an

MðNÞ
Gn̄…n̄ graph. The loop momenta, li where i ¼ 1…N,

scale as ðlþi ; l−i ; li⊥Þ ∼ ðλ2; λ2; λÞ; ð1; λ2; λÞ;…ð1; λ2; λÞ.
Thus, the plus momentum satisfies lþ1 ∼ λ2 ≪ lþ2 ∼ � � � ∼
lþk ∼ lþkþ1 ∼ � � � ∼ lþN ∼ 1 and l−1 ∼l−2 ∼ ���∼l−k ∼l−kþ1∼ ���∼
l−N∼λ2. Clearly the strong ordering region is a subregion
of this region, since for the strong ordered region we
have6

jlþ1 j ≪ jlþ2 j � � � ≪ jlþk j ≪ jlþkþ1j ≪ � � � ≪ jlþN j;
l−1 ≫ l−2 � � � ≫ l−k ≫ l−kþ1 ≫ � � � ≫ l−N: ð56Þ

Thus, repeating the usual strong ordering region deriva-
tion we would presumably get the same answer as in the

full theory if we started to work on the graph MðNÞ
Gn̄…n̄.

Similarly we can show that every other relevant graph is
identical to one another, since they all contain the strong
ordering region as their sub-region.
An analogous statement holds for any of the loop

integrals involving Glauber gluons. These subsets of graphs
are the only ones out of entire set that allow on-shell
intermediate states. Our observation that the multi-overlap

of these regions plays an important role has a simple
interpretation. At N-loop order the single isolated momen-
tum region that gives the leading Regge behavior is
the multi-overlap of all on-shell modes n…nG=n…
nGn̄…n̄=…=Gn̄…n̄. It is easy to verify by a straightfor-
ward calculation similar to what we did at three-loop
order

ImMðNÞ
n…nG=n…nGn̄…n̄=…=Gn̄…n̄ ¼

πg2βðtÞ
s

ðβðtÞ ln sÞN−1

ðN − 1Þ! ;

ð57Þ

which reproduces the QCD Regge limit. In this
section we showed that all leading modes have a strong
ordering momentum region as their subregion, thus
including only the multiple overlap of all these
modes is sufficient and no surprise leads to the correct
answer.

VIII. CONCLUSIONS

We have shown how one obtains Regge physics using
the mode expansion of SCET. In the effective field theory,
the key contributions come from overlap regions which
must be carefully treated. The simplest and most consistent
approach includes the Glauber modes of the effective field
theory SCETG.
In the scalar theory that we discuss, the one-loop

contribution that starts the Regge ladder sum comes from
the imaginary part of the box diagram. The box diagram
can be reproduced in an effective theory which includes
only the hard and collinear modes. However, this comes at
the cost of seemingly violating the unitarity property of
field theory in that the imaginary part of the amplitude
arises from a hard intermediate state which the effective
theory says is far off shell. This result tells us that in fact
the contribution comes from an overlap region with an on-
shell mode. By including the exchange of Glauber modes
in the description, we can again recover the full box
diagram via the mode expansion. In this case, after
accounting for the overlap regions, the imaginary part
of the amplitude is properly obtained from the t-channel
Glauber exchange with s-channel on-shell collin-
ear modes.
At higher order the deconstruction of the various

overlap regions continues, with a final result that is simple
to state. Collinear modes provide many of the legs in the
ladder sum, and all of the s-channel on-shell states.
However, at any given loop order, a Glauber mode is
responsible for the connection between the collinear n and
n̄ modes. We have explicitly demonstrated this at two
loops, and provided an argument that this continues for all
higher loops.

6Note, that in this expression all the “þ” components are
negative and all the “−” components are positive. This is imposed
by the theta functions in the expression for the QCD cut graph.
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As we were writing up our project, a related paper by
Fleming showed how one can obtain the well-known
BFKL equation from rapidity RGE in the effective theory
[14]. In Fleming’s calculation, the forward scattering
matrix element which falls in the Glauber region is
calculated to one-loop order and a rapidity divergent
counterterm is determined. As a result the BFKL equation
and the Regge behavior emerge from SCET with Glauber
gluons. In our paper we also showed how Regge behavior
emerges from SCET with Glauber gluons; however, we
looked at it from a fixed order point of view by summing a
series of graphs order by order in the perturbation theory.
In doing so, we paid a special attention to the momentum
region where the Regge behavior arises from and we
concluded that the Glauber mode plays an important role
to connect the n-collinear sector with the n̄-collinear sector
with keeping intermediate propagators on shell. The
combined Regge mode we find is the mutual overlap of
all such graphs at a given order and reproduces the Regge
behavior. It should be noted that Fleming uses real QCD
and works in the framework of SCETII with Glaubers. In
our work we only considered the modes of SCETI with
Glauber gluons added and used a toy scalar field theory.
At the two-loop order we ran into divergent integrals,
which we regulated in a certain way; see the discussion
below Eq. (37). This allowed us to recover the correct
Regge behavior from the method of regions. Using SCETII

with a rapidity regulator [18] seems to be one promising
direction towards a consistent EFT formulation of the
Regge behavior.
Neither this work nor [14] (nor the early work

of [13]) is the final word on this subject. It is a common
practice to apply SCET to resum Sudakov logarithms in
high energy processes to very high orders in the loga-
rithmic accuracy. The effective theory language is par-
ticularly efficient operationally. We hope that the results of
this paper will guide the construction of a consistent EFT
formulation of QCD that explains Regge behavior and
allows the resummation of Regge logs similarly to existing
techniques for Sudakov resummation. We need a tech-
nology that starts from the effective Lagrangian which
allows a theorist to provide complete descriptions of
processes including the usual SCET calculations but, in
addition, include Regge contributions when appropriate.
The good news is that we can now see that Regge
physics can be compatible with the effective field theory.
However, we do not yet have the complete technology to
include such effects in a realistic calculation in a trans-
parent and consistent fashion. From this work it follows
that SCETG is an obvious candidate for such an effective
field theory. We will pursue such an approach in
future work.
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APPENDIX A: THE BOX DIAGRAM
AT ONE-LOOP ORDER

1. Full theory (QCD)

In this appendix, we list the calculational details
of the box diagram in the full theory. We employ
conventional Feynmann parametrization and integrate over
the loop momentum to find within our regularization
scheme

Mbox
QCD ¼ g4

16π2

Z
1

0

dx1dx2dy1dy2
δð1 − x1 − x2 − y1 − y2Þ
½x1x2sþ y1y2t −m2�2

ðA1Þ

where it is understood that

s ¼ sþ i0; m2 ¼ m2 − i0: ðA2Þ

The result can be expressed in terms of four basic integrals

Mbox
QCD ¼ g4

16π2
½I1ðs; t; m2Þ þ I2ðs; t; m2Þ

þ I1ðt; s;m2Þ þ I2ðt; s;m2Þ� ðA3Þ

where

I1ða; b;m2Þ ¼
Z

1

0

dy
lnðað1 − yÞ − byÞ − lnð−byÞ
yð1 − yÞab −m2a − y2b2

;

I2ða; b;m2Þ ¼
Z

1

0

dy
lnðm2 − yð1 − yÞbÞ − lnðm2Þ
yð1 − yÞab −m2a − y2b2

:

We list the results of the basic integrals in the Regge limit
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I1ðs;t;m2Þ¼ 1

stα

�
ln

�
s
−t

�
ln

�
rþ0
r−0

�
2
�

I2ðs;t;m2Þ¼ 1

stα

�
ln

�
−t
m2

�
ln

�
rþ0
r−0

�
2

þ ln2lþ− ln2ð−l−Þ−2 lnðαÞ ln
�
−l−

lþ

�
þ2Li2

�
−l−

α

�
−2Li2

�
lþ

α

��

I1ðt;s;m2Þ¼ 1

stα

�
ln

�
s
−t

�
ln

�
r−0
rþ0

�
2

þLi2

�
1

r−0

�
−Li2

�
1

rþ0

�
−Li2

�
s

−tr−0

�
þLi2

�
s

−trþ0

�
þLi2

�
s
trþ0

�
−Li2

�
s
tr−0

��

I2ðt;s;m2Þ¼ 1

stα

�
− ln

�
−s
m2

�
ln

�
r−0
rþ0

�
þLi2

�
m2

m2− trþ0

�
−Li2

�
m2

m2− tr−0

�
þLi2

�
s

tr−0 −m2

�
−Li2

�
s

trþ0 −m2

�

− iπ

�
ln

�
−trþ0
s

�
− ln

�
tr−0
s

�
þ ln

�
s

m2− tr−0

�
− ln

�
s

m2− trþ0

��
þ ln

�
m2

s

��
ln

�
trþ0

trþ0 −m2

�
− ln

�
tr−0

tr−0 −m2

���
;

ðA4Þ

where

r�0 ¼ 1

2
ð1� χðtÞÞ; χðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
: ðA5Þ

We note the important simplification

ln
�

tr�0
tr�0 −m2

�
¼ ln

�
1

r�0

�
: ðA6Þ

The crossed-box amplitude reads

Mcross
QCD ¼ g4

16π2

Z
1

0

dx1dx2dy1dy2
δð1 − x1 − x2 − y1 − y2Þ
½x1x2uþ y1y2t −m2�2 : ðA7Þ

In the Regge limit, u ≈ −s and hence

Mcross
QCD ¼ g4

16π2
½I1ð−s; t; m2Þ þ I2ð−s; t; m2Þ þ I1ðt;−s;m2Þ þ I2ðt;−s;m2Þ�: ðA8Þ

Upon summing both amplitudes, all terms cancel except the dilogarithms whose arguments approach infinity in the Regge
limit. Those must be expanded and handled carefully, with the final result being

MQCD ¼ ig4

8πstχðtÞ ln
�
χðtÞ − 1

χðtÞ þ 1

�
: ðA9Þ

2. Modes in the EFT

Expanding the one-loop box integral in the n-collinear region we get

Mð1Þ
n ¼ ð−iÞg4 1

2

Z
d4l
ð2πÞ4

1

ðl2 −m2 þ i0Þðl−ðlþ qÞþ − ðl⊥ þ q⊥Þ2 −m2 þ i0Þ

×

�
1

ðl− −
ffiffiffi
s

p Þlþ − l2⊥ −m2 þ i0
þ 1

ðl− þ ffiffiffi
s

p Þðlþ qÞþ − ðl⊥ þ q⊥Þ2 −m2 þ i0

�

×

�
1ffiffiffi

s
p

l− þ i0
þ 1

−
ffiffiffi
s

p
l− þ i0

�
: ðA10Þ

This integral nicely collapses upon using the following identity:
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1

xþ iε
−

1

x − iε
¼ −2iπδðxÞ: ðA11Þ

The n̄-collinear region yields an identical result, and we find7

Mð1Þ
n ¼ Mð1Þ

n̄ ¼ Mð1Þ
QCD: ðA12Þ

The overlap contribution of these two modes is nonvanishing and must be taken into account in order to correctly reproduce
the full theory result

Mð1Þ
n=n̄ ¼ ð−iÞg4 1

2

Z
d4l
ð2πÞ4

1

ðl2 −m2 þ i0Þðlþl− − ðl⊥ þ q⊥Þ2 −m2 þ i0Þ

×

�
1

−
ffiffiffi
s

p
l− þ i0

þ 1ffiffiffi
s

p
l− þ i0

�
×

�
1ffiffiffi

s
p

lþ þ i0
þ 1

−
ffiffiffi
s

p
lþ þ i0

�
; ðA13Þ

with the final result

Mð1Þ
n=n̄ ¼ Mð1Þ

QCD: ðA14Þ

In soft collinear effective theory with Glauber modes, an additional graph appears where the loop momentum is that of
Glauber scaling lðλ2; λ2; λÞ. The box integral in that momentum region reads

Mð1Þ
G ¼ ð−iÞg4 1

2

Z
d4l

ðl2⊥ þm2 − i0Þððl⊥ þ q⊥Þ2 þm2 − i0Þ

×

�
1

ð−l2⊥ −
ffiffiffi
s

p
l · n̄ −m2 þ i0Þ þ

1

ð−l2⊥ þ ffiffiffi
s

p
l · n̄ − 2l⊥ · q⊥ −m2 þ i0Þ

�

×

�
1

ð−l2⊥ þ ffiffiffi
s

p
l · n −m2 þ i0Þ þ

1

ð−l2⊥ −
ffiffiffi
s

p
l · n − 2l⊥ · q⊥ −m2 þ i0Þ

�
: ðA15Þ

The integral is elementary and yields

Mð1Þ
G ¼ Mð1Þ

QCD: ðA16Þ

When adding the Glauber as an independent mode, overlaps with collinear modes must be taken into account

Mð1Þ
n=G ¼ ð−iÞg4 1

2

Z
d4l

ðl2⊥ þm2 − i0Þððl⊥ þ q⊥Þ2 þm2 − i0Þ

×

�
1

−
ffiffiffi
s

p
l · n̄þ i0

þ 1ffiffiffi
s

p
l · n̄þ i0

�

×

�
1

ð−l2⊥ þ ffiffiffi
s

p
l · n −m2 þ i0Þ þ

1

ð−l2⊥ −
ffiffiffi
s

p
l · n − 2l⊥ · q⊥ −m2 þ i0Þ

�
; ðA17Þ

7Note that from using Eq. (A11) it becomes clear that the true leading momentum region that contributes to this loop integral comes
from a subregion where l− ¼ 0. This is precisely the Glauber region, which is the subregion of the collinear region. Thus, the final
answer, which is imaginary, arises from an on-shell intermediate mode, consistently with the unitarity. We thank our referee for
emphasizing this point to us.
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Mð1Þ
n̄=G ¼ ð−iÞg4 1

2

Z
d4l

ðl2⊥ þm2 − i0Þððl⊥ þ q⊥Þ2 þm2 − i0Þ

×

�
1

ð−l2⊥ −
ffiffiffi
s

p
l · n̄ −m2 þ i0Þ þ

1

ð−l2⊥ þ ffiffiffi
s

p
l · n̄ − 2l⊥ · q⊥ −m2 þ i0Þ

�

×
�

1ffiffiffi
s

p
l · nþ i0

þ 1

−
ffiffiffi
s

p
l · nþ i0

�
; ðA18Þ

Mð1Þ
n=n̄=G ¼ ð−iÞg4 1

2

Z
d4l

ðl2⊥ þm2 − i0Þððl⊥ þ q⊥Þ2 þm2 − i0Þ
�

1

−
ffiffiffi
s

p
l · n̄þ i0

þ 1

þ ffiffiffi
s

p
l · n̄þ i0

�

×

�
1

þ ffiffiffi
s

p
l · nþ i0

þ 1

ð− ffiffiffi
s

p
l · nþ i0

�
: ðA19Þ

The result of each is identical to the Glauber integral

Mð1Þ
n=G ¼ Mð1Þ

n̄=G ¼ Mð1Þ
n=n̄=G ¼ Mð1Þ

G ¼ Mð1Þ
QCD: ðA20Þ

APPENDIX B: THE LADDER DIAGRAM AT TWO-LOOP ORDER

1. Full theory (QCD)

Using Cutkosky’s rules, the imaginary part of the two-loop ladder graph in the full theory (QCD) can be
written as

ImMð2Þ
QCD ¼ g6

64π5

Z
d4l1d4l2

δþ½ðp1 − l1Þ2 −m2�δþ½ðl1 − l2Þ2 −m2�δþ½ðp2 þ l2Þ2 −m2�
ðl21 −m2Þðl22 −m2Þððl1 þ qÞ2 −m2Þððl2 þ qÞ2 −m2Þ ; ðB1Þ

where δþðp2 −m2Þ ¼ θðp0Þδðp2 −m2Þ. One can work out the result of performing integration over lþ1 , lþ2 , l−2
integrals using the three delta functions. Working out the delta and theta functions for t ¼ 0 leads to the
following:

ImMð2Þ
QCD ¼ g6

256π5
1

s

Z
d2l1⊥d2l2⊥

θðs − ð ffiffiffiffiffiffi
Δ1

p þ ffiffiffiffiffiffi
Δ2

p þ ffiffiffiffiffiffiffiffi
Δ12

p Þ2Þ
ðΔ1Δ2Þ2

Il−
1
; ðB2Þ

where

Il−
1
¼ 1

s

Z
ymax

ymin

dl−1

ffiffiffi
s

p
− l−1
l−1

1

jx1 − x2j
X2
i¼1

ð ffiffiffi
s

p þ xiÞ2: ðB3Þ

In the equation above, the limits of integration are dictated by the theta functions in the cut diagram and ymin and ymax are the
smallest and biggest of the roots of the quadratic equation:

ffiffiffi
s

p
yð ffiffiffi

s
p

− yÞ ¼ Δ1yþ ð
ffiffiffiffiffiffi
Δ2

p
þ

ffiffiffiffiffiffiffiffi
Δ12

p
Þ2ð ffiffiffi

s
p

− yÞ: ðB4Þ

In Eq. (B3), x1, x2 are the two roots of the quadratic equation (in x):�
l−1 −

Δ2ffiffiffi
s

p þ x

��
xþ Δ1ffiffiffi

s
p

− l−1

�
þ Δ12 ¼ 0: ðB5Þ

Integrand in Eq. (B3) is equal to the fourth order polynomial in the l−1 divided by a square root of a fourth order polynomial
in the denominator and divided by ðl−1 Þ2. The integrand simplifies if one keeps all the roots of the numerator and
denominator (in l−1 ) to the leading order in s → ∞. Then one gets
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Il−
1
≈

1ffiffiffi
s

p
Z

α3

α2

dl−1
ðl−1 Þ2

ðl−1 − β1Þðl−1 − β2Þðα3 − l−1 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl−1 − α1Þðl−1 − α2Þ
p ; ðB6Þ

where

α1 ¼
ð ffiffiffiffiffiffiffiffi

Δ12

p
−

ffiffiffiffiffiffi
Δ2

p Þ2ffiffiffi
s

p ; α2 ¼
ð ffiffiffiffiffiffiffiffi

Δ12

p þ ffiffiffiffiffiffi
Δ2

p Þ2ffiffiffi
s

p ; α3 ¼
ffiffiffi
s

p
; β1;2 ¼

Δ12 �
ffiffiffiffiffiffi
Δ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δ12 − Δ2

pffiffiffi
s

p : ðB7Þ

Performing the integral above and keeping the leading s → ∞ term gives

Il−
1
≈ ln

s
Δ12

− 2: ðB8Þ

The last integral can be done exactly and expanded. It can also be noticed that since theΔ1 dependence dropped out from all
roots in Eq. (B7), and because the original expression was symmetric in Δ1 and Δ2 one can could have guessed that the
answer is independent on Δ2 to the leading order as s → ∞. A calculation of the integral in Eq. (B6) with Δ2 ¼ 0 is much
simpler and leads to same result as in Eq. (B8). Thus, we get the final result

ImMð2Þ
QCD ¼ g6

256π5
1

s

Z
d2l1⊥d2l2⊥

θðs − ð ffiffiffiffiffiffi
Δ1

p þ ffiffiffiffiffiffi
Δ2

p þ ffiffiffiffiffiffiffiffi
Δ12

p Þ2Þ
ðΔ1Δ2Þ2

�
ln

s
Δ12

− 2

�
: ðB9Þ

Note that this result has been derived assuming that t ¼ −q2⊥ ¼ 0. Also note that to the leading order in Δ=s the theta
function can be set to 1.

2. Modes in the EFT

The two-loop graph in which first momentum is collinear (l1) and second one is Glauber gluon (l2) is equal to

ImMð2Þ
nG ¼ g6

64π5

Z
d4l1d4l2

δþ½ð−lþ1 Þð
ffiffiffi
s

p
− l−1 Þ − Δ1�δþ½ðlþ1 − lþ2 Þl−1 − Δ12�δþ½

ffiffiffi
s

p
l−2 − Δ2�θð

ffiffiffi
s

p þ lþ2 Þ
ðlþ1 l−1 − Δ1Þð−Δ2Þððlþ1 þ qþÞl−1 − Δ1qÞð−Δ2qÞ

: ðB10Þ

The expression above can be found from expanding the full QCD graph in the given momentum region. The integration
over lþ1 , l

þ
2 , l

−
2 can be performed using the three delta functions. As a result we get

ImMð2Þ
nG ¼ 1

s

Z
d2l1⊥d2l2⊥

θðs − ð ffiffiffiffiffiffiffiffi
Δ12

p þ ffiffiffiffiffiffi
Δ1

p Þ2Þ
Δ1Δ2Δ1qΔ2q

Il−
1
; ðB11Þ

where

Il−
1
¼

Z ffiffi
s

p

Δ12=
ffiffi
s

p
dl−1
l−1

Δ1q

Δ1q þ ð Δ1ffiffi
s

p
−l−

1

þ qþÞl−1
¼ ln

s
Δ12

þ 1

2
ln
Δ1q

Δ1

−
arctanU

U
: ðB12Þ

In the equation above the quantity U equals to

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Δ1Δ1q

ðtþ Δ1 þ Δ1qÞ2
− 1

s
: ðB13Þ

For all the values of t, Δ1, Δ1q consistent with their values as a function of l1⊥, l2⊥, m the quantity U > 0. Thus, we get the
following final result for this two-loop nG loop integral:

ImMð2Þ
nG ¼ g6

256π5
1

s

Z
d2l1⊥d2l2⊥

θðs − ð ffiffiffiffiffiffiffiffi
Δ12

p þ ffiffiffiffiffiffi
Δ1

p Þ2Þ
Δ1Δ2Δ1qΔ2q

�
ln

s
Δ12

þ 1

2
ln
Δ1q

Δ1

−
arctanU

U

�
: ðB14Þ

Similar calculations for the ImMð2Þ
Gn̄ graph leads to an identical result.
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APPENDIX C: OVERLAP SUBTRACTION
FORMULA

Here, we derive a master formula to account for overlaps
given a number of regions. We start by stating certain
assumptions about the construction [5]. In the following, a
given region is denoted by Ri and the full domain of
integration by R. We have

Ri∩…∩Rj ¼ ∅; Ri∪…∪Rj ¼ R: ðC1Þ

We also assume that expansions commute; for example,
Mð1Þ

nn̄ ¼ Mð1Þ
n̄n as easily found in our explicit calculations.

The last important property is that an integral converges
absolutely within any region if the integrand is expanded
appropriately. First, the full integral for N modes is
identically equal to

Z
R
dlI ¼

XN
i¼1

Z
Ri

dlIi: ðC2Þ

With some work, the integral in any given region can be
written identically as follows:

Z
Ri

dlIi ¼
Z
R
dlIi −

Z
R
dl

XN
j≠i

Iji þ
Z
R
dl

XN
j≠i

XN
k≠i

Ijki

− 4-fold overlapsþ � � �

þ
Z
Ri

dl
XN
j≠i

Iji −
Z
Ri

dl
XN
j≠i

XN
k≠i

Ijki

þ 4-fold overlaps − � � � : ðC3Þ

Notice that the sums are constrained to avoid double
counting under the assumption of commuting expansions.
For example, if we have a total of four modes

Z
R1

dlI1¼
Z
R
dlI1−

Z
R
dl
X4
i≠1

Ii1þ
Z
R
dl
X4
i≠1

X4
j≠1

Iij1

−
Z
R
dlI3241þ

Z
R1

dl
X4
i≠1

Ii1−
Z
R1

dl
X4
i≠1

X4
j≠1

Iij1

þ
Z
R1

dlI3241: ðC4Þ

Now the full result is obtained by adding all the modes to
yield

Z
R
dlI ¼

Z
R
dl

XN
i¼1

Ii −
Z
R
dl

XN
i¼1

XN
j>i

Iij

þ
Z
R
dl

XN
i¼1

XN
j>i

XN
k>j

Iijk − four overlapsþ � � � :

ðC5Þ

Note that the order of subscript indices does not matter
because expansions commute.
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