
Chiral symmetry and π-π scattering in the covariant spectator theory

Elmar P. Biernat,1,* M. T. Peña,1,2,† J. E. Ribeiro,3,‡ Alfred Stadler,4,1,§ and Franz Gross5,∥
1Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST),

Universidade de Lisboa, 1049-001 Lisboa, Portugal
2Departamento de Física, Instituto Superior Técnico (IST), Universidade de Lisboa,

1049-001 Lisboa, Portugal
3Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST),

Universidade de Lisboa, 1049-001 Lisboa, Portugal
4Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal

5Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606, USA
(Received 5 August 2014; published 14 November 2014)

The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the
framework of the covariant spectator theory (CST) is shown to satisfy the Adler zero constraint imposed by
chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed
in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model.
Then we show that, similar to what happens within the Bethe-Salpeter formalism, application of the axial-
vector Ward-Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate
quark-quark interactions to all orders. The Adler self-consistency zero for π-π scattering in the chiral limit
emerges as the result for this sum.
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I. INTRODUCTION

In the present scenario of both experimental and theo-
retical hadron physics the pion remains an important
system to trace signatures of QCD in empirical observables.
The importance of the pion is multifaceted: it emerges
nonperturbatively as a quark-antiquark bound state, it is
the Goldstone-boson mode associated with spontaneous
chiral-symmetry breaking (SχSB), and it also contributes
significantly, through the formation of a pion cloud, to the
structure of the nucleon and to its coupling to external
photons. In addition, the exchange of pions dominates the
interaction between nucleons at larger distances and gives
rise to a tensor force that strongly influences the structure
of nuclei.
Traditionally, the nonperturbative dynamics underlying

hadronic systems have been addressed from two different
perspectives, constituent quark models [1–4] and QCD sum
rules. These approaches, however, cannot provide a unified
description of light mesons and baryons, nor can they avoid
a delicate fine-tuning between a large number of param-
eters. More recently, QCD simulations on the lattice [5,6],
light-front formulations of quantum field theory [7–9], as
well as models based on the Dyson-Schwinger approach
and mass gap equation [10–20] have contributed to a more
integrated perspective of mesons and baryons.

In particular, the Dyson-Schwinger framework generates
dynamical quark models where the dressed quark mass is
calculated as a function of the momentum, and moreover,
this dynamical generation of quark masses is made con-
sistent with the two-body quark-antiquark dynamics.
However, lattice QCD and Dyson-Schwinger equations
are usually solved in Euclidean space. In contrast, the
covariant spectator theory (CST), used in this paper, works
in Minkowski space, and also exhibits these features.
First model calculations of the pion form factor using the

solutions of the CST-Bethe-Salpeter equation (CST-BSE)
and the CST-Dyson equation (CST-DE) were presented in
Ref. [21]. There, the CST interaction kernel in momentum
space was taken as a δ function plus a covariant generali-
zation of the linear confining interaction.
The confining part in momentum space contains an

important subtraction term that makes sure that it reduces to
the linear potential (in coordinate space) VLðrÞ ∝ r in the
nonrelativistic limit. In particular, it was seen in Ref. [22]
that the condition VLðr ¼ 0Þ ¼ 0 implies that the confine-
ment interaction decouples from the CST-DE for the scalar
part of the dressed quark propagator, as well as from the
CST-BSE for a massless pion in the chiral limit. For a scalar
confining interaction, this decoupling property of our CST
model is a necessary condition to ensure consistency with
chiral symmetry. For the numerical predictions, our model
was calibrated by adjusting the dressed quark mass
function to the existing lattice QCD data.
In this paper we submit our model to a more stringent

test. We present the CST calculation of the π-π scattering
amplitude in the chiral limit, and conclude that it satisfies
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the Adler self-consistency zero as imposed by chiral
symmetry (see Ref. [23]), provided the interaction kernel
satisfies the axial-vector Ward-Takahashi identity (AV-
WTI). There are various possible choices for the Lorentz
structure of the kernel that satisfy the AV-WTI. We choose a
mixture of scalar, pseudoscalar, vector, axial-vector, and
tensor structures for the confining interaction, in combi-
nation with a vector–axial-vector structure for the remain-
ing part of the kernel. Although one lacks first-principle
evidence for scalar quark confinement, it is still quite
important to study to what extent such confining forces
can be made compliant with SχSB. To this effect the
AV-WTI will play a fundamental role when it comes to
evaluate, to all orders of kernel insertions and independ-
ently of parameter fixing, π-π scattering and the corre-
sponding π-π Adler zero.
This paper is organized as follows: In Sec. II a brief

review of the CST formalism is given. In Sec. III we discuss
the constraints imposed by the AV-WTI on the CST
interaction kernel and we specify the particular form of
the kernel to be used in this paper. In Sec. IV we present a
calculation of π-π scattering, first in the simple impulse
approximation that is seen not to comply with the Adler zero
in the chiral limit, and then to all orders in intermediate
interactions that does yield the Adler zero. Finally, in Sec. V
we present a brief summary and our main conclusions.

II. BRIEF REVIEW OF THE CST FRAMEWORK

The purpose of this section is to briefly review the basic
ideas of the CST when applied to quark-antiquark mesons
[24,25]. First, let us consider the four-dimensional BSE
[26] for heavy-light mesons. It is well known [27] that
cancellations occur between iterations of ladder diagrams

and higher-order crossed-ladder diagrams in the complete
kernel of the BSE. Owing to this, the omission of
crossed-ladder diagrams and of certain pole contributions
of the ladder diagrams from the kernel can actually yield a
better approximation to the exact BSE than the ladder
approximation does.
This fundamental idea of CST emerges more formally

from reorganizing the Bethe-Salpeter series, with a com-
plete kernel and (off-mass-shell) two-particle propagators,
into an equivalent form—the CST equation—where both
the kernel and propagators in the intermediate states are
redefined. In the heavy-light case, the new quark propa-
gators are chosen in such a way that, when the new kernel is
truncated, only the positive-energy pole contribution from
the heavy quark propagator in the energy loop integration is
kept, which effectively corresponds to taking the heavy
quark to be on its positive-energy mass shell.
The resulting three-dimensional equation, the one-

channel CST (or Gross) equation [28], is manifestly
covariant. But, unlike the BSE in ladder approximation,
the CST equation also has a smooth nonrelativistic
limit, and it can thus be viewed as a natural covariant
extension of the quantum mechanical Dirac and
Schrödinger equations to quantum field theory. While
the simple CST equation is very efficient for the description
of heavy-light mesons, in the case of light quarks an
explicitly charge-conjugation-symmetrized CST-BSE must
be used. This is the case for the pion where the vertex
functions of πþ and π− are connected by charge conjuga-
tion and, therefore, both positive- and negative-energy
quark poles must be included.
The idea of symmetrizing over all quark poles generates

the charge-conjugation-symmetric CST-BSE [25],

Γðp1; p2Þ ¼ −
1

2
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where we use the shorthand notation for the three-
dimensional covariant integration volume element,

Z
k
≡
Z

d3k
ð2πÞ3

m
Ek

; ð2Þ

and the last line of Eq. (1) introduces the notation “k0” to
indicate the charge-conjugation invariant CST prescription
for performing the k0 contour integration. This amounts
to keeping the average of the four propagator pole

contributions from closing the contour in both the upper
and the lower half-complex k0 plane (for more details see
Ref. [25]). With these definitions,

i
Z
k0
≡i

Z
d4k
ð2πÞ4

����k0 propagator
poles only

¼ −
1

2

X
propagator
pole terms

Z
k
: ð3Þ

The quantities in Eq. (1) are Γðp1; p2Þ, the (4 × 4) bound-
state vertex function with p1 ¼ pþ P

2
and −p2 ¼ −pþ P

2

the four-momenta of the outgoing quark and antiquark
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(respectively); P, the total bound-state momentum; k̂ ¼
ðEk;kÞ, the on-shell four-momentum with Ek ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
; Vðp; kÞ≡ Vðp; k;PÞ, the interaction kernel;

SðkÞ, the dressed quark propagator; and ΛðkÞ ¼
½Mðk2Þ þ k �=2Mðk2Þ, where Mðk2Þ is the dressed quark
mass function. The kernel is an operator, and we use the
shorthand notation

Vðp; kÞX ≡X
i

Viðp; kÞOiXOi; ð4Þ

where the sum i ¼ fS; P; V; A; Tg is over the five possible
invariant structures that could contribute: scalar, pseudo-
scalar, vector, axial-vector, and tensor. This will be dis-
cussed further when it is needed below. The dressed quark
propagator is given by

SðpÞ ¼ 1

m0 − pþ ΣðpÞ − iϵ
; ð5Þ

wherem0 is the bare quark mass and ΣðpÞ is the quark self-
energy, which is the solution of the one-body CST-DE
involving, for consistency, the same interaction kernel V
that dresses the quark-antiquark vertex. The CST-DE is
given by [25]

ΣðpÞ ¼ 1

2
Z0

Z
k
fVðp; k̂ÞΛðk̂Þ þ Vðp;−k̂ÞΛð−k̂Þg

≡ −i
Z
k0
Vðp; kÞSðkÞ: ð6Þ

Writing the self-energy in the form

ΣðpÞ ¼ Aðp2Þ þ pBðp2Þ ð7Þ

leads to a dressed propagator of the form

SðpÞ ¼ Zðp2Þ Mðp2Þ þ p
M2ðp2Þ − p2 − iϵ

; ð8Þ

where the mass function Mðp2Þ and the wave function
normalization Zðp2Þ are

Mðp2Þ ¼ Aðp2Þ þm0

1 − Bðp2Þ ;

Zðp2Þ ¼ 1

1 − Bðp2Þ ; ð9Þ

and Z0 ≡ Zðm2Þ. For ΣðpÞ ¼ 0, SðpÞ becomes the bare
propagator denoted as S0ðpÞ.
A proof of principle that the CST-Bethe-Salpeter equa-

tion (1) and the CST-Dyson equation (6) are actually
numerically manageable in Minkowski space and that they
underlie a dynamical quark model that incorporates SχSB

(similar to the Dyson-Schwinger approach) was presented
in Refs. [21,25]. In this paper we build on the model
introduced in those recent references, where technical
details can be found.
It was already proven in Refs. [25,29] that in the chiral

limit the pion mass also vanishes, which means that the
CST equations are, at least at this level, not inconsistent
with the requirements of dynamical chiral symmetry
breaking. In the present work we look at the implications
of chiral symmetry on our model coming from the AV-WTI
and π-π scattering in the chiral limit.

III. THE AXIAL-VECTOR WARD-TAKAHASHI
IDENTITY AND THE INTERACTION KERNEL

A. The axial-vector Ward-Takahashi identity

In our previous work, Ref. [25], the quark-antiquark
interaction was regularized by a strong quark form factor h
associated with each quark line entering or leaving a vertex.
These form factors can be moved from the interaction
vertices to the quark propagators, which leads to the
replacement of the original kernel Vðp; kÞ by a reduced
kernel VRðp; kÞ, dressed propagators SðpÞ by damped
dressed propagators ~SðpÞ ¼ h2ðp2ÞSðpÞ, and bare propa-
gators S0ðpÞ by damped bare propagators ~S0ðpÞ ¼
h2ðp2ÞS0ðpÞ. We use reduced kernels that depend only
on the square of the transferred momentum, such that

VRðp − kÞ ¼ h−1ðp2Þh−1ðp02Þh−1ðk2Þh−1ðk02ÞVðp; kÞ;
ð10Þ

where Vðp; kÞ is the kernel of Eq. (1).
Chiral symmetry and its breaking is expressed through

the AV-WTI, which can be derived from the divergence
of the axial-vector current [30]. Expressed in terms of the
reduced vertex functions and the damped propagators, the
familiar AV-WTI for off-shell quarks is

PμΓ
5μ
R ðp0; pÞ þ 2m0Γ5

Rðp0; pÞ ¼ ~S−1ðp0Þγ5 þ γ5 ~S−1ðpÞ
≡ ΓA

Rðp0; pÞ; ð11Þ

where Γ5μ
R ðp0; pÞ is the reduced dressed axial-vector vertex,

Γ5
Rðp0; pÞ the reduced dressed pseudoscalar vertex, ~SðpÞ

the damped dressed propagator, p and p0 are the incoming
and outgoing quark momenta, respectively, and P ¼ p0 − p
is the momentum flowing into the vertex to which the
incoming and outgoing quarks connect. The quantity
ΓA
Rðp0; pÞ defined by the lhs of Eq. (11), which we refer

to as the “axial vertex,” is a convenient combination of the
axial-vector and the pseudoscalar vertices used in
Refs. [31,32]. The identity (11) is illustrated in the upper
panel of Fig. 1. Note that the AV-WTI for bare quark
propagators S0 implies that the bare axial-vector and
pseudoscalar vertices are γ5γμ and γ5, respectively.
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The dressed axial-vector vertex, the dressed pseudosca-
lar vertex, and the dressed axial vertex, ΓA

Rðp0; pÞ, are all
solutions of an inhomogeneous CST-BSE. For the axial
vertex,

ΓA
Rðp0; pÞ ¼ γARðp0; pÞ

þ i
Z
k0
VRðp − kÞ ~Sðk0ÞΓA

Rðk0; kÞ ~SðkÞ; ð12Þ

where γARðp0; pÞ is the reduced bare axial vertex (to be
discussed below) and Eq. (12) is depicted diagrammatically
in Fig. 2. Note that p − k ¼ p0 − k0. The dressed damped
propagator ~SðpÞ is the solution of the CST-DE

~S−1ðpÞ ¼ ~S−10 ðpÞ − i
Z
k0
VRðp − kÞ ~SðkÞ: ð13Þ

Next, look at the implications of the AV-WTI (11) and
how it relates to the one-body CST-DE (13) and to the
inhomogeneous two-body CST-BSE (12). Using Eq. (11)
in the integrand of Eq. (12), the result splits into two
terms,

ΓA
Rðp0; pÞ ¼ γARðp0; pÞ þ i

Z
k0
VRðp − kÞ ~Sðk0Þ

× ½ ~S−1ðk0Þγ5 þ γ5 ~S−1ðkÞ� ~SðkÞ

¼ γARðp0; pÞ þ i
Z
k0
VRðp − kÞγ5 ~SðkÞ

þ i
Z
k0
VRðp0 − k0Þ ~Sðk0Þγ5; ð14Þ

where p0 ¼ Pþ p and k0 ¼ Pþ k, as illustrated in the
lower panel of Fig. 1. On the other hand, with the

shorthand notation h ¼ hðp2Þ and h0 ¼ hðp02Þ, the rhs
of Eq. (11) reads

m0 −p0 þΣðp0Þ
h02

γ5 þ γ5
m0 −pþΣðpÞ

h2

¼ γ5
�
p0

h02
−

p
h2

�
þm0

�
1

h02
þ 1

h2

�
γ5 þ

Σðp0Þ
h02

γ5 þ γ5
ΣðpÞ
h2

;

ð15Þ

and we can now compare Eq. (14) with (15).

B. The reduced bare vertex

First, on both sides we identify all quantities that do not
involve contributions to the self-energy from the dynamical
dressing by the kernel, and conclude that

γARðp0; pÞ ¼ γ5

�
p0

h02
−

p
h2

�
þm0

�
1

h02
þ 1

h2

�
γ5

¼ ~S−10 ðp0Þγ5 þ γ5 ~S−10 ðpÞ: ð16Þ

This is an AV-WTI for the damped bare vertex and
propagators. It can be satisfied by decomposing
γARðp0; pÞ into its pseudoscalar and axial-vector parts,

γARðp0; pÞ ¼ Pμγ
5μ
R ðp0; pÞ þ 2m0γ

5
Rðp0; pÞ; ð17Þ

and making the following simple Ansätze for γμ5R and γ5R in
the manner of Refs. [33–35]:

γ5μR ðp0; pÞ ¼ fAðp0; pÞγ5γμ
þ gAðp0; pÞΛ0ð−p0Þγ5γμΛ0ð−pÞ ð18Þ

and

γ5Rðp0; pÞ ¼ fPðp0; pÞγ5
þ gPðp0; pÞΛ0ð−p0Þγ5Λ0ð−pÞ; ð19Þ

where Λ0ðpÞ¼ðm0þpÞ=2m0. The form factors fAðp0; pÞ,
gAðp0; pÞ, fPðp0; pÞ, and gPðp0; pÞ are then determined
to be

FIG. 2 (color online). The inhomogeneous CST-BSE for
ΓA
Rðp0; pÞ.

FIG. 1 (color online). (Top panel) The AV-WTI illustrated
diagrammatically for the dressed current. (Bottom panel) Rep-
resentation of the rhs of Eq. (12) after application of the AV-WTI
from the top panel. Each red arrowed line denotes a dressed quark
propagator. The purple blobs denote γ5 matrices and the pink
blobs denote the Dirac structure of the kernel.

BIERNAT et al. PHYSICAL REVIEW D 90, 096008 (2014)

096008-4



fAðp0; pÞ ¼ fPðp0; pÞ ¼ m2
0 − p02

h02ðp2 − p02Þ −
m2

0 − p2

h2ðp2 − p02Þ
ð20Þ

gAðp0; pÞ ¼ −gPðp0; pÞ ¼ 4m2
0

p02 − p2

�
1

h2
−

1

h02

�
: ð21Þ

If we set all quark form factors h to 1, then fAðp0; pÞ → 1
and gAðp0; pÞ → 0, such that γ5μR ðp0; pÞ → γ5γμ and
γ5Rðp0; pÞ → γ5. In this case, the damped bare AV-WTI
(16) becomes the bare one involving S0, as used, for
instance, in Ref. [32].

C. Constraints on the interaction kernel

The aim of this subsection is to determine the general
form of the covariant interaction kernel VRðp − kÞ such that
the AV-WTI (11) is satisfied. Recalling the decomposition
(4), the reduced kernel will be written in the form

VRðp − kÞ ¼ VSRðp − kÞ1 ⊗ 1þ VPRðp − kÞγ5 ⊗ γ5

þ VVRðp − kÞγμ ⊗ γμ

þ VARðp − kÞγ5γμ ⊗ γ5γμ

þ 1

2
VTRðp − kÞσμν ⊗ σμν; ð22Þ

where the corresponding factors in the decomposition
of Vðp; k;PÞ include the strong quark form factors
and are therefore Viðp; p0; k; k0Þ ¼ hðp2Þhðp02Þhðk2Þhðk02Þ
ViRðp − kÞ. Using this decomposition, comparing
Eqs. (14) and (15), and extracting the γ5, we see that
preserving the AV-WTI is tantamount to requiring that

i
Z
k0
V̂Rðp − kÞ ~SðkÞ ¼ ΣðpÞ

h2ðp2Þ ; ð23Þ

where the operator V̂Rðp − kÞ is obtained from the
operator VRðp − kÞ by changing the sign of the vector
and axial-vector components of VRðp − kÞ. Using (22),
(23) reduces to

ΣðpÞ
h2ðp2Þ ¼ i

Z
k0

�
VSRðp− kÞ ~SðkÞ þVPRðp− kÞγ5 ~SðkÞγ5

−VVRðp− kÞγμ ~SðkÞγμ −VARðp− kÞγ5γμ ~SðkÞγ5γμ
þ 1

2
VTRðp− kÞσμν ~SðkÞσμν

�
: ð24Þ

By comparing this equation with the one-body CST-DE
for the self-energy, Eq. (6), using the same kernel
we conclude, given the signs in front of the scalar,
pseudoscalar, and tensor interaction terms in (24), that the
AV-WTI links the one-body CST-DE with the two-body
CST-BSE, Eq. (14), if and only if

Z
k0

�
VSRðp − kÞ ~SðkÞ þ VPRðp − kÞ ~Sð−kÞ

þ 1

2
VTRðp − kÞσμν ~SðkÞσμν

�
¼ 0: ð25Þ

In the literature, the most common realization of this
type of condition is achieved by setting VSRðp − kÞ ¼
VPRðp − kÞ ¼ VTRðp − kÞ ¼ 0, i.e., by using only inter-
action kernels that anticommute with γ5, like vector or
axial-vector (e.g., see Refs. [32,36,37]).
In this work we use a kernel that does include non-

vanishing scalar, pseudoscalar, and tensor structures, but is,
nevertheless, consistent with the AV-WTI. Other models
with this feature exist in the literature. In Ref. [38], a tensor
term was chosen in such a way that Eq. (25) is satisfied. In
our case, it is the implementation of linear confinement in
the CST framework that makes sure Eq. (25) holds, with or
without a tensor term.

D. Linear confinement

In this section we specify the momentum-dependent
parts of the kernel and we discuss, in particular, how
confinement is implemented in our CST model. In the
literature there are several examples of confinement poten-
tials. For instance, it is well known that the static potential
in the quenched approximation of lattice QCD can be
parametrized by a Cornell-type potential [39].
However the chiral limit is quite different from the

quenched limit. In this paper we want to investigate how a
linear scalar confinement can be made compatible with
SχSB. Other Lorentz structures are possible, namely vector
confinement, but here we choose scalar confinement as the
most stringent case still able to hold the phenomenology of
chiral symmetry.
To this end, we implement linear confinement in a

relativistically generalized form of the momentum-
dependent kernel functions ViR in Eq. (22). The confine-
ment part of the ViR’s is denoted VL, and its action on an
arbitrary function ϕ of the off-shell quark momentum p, in
the one-body CST-DE, is given by

hVLϕiðpÞ ¼
1

2

Z
k
VAðp; k̂Þ½ϕðk̂Þ − ϕðp̂RÞ�

þ 1

2

Z
k
VAðp;−k̂Þ½ϕð−k̂Þ − ϕðp̂RÞ�; ð26Þ

where

VAðp; k̂Þ ¼ −h2ðp2Þh2ðm2Þ 8πσ

ðp − k̂Þ4 ; ð27Þ

and k̂ is the on-shell quark momentum in the loop integral.
The subtraction term, ϕðp̂RÞ, regularizes the singularities of
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VA at ðk̂ − p̂Þ2 ¼ 0. The argument of the subtraction term
is p̂R ¼ ðEpR

;pRÞ, where pR ¼ pRðp0;pÞ are the values
of k at which either VAðp; k̂Þ or VAðp;−k̂Þ become
singular.

When applied to the wave function Ψðp1; p2Þ of a
two-quark system depending on the quark momenta
p1 ¼ pþ P=2 and p2 ¼ p − P=2, the action of VL is
defined by

hVLΨiðp1; p2Þ ¼
1

2

Z
k

�
VA

�
p; k̂−

P
2

�
½Ψðk̂; k̂−PÞ−Ψðp̂þ

R1; p̂
þ
R1 −PÞ� þVA

�
p; k̂þP

2

�
½Ψðk̂þP; k̂Þ−Ψðp̂þ

R2 þP; p̂þ
R2Þ�

þVA

�
p;−k̂−

P
2

�
½Ψð−k̂;−k̂−PÞ−Ψð−p̂−

R1;−p̂−
R1 −PÞ�

þVA

�
p;−k̂þP

2

�
½Ψð−k̂þP;−k̂Þ−Ψð−p̂−

R2 þP;−p̂−
R2Þ�

	
; ð28Þ

where now

VAðp; kÞ ¼ −hðp2
1Þhðp2

2Þhðk21Þhðk22Þ
8πσ

ðp − kÞ4 ; ð29Þ

with k1 ¼ kþ P=2, k2 ¼ k − P=2, and p�
R1 and p�

R2 being
the values of k at which VAðp;�k̂ − P

2
Þ and VAðp;�k̂þ P

2
Þ

become singular, respectively. The CST wave functions
where one quark is on shell are

Ψðp̂1; p2Þ ¼ Λðp̂1ÞΓðp̂1; p2ÞSðp2Þ; ð30Þ

Ψðp1; p̂2Þ ¼ Sðp1ÞΓðp1; p̂2ÞΛðp̂2Þ: ð31Þ

The subtraction terms regularize both the diagonal
singularities of VA at ðk̂ − p̂Þ2 ¼ 0, i.e., in channels where
the same quark is on mass shell in the initial and
intermediate states, and the off-diagonal singularities at
ð�k̂þ P − p̂Þ2 ¼ 0, which occur in channels with different
quarks on mass shell in the initial and intermediate states.
The subtraction also leads directly to the important relation

hVLiðpÞ ¼
Z
k
VLðp; k̂Þ ¼ 0; ð32Þ

which is a relativistic generalization of the nonrelativistic
VLðr ¼ 0Þ ¼ 0.
Equation (32) allows the use of scalar, pseudoscalar, and

tensor confining interactions in a way that is still consistent
with chiral symmetry, because it makes it possible to satisfy
Eq. (25). How this works in detail will be addressed shortly.
As a consequence of Eq. (32), the linear confinement

VL does not contribute to the scalar part of the self-energy
Aðp2Þ [which means that ALðp2Þ ¼ 0], nor to the pion
equation in the chiral limit [22]. Therefore, a scalar
component in the confinement potential is not necessarily
inconsistent with chiral symmetry.
To discuss the implications of the AV-WTI on the kernel

let us specify the Dirac structure of VR as follows:

VSRðp − kÞ ¼ λSVLRðp − kÞ;
VPRðp − kÞ ¼ λPVLRðp − kÞ;
VVRðp − kÞ ¼ λVVLRðp − kÞ þ κVVCRðp − kÞ;
VARðp − kÞ ¼ λAVLRðp − kÞ þ κAVCRðp − kÞ;
VTRðp − kÞ ¼ λTVLRðp − kÞ: ð33Þ

Here VLR is the reduced version of VL, and VCR is a
Lorentz invariant function representing the nonconfining
part of the interquark interaction of Eq. (22). The weight
parameters λi and κi are constants. For a pure vector–
axial-vector kernel, with λS ¼ λP ¼ λT ¼ 0, Eq. (25) is
trivially satisfied. However, a nontrivial realization is also
possible. To obtain this, insert VSR, VPR, and VTR of (33)
into (25) and separate scalar and vector parts:

Z
k0
VSRðp − kÞ ~SðkÞ þ

Z
k0
VPRðp − kÞ ~Sð−kÞ

þ 1

2

Z
k0
VTRðp − kÞσμν ~SðkÞσμν

∝ ðλS þ λP þ 6λTÞ
Z
k
½VLRðp − k̂Þ þ VLRðpþ k̂Þ�

þ ðλS − λPÞ
Z
k

k̂
m
½VLRðp − k̂Þ − VLRðpþ k̂Þ�: ð34Þ

According to Eq. (32), the first integral vanishes becauseR
k VLðp; k̂Þ ¼

R
k VLðp;−k̂Þ ¼ 0. For the second term to

be zero we have to choose λS ¼ λP, since the integral
does not vanish. Note that λT is not constrained by
Eq. (34) because the tensor part of the kernel does
not contribute to the vector part of the self-energy.
We conclude that a kernel that includes scalar linear
confinement also requires an equal-weighted pseudosca-
lar counterpart, in order to satisfy the AV-WTI.
Equation (32) implies that, in the chiral limit, only the
nonconfining part of the kernel, VCðp; kÞ ¼
½κVðγμ ⊗ γμÞ þ κAðγ5γμ ⊗ γ5γμÞ�VCðp; kÞ, contributes to
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the massless pion equation. This is diagrammatically
depicted in Fig. 3 and was proven in Ref. [25].
With the AV-WTI-preserving CST choice λS ¼ λP the

contributions of the scalar and the pseudoscalar parts of the
linear confining kernel to the self-energy cancel exactly.
Therefore, only the vector and axial-vector parts of the
linear kernel contribute to the self-energy Σ, here denoted
as ΣL. However, as one moves away from the chiral limit
the scalar, pseudoscalar, and tensor terms in the potential
start to play a role.
Now, inserting Eq. (33) into Eq. (6) gives

ΣLðpÞ ¼ −i
Z
k0
VVRðp − kÞγμ ~SðkÞγμ

− i
Z
k0
VARðp − kÞγ5γμ ~SðkÞγ5γμ

∝ 4ðλV − λAÞ
Z
k
½VLRðp − k̂Þ þ VLRðpþ k̂Þ�

− 2ðλV þ λAÞ
Z
k

k̂
m
½VLRðp − k̂Þ − VLRðpþ k̂Þ�:

ð35Þ

As in Eq. (34), the first integral vanishes becauseR
k VLðp; k̂Þ ¼

R
k VLðp;−k̂Þ ¼ 0. The second integral does

not vanish and contributes to the self-energy, unless
λV ¼ −λA.
After this discussion of the general form of the inter-

action kernel, in the remainder of this paper we specialize to
the particular case

VRðp − kÞ ¼ VLRðp − kÞ
�
λSð1 ⊗ 1Þ þ λSðγ5 ⊗ γ5Þ

þ λVðγμ ⊗ γμÞ þ λAðγ5γμ ⊗ γ5γμÞ

þ λT
2
ðσμν ⊗ σμνÞ

�
þ VCRðp − kÞ

× ½κVðγμ ⊗ γμÞ þ κAðγ5γμ ⊗ γ5γμÞ�: ð36Þ

E. The pion vertex function and the axial
vertex in the chiral limit

Before we turn to π-π scattering, it is useful to consider
the implications of the AV-WTI on the pion and on the axial
vertex functions in the chiral limit.

1. Bare axial vertex

We start with the reduced bare axial vertex γARðp0; pÞ
as parametrized in Eqs. (17)–(21). In the chiral limit of
vanishing bare quark mass, m0 → 0, and vanishing vertex
momentum, Pμ → 0, fAðp0; pÞ remains finite whereas
gAðp0; pÞ vanishes, and thus the axial-vector vertex con-
tracted with Pμ vanishes. For the remaining pseudoscalar
part we have for the form factors in the limit Pμ → 0

fPðp; pÞ ¼
1

h2ðp2Þ þ
2ðm2

0 − p2Þ
h3ðp2Þ

dhðp2Þ
dp2

ð37Þ

and

gPðp; pÞ ¼ −
8m2

0

h3ðp2Þ
dhðp2Þ
dp2

: ð38Þ

The derivative terms in γARðp0; pÞ of Eq. (17) cancel, and
γARðp; pÞ becomes

γARðp; pÞ ¼
2m0

h2ðp2Þ γ
5; ð39Þ

as it should according to Eq. (16), and thus in the chiral
limit

lim
m0→0

p0→p

γARðp0; pÞ ¼ 0: ð40Þ

2. Dressed axial vertex

Because of Eq. (40), the CST-BS equation (12) for ΓA
R

becomes homogeneous in the chiral limit, and using the
AV-WTI in the form of Eq. (11), this vertex function can be
expressed directly in terms of the scalar mass function
Aðp2Þ,

ΓA
Rχðp; pÞ ¼ γ5

2Aχðp2Þ
h2ðp2Þ ; ð41Þ

where Aχ is the chiral limit of A. Since a finite quark mass is
generated by SχSB, Aχ is nonzero, and it is clear from
Eq. (41) that ΓA

Rχðp; pÞmust also be finite in this limit. Note
that the pion produces poles in both Γ5

R and Γ5μ
R , with

the corresponding residues constrained to cancel through
the AV-WTI (for details, see, for instance, Ref. [32]). In
Ref. [25], we found that the CST-BSE (1) for a massless
pion becomes identical to the scalar part of the CST-DE (6)
in the chiral limit, provided the interaction kernel satisfies
condition (25). This implies, in particular, the relation

FIG. 3 (color online). In the chiral limit of vanishing pion mass
only the nonconfining part of the kernel contributes to the pion
CST equation. Each red or blue arrowed line denotes a dressed
quark propagator. The light-blue and dark-yellow blobs denote
the Dirac structures of VCR and VLR, respectively.
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Γπ
Rχðp; pÞ ¼ γ5G0Z0

Aχðp2Þ
mχh2ðp2Þ

¼ G0Z0

2mχ
ΓA
Rχðp; pÞ: ð42Þ

Here the constant G0 is the inverse norm of the pion vertex
function Γπ

Rχ , calculated from the triangle diagram for the
pion form factor at zero-momentum transfer and mχ is the
dressed quark mass, obtained by solving the equation
Mχðp2 ¼ m2

χÞ ¼ mχ with m0 ¼ 0 and the strong quark
form factors normalized to hðm2

χÞ ¼ 1.
The next task is to use the AV-WTI to evaluate the π-π

scattering amplitude at threshold in the chiral limit, with the
kernel iterated to all orders, and to obtain the Adler zero,
along the lines of Ref. [32].

IV. π-π SCATTERING

A. π-π scattering in impulse approximation

We start by calculating the π-π scattering amplitude in
the impulse approximation, and we show that, in order to
obtain the Adler zero, one has to go beyond impulse
approximation.
The box diagram DO (s-channel amplitude) of the full

impulse contribution (sum of s, u, and t-channel ampli-
tudes) to π-π scattering is depicted in Fig. 4. In the CST, it is
proportional to [32]

DO ∝ −i
Z
k0
tr½Γ̄π

Rðkþ P1 − P4; kþ P1Þ ~Sðkþ P1Þ

× Γπ
Rðkþ P1; kÞ ~SðkÞΓπ

Rðk; k − P2Þ
× ~Sðk − P2ÞΓ̄π

Rðk − P2; k − P2 þ P3Þ
× ~Sðkþ P1 − P4Þ�; ð43Þ

where Γπ
R is the reduced pion vertex function. In the chiral

limit and in the pion rest frames (Pμ
i ¼ 0 where i ¼ 1, 2

label the two incoming and i ¼ 3, 4 the two outgoing
pions) the pion vertex functions are given by Eq. (42), and
therefore DO becomes

DOχ ∝ −i
Z
k0

A4
χ

ð1 − BχÞ4ðM2
χ − k2Þ4

× tr½γ5ðMχ þ kÞγ5ðMχ þ kÞγ0γ5†γ0
× ðMχ þ kÞγ0γ5†γ0ðMχ þ kÞ�

¼ −i
Z
k0

A4
χ

ð1 − BχÞ4ðM2
χ − k2 − iϵÞ2 : ð44Þ

This integral has 2 double poles at k0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ k2
q

∓
iϵ ¼ �Ek ∓ iϵ. Introducing the energy of the running mass,

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

χ þ k2
q

, and retaining only the residues of the

propagator pole contributions, one obtains

DOχ ∝ −i
Z
k0

M4
χ

ðk0 − Ek þ iϵÞ2ðk0 þ Ek − iϵÞ2

¼ 1

2
2π

Z
k

��
4m3

χM0
χ0

2Ek
−

m4
χ

4E3
k

ð1þ 2mχM0
χ0Þ

�

−
�
−
4m3

χM0
χ0

2Ek
þ m4

χ

4E3
k

ð1 − 2mχM0
χ0Þ

�	

¼ π

Z
k

�
4m3

χM0
χ0

Ek
−

m4
χ

2E3
k

�
≠ 0; ð45Þ

where

M0
χ0 ≡

dMχðk2Þ
dk2

����
k2¼m2

χ

¼ 1

2Ek

dMχðk2Þ
dk0

����
k2¼m2

χ

: ð46Þ

The two terms in (45) are nonzero, and they do not cancel.
The same result is obtained for DZ and DX. One concludes
that, in order to obtain the Adler zero from the amplitude
in the chiral limit, one has to go beyond the impulse
approximation. Therefore, the calculation of the quark-quark
ladder sum to include intermediate-state interactions is
unavoidable for crucial cancellations to occur. To achieve
this, we extend the strategy of Refs. [31,32] to accommodate
scalar, pseudoscalar, and tensor linear confinement in the
CST formalism.

B. Prerequisites

1. Axial-vector Ward-Takahashi identity
and the ladder sum

Because we are going to deal with diagrams which
include a ladder sum in the intermediate state and at
each vertex, it is useful to establish a Ward-Takahashi
identity for the axial vertex when “sandwiched” between
two ladder sums. In order to derive this identity, it is
convenient to introduce some definitions and useful
relations. First, we introduce the “unamputated”
quark-antiquark scattering amplitude in the ladder
approximation, Lðp0

1; p
0
2;p1; p2Þ. It includes the external

propagators, two from the initial state and two from the
final state (except for the inhomogeneous term, which
has only two). Using a direct product representation,
with ½ ~Sðk1Þ⊗ ~Sðk2Þ�≡ ~Sαα0 ðk1Þ ~Sβ0βðk2Þ, where α; α0ðβ; β0Þ
are the Dirac indices for particle 1(2), so that, for
example,

FIG. 4 (color online). The direct contributions to π-π scattering.
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½ ~Sðk1Þ ⊗ ~Sðk2Þ�Γðk1; k2Þ≡ ~Sαα0 ðk1Þ ~Sβ0βðk2ÞΓα0β0 ðk1; k2Þ ¼ ½ ~Sðk1ÞΓðk1; k2Þ ~Sðk2Þ�αβ; ð47Þ

the ladder sum (frequently referred to simply as the “ladder”) is

Lðp0
1; p

0
2;p1; p2Þ ¼ −i½ ~Sðp0

1Þ ⊗ ~Sðp0
2Þ�ð2πÞ4δ4ðp − p0Þ þ ½ ~Sðp0

1Þ ⊗ ~Sðp0
2Þ�i

Z
k0
VRðp0 − kÞLðk1; k2;p1; p2Þ

¼ −i½ ~Sðp0
1Þ ⊗ ~Sðp0

2Þ�ð2πÞ4δ4ðp − p0Þ þ i
Z
k0
Lðp0

1; p
0
2; k1; k2ÞVRðk − pÞ½ ~Sðp1Þ ⊗ ~Sðp2Þ�; ð48Þ

where pð0Þ
1 ¼ pð0Þ þ Pð0Þ=2 and pð0Þ

2 ¼ pð0Þ − Pð0Þ=2, and the
phases are as given in Ref. [27], with a factor of −i for
each propagator, vertex function (except pseudoscalar or
axial-vector vertices, which have no such factor), kernel,
or scattering amplitude, an overall factor of i, and an

additional factor of −1 for each closed fermion loop. This
sum is diagrammatically depicted in Fig. 5.
It is shown in the Appendix how the insertion of the axial

vertex into line 1 of an infinite ladder sum can be reduced
using the Ward-Takahashi identity. The result is

hLjΓA
RjLi ¼

Z
k0
Lðp0

1; p
0
2; k

0
1; k2Þ½ΓA

Rðk01; k1Þ ⊗ ~S−1ðk2Þ�Lðk1; k2;p1; p2Þ

¼ −iðγ5 ⊗ 1ÞLðp0
1; p

0
2;p1; p2Þ − iLðp0

1; p
0
2;p1; p2Þðγ5 ⊗ 1Þ

þ i
Z
k00

Z
k0
Lðp0

1; p
0
2; k

0
1; k

0
2Þ½VRðk0 − kÞðγ5 ⊗ 1Þ þ ðγ5 ⊗ 1ÞVRðk0 − kÞ�Lðk1; k2;p1; p2Þ: ð49Þ

When the kernel V anticommutes with γ5 [which is
true for the vector and axial-vector pieces of the kernel
in Eq. (36)] the last term vanishes [31,40]. The final
result in this case was given in Refs. [31,32] and is
depicted in Fig. 6. For the more general case when
fγ5;Vg ≠ 0 the result is depicted in Fig. 7, where the last

four diagrams correspond to the extension of the Ward-
Takahashi identity of Fig. 6. Equation (49) will be used
later.
Applying the ladder equation (48), we can rewrite the

BSE (12) for the axial vertex ΓA
R [31]. Using the direct

product notation,

−i½ ~Sðp1Þ ⊗ ~Sðp2Þ�ΓA
Rðp1; p2Þ ¼ −i½ ~Sðp1Þ ⊗ ~Sðp2Þ�γARðp1; p2Þ þ

Z
k0
½ ~Sðp1Þ ⊗ ~Sðp2Þ�VRðp − kÞ½ ~Sðk1Þ ⊗ ~Sðk2Þ�γARðk1; k2Þ

þ i
Z
k0
½ ~Sðp1Þ ⊗ ~Sðp2Þ�VRðp − kÞ½ ~Sðk1Þ ⊗ ~Sðk2Þ�

×
Z
k00

VRðk − k0Þ½ ~Sðk01Þ ⊗ ~Sðk02Þ�γARðk01; k02Þ þ…

¼
Z
k0
Lðp1; p2; k1; k2ÞγARðk1; k2Þ: ð50Þ

2. Spectral decomposition of the ladder sum

We apply the spectral decomposition of the ladder, assuming that it contains a bound-state pole at P2 ¼ m2
π , the pion pole.

The ladder amplitude can then be related to the reduced bound-state vertex function for the pion as follows:

Lðp0
1; p

0
2;p1; p2Þ ¼ ½ ~Sðp0

1Þ ⊗ ~Sðp0
2Þ�

Γπ
Rðp0

1; p
0
2ÞΓ̄π

Rðp2; p1Þ
m2

π − P2 − iϵ
½ ~Sðp1Þ ⊗ ~Sðp2Þ� þRðp0

1; p
0
2;p1; p2Þ; ð51Þ
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where R is the regular remainder at P2 ¼ m2
π which also

includes the poles of all the other meson states. The only
assumption we make about R is that none of its poles
resides exactly at the pion mass, which is of course satisfied
for any kernel that describes the meson spectrum and that is
consistent with SχSB. Note that the sign of the pole term is
positive because the pion is a pseudoscalar bound state (it
would be negative for a scalar bound state), and that the
separation between pole and nonpole terms is not unique
away from the pole. Equation (51) is shown graphically in
Fig. 8.

3. Relation for the off-shell pion vertex function

A useful relation for inserting a ladder at a pion vertex
function is obtained from Eq. (51) by multiplying by i times
the vertex function from the right and integrating over p.
One obtains

½ ~Sðp0
1Þ ⊗ ~Sðp0

2Þ�Γπ
Rðp0

1; p
0
2Þ

¼ m2
π − P2

I
i
Z
p0
Lðp0

1; p
0
2;p1; p2ÞΓπ

Rðp1; p2Þ

−
m2

π − P2

I
i
Z
p0
Rπðp0

1; p
0
2;p1; p2ÞΓπ

Rðp1; p2Þ;

ð52Þ

where

I ¼ IðPÞ ¼ i
Z
k0
trfΓ̄π

Rðk2; k1Þ½ ~Sðk1Þ ⊗ ~Sðk2Þ�Γπ
Rðk1; k2Þg

ð53Þ
and Rπ is the part of R that couples to the pion channel.
Since the integral of the second term on the rhs of Eq. (52)
involving Rπ has no poles at P2 ¼ m2

π , this term can be
dropped because at the end of the calculation we will only
be interested in on-shell pion momenta P for which the
factor m2

π − P2 becomes zero. Alternatively, since the
separation between the pion pole and nonpole residue
Rπ is not unique away from the pion pole, we may choose
to set Rπ ¼ 0, which uniquely defines the off-shell pion
vertex function. We will adopt this point of view. Without
the Rπ term the off-shell extension of the pion vertex
function is uniquely defined as the solution of

½ ~Sðp0
1Þ ⊗ ~Sðp0

2Þ�Γπ
Rðp0

1; p
0
2Þ

¼ m2
π − P2

I
i
Z
p0
Lðp0

1; p
0
2;p1; p2ÞΓπ

Rðp1; p2Þ: ð54Þ

Equation (54) effectively shows how one can add a
ladder to—or remove it from—the pion vertex function
(see Fig. 9).

FIG. 8 (color online). Spectral decomposition of the ladder with
the pion pole at m2

π explicitly displayed.

FIG. 6 (color online). Ward-Takahashi identity for the ladder of
a kernel with fOi; γ5g ¼ 0. The purple blobs denote γ5’s.

= = +

= +

+ +

FIG. 7 (color online). By inserting the AV-WTI and ladder
equation into the lhs of Eq. (49) one obtains the Ward-Takahashi
identity for the ladder.

FIG. 5 (color online). The self-consistent equations for the
unamputated quark-antiquark scattering amplitude, denoted by
the orange box.

FIG. 9 (color online). Relation for the off-shell pion vertex
function.
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C. π-π scattering in the chiral limit:
The Adler self-consistency zero

Now we are ready to calculate π-π scattering to all orders
in the chiral limit. Our aim is to show that, in the chiral
limit, the scattering amplitude vanishes. This is known as
the Adler self-consistency zero [23]. Our derivation closely
follows the one of Ref. [31].
There are three types of contributions, referred to as O,

Z, and X diagrams, which are shown in the three rows
of Fig. 10.
The D terms in each line, DO, DX, and DZ, must be

subtracted in order to avoid double counting of the direct
contributions of Sec. IVA. We start our discussion by
looking at the three diagrams of the first row (the O
diagrams). We will show that, in the chiral limit, the sum of
the three diagrams vanishes,

TO þ SO −DO → 0: ð55Þ

Because of the similar topologies, the sums of the diagrams
in the second and third row, respectively, also vanish.

We start with TO. Remembering the minus sign for a
closed fermion loop,

TO ¼
Z
k00

Z
k0
trf½Γ̄π

Rðk0 − P3; k0Þ ~Sðk0ÞΓ̄π
Rðk0; k0 þ P4Þ�

× Lðk0 þ P4; k0 − P3; kþ P1; k − P2Þ
× ½Γπ

Rðkþ P1; kÞ ~SðkÞΓπ
Rðk; k − P2Þ�g; ð56Þ

with the ladder connecting incoming pions of momentum
P1; P2 to outgoing pions with momentum P3; P4. Note that
at this stage only the remainder term R from Eq. (51)
contributes to the ladder L. This is because in Eq. (56) L is
projected onto two pion vertex functions and therefore its
pion pole term does not contribute (there is no π → 2π
coupling by G-parity conservation).
In order to evaluate this diagram, we first consider the

scattering when P2
2 ≠ m2

π , and make use of the off-shell
definition of the pion vertex function, Eq. (54), to insert
another ladder into Eq. (56) by replacing Γπ

Rðk; k − P2Þ
(this step is shown diagrammatically in the top panel of
Fig. 11). This gives

TO ¼ m2
π − P2

2

IðP2Þ
i
Z
k00

Z
k0

Z
p0
trf½Γ̄π

Rðk0 − P3; k0Þ ~Sðk0ÞΓ̄π
Rðk0; k0 þ P4Þ�Lðk0 þ P4; k0 − P3; kþ P1; k − P2Þ

× ½Γπ
Rðkþ P1; kÞ ~S−1ðk − P2ÞLðk; k − P2;p; p − P2ÞΓπ

Rðp; p − P2Þ�g: ð57Þ

Note that in this equation, the first ladder already present in Eq. (56) still does not have any pion pole contribution, while the
second inserted ladder contains only pseudoscalar contributions, including the pion pole. Still, in anticipation of the next step, it
is convenient to keep the notation general.

FIG. 10 (color online). Contributions to π-π scattering.

CHIRAL SYMMETRY AND π-π SCATTERING IN THE … PHYSICAL REVIEW D 90, 096008 (2014)

096008-11



Next we let P1 → 0 (so that P2 ¼ P3 þ P4), use (42) to
replace Γπ

Rðk; kÞ by ΓA
Rðk; kÞ, and then make use of the

Ward-Takahashi identity (49) to replace the product of the
two ladders. This generates four terms, all of which are

further reduced using (51). They are depicted in the middle
and bottom panels of Fig. 11 and given by

TO ¼ TO1 þ TO2 þ T 0
O3 þ T 00

O3; ð58Þ

TO1 ¼
G0Z0ðm2

π − P2
2Þ

2mχI

Z
k00

Z
p0
trf½Γ̄π

Rðk0 − P3; k0Þ ~Sðk0ÞΓ̄π
Rðk0; k0 þ P4Þ�γ5Lðk0 þ P4; k0 − P3;p; p − P2ÞΓπ

Rðp; p − P2Þg

→ −
G0Z0

2mχ
i
Z
k0
tr½Γ̄π

Rðk − P2; k − P4Þ ~Sðk − P4ÞΓ̄π
Rðk − P4; kÞγ5 ~SðkÞΓπ

Rðk; k − P2Þ ~Sðk − P2Þ�; ð59Þ

TO2 ¼
G0Z0ðm2

π − P2
2Þ

2mχI

Z
k00

Z
p0
trf½Γ̄π

Rðk0 − P3; k0Þ ~Sðk0ÞΓ̄π
Rðk0; k0 þ P4Þ�Lðk0 þ P4; k0 − P3;p; p − P2Þγ5Γπ

Rðp; p − P2Þg

→ −
G0Z0

2mχ

I 0

I
i
Z
k00

tr½Γ̄π
Rðk0 − P3; k0Þ ~Sðk0ÞΓ̄π

Rðk0; k0 þ P4Þ ~Sðk0 þ P4ÞΓπ
Rðk0 þ P4; k0 − P3Þ ~Sðk0 − P3Þ�; ð60Þ

TO3 ¼ −
G0Z0ðm2

π − P2
2Þ

mχI

Z
k00

Z
k0

Z
p00

Z
p0
tr
n
½Γ̄π

Rðk0 − P3; k0Þ ~Sðk0ÞΓ̄π
Rðk0; k0 þ P4Þ�Lðk0 þ P4; k0 − P3; k; k − P2Þ

× VLRðk − p0Þ
h
λSðγ5 ⊗ 1þ 1 ⊗ γ5Þ þ 1

2
λTðγ5σμν ⊗ σμνÞ

i
Lðp0; p0 − P2;p; p − P2ÞΓπ

Rðp; p − P2Þ
o

→
G0Z0

mχ
i
Z
k00

Z
k0

Z
p00

tr
n
½Γ̄π

Rðk0 − P3; k0Þ ~Sðk0ÞΓ̄π
Rðk0; k0 þ P4Þ�Lðk0 þ P4; k0 − P3; k; k − P2Þ

× VLRðk − p0Þ
h
λSðγ5 ⊗ 1þ 1 ⊗ γ5Þ þ 1

2
λTðγ5σμν ⊗ σμνÞ

i
½ ~Sðp0Þ ⊗ ~Sðp0 − P2Þ�Γπ

Rðp0; p0 − P2Þ
o
; ð61Þ

where TO3 ¼ T 0
O3 þ T 00

O3, and in the second expression for TO1 we introduced k ¼ k0 þ P4, and

I 0 ¼ I 0ðPÞ ¼ i
Z
k0
tr½Γ̄π

Rðk2; k1Þ½ ~Sðk1Þγ5 ⊗ ~Sðk2Þ�Γπ
Rðk1; k2Þ�: ð62Þ

Γ̄π
R(P4)

Γ̄π
R(P3)

ΓA
R(0)

Γπ
R(P2)

= ×m2
π−P 2

2
I(P2)

= +

Γ̄π
Rγ5(P4)

+ +

γ5Γπ
R(P2)

×m2
π−P 2

2
I(P2)

Γ̄π
R(P4)

ΓA
R(0)

Γπ
R(P2)

Γ̄π
R(P3)

Γ̄π
R(P4)

Γ̄π
R(P4)

Γ̄π
R(P3)

Γ̄π
R(P3)

Γ̄π
R(P4)

Γ̄π
R(P3)

Γπ
R(P2)

Γπ
R(P2)

Γ̄π
R(P3)

Γπ
R(P2)

TO1 TO3

TO2 TO3

TO =

FIG. 11 (color online). Expansion of TO in terms of TO1, TO2, T 0
O3, and T 00

O3. Here we use the shorthand notation ΓðPÞ, with P being
the pion momentum. Notice the γ5 matrix denoted by the purple blob that multiplies one of the pion vertex functions in TO1 and TO2.
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Before proceeding further, it is useful to reflect on the
physical content of these equations. The first line of
each equation is the result from one of the contributions
from the Ward-Takahashi identity (49). For example,
Eq. (58) collapses, symbolically, L1ΓA

RL2 → γ5L3 where,
as already pointed out, L1 [the first ladder in Eq. (57)]
contained no pion channel (think of a ρ, for example), L2

[the second ladder in Eq. (57)] contained the pion
channel (take the π itself), and L3 [the ladder in
Eq. (58)] is general and could contain the pion pole.
Physically, this contribution would then represent a ρππ
transition collapsing to a γ5π coupling. Then, the second
line in each equation shows how, because of the factor
m2

π − P2
2 from the insertion of L2 multiplying the equa-

tion, only the pion pole term will survive the P2
2 → m2

π

limit (remember that R has no pole at P2
2 ¼ m2

π),
reducing an initial ρ contribution (in this example) in
L1 to a box involving three pion vertex functions and one
γ5 (it is this additional γ5 at one pion vertex that prevents
this diagram from vanishing). This remarkable collapse of
L1 is a consequence of the Ward-Takahashi identity and
the chiral limit.
While TO1 survives the chiral limit, the other terms

vanish. The term TO2 → 0 because Γπ
Rχ ∝ ΓA

Rχ and hence
I 0 → 0, since it is the trace of an odd number of γ5

matrices. Physically, it is a consequence of the fact that the
pion does not couple to the scalar channel. The reduction
of TO3, which is proportional to the anticommutator of Oi

and γ5, uses the results from Eq. (A2) which show that only
contributions from the scalar, pseudoscalar, and tensor parts
of the linear confining kernel will contribute. However,
because of the decoupling of the linear confinement kernel
from the zero-mass pion equation discussed in Sec. III D,

each of these contributions integrates to zero in the
chiral limit, and therefore TO3 → 0. The only contribution
from TO to survive in the chiral limit is the triangle
contribution TO1.
By considering a pion vertex with P2

4 ≠ m2
π the SO

diagrams can be computed in a similar way (the first step is
shown in Fig. 12). The only term to survive is SO1, the
analogue of TO1. Comparing Figs. 11 and 12 shows that
the figures are identical if P4↔ − P2, since P1 ¼ 0 and
P3 ¼ P2 − P4 is unchanged in both diagrams. Starting
from this observation, SO1 can be transformed using the
properties of the charge conjugation operation on the pion
vertices, and the propagators

CΓπ⊺
R ðp1; p2ÞC−1 ¼ Γπ

Rð−p2;−p1Þ;
C ~S⊺ðpÞC−1 ¼ ~Sð−pÞ: ð63Þ

This leads to

SO1 ¼ −
G0Z0

2mχ
i
Z
k0
tr½Γ̄π

Rðkþ P4; kþ P2Þ ~Sðkþ P2ÞΓ̄π
Rðkþ P2; kÞγ5 ~SðkÞΓπ

Rðk; kþ P4Þ ~Sðkþ P4Þ�

¼ −
G0Z0

2mχ
i
Z
k0
tr½Γπ⊺

R ðkþ P4; kþ P2Þ ~S⊺ðkþ P4ÞΓ̄π⊺
R ðk; kþ P4Þ ~S⊺ðkÞðγ5Þ⊺Γ̄π⊺

R ðkþ P2; kÞ ~S⊺ðkþ P2Þ�

¼ −
G0Z0

2mχ
i
Z
k0
tr½Γπ

Rð−k − P2;−k − P4Þ ~Sð−k − P4ÞΓ̄π
Rð−k − P4;−kÞ ~Sð−kÞγ5Γ̄π

Rð−k;−k − P2Þ ~Sð−k − P2Þ�

¼ −
G0Z0

2mχ
i
Z
k0
tr½Γπ

Rðk − P2; k − P4Þ ~Sðk − P4ÞΓ̄π
Rðk − P4; kÞ ~SðkÞγ5Γ̄π

Rðk; k − P2Þ ~Sðk − P2Þ�; ð64Þ

where, in the last line, we changed k → −k, a transformation which also holds for the k0 prescription discussed
above.
Next, the box diagram, for the special case when P1 ¼ 0, can be written

DO ¼ −i
Z
k0
tr½Γ̄π

Rðk − P2; k − P4Þ ~Sðk − P4ÞΓ̄π
Rðk − P4; k0Þ ~SðkÞΓπ

Rðk; kÞ ~SðkÞΓπ
Rðk; k − P2Þ ~Sðk − P2Þ�

¼ −
G0Z0

2mχ
i
Z
k0
tr½Γ̄π

Rðk − P2; k − P4Þ ~Sðk − P4ÞΓ̄π
Rðk − P4; kÞðγ5 ~SðkÞ þ ~SðkÞγ5ÞΓπ

Rðk; k − P2Þ ~Sðk − P2Þ�; ð65Þ

FIG. 12 (color online). The first step to reduce the second
term SO.
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where the second line first replaces the chiral limit of
Γπ
Rðk; kÞ by ΓA

Rχ using Eq. (42) and then uses the AV-WTI
(11). From Eqs. (59), (64), and (65) we find that
TO1þSO1−DO¼0, which completes the proof of Eq. (55).
Analogous considerations apply, of course, also to the Z

and X diagrams. This constitutes the proof of the Adler self-
consistency zero.

D. Gell-Mann–Oakes–Renner Relation

Although it is not directly related to π-π scattering, the
Gell-Mann–Oakes–Renner relation is an important conse-
quence of the AV-WTI. It is interesting to determine its
form in the CST framework, because it involves the quark
condensate given in terms of the dressed quark propagator,
while in the CST we use damped dressed propagators.
To derive it, we extend the strategy of Ref. [31]. Starting

with the CST-BSE for ΓA
R, Eq. (50), inserting the spectral

decomposition (51), and neglecting terms of order m0 and
P gives

ΓA
Rðp1; p2Þ

¼ ½ ~Sðp1Þ ⊗ ~Sðp2Þ�−1i
Z
k0
Lðp1; p2; k1; k2ÞγARðk1; k2Þ

¼ Γπ
Rðp1; p2Þ

m2
π − P2 − iϵ

i
Z
k0
tr½ ~Sðk1ÞΓ̄π

Rðk1; k2Þ ~Sðk2ÞγARðk1; k2Þ�:
ð66Þ

Taking the P2 → 0 limit of both sides, and using the
relation (42) to cancel the common factor of ΓA

Rχ (where we
neglect terms of order mπ and P in the difference between
ΓA
Rχ and limP2→0ΓA

R), gives the condition

1 ¼ G0Z0

2mχm2
π
i
Z
k0
tr½ ~SðkÞΓ̄π

Rðk; kÞ ~SðkÞγARðk; kÞ�: ð67Þ

Next note that, in our model, the pion decay constant fπ
is defined by [31]

ffiffiffi
2

p
fπPμ ¼ i

Z
k0
tr½ ~SðkÞΓ̄π

Rðk; kÞ ~SðkÞγ5μR ðk; kÞ�: ð68Þ

Contracting (68) with Pμ and comparing it with Eqs. (67)
and (17), we conclude that

fπffiffiffi
2

p ¼ mχ

G0Z0

: ð69Þ

Next, return to Eq. (67) and use Eq. (42) to replace Γπ
R by

ΓA
Rχ , Eq. (39) to replace γAR by γ5, and (69) to replace G0Z0

by fπ, giving

f2πm2
π ¼ m0i

Z
k0
tr½ ~SðkÞΓ̄A

Rχðk; kÞ ~SðkÞγ5�
1

h2ðkÞ
¼ −m0i

Z
k0
trf ~SðkÞ½ ~S−1ðkÞγ5 þ γ5 ~S−1ðkÞ�

× ~SðkÞγ5g 1

h2ðkÞ
¼ −2m0i

Z
k0
tr SðkÞ; ð70Þ

where we used the AV-WTI, Eq. (11), to replace Γ̄A
Rχ and

γ̄5 ¼ −γ5. Notice that the dependence on the strong quark
form factors has canceled. Since the quark condensate is
hq̄qi≡ i tr

R
k SðkÞ, the Gell-Mann–Oakes–Renner relation

follows:

f2πm2
π ¼ −2m0hq̄qi: ð71Þ

V. SUMMARY AND CONCLUSIONS

This work describes the application of the CST to a
dynamical quark model of π-π scattering. More generally,
we have found that it is possible to preserve the essential
AV-WTI even in the presence of a linear confining
interaction with scalar and pseudoscalar components,
provided only that these components have equal weight.
(No restriction is placed on the strength of any vector, axial-
vector, or tensor components of the confining interaction,
nor on the vector or axial-vector components of any other
type of interaction.) With a kernel with these limitations,
the AV-WTI is satisfied and we show that, as a conse-
quence, the Adler zero in the π-π scattering amplitude
emerges automatically. This feature allows the CST model
to be applied to both heavy and light quark systems.
While some of these results are shared by many other

models with vector or axial-vector kernels that anticom-
mute with γ5, away from the chiral limit our linear
confining interaction, if it has scalar, pseudoscalar, or
tensor components, will produce contributions to the π-π
scattering lengths not present in the famousWeinberg result
[41]. We have not yet investigated how big these contri-
butions might be—all that we know at present is that they
must vanish in the chiral limit. Comparison of predictions
for these effects with experimental data, together with the
contributions of the confining interaction to the meson
spectrum, will constrain the strength and spin structure of
the confining interaction and will be a subject for
future work.
A feature of our model is that strong quark form factors

are used simultaneously (i) to describe the physical effects
of overlapping exchange interactions that go beyond the
rainbow approximation, and (ii) to provide a covariant
regularization scheme.
It remains to be seen whether a scalar potential in the

intermediate-quark-mass range could be thought of as a
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coherent superposition of vector gluons, but if that is so,
the preservation of the AV-WTI requires that it must be
accompanied by a pseudoscalar exchange. This is another
topic for future study.
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APPENDIX

The identity (49) is proven as follows. We apply the
AV-WTI of Eq. (11) (represented in Fig. 1) on the lhs
of Eq. (49), and then use the self-consistent equations for
the ladder sum, Eq. (48) represented in Fig. 5, to obtain
four terms:

hLjΓA
RjLi ¼

Z
k0
Lðp0

1; p
0
2; k

0
1; k2Þ½ΓA

Rðk01; k1Þ ⊗ ~S−1ðk2Þ�Lðk1; k2;p1; p2Þ

¼
Z
k0
Lðp0

1; p
0
2; k

0
1; k2Þf½ ~S−1ðk01Þγ5 þ γ5 ~S−1ðk1Þ� ⊗ ~S−1ðk2ÞgLðk1; k2;p1; p2Þ

¼ −iðγ5 ⊗ 1ÞLðp0
1; p

0
2;p1; p2Þ − iLðp0

1; p
0
2;p1; p2Þðγ5 ⊗ 1Þ

þ i
Z
k00

Z
k0
Lðp0

1; p
0
2; k

0
1; k

0
2Þ½VRðk0 − kÞðγ5 ⊗ 1Þ þ ðγ5 ⊗ 1ÞVRðk0 − kÞ�Lðk1; k2;p1; p2Þ: ðA1Þ

All four terms of the rhs are depicted in Fig. 7. The two terms with the kernel (which is a sum of operators Oi) are
proportional to the anticommutator fγ5;Oig. For vector and axial-vector spin structures, they vanish, leaving only the two
terms of the rhs of Fig. 6. For the scalar, pseudoscalar, and tensor structures of the linear confining part of the kernel,
fγ5;Oig ≠ 0, and therefore we must keep these terms in all calculations. Specifically, for the kernel of Eq. (36), Eq. (A1)
becomes

hLjΓA
RjLi ¼ −iðγ5 ⊗ 1ÞLðp0

1; p
0
2;p1; p2Þ − iLðp0

1; p
0
2;p1; p2Þðγ5 ⊗ 1Þ

þ 2i
Z
k00

Z
k0
Lðp0

1; p
0
2; k

0
1; k

0
2Þ
�
λSðγ5 ⊗ 1þ 1 ⊗ γ5Þ þ 1

2
λTðγ5σμν ⊗ σμνÞ

�
VLRðk0 − kÞLðk1; k2;p1; p2Þ: ðA2Þ

Notice the factor of 2 since fγ5;Oig ¼ 2γ5Oi for i ¼ S, P, and T.
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