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It is generally believed that the decay mode B → K�lþl− is one of the best modes to search for physics
beyond the standard model. The angular distribution enables the independent measurement of several
observables as a function of the dilepton invariant mass. The plethora of observables so obtained enable
unique tests of the standard model contributions. We start by writing the most general parametric form of
the standard model amplitude for B → K�lþl− taking into account comprehensively all contributions
within the standard model. These include all short-distance and long-distance effects, factorizable and
nonfactorizable contributions, complete electromagnetic corrections to hadronic operators up to all orders,
resonance contributions and the finite lepton and quark masses. The parametric form of the amplitude in the
standard model results a new relation involving all the CP conserving observables. The derivation of this
relation only needs the parametric form of the amplitude and not a detailed calculation of it. Hence, we
make no approximations, however, innocuous. The violation of this relation will provide a smoking gun
signal of new physics. We use the 1 fb−1 LHCb data to explicitly show how our relation can be used to test
standard model and search for new physics that might contribute to this decay.
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I. INTRODUCTION

It is a historical fact that several discoveries in particle
physics were preceded by indirect evidence through quan-
tum loop contributions. It is for this reason that significant
attention is devoted to studying loop processes. The muon
magnetic moment is one of the best examples of such a
process where precision calculations have been done in
order to search for new physics by comparing the theo-
retical expectation with experimental observation. It is a
testimony to such searches for new physics (NP) beyond
the standard model (SM) that both theoretical estimates and
experimental observation have reached a precision where
the hadronic effects even for the lepton magnetic moment
dominate the discrepancy between theory and observation.
Indirect searches for new physics often involve precision
measurement of a single quantity that is compared to a
theoretical estimate that also needs to be very accurately
calculated. Unfortunately, hadronic estimates involve cal-
culation of long-distance QCD effects which cannot easily
be done accurately, limiting the scope of such searches.
There exist, however, certain decay modes which involve
the measurement of several observables that can be related
to each other with minimal assumptions and completely
calculable QCD contributions within the SM. The break-
down of such relation(s) between observables would

unambiguously signal the presence of NP. Such tests are
by nature not limited by incalculable hadronic effects and
hence provide an unambiguous signal of NP. Awell-known
example [1,2] of such a process is the semileptonic penguin
decay B → K�lþl−, where l is either the electron or the
muon. In this paper we will show how this decay, which
occurs in multiple partial waves, can be used to obtain
reliable tests of NP.
Flavor changing neutral current transitions are well

known to be sensitive to NP contributions. However,
hadronic flavor changing neutral current receive short-
and long-distance QCD contributions that are not easy to
estimate reliably. It is evident from the data collected by the
Belle, BABAR and CMS Collaborations at the B-factories,
CLEO, CDF, Tevatron and LHCb that NP does not show up
as a large and unambiguous effect. This has bought into
focus the need for approaches that are theoretically cleaner
i.e., where the hadronic uncertainties are much smaller than
the effects of NP that are being probed. Hence, to
effectively search for NP it is crucial to separate the effect
of new physics from hadronic uncertainties that can
contribute to the decay. The decay mode B → K�lþl−

is regarded [2] as significant in this attempt. The full
angular analysis of the final state gives rise to a multitude of
observables [1,3] that are related as they arise from the
same decay mode. In addition, each of these observables
can be measured as function of the dilepton invariant mass.
In Ref. [2] an interesting relation between the various
observables that can be measured in this mode was derived.
The derivation was based on a few assumptions that are
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reasonable. These included ignoring the mass of the lepton
l and the s-quark that appears in the short-distance
Hamiltonian describing the decay. The decay amplitude
was assumed to be real, thereby ignoring the extremely tiny
CP violation, the small imaginary contribution to the
amplitude that arises from the Wilson coefficient C9 which
is complex in general and the dilepton resonances which
were presumed to be removed from the experimental
analysis. These assumptions reduced the number of non-
zero observables to only six. In this paper, we carefully
redo the analysis without making any kind of approxima-
tion, however, innocuous. Our approach once again is to
derive the most general parametric form of the decay
amplitude, which results in a relation between the several
related observables.
In this paper we generalize the derivation in Ref. [2] to

incorporate a complex decay amplitude, eliminating the
need to ignore imaginary contributions arising from C9 and
ensuring that the new relation is valid even when resonance
contributions are not excluded from the (experimental)
analysis. This implies that the new relation derived in this
paper involves all the nine CP conserving observables that
can be measured using this mode. The derivation of the new
relation does not depend on theoretical values of the Wilson
coefficients and does not require making any assumptions
on the form factors; in particular we do not limit the form
factor to any power of ΛQCD=mb expansion in heavy quark
effect theory (HQET) [4]. In fact, the derivation of the new
relation itself does not require HQET. The new derivation
parametrically incorporates all short-distance and long-
distance effects including resonance contributions, as well
as, factorizable and nonfactorizable contributions. We also
include complete electromagnetic (EM) corrections to
hadronic operators up to all orders. Finally, we retain the
lepton mass and the s-quark mass. We envisage that the
derivation to be exact in all respects and the new relation
obtained here to be one of the cleanest tests of the SM in B
decays.
The LHCb Collaboration has measured [5] all the

possible CP conserving observables through an angular
analysis. These independent measurements consist of the
differential decay rate with respect to the dilepton invariant
mass, two independent helicity fractions and six angular
asymmetries. Three of the asymmetries are zero unless
there exist imaginary contributions to the decay amplitudes.
If these asymmetries are measured to be zero in the future,
the relation between the observables would be free from
any hadronic parameter as derived in Ref. [2]. While these
asymmetries are currently measured to be small and
consistent with zero, there could, however, exist contribu-
tions from wide resonances which might still be permitted
within statistical errors. Including these asymmetries in the
analysis to account for complex amplitudes results in a
modification of the relation purely between observables.
The modifying terms now involve a single hadronic

parameter in addition to being proportional to the three
asymmetries. Hence, SM can be tested or equivalently NP
contributions can be probed reliably with the knowledge of
just one hadronic parameter. It is interesting that all effort to
estimate long- and short-distance QCD contributions now
need to be focused only on accurately estimating this single
parameter. Since the asymmetries involved in modifying
terms (which arise from complex amplitudes) are already
constrained to be small, the results are not very sensitive to
the single hadronic parameter. We find that the inclusion of
imaginary contributions to the amplitude must always
reduce the parameter space. This would enhance any
discrepancy that may be observed even when the imaginary
part of the amplitudes are ignored. We use the 1 fb−1 LHCb
data to show how our relation can be used to test standard
model and find new physics that might contribute to
this decay.
In this paper we review the theoretical framework

required to describe B → K�lþl− and derive the most
general parametric form of the amplitude describing the
decay in Sec. II. The amplitude written is notionally exact
in all respects. In Sec. III we construct all the observables in
terms of the amplitude derived in Sec. II. Here we retain the
lepton mass as well as the strange quark mass that appears
in the short-distance Hamiltonian describing this decay. A
new relation between observables is derived in Sec. IV
under the assumption of massless lepton, but retaining all
other effects and contribution. In Sec. V we generalize the
new relation derived in Sec. IV to include the mass of the
lepton that had been ignored earlier. We rederive two
simple limits of the relation between observables that hold
at zero crossings of other asymmetries such as the forward-
backward asymmetry. The values of all the observables at
kinematic endpoints of the dilepton invariant mass are
easily understood in Sec. VI. A numerical analysis is
presented in Sec. VII that tests the validity of the relation
derived assuming SM. We discuss the constraints already
imposed by the 1 fb−1 LHCb data [5], but refrain from
drawing even the obvious conclusions given that results for
3 fb−1 data will soon be presented. In Sec. VIII we
summarize the significant results obtained in our paper.

II. THEORETICAL FRAMEWORK

In this section we will discuss the most general from of
the amplitude that can describe the exclusive decay mode
B → K�lþl− in the SM. The description of the decay
B → K�lþl− requires as the first step the separation of
short-distance effects which involve perturbative QCD and
weak interaction from the long-distance QCD contributions
in an effective Hamiltonian. As is well explained in
literature, exclusive decay modes are a challenge to
describe theoretically. This difficulty arises not only in
the need to know hadronic form factors accurately but also
from the existence of “nonfactorizable” contributions that
do not correspond to form factors. These contributions
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originate from electromagnetic corrections to the matrix
element of purely hadronic operators in the effective
Hamiltonian. It has been demonstrated [6] that these
nonfactorizable corrections can be computed allowing
exclusive decay such as B → K�γ and B → K�lþl− to
be treated systematically much as their inclusive decay
counterparts. It is based on this theoretical understanding
that we will write the most general from of the amplitude
for B → K�lþl− in the SM. Our approach will be to
examine the various factorizable and nonfactorizable con-
tributions to the process and write the most general para-
metric form of the amplitude without making any attempt to
evaluate it.
The decays B → K�lþl− occurs at the quark level via

a b → slþl− flavor changing neutral current transition.
The short-distance effective Hamiltonian for the inclusive
process b → slþl− is given in the SM by [7–9]

Heff ¼ −4
GFffiffiffi
2

p
�
VtbV�

ts

�
C1Oc

1 þ C2Oc
2 þ

X10
i¼3

CiOi

�

þ VubV�
usðC1ðOc

1 −Ou
1Þ þ C2ðOc

2 −Ou
2ÞÞ

�
: ð1Þ

The local operatorsOi are as given in Ref. [8], however, for
completeness we present the relevant operators that are
dominant:

O7 ¼
e
g2

½s̄σμνðmbPR þmsPLÞb�Fμν;

O9 ¼
e2

g2
ðs̄γμPLbÞl̄γμl;

O10 ¼
e2

g2
ðs̄γμPLbÞl̄γμγ5l;

where gðeÞ is the strong (electromagnetic)coupling con-
stant, PL;R ¼ ð1 ∓ γ5Þ=2 are the left and right chiral
projection operators and mbðmsÞ are the running bðsÞ
quark mass in the MS scheme. The Wilson coefficients
Ci encode all the short-distance effects and are calculated in
perturbation theory at a matching scale μ ¼ MW up to
desired order in the strong coupling constant αs before
being evolved down to the scale μ ¼ mb ≈ 4.8 GeV. All
NP contributions to B → K�lþl− contribute exclusively to
Ci; this includes new Wilson coefficients corresponding to
new operators that arise from NP.
Significant effort (see Refs. [10,11] for reviews) has

gone into evaluating the Wilson coefficients up to next-to-
next-to-leading-logarithmic (NNLL) order. As has been
stressed earlier [11] it is important to remember that “the
construction of the effective Hamiltonian by means of
operator product expansion and renormalization group
methods can be done fully in the perturbative framework.
The fact that the decaying hadron are bound states of
quarks is irrelevant for this construction.” This implies that

the Ci are decay mode independent. The dependence on the
mode enters only through the matrix element of local
bilinear quark operators Oi, i.e. hfjOijBi, which encodes
the long-distance contributions. Since the decay amplitude
cannot depend on the scale μ, hfjOijBimust depend on the
scale μ as well. The cancellation of μ dependence generally
involves several terms in the operator product expansion.
Since the calculation of the hadronic matrix element
involves long-distance contributions, nonperturbative
methods are required. Much progress has been made in
these calculations using HQET as a tool. However, the
dominant theoretical error in the amplitude arises due to the
lack of reliable calculations of the hadron matrix element.
The simple picture of the decay presented above is

unfortunately not accurate enough; there exist several
corrections making a reliable estimate of the decay ampli-
tude a challenge. The difficulty goes beyond accurately
estimating the form factors involved in the hadron matrix
element. There exist [6] additional nonfactorizable and
long-distance contributions which arise from electromag-
netic corrections to the matrix elements of purely hadronic
operators in the Hamiltonian that cannot be absorbed into
hadronic form factors. These contributions are generated by
current-current operatorsO1;2 and penguin operatorsO3–6;8,
combined with electromagnetic interaction of quarks to
produce lþl−. The complication in dealing with these
corrections is that the average distances between the photon
emission and the weak interaction points are not necessarily
short resulting in essentially nonlocal contributions to the
decay amplitude which cannot be reduced to local form
factors. A further challenge is that each such contribution
has to identified and estimated one by one. The intermediate
charm quark (and in principle the up quark) loops can
couple to lepton pairs via a virtual photon and even though
these effects are subdominant numerically in certain kin-
ematical regions, they cannot be completely neglected. The
other quarks contribute negligibly (except for resonant
contribution which we will discuss later) to O1;2 and
penguin operators O3–6;8 for B → K�lþl− as they are
either Cabibbo-Kobayashi-Maskawa (CKM) suppressed
or have small accompanying Wilson coefficient. A remark-
able effort [12,13] has gone into understanding the details of
the hadronic contributions in B decays and in particular to
B → K�lþl−. It is fortunate that the remarkable progress
made so far enables us to write a completely accurate
parametric form of the amplitude for this mode in the SM.
LHCb has observed a broad peaking structure [14,15] in

the dimuon spectrum of B → Klþl−. It would be of
interest to see if this observation of broad resonances
has implication on B → K�lþl− mode, since long-distance
effects would have to be included systematically. The decay
mode B → K�lþl− carries more information [1,3] on the
dynamics as compared to the counterpart pseudoscalar
mode B → Klþl−, since the K� polarization can also be
measured. In order to study the dependence of the
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amplitude on the helicity of the K� we further consider the
decay K� → Kπ or the decay process B → K�lþl− →
ðKπÞK�lþl−. This further step itself does not complicate
matters. The decay amplitude in terms of hadronic matrix

elements must therefore include direct contributions pro-
portional to C7, C9 and C10 multiplied by B → K� form
factors and contributions from nonlocal hadronic matrix
elements Hi such that [16,17],

AðBðpÞ → K�ðkÞlþl−Þ ¼ GFαffiffiffi
2

p
π
VtbV�

ts

��
Ĉ9hK�js̄γμPLbjB̄i −

2Ĉ7

q2
hK�js̄iσμνqνðmbPR þmsPLÞbjB̄i

−
16π2

q2
X

i¼f1−6;8g
ĈiH

μ
i

�
l̄γμlþ Ĉ10hK�js̄γμPLbjB̄il̄γμγ5l

�
; ð2Þ

where, p ¼ qþ k with q being the dilepton invariant
momentum and the nonlocal hadron matrix element Hμ

i
is given by

Hμ
i ¼ hK�ðkÞji

Z
d4xeiq·xTfjμemðxÞ;Oið0ÞgjB̄ðpÞi:

In Eq. (2), we have introduced new notional theoretical
parameters Ĉ7, Ĉ9 and Ĉ10 to indicate the true values of
Wilson coefficients, which are by definition not dependent

on the order of the perturbative calculation to which they
are evaluated. Our definition is explicit and should not be
confused with those defined earlier in literature. The
amplitude expressed in Eq. (2) is notionally complete
and free from any approximations. In this paper we do
not attempt to estimate the hadronic matrix element
involved in Eq. (2), instead we use Lorentz invariance to
write out the most general form of the hadron matrix
elements hK�js̄γμPLbjB̄ðpÞi and hK�js̄iσμνqνPR;LbjB̄ðpÞi
which may be defined as

hK�ðϵ�; kÞÞjs̄γμPLbjBðpÞi ¼ ϵ�ν

�
X0qμqν þ X 1

�
gμν −

qμqν

q2

�
þ X2

�
kμ −

k:q
q2

qμ
�
qν þ iX3ϵ

μνρσkρqσ

�
; ð3Þ

hK�ðϵ�; kÞÞjis̄σμνqνPR;LbjBðpÞi ¼ ϵ�ν

�
�Y1

�
gμν −

qμqν

q2

�
� Y2

�
kμ −

k:q
q2

qμ
�
qν þ iY3ϵ

μνρσkρqσ

�
: ð4Þ

We have written Eq. (3) such that the vector part of the current in hK�ðϵ�; kÞÞjs̄γμPLbjBðpÞi is conserved and only the X0

term in the divergence of the axial part survives. Equation (4) is also written so as to ensure that
hK�jis̄σμνqνPR;LbjBiqμ ¼ 0. The relations between X0;1;2;3 and Y1;2;3 and the form factors conventionally defined for
on-shell K� are discussed in Appendix B. It should be noted that form factors X0;1;2;3 and Y1;2;3 are functions of q2 and k2,
but we suppress the explicit dependence for simplicity of notation. The subsequent decay of the K�, i.e., K�ðkÞ →
Kðk1Þπðk2Þ can be easily taken into account [1,8] resulting in the hadronic matrix element h½Kðk1Þπðk2Þ�K� js̄γμPLbjBðpÞi
being written as

h½Kðk1Þπðk2Þ�K� js̄γμPLbjBðpÞi ¼ DK� ðk2ÞWν

�
X0qμqν þ X1

�
gμν −

qμqν

q2

�
þ X2

�
kμ −

k:q
q2

qμ
�
qν þ iX3ϵ

μνρσkρqσ

�
; ð5Þ

h½Kðk1Þπðk2Þ�K� jis̄σμνqνPR;LbjBðpÞi ¼ DK� ðk2ÞWν

�
�Y1

�
gμν −

qμqν

q2

�
� Y2

�
kμ −

k:q
q2

qμ
�
qν þ iY3ϵ

μνρσkρqσ

�
; ð6Þ

where, the subscript K� in ½Kðk1Þπðk2Þ�K� indicates that the
final sate is produced by the decay of a K�, DK� ðk2Þ is the
K� propagator, so that

jDK� ðk2Þj2 ¼ g2K�Kπ

ðk2 −m2
K� Þ2 þ ðmK�ΓK� Þ2 ; ð7Þ

with gK�Kπ being the K�Kπ coupling and the other
parameters introduced are

Wν¼Kν−ξkν; K¼k1−k2; k¼k1þk2; ξ¼k21−k22
k2

:

The most general expression for the hadronic matrix
element Hμ

i can also be written using Lorentz invariance.
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Since this hadronic matrix element arises from nonlocal contributions at the quark level, it involves introducing “new” form
factors Zi

1, Z
i
2 and Zi

3 corresponding to nonfactorizable contribution from each Hμ
i in analogy with those introduced in

Eq. (3) as follows:

Hμ
i ¼ hK�ðϵ�; kÞji

Z
d4xeiq·xTfjμemðxÞ;Oið0ÞgjB̄ðpÞi

¼ ϵ�ν

�
Zi

1

�
gμν −

qμqν

q2

�
þ Zi

2

�
kμ −

k:q
q2

qμ
�
qν þ iZi

3ϵ
μνρσkρqσ

�
: ð8Þ

Our definition follows Ref. [6] of “nonfactorizable” and
includes those corrections that are not contained in the
definition of form factors introduced in Eqs. (3) and (4).
Here the most general form of Hμ

i is written to ensure the
conservation of EM current i.e., qμH

μ
i ¼ 0.

The nonlocal effects represented byHμ
i can be taken into

account by absorbing the contributions into redefined Ĉ9

and modifying the contribution from the electromagnetic
dipole operator O7. The electromagnetic corrections to
operators O1–6;8 can also contribute to B → K�γ at q2 ¼ 0.
Since, only the Wilson coefficient Ĉ7 contributes to
B → K�γ, the charm loops at q2 ¼ 0 must contribute to
Ĉ7 in order for the Wilson coefficient to be process
independent. It is easily seen that the effect of this is to
modify the Ĉ7hKπjs̄iσμνqνðmbPR þmsPLÞbjB̄i terms such
that the form factors and Wilson coefficients mix in an
essentially inseparable fashion. This holds true even for the
leading logarithmic contributions [6,18]. Both factorizable
and nonfactorizable contributions arising from electromag-
netic corrections to hadronic operators up to all orders can
in principle be included in this approach. The remaining
contributions can easily be absorbed into a redefined
“effective” Wilson coefficient Ĉ9 defined such that

Ĉ9 → ~CðjÞ
9 ¼ Ĉ9 þ ΔCðfacÞ

9 ðq2Þ þ ΔCðjÞ;ðnon-facÞ
9 ðq2Þ ð9Þ

where, j ¼ 1; 2; 3 and ΔCðfacÞ
9 ðq2Þ, ΔCðnon-facÞ

9 ðq2Þ corre-
spond to factorizable and soft gluon nonfactorizable con-
tributions. Note that the nonfactorizable contributions
necessitates the introduction of new form factors Zj and
the explicit dependence on Zj=X j is absorbed in defining

ΔCðfacÞ
9 þ ΔCðjÞ;ðnon-facÞ

9 ¼ −
16π2

q2
X

i¼f1–6;8g
Ĉi

Zi
j

X j
; ð10Þ

resulting in the j dependence of the term as indicated. We
also mention that there is no nonfactorizable correction
term in Eq. (8) analogous to X0 [in Eq. (3)] due EM current
conservation as discussed above.
The corresponding corrections to Ĉ7 are taken into by the

replacement,

2ðmb þmsÞ
q2

Ĉ7Yj → ~Yj ¼
2ðmb þmsÞ

q2
Ĉ7Yj þ � � � ;

ð11Þ

where the dots indicate other factorizable and nonfactor-
izable contributions and the factor 2ðmb þmsÞ=q2 has been
absorbed in the form factors ~Yj. Note that the ~Yj’s are in
general complex because of the nonfactorizable contribu-
tions to the Wilson coefficient Ĉ7, but on-shell quarks and
resonances do not contribute to them. It should be noted

that ~CðjÞ
9 includes contributions from both factorizable and

nonfactorizable effects, whereas Ĉ10 is unaffected by strong
interaction effects coming from electromagnetic correc-
tions to hadronic operators. The use of a “wide tilde” versus
“wide hat” throughout the paper is also meant as a notation
to indicate this fact. It should be noted that Ĉ10 is real in the

SM, whereas, ~CðjÞ
9 and ~Yj are in general complex within the

SM. The amplitude in Eq. (2) can therefore be written as

AðBðpÞ → ½Kðk1Þπðk2Þ�K�lþl−Þ

¼ GFαffiffiffi
2

p
π
VtbV�

tsDK�ðk2Þ

×

���
CLW:qX0qμ þ Cð1Þ

L X1

�
Kμ −

W:q
q2

qμ − ξkμ
�
þ Cð2Þ

L W:qX2

�
kμ −

k:q
q2

qμ
�
þ iCð3Þ

L X3ϵ
μνρσKνkρqσ

�

−
�
ζ ~Y1

�
Kμ −

W:q
q2

qμ − ξkμ
�
þ ζW:q ~Y2

�
kμ −

k:q
q2

qμ
�
þ i ~Y3ϵ

μνρσKνkρqσ

��
l̄γμPLlþ L → R

�
; ð12Þ
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where, CL;R ¼ Ĉ9 ∓ Ĉ10, CðjÞ
L;R ¼ ~CðjÞ

9 ∓ Ĉ10 and ζ ¼
ðmb −msÞ=ðmb þmsÞ. It may be noted that no assumptions
aremade in obtaining Eq. (12) fromEq. (2). The form factors
defined are not limited by power corrections in HQET [19].
We emphasize that Eq. (12) continues to be notionally exact.
In our approach wewill relate observables, hence, we do not
need to evaluate the Wilson coefficients and form factors.
Only in doing so approximations need to be made. In
Appendix B comparative relation between the amplitude
in Eq. (12) and the leading order expression excluding
nonfactorization contribution used widely in literature are
presented. These approximations are unnecessary for the
discussions in this paper and are presented only as clarifi-
cation of our notation and as ready reference for readers
wanting to examine Eq. (12) in limiting conditions.

III. ANGULAR DISTRIBUTION AND
OBSERVABLES

The decay B̄ðpÞ → K�ðkÞlþðq1Þl−ðq2Þ, with K�ðkÞ →
Kðk1Þπðk2Þ on the mass shell, is completely describe by
four independent kinematic variables. These kinematic
variables are the lepton-pair invariant mass squared
q2 ¼ ðq1 þ q2Þ2, and the three angles ϕ, θl and θK . The
angle ϕ is the angle between the decay planes formed by
lþl− and Kπ. The angles θl and θK are defined as follows:
assuming that the K� has a momentum along the positive z
direction in B rest frame, θK is the angle between the K and
the þz axis and θl is the angle of the l− with the þz axis.
The differential decay distribution of B → K�lþl− is
written as

d4ΓðB → K�lþl−Þ
dq2d cos θld cos θKdϕ

¼ Iðq2; θl; θK;ϕÞ

¼ 9

32π
½Is1sin2θK þ Ic1cos

2θK þ ðIs2sin2θK þ Ic2cos
2θKÞ cos 2θl þ I3sin2θKsin2θl cos 2ϕ

þ I4 sin 2θK sin 2θl cosϕþ I5 sin 2θK sin θl cosϕþ Is6sin
2θK cos θl

þ I7 sin 2θK sin θl sinϕþ I8 sin 2θK sin 2θl sinϕþ I9sin2θKsin2θl sin 2ϕ�: ð13Þ

The angular coefficients I’s, which can be measured
from the study of the angular distribution, are q2 dependent.
But for convenience we will suppress the explicit q2

dependence.
The I’s are conveniently expressed in terms of “seven”

amplitudes. These comprise the six transversity amplitudes
that survive in the massless lepton limit and an amplitude
At that contributes only if the massm of the lepton is finite.
The six transversity amplitudes AL;R

⊥;∥;0, where ⊥, ∥ and 0
represent the polarizations of the on-shell K� and L, R
denote the chirality of the lepton current. The explicit
expression for I’s in terms of the transversity amplitudes
AL;R

⊥;∥;0 and At are

Is1 ¼
ð2þ β2Þ

4
½jAL⊥j2 þ jAL

∥ j2 þ ðL → RÞ�

þ 4m2

q2
ReðAL⊥AR⊥� þAL

∥A
R
∥
�Þ; ð14aÞ

Ic1 ¼ jAL
0 j2 þ jAR

0 j2 þ
4m2

q2
½jAtj2 þ 2ReðAL

0A
R
0
�Þ�; ð14bÞ

Is2 ¼
β2

4
½jAL⊥j2 þ jAL

∥ j2 þ ðL → RÞ�; ð14cÞ

Ic2 ¼ −β2½jAL
0 j2 þ ðL → RÞ�; ð14dÞ

I3 ¼
β2

2
½jAL⊥j2 − jAL

∥ j2 þ ðL → RÞ�; ð14eÞ

I4 ¼
β2ffiffiffi
2

p ½ReðAL
0A

L
∥
�Þ þ ðL → RÞ�; ð14fÞ

I5 ¼
ffiffiffi
2

p
β½ReðAL

0A
L⊥�Þ − ðL → RÞ�; ð14gÞ

Is6 ¼ 2β½ReðAL
∥A

L⊥�Þ − ðL → RÞ�; ð14hÞ

I7 ¼
ffiffiffi
2

p
β½ImðAL

0A
L
∥
�Þ − ðL → RÞ�; ð14iÞ

I8 ¼
1ffiffiffi
2

p β2½ImðAL
0A

L⊥�Þ þ ðL → RÞ�; ð14jÞ

I9 ¼ β2½ImðAL
∥
�AL⊥Þ þ ðL → RÞ�; ð14kÞ

where

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

q2

s
:

We have dropped the explicit q2 dependence of the trans-
versity amplitudes AL;R

⊥;∥;0 and At for notational simplicity.
The seven amplitudes can be written in terms of the form

factors X0;1;2;3 and Y1;2;3 as follows:

AL;R
⊥ ¼ N

ffiffiffi
2

p
λ
1
2ðm2

B;m
2
K� ; q2Þ½ð ~Cð3Þ

9 ∓ Ĉ10ÞX 3 − ~Y3�;
ð15aÞ
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AL;R
∥ ¼ 2

ffiffiffi
2

p
N½ð ~Cð1Þ

9 ∓ Ĉ10ÞX1 − ζ ~Y1�; ð15bÞ

AL;R
0 ¼ N

2mK�
ffiffiffiffiffi
q2

p ½ð ~Cð2Þ
9 κ ∓ Ĉ10Þf4k:qX 1

þ λðm2
B;m

2
K� ; q2ÞX 2g

− ζf4k:q ~Y1 þ λðm2
B;m

2
K� ; q2Þ ~Y2g�; ð15cÞ

At ¼ −
N
m�

K

ffiffiffiffiffi
q2

q
λ1=2ðm2

B;m
2
K� ; q2ÞĈ10X0; ð15dÞ

where,

κ ¼ 1þ
~Cð1Þ
9 − Ĉð2Þ

9

Ĉð2Þ
9

4k:qX1

4k:qX1 þ λðm2
B;m

2
K� ; q2ÞX2

;

λða; b; cÞ≡ a2 þ b2 þ c2 − 2ðabþ bcþ acÞ and N is the
normalization constant. In the narrow width approximation
for the K�, jDK� ðk2Þj2 simplifies to

jDK� ðk2Þj2 ¼ 48π2m4
K�

λ3=2ðm2
K� ; m2

K;m
2
πÞ
δðk2 −m2

K� Þ: ð16Þ

This results in simplifying N to

N ¼ VtbV�
ts

�
G2

Fα
2

3 × 210π5m3
B

q2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
K� ; q2Þ

q
β

�
1=2

:

We note that in principle the effect of finite K� resonance
width can easily be taken into account, however, wemake no
attempt to do so as the value of the normalization constant is
not going to be used anywhere in our calculation.
The six transversity amplitudes described by Eqs. (15a)–

(15c) which survive in the massless lepton case can be
rewritten in a short-form notation by introducing new form
factors F λ and ~Gλ as follows:

AL;R
λ ¼ Cλ

L;RF λ − ~Gλ ¼ ð ~Cλ
9 ∓ Ĉ10ÞF λ − ~Gλ: ð17Þ

The expressions of F λ and ~Gλ can be obtained by
comparing Eq. (17) with Eqs. (15a)–(15c) and are given
in Appendix (B). F λ and ~Gλ are q2 dependent form factors,
suitably defined to include both factorizable and non-
factorizable corrections to all orders [2]. The form-factor

dependence of ~CðjÞ
9 indicated by “j” in Eqs. (15a)–(15c) is

now translated to an effective helicity “λ” dependence of
Wilson coefficient ~Cλ

9 as

~C⊥
9 ≡ ~Cð3Þ

9 ; ~C∥
9 ≡ ~Cð1Þ

9 ; ~C0
9 ≡ ~Cð2Þ

9 κ: ð18Þ

It is easily seen that F λ and ~Gλ are proportional to X j and
~Yj respectively. Thus F λ’s are completely real and ~Gλ’s are

complex in SM. All imaginary contributions to the ampli-
tude arise from the complex ~Cλ

9 and ~Gλ. An interesting
observation is that AL;R

λ remains unchanged if the non-

factorizable contributions between ~Gλ and ~Cλ
9 are

rearranged. This observation differs from the conclusion
obtained in Ref. [2] because ~Cλ

9 are now helicity dependent
and implies that ~Gλ and ~Cλ

9 cannot be individually extracted.
Using very general arguments it is easy to see that the

form of the amplitude described in Eq. (17) is the most
general possible and the full decay amplitude can be
completely described by them for the massless case. The
amplitude must be described by the helicity of the K� and
can be divided into two parts, one that depends on the
chirality of the lepton and another that does not. It is easily
noted that the term described by F λ is chirality dependent
whereas the contribution corresponding to the effective
photon vertex ~Gλ is not. The form factors F λ and ~Gλ depend
only on the helicity and the chirality dependence is
absorbed completely into the Wilson coefficients. The
coefficient of chirality dependent terms proportional to
F λ can themselves either depend on helicity or be inde-
pendent of it. Hence, the amplitudes in Eq. (17) are
parametrized in terms of three terms. Throughout the rest
of the paper we will use only the form of the amplitudes in
Eq. (17), which is the most general possible in the SM.
It is obvious from Eq. (13) that a complete study of the

angular distribution involves eleven orthogonal terms
allowing us to measure “eleven” observables. In the limit
of massless lepton there exist two relations between the
coefficient I’s, i.e. Ic1 ¼ −Ic2 and Is1 ¼ 3Is2. This reduces the
number of independent observables to “nine.” We will
divide our discussion into two parts. In Sec. IV we will
restrict our discussion by assuming that the lepton is
massless and in Sec. V we will generalize the discussion
to the massive lepton case. In a previous paper [2] the mode
B → K�lþl− was studied in the limit of massless lepton
and under the assumption of vanishing CP violation and
absence of resonance contributions in the q2 domains
considered. Under these approximations I7;8;9 ¼ 0 and
the number of useful observables reduce to only “six.”
In this paper we carefully examine each of these assump-
tions and in particular take into account resonance con-
tributions and the effect of massless lepton. As emphasized
in Sec. II we have taken into account charm loop effects.
The charm loop effect and other resonance contributions
can make the amplitude complex. In the discussions that
ensue we will assume that the amplitude is complex and
ensure that all SM contributions, both factorizable and
nonfactorizable, are taken into account completely when
writing the most general parametrized amplitude.
Within SM, CP violation is expected to be extremely

tiny and essentially unobservable [1,3] at the current level
of experimental accuracy. In Ref. [1] the CP violating
asymmetry was evaluated to be ∼ 3 × 10−4. This would
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imply that one need at the very least 107 reconstructed
events in this decay channel to observe the asymmetry at
1σ. Given this we have justifiably ignored CP violation in
this channel and any observation of CP violation at the
current level of experimental sensitivity would constitute an
unambiguous signal of NP. In view of this, we ignore CP
violation hence forth. It may be noted that CP violation can
be easily included in our approach. However, we ignore it
because it is not central to our discussion and we do not
wish to complicate our notation accounting for unobserv-
able effects within the SM. Under the assumption of
vanishing CP violation the conjugate mode B̄→ K̄�lþl−

has an identical decay distribution except that I5;6;8;9
switch signs to become −I5;6;8;9 in the differential decay
distribution [1,3].
Integration over cos θK, cos θl and ϕ results in the

differential decay rate with respect to the invariant lepton
mass:

dΓ
dq2

¼
X

λ¼0;∥;⊥
ðjAL

λ j2 þ jAR
λ j2Þ: ð19Þ

We define the relevant observables to be the three helicity
fractions defined as

FL ¼ jAL
0 j2 þ jAR

0 j2
Γf

; ð20aÞ

F∥ ¼
jAL

∥ j2 þ jAR
∥ j2

Γf
; ð20bÞ

F⊥ ¼ jAL⊥j2 þ jAR⊥j2
Γf

; ð20cÞ

where Γf ≡P
λðjAL

λ j2 þ jAR
λ j2Þ and FL þ F∥ þ F⊥ ¼ 1.

The other observables are the six asymmetries defined
below. The well-known forward-backward asymmetry AFB
is defined conventionally as

AFB ¼
½R 1

0 −
R
0
−1�d cos θl d2ðΓ−Γ̄Þ

dq2d cos θlR
1
−1 d cos θl

d2ðΓþΓ̄Þ
dq2d cos θl

; ð21Þ

and isolates the contribution from the I6 term in Eq. (13).
Contributions from I4 and I5 in Eq. (13) are extracted by

the two angular asymmetries,

A4 ¼
½R π=2

−π=2 −
R 3π=2
π=2 �dϕ½R 1

0 −
R
0
−1�d cos θK½

R
1
0 −

R
0
−1�d cos θl d4ðΓþΓ̄Þ

dq2d cos θld cos θKdϕR
2π
0 dϕ

R
1
−1 d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕ

; ð22Þ

A5 ¼
½R π=2

−π=2 −
R 3π=2
π=2 �dϕ½R 1

0 −
R
0
−1�d cos θK

R
1
−1 d cos θl

d4ðΓ−Γ̄Þ
dq2d cos θld cos θKdϕR

2π
0 dϕ

R
1
−1 d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕ

: ð23Þ

The three new observables not considered in Ref. [2] are A7, A8 and A9. These are nonzero if the amplitude is complex. They
may be described in analogy as

A7 ¼
½R π

0 −
R
2π
π �dϕ½R 1

0 −
R
0
−1�d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕR

2π
0 dϕ

R
1
−1 d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕ

; ð24Þ

A8 ¼
½R π

0 −
R
2π
π �dϕ½R 1

0 −
R
0
−1�d cos θK½

R
1
0 −

R
0
−1�d cos θl d4ðΓ−Γ̄Þ

dq2d cos θld cos θKdϕR
2π
0 dϕ

R
1
−1 d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕ

; ð25Þ

A9 ¼
½R π=2

0 −
R
π
π=2 þ

R
π
0 −

R
2π
3π=2�dϕ½

R
1
−1 d cos θK�½

R
1
−1 d cos θl� d4ðΓ−Γ̄Þ

dq2d cos θld cos θKdϕR
2π
0 dϕ

R
1
−1 d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕ

: ð26Þ

RUSA MANDAL, RAHUL SINHA, AND DIGANTA DAS PHYSICAL REVIEW D 90, 096006 (2014)

096006-8



The well-known forward-backward asymmetry AFB and
the five other angular asymmetries, A4, A5, A7, A8 and A9

can be written directly in terms of the transversity ampli-
tudes as follows:

AFB ¼ 3

2

ReðAL
∥A

L�
⊥ −AR

∥A
R�
⊥ Þ

Γf
; ð27Þ

A4 ¼
ffiffiffi
2

p

π

ReðAL
0A

L�
∥ þAR

0A
R�
∥ Þ

Γf
; ð28Þ

A5 ¼
3

2
ffiffiffi
2

p ReðAL
0A

L�
⊥ −AR

0A
R�
⊥ Þ

Γf
; ð29Þ

A7 ¼
3

2
ffiffiffi
2

p ImðAL
0A

L
∥
� −AR

0A
R
∥
�Þ

Γf
; ð30Þ

A8 ¼
ffiffiffi
2

p

π

ImðAL
0A

L⊥� þAR
0A

R⊥�Þ
Γf

; ð31Þ

A9 ¼
3

2π

ImðAL
∥
�AL⊥ þAR

∥
�AR⊥Þ

Γf
: ð32Þ

The observables A4, A5, AFB, A7, A8 and A9 are related to
the CP averaged observables S4, S5, ALHCb

FB , S7, S8 and S9
measured by LHCb [5] as follows respectively,

A4 ¼ −
2

π
S4; A5 ¼

3

4
S5; AFB ¼ −ALHCb

FB ;

A7 ¼
3

4
S7; A8 ¼ −

2

π
S8; A9 ¼

3

2π
S9: ð33Þ

We emphasize that our observables A4;5;7;8;9 are CP
conserving asymmetries and in particular A9 and should
not be confused with the CP violating asymmetry mea-
sured by LHCb [5] also denoted by A9. In our notation we
would refer to the CP violating asymmetries as ACP

4;5;6;7;8;9.
The observables FL and AFB have been measured by
different experiments BABAR, Belle, CDF and LHCb
[5,20–26]. By doing an angular analysis in the angle ϕ,
LHCb has measured the observable S3 [5]. S3 is related to
the transversity helicity fraction F⊥ through the relation

S3 ¼ −
1 − FL − 2F⊥

2
: ð34Þ

The observables FL, F⊥, A4, A5, AFB, A7, A8 and A9

defined in this section are not independent. In the sub-
sequent sections we explore the relation between them.

IV. THE MASSLESS LEPTON LIMIT

In this section we generalize the approach developed in
Ref. [2] to include all contributions from the SM that were

ignored as their effects are subdominant, except that we still
restrict our discussion to the limit where the lepton is
massless. The corrections arising from massive leptons will
be taken into account later in Sec V. In particular we will
consider the possibility that the amplitudes AL;R

λ are in
general complex. As already mentioned the imaginary
contribution can be totally attributed to the complex ~Cλ

9

and ~Gλ. This would include loop contributions that are both
factorizable and nonfactorizable and all resonance contri-
butions. We also take into account that the nonfactorizable
contributions can introduce an “effective helicity (λ)
dependence” in the Wilson coefficient ~Cλ

9.
In Ref. [2] a new variable rλ was introduced that led to

significant simplification. We once again introduce the
same “real variable” rλ defined as

rλ ¼
Reð ~GλÞ
F λ

− Reð ~Cλ
9Þ: ð35Þ

Since, we now consider ~Cλ
9 and ~Gλ to be complex in general,

we have modified rλ to include only the real contributions
i.e., Reð ~Cλ

9Þ and Reð ~GλÞ. The amplitude AL;R
λ in Eq. (17)

can thus be written as

AL;R
λ ¼ ð ~Cλ

9 ∓ Ĉ10ÞF λ − ~Gλ

¼ ð∓ Ĉ10 − rλÞF λ þ iελ; ð36Þ

where ελ ≡ Imð ~Cλ
9ÞF λ − Imð ~GλÞ. The use of ελ is not

necessarily meant to imply that the imaginary parts are
negligibly small. We make no such assumption. It is,
however, to be expected that the imaginary contributions
are subdominant. The presence of the ελ term introduces
three extra variables in comparison to the discussion in
Ref. [2]. However, we now have three extra observables A7,
A8 and A9. Hence, dealing with complex amplitude
introduces only a technical difficulty of solving for addi-
tional variables. We begin by expressing the observables
FL, F∥, F⊥, A4, A5, AFB, A7, A8 and A9 in terms of Ĉ10, rλ,
F λ and ελ as follows:

FLΓf ¼ 2F 2
0ðr20 þ Ĉ2

10Þ þ 2ε20; ð37Þ

F∥Γf ¼ 2F 2
∥ðr2∥ þ Ĉ2

10Þ þ 2ε2∥; ð38Þ

F⊥Γf ¼ 2F 2⊥ðr2⊥ þ Ĉ2
10Þ þ 2ε2⊥; ð39Þ

ffiffiffi
2

p
πA4Γf ¼ 4F 0F ∥ðr0r∥ þ Ĉ2

10Þ þ 4ε0ε∥; ð40Þ
ffiffiffi
2

p
A5Γf ¼ 3F 0F⊥Ĉ10ðr0 þ r⊥Þ; ð41Þ

AFBΓf ¼ 3F ∥F⊥Ĉ10ðr∥ þ r⊥Þ; ð42Þ
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ffiffiffi
2

p
A7Γf ¼ 3Ĉ10ðF 0ε∥ − F ∥ε0Þ; ð43Þ

πA8Γf ¼ 2
ffiffiffi
2

p
ðF 0r0ε⊥ − F⊥r⊥ε0Þ; ð44Þ

πA9Γf ¼ 3ðF⊥r⊥ε∥ − F ∥r∥ε⊥Þ: ð45Þ

One immediately concludes that

2
ε20
Γf

≤ FL; ð46Þ

2
ε2∥
Γf

≤ F∥; ð47Þ

2
ε2⊥
Γf

≤ F⊥: ð48Þ

Equations (37)–(42) can be easily transformed to the form
in Ref. [2] by the redefinition of the observables FL, F∥, F⊥
and A4 as

F0
λ ¼ Fλ −

2ε2λ
Γf

; ð49Þ

A0
4 ¼ A4 −

2
ffiffiffi
2

p
ε0ε∥

πΓf
: ð50Þ

It should be noted that F0
L þ F0

∥ þ F0⊥ ≤ 1. Since only the
ratios of the form factors F λ play a role in the relations we
wish to derive we define ratios of form factors P1, P2 and
P3:

P1 ¼
F⊥
F ∥

; ð51Þ

P2 ¼
F⊥
F 0

; ð52Þ

P3 ¼
F⊥

F 0 þ F ∥
≡ P1P2

P1 þ P2

: ð53Þ

Following these redefinitions Eqs. (37)–(42) can be recast
into three sets of equations just as done in Ref. [2]. The
three sets of equation are

(i) Set-I

F0
∥Γf ¼ 2

F 2⊥
P2
1

ðr2∥ þ Ĉ2
10Þ ð54Þ

F0⊥Γf ¼ 2F 2⊥ðr2⊥ þ Ĉ2
10Þ ð55Þ

AFBΓf ¼ 3
F 2⊥
P1

Ĉ10ðr∥ þ r⊥Þ ð56Þ

(ii) Set-II

F0
LΓf ¼ 2

F 2⊥
P2
2

ðr20 þ Ĉ2
10Þ ð57Þ

F0⊥Γf ¼ 2F 2⊥ðr2⊥ þ Ĉ2
10Þ ð58Þ

ffiffiffi
2

p
A5Γf ¼ 3

F 2⊥
P2

Ĉ10ðr0 þ r⊥Þ ð59Þ

(iii) Set-III

ðF0
L þ F0

∥ þ
ffiffiffi
2

p
πA0

4ÞΓf ¼ 2
F 2⊥
P2
3

ðr2∧ þ Ĉ2
10Þ ð60Þ

F0⊥Γf ¼ 2F 2⊥ðr2⊥ þ Ĉ2
10Þ ð61Þ

ðAFB þ
ffiffiffi
2

p
A5ÞΓf ¼ 3

F 2⊥
P3

Ĉ10ðr∧ þ r⊥Þ ð62Þ

In the above we have defined r∧ as

r∧ ¼ r∥P2 þ r0P1

P2 þ P1

: ð63Þ

Of the nine equations defined in the three sets only six of
them are independent. These are the three equations,
Eqs. (54)–(56) in Set-I, two equations (57) and (59) from
Set-II and Eq. (60) of Set-III. It is easy to see that Set-II and
Set-III can be obtained from Set-I by the following
replacements:

(i) Set-II from Set-I
F0
∥ → F0

L, AFB →
ffiffiffi
2

p
A5, r∥ → r0 and P1 → P2

(or F ∥ → F 0).
(ii) Set-III from Set-I

F0
∥ → F0

L þ F0
∥ þ

ffiffiffi
2

p
πA0

4, AFB → AFB þ ffiffiffi
2

p
A5,

r∥ → r∧ and P1 → P3 (or F ∥ → F ∥ þ F 0).
It is obvious that we only need to solve Set-I to obtain r∥
and r⊥ in terms of P1, F0

∥, F
0⊥ and AFB. The solutions to

Set-II and Set-III can be obtained by simple replacements.
The solution of Set-I gives (from Appendix. A)

r∥ ¼ �
ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

ðP2
1F

0
∥ þ 1

2
P1Z0

1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1F

0
∥ þ F0⊥ þ P1Z0

1

q ; ð64Þ

r⊥ ¼ �
ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

ðF0⊥ þ 1
2
P1Z0

1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1F

0
∥ þ F0⊥ þ P1Z0

1

q ; ð65Þ

where Z0
1 is defined as
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Z0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F0

∥F
0⊥ −

16

9
A2
FB

r
: ð66Þ

The solution to Set-II is now easily seen to be

r0 ¼ �
ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

ðP2
2F

0
L þ 1

2
P2Z0

2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2F

0
L þ F0⊥ þ P2Z0

2

p ; ð67Þ

r⊥ ¼ �
ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

ðF0⊥ þ 1
2
P2Z0

2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2F

0
L þ F0⊥ þ P2Z0

2

p ; ð68Þ

with Z0
2 defined as

Z0
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F0

LF
0⊥ −

32

9
A2
5

r
: ð69Þ

On comparing the solutions for r⊥ in Eqs. (65) and (68)
obtained from Set-I and Set-II respectively, we obtain a
relation for P2 in terms of P1 and observables to be

P2 ¼
2P1AFBF0⊥

s
ffiffiffi
2

p
A5ð2F0⊥ þ Z0

1P1Þ − Z0
2P1AFB

; ð70Þ

with s ∈ f−1;þ1g. To remove the ambiguities in the P2

solution let us divide Eq. (59) by Eq. (56) and using
Eqs. (64)–(68) we get

ffiffiffi
2

p
A5

AFB
¼ P1

P2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2F

0
L þ F0⊥ þ P2Z0

2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1F

0
∥ þ F0⊥ þ P1Z0

1

q ¼ P1

P2

ð2F0⊥ þ P2Z0
2Þ

ð2F0⊥ þ P1Z0
1Þ
:

ð71Þ

Substituting it in Eq. (70) we have

sð2F0⊥ þ P2Z0
2Þ − Z0

2P2 ¼ 2F0⊥;

which is valid for the whole q2 region only for s ¼ 1.
Finally we write the r⊥ solution obtained from Set-III:

r⊥ ¼ �
ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

ðF0⊥ þ 1
2
P3Z0

3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
3ðF0

∥ þ F0
L þ ffiffiffi

2
p

πA0
4Þ þ F0⊥ þ P3Z0

3

q ;

ð72Þ

where Z0
3 is defined as

Z0
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðF0

L þ F0
∥ þ

ffiffiffi
2

p
πA0

4ÞF0⊥ −
16

9
ðAFB þ

ffiffiffi
2

p
A5Þ2

r
:

ð73Þ

Analogous comparison of solutions for r⊥ in Eqs. (65) and
(72) obtained from Set-I and Set-III respectively, results in
a relation for P3 in terms of P1:

P3 ¼
2P1AFBF0⊥

ðAFB þ ffiffiffi
2

p
A5Þð2F0⊥ þ Z0

1P1Þ − Z0
3P1AFB

: ð74Þ

The ambiguity in the P3 solution is also taken to be positive
for the same reason as the P2 solution. The form-factor
ratio P3 is not however independent of P1 and P2 and is
related by Eq. (53). Substituting Eqs. (70) and (74) in
Eq. (53) we obtain the relation between the observables as

Z0
3 ¼ Z0

1 þ Z0
2: ð75Þ

The relations derived so far involve the primed observ-
ables that depend on ε⊥, ε∥ and ε0. However, the ελ’s can be
solved using A7, A8 and A9 from Eqs. (43)–(45) to give

ε⊥ ¼
ffiffiffi
2

p
πΓf

ðr0 − r∥ÞF⊥

�
A9P1

3
ffiffiffi
2

p þ A8P2

4
−
A7P1P2r⊥
3πĈ10

�
; ð76Þ

ε∥ ¼
ffiffiffi
2

p
πΓf

ðr0 − r∥ÞF⊥

�
A9r0
3

ffiffiffi
2

p
r⊥

þ A8P2r∥
4P1r⊥

−
A7P2r∥
3πĈ10

�
; ð77Þ

ε0 ¼
ffiffiffi
2

p
πΓf

ðr0 − r∥ÞF⊥

�
A9P1r0
3

ffiffiffi
2

p
P2r⊥

þ A8r∥
4r⊥

−
A7P1r0
3πĈ10

�
: ð78Þ

A point to be noted that the ðελ=Γ
1
2

fÞ’s are free from the
form factor F⊥ and Γf as can easily be seen from the
expressions for r∥, r⊥ and r0 [Eqs. (64), (65) and (67)], as
well as Ĉ10 derived in Eq. (A12). Indeed, since P2 can be
expressed in terms P1 and observables using Eq. (70), it is
easy to see that each of the ελ’s are completely expressed in
terms of observables and the form-factor ratio P1.
However, these solutions are essentially iterative, since
the rλ’s and Ĉ10 are derived in terms of the primed

observables that depend on ελ. If the ðελ=Γ
1
2

fÞ are small
as should be expected, accurate solutions for them can be
found with a few iterations.
Solving for A4 from Eq. (75) the relation among the

observables is

A4 ¼
2

ffiffiffi
2

p
ε∥ε0

πΓf
þ 8A5AFB

9πðF⊥ − 2ε2⊥
Γf
Þ
þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFL − 2ε2

0

Γf
ÞðF⊥ − 2ε2⊥

Γf
Þ − 8

9
A2
5

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF∥ −

2ε2∥
Γf
ÞðF⊥ − 2ε2⊥

Γf
Þ − 4

9
A2
FB

r

πðF⊥ − 2ε2⊥
Γf
Þ

: ð79Þ
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This relation for A4 in terms of other observablesFL, F⊥,
A5, AFB, A7, A8 and A9 is a generalization of the relation
derived in Ref. [2]. A point to be noted is that while we
have solved for the observable A4, we could have used
Eq. (75) to derive an expression for any of the other
observable. However, only the solution for A4 is unique and
hence the one we consider. The validity of this relation is a
test of the consistency of the values of all measured
observables. Unlike the expression obtained in Ref. [2],
we now have a relation between observables that depends
on only one hadronic parameter, the ratio of form factors
P1. It is interesting to note that P1 does not receive
nonfactorizable contributions and is uncorrected by charm
loop effects. Since, P1 is independent of the universal wave
functions [6,27] in HQET, it can be reliably calculated as an
expansion in both the strong coupling constant αs and
ΛQCD=mb. The dependence of A4 on P1 is rather weak,
since the observables A7, A8 and A9 are observed to be
small and are currently consistent with zero as expected [5].
If A7, A8 and A9 are all observed to be zero, it is easy to see
from Eqs. (76)–(78) that ε⊥ ¼ ε∥ ¼ ε0 ¼ 0 reducing the
relation in Eq. (79) to

A4 ¼
8A5AFB

9πF⊥
þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FLF⊥ − 8

9
A2
5

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F∥F⊥ − 4

9
A2
FB

q
πF⊥

ð80Þ

which was derived in Ref. [2]. Interestingly, in the limit of
vanishing imaginary contributions, A4 can be expressed
purely in terms of observables and is free from any form
factor or their ratio. In Appendix B it is shown that both P1

and P2 are always negative. An interesting observation that
AFB and A5 always have same signs can be then made from
the relation in Eq. (71). Hence, we can arrive to a
conclusion that, from Eq. (79) the observable A4 is always
positive unless the term proportional to ε∥ε0 is negative and
it dominates over the rest of the terms in the expression.
A4 is an observable and hence must always be real. This

places constraints on the arguments of the radicals, which
are directly related to the fact that Z0

1, Z
0
2 and Z

0
3 are all real.

The constraint that Z0
1 is real in turn implies that

F∥F⊥ −
4

9
A2
FB ≥ F∥F⊥

�
2ε2∥
ΓfF∥

þ 2ε2⊥
ΓfF⊥

−
4ε2∥ε

2⊥
Γ2
fF∥F⊥

�
:

ð81Þ

In Eqs. (46)–(48), we showed that 0 ≤ 2ε2λ
ΓfFλ

≤ 1, implying

that the rhs of Eq. (81) must itself be greater than zero. This
imposes the following constraint:

F∥F⊥ −
4

9
A2
FB ≥ 0: ð82Þ

A similar constraint arising from Z0
2 and Z0

3 also being real
implies that

FLF⊥ − 8
9
A2
5 ≥ 0; ð83Þ

ðFL þ F∥ þ
ffiffiffi
2

p
πA4ÞF⊥ − 4

9
ðAFB þ ffiffiffi

2
p

A5Þ2 ≥ 0: ð84Þ

The equality in the above three relations holds only when a
minimum of two of the ελ’s are zero. For example, ε∥ and
ε⊥ are zero for the equality to hold in Eq. (82), whereas ε0
and ε⊥ are zero for Eq. (83). The three inequalities in
Eqs. (82)–(84) impose constraints on the parameter space
of observables. It is obvious that nonzero ελ’s will in
general restrict the parameter space of observables even
further. We emphasize that this conclusion is valid without
any exception. We will come back to this point in Sec. VII
when we discuss the tests of the relation for A4 in Eq. (79).

V. GENERALIZATION TO INCLUDE
LEPTON MASSES

In this section we extend the model independent
approach developed in the previous section (Sec. IV) to
include the lepton mass m. One of the consequences of
retaining the lepton mass is the need to include an addi-
tional amplitude in order to describe the full decay rate,
since the term proportional to qμ in the amplitude cannot be
dropped for the massive lepton case (for a review [8]). In
addition to the six amplitude AL;R

λ where λ ∈ f0; ∥;⊥g the
decay amplitude also depends on At, resulting in a total of
seven amplitudes. These amplitudes are given in
Eqs. (15a)–(15d). In addition, since the massive leptons
are no longer chirality eigenstates, terms involving
admixtures of helicities that are proportional to m2=q2

[see Eqs. (14a) and (14b)] contribute to the differential
decay rate.
These additional contributions complicate the extraction

of the helicity amplitudes. The observables FL, F∥, F⊥, A4,
A5 and AFB given in Sec. IV are modified because of the
presence of the new transversity amplitude At and helicity
admixture terms in the decay distribution. This in turn
results in modifying the relations in Eqs. (79) and (80). The
effect of the mass of the lepton is always included in the
measured observables and it is not possible to measure any
observable without the mass effects. In order to distinguish
the “hypothetical observables without the mass effects”
considered in Sec. IV from these true observables, we
define them with a superscript “o” and relate to the
massless limit observables as

Γo
f ¼ β2Γf þ 3T 1; ð85aÞ

Fo
L ¼ 1

Γo
f
ðβ2ΓfFL þ T1Þ; ð85bÞ
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Fo
∥ ¼

1

Γo
f
ðβ2ΓfF∥ þ T1Þ; ð85cÞ

Fo⊥ ¼ 1

Γo
f
ðβ2ΓfF⊥ þ T 1Þ; ð85dÞ

Ao
4 ¼

Γf

Γo
f
β2A4; ð85eÞ

Ao
5 ¼

Γf

Γo
f
βA5; ð85fÞ

Ao
FB ¼ Γf

Γo
f
βAFB; ð85gÞ

Ao
7 ¼

Γf

Γo
f
βA7; ð85hÞ

Ao
8 ¼

Γf

Γo
f
β2A8; ð85iÞ

Ao
9 ¼

Γf

Γo
f
β2A9: ð85jÞ

In the above we have defined

T1 ¼ ð1þ E1Þ
m2

q2
Γf where

E1 ¼
jAtj2
Γf

þ 2

Γf
Re½AL

∥A
R
∥
� þAL⊥AR⊥� þAL

0A
R
0
��:

Using

2Re½AL
λA

R
λ
�� ¼ jAL

λ þAR
λ j2 − ΓfFλ

and the Cauchy-Schwarz inequality, we find

T1 ¼
�
jAtj2 þ

X
λ¼f∥;⊥;0g

jAL
λ þAR

λ j2
�
m2

q2
ð86Þ

≤ ðjAtj2 þ 2ΓfÞ
m2

q2
ð87Þ

which is always positive and bounded. This bound is
important since T1 has not been measured so far. T 1 can
also be expressed in terms of angular coefficients as

T1

Γo
f
¼ 1

3
−
4Is2 − Ic2
3Γo

f

¼ 1

3
−
16

9
A10 þ

64

27
A11 ð88Þ

and measured in terms of two new observables A10 and A11,
defined in terms of angular asymmetries as follows:

A10 ¼
R
2π
0 dϕ

R
1
0 d cos θK½

R−1=2
−1 −

R 1=2
−1=2þ

R
1
1=2�d cos θl d4ðΓþΓ̄Þ

dq2d cos θld cos θKdϕR
2π
0 dϕ

R
1
−1 d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕ

; ð89Þ

A11 ¼
R
2π
0 dϕ½R−1=2

−1 −
R 1=2
−1=2þ

R
1
1=2�d cos θK½

R−1=2
−1 −

R 1=2
−1=2 þ

R
1
1=2�d cos θl d4ðΓþΓ̄Þ

dq2d cos θld cos θKdϕR
2π
0 dϕ

R
1
−1 d cos θK

R
1
−1 d cos θl

d4ðΓþΓ̄Þ
dq2d cos θld cos θKdϕ

: ð90Þ

If the two asymmetries A10 and A11 are measured exper-
imentally then we can get the estimate of the correction
term arising due to lepton masses. However, from Eq. (86)
it can be seen that T1 is proportional to lepton mass (square)
m2=q2 which is very small and difficult to measure except
at small q2. In the limit of zero lepton mass T 1 vanishes
which gives a constraint on these two observables by

A10 −
4

3
A11 ¼

3

16
: ð91Þ

A deviation from this relation would indicate the effect of
the nonzero lepton mass and provide an estimate of the size
the mass corrections. The observables are reexpressed in
terms of the variables rλ [defined in Eq. (35)] as follows:

Fo
LΓo

f ¼ 2β2
F 2⊥
P2
2

ðr20 þ Ĉ2
10Þ þ 2β2ε20 þ T1; ð92Þ

Fo
∥Γo

f ¼ 2β2
F 2⊥
P2
1

ðr2∥ þ Ĉ2
10Þ þ 2β2ε2∥ þ T1; ð93Þ

TESTING NEW PHYSICS EFFECTS IN B → K�lþl− … PHYSICAL REVIEW D 90, 096006 (2014)

096006-13



Fo⊥Γo
f ¼ 2β2F 2⊥ðr2⊥ þ Ĉ2

10Þ þ 2β2ε2⊥ þ T 1; ð94Þ

ffiffiffi
2

p
πAo

4Γo
f ¼ 4β2

F 2⊥
P1P2

ðr0r∥ þ Ĉ2
10Þ þ 4β2ε0ε∥; ð95Þ

ffiffiffi
2

p
Ao
5Γo

f ¼ 3β
F 2⊥
P2

Ĉ10ðr0 þ r⊥Þ; ð96Þ

Ao
FBΓo

f ¼ 3β
F 2⊥
P1

Ĉ10ðr∥ þ r⊥Þ; ð97Þ
ffiffiffi
2

p
Ao
7Γo

f ¼ 3βĈ10ðF 0ε∥ − F ∥ε0Þ; ð98Þ

πAo
8Γo

f ¼ 2
ffiffiffi
2

p
β2ðF 0r0ε⊥ − F⊥r⊥ε0Þ; ð99Þ

πAo
9Γo

f ¼ 3β2ðF⊥r⊥ε∥ − F ∥r∥ε⊥Þ: ð100Þ

In analogy with the previous solutions of P2 and P3 in
Eqs. (70) and (74) using the three sets (Set-I, II, III) we can
solve for P2 and P3 once again in terms of P1 and “true
observables” as

P2 ¼
2P1Ao

FB

	
Fo⊥ − T ⊥

Γo
f



ffiffiffi
2

p
Ao
5ð2ðFo⊥ − T ⊥

Γo
f
Þ þ Zo

1P1Þ − Zo
2P1Ao

FB

; ð101Þ

P3 ¼
2P1Ao

FB

	
Fo⊥ − T ⊥

Γo
f



ðAo

FB þ ffiffiffi
2

p
Ao
5Þ
	
2
	
Fo⊥ − T ⊥

Γo
f



þ Zo

1P1



− Zo

3P1Ao
FB

;

ð102Þ

where positive sign ambiguity is chosen for P2 and P3

solutions because of the same reason discussed in the
massless case. The definitions of Zo

1, Z
o
2 and Z

o
3 are given by

Zo
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
	
Fo
∥ −

T ∥
Γo
f


	
Fo⊥ − T ⊥

Γo
f



− 16

9
β2Ao

FB
2

r
; ð103Þ

Zo
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
	
Fo
L −

T 0

Γo
f


	
Fo⊥ −

T ⊥
Γo
f



−
32

9
β2Ao

5
2

s
; ð104Þ

Zo
3 ¼


4

��
Fo
L −

T 0

Γo
f

�
þ
�
Fo
∥ −

T ∥

Γo
f

�
þ

ffiffiffi
2

p
πAo

4 −
4β2ε0ε∥

Γo
f

��
Fo⊥ −

T ⊥
Γo
f

�
−
16

9
β2ðAo

FB þ
ffiffiffi
2

p
Ao
5Þ2

s
: ð105Þ

To simplify notation we have defined

T λ ¼ T 1 þ 2β2ε2λ ; λ ∈ f0;⊥; ∥g: ð106Þ

Substituting Eqs. (101) and (102) in Eq. (53) we can get the condition valid over whole q2 range as

Zo
3 ¼ Zo

1 þ Zo
2: ð107Þ

The ελ’s can be solved as was done in the previous section using Eqs. (98)–(100) to give

ε⊥ ¼
ffiffiffi
2

p
πΓo

f

β2ðr0 − r∥ÞF⊥

�
Ao
9P1

3
ffiffiffi
2

p þ Ao
8P2

4
−
Ao
7βP1P2r⊥
3πĈ10

�
; ð108Þ

ε∥ ¼
ffiffiffi
2

p
πΓo

f

β2ðr0 − r∥ÞF⊥

�
Ao
9r0

3
ffiffiffi
2

p
r⊥

þ Ao
8P2r∥
4P1r⊥

−
Ao
7βP2r∥
3πĈ10

�
; ð109Þ

ε0 ¼
ffiffiffi
2

p
πΓo

f

β2ðr0 − r∥ÞF⊥

�
Ao
9P1r0

3
ffiffiffi
2

p
P2r⊥

þ Ao
8r∥
4r⊥

−
Ao
7βP1r0
3πĈ10

�
: ð110Þ

From Eqs. (A10)–(A12) it can be easily seen that the ðελ=Γo
f
1
2Þ’s are free from the form factor F⊥ and Γo

f and are

completely expressed in terms of observables and the form-factor ratio P1. Accurate solutions of ðελ=Γo
f
1
2Þ’s can be found

with a few iterations as described in the previous massless case.
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Solving for Ao
4 from Eq. (107) the relation among the observables including lepton masses turns out

Ao
4 ¼

2
ffiffiffi
2

p
β2ε∥ε0
πΓo

f
þ 8β2Ao

5A
o
FB

9π
	
Fo⊥ − T ⊥

Γo
f


þ
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
Fo
L − T 0

Γo
f


	
Fo⊥ − T ⊥

Γo
f



− 8

9
β2Ao

5
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
Fo
∥ −

T ∥
Γo
f


	
Fo⊥ − T ⊥

Γo
f



− 4

9
β2Ao2

FB

r

π
	
Fo⊥ − T ⊥

Γo
f


 : ð111Þ

In analogy to the massless case, each of Zo
1, Z

o
2 and Z

o
3 are

also real. A real Zo
1 implies that

Fo
∥F

o⊥ −
4

9
Ao2
FB ≥ Fo

∥F
o⊥
�

T ∥

Γo
fF

o
∥
þ T ⊥
Γo
fF

o⊥
−

T ∥T ⊥
Γo
f
2Fo

∥F
o⊥

�

−
16m2Ao2

FB

9q2
: ð112Þ

Since, 0 ≤ T λ
ΓfFo

λ
≤ 1 as can be seen from Eqs. (92)–(94), we

can obtain a bound on the lhs of Eq. (112). The bounds
arising from real Zo

1, Z
o
2 and Zo

3 are

Fo
∥F

o⊥ −
4

9
Ao2
FB ≥ −

16m2Ao2
FB

9q2
; ð113aÞ

Fo
LF

o⊥ −
8

9
Ao
5
2 ≥ −

32m2Ao
5
2

9q2
; ð113bÞ

ðFo
L þ Fo

∥ þ
ffiffiffi
2

p
πAo

4ÞFo⊥ −
4

9
ðAo

FB þ
ffiffiffi
2

p
Ao
5Þ2

≥ −
16m2ðAo

FB þ ffiffiffi
2

p
Ao
5Þ2

9q2
ð113cÞ

respectively. Clearly the lhs of the above inequalities can, in
the worst case, be a small negative number. Comparing this
with the massless case we note that while the effect of the
imaginary contributions is to restrict the parameter space
further the effect of mass dependent terms is to oppose this
restriction. The mass term should have the maximum effect
at q2 close to 4m2, but as we will see in the next section
(Sec. VI) in the limit q2 → 4m2 all the asymmetries
approach zero. The contribution from the mass term should
hence be insignificant, indicating that in practice the
allowed parameter space of observables is not noticeably
altered. This conclusion is borne out to be true in numerical
estimates as we will see in Sec. VII. We conclude, there-
fore, that the most conservative allowed parameter space
remains unaltered even if the small lepton mass term is
dropped compared to q2 and the imaginary contributions to
the amplitudes are completely ignored.
The zero crossings of angular asymmetries Ao

FB, A
o
5 and

Ao
FB þ ffiffiffi

2
p

Ao
5 provide interesting limits where the relation in

Eq. (111) simplifies to three independent relations with
each of them providing an interesting test for NP. At the

zero crossing of Ao
FB, Ao

5 and Ao
FB þ ffiffiffi

2
p

Ao
5, Eq. (111)

reduces to

8Ao
5
2

9
	
Fo
L − T 0

Γo
f


	
Fo⊥ − T ⊥

Γo
f


þ
π2
	
Ao
4 −

2
ffiffi
2

p
β2ε∥ε0
πΓo

f



2

2
	
Fo
L − T 0

Γo
f


	
Fo
∥ −

T ∥
Γo
f


 ¼ 1

ð114aÞ

4Ao2
FB

9
	
Fo
∥ −

T ∥
Γo
f


	
Fo⊥ − T ⊥

Γo
f


þ
π2
	
Ao
4 −

2
ffiffi
2

p
β2ε∥ε0
πΓo

f



2

2
	
Fo
L − T 0

Γo
f


	
Fo
∥ −

T ∥
Γo
f


 ¼ 1

ð114bÞ

2ðAo2
FBþ2Ao

5
2Þ
		

Fo
L−

T 0

Γo
f



þ
	
Fo
∥−

T ∥
Γo
f



þ ffiffiffi

2
p

πAo
4−

4β2ε0ε∥
Γo
f



9
	
Fo
∥−

T ∥
Γo
f


	
Fo
L−

T 0

Γo
f


	
Fo⊥− T ⊥

Γo
f




þ
π2
	
Ao
4−

2
ffiffi
2

p
β2ε∥ε0
πΓo

f



2

2
	
Fo
L−

T 0

Γo
f


	
Fo
∥−

T ∥
Γo
f


¼ 1 ð114cÞ

respectively. In the limit where both the mass effect and the
imaginary contributions to the Wilson coefficients Ĉ7 and
Ĉ9 can be ignored these relations simplify to depend only
on observables

8A2
5

9FLF⊥
þ π2A2

4

2FLF∥
¼ 1 if AFB ¼ 0

4A2
FB

9F∥F⊥
þ π2A2

4

2FLF∥
¼ 1 if A5 ¼ 0

2ðA2
FB þ 2A2

5ÞðFL þ F∥ þ
ffiffiffi
2

p
πA4Þ

9F∥FLF⊥
þ π2A2

4

2FLF∥
¼ 1

if AFB þ
ffiffiffi
2

p
A5 ¼ 0: ð115Þ

The zero crossings of these observables are also interesting
as the form-factor ratios P1, P2 and P3 can be related to the
helicity fractions at those q2 points. Equation (97) implies
that when Ao

FB ¼ 0, r∥ þ r⊥ must be zero. Then, the
expression for r∥ þ r⊥ [see Eq. (A10) for the massive
case in Appendix A] gives
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r∥þr⊥jAo
FB¼0¼�

ffiffiffiffiffi
Γo
f

p
ffiffiffi
2

p
F⊥

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo⊥−

T ⊥
Γo
f

s
þP1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo
∥−

T ∥

Γo
f

s �
¼0

⇒P1jAo
FB¼0¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo⊥−

T ⊥
Γo
f

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo
∥−

T ∥
Γo
f

r ð116Þ

P1 can be iteratively solved from the above equation. We
note that in order one has real positive form factors by

definition [Eq. (51)] P1 is always negative. The zero
crossing of Ao

FB is observed at q2 ¼ 4.9þ1.1
−1.3 GeV2 [5]

which is in the large recoil region where it is believed
that reliable calculations can be done in HQET. Hence, we
can check the predictability of HQET in large recoil region,
when enough data for all observables are available at this
q2 point.
Equations (101) and (102) can now be used to obtain P2

and P3 at the zero crossings Ao
5 ¼ 0 and Ao

FB þ ffiffiffi
2

p
Ao
5 ¼ 0

respectively,

P2jAo
5
¼0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo⊥ − T ⊥

Γo
f

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo
L − T 0

Γo
f

q ; ð117Þ

P3

���
Ao
FBþ

ffiffi
2

p
Ao
5
¼0

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo⊥ − T ⊥

Γo
f

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi		

Fo
L − T 0

Γo
f



þ
	
Fo
∥ −

T ∥
Γo
f



þ ffiffiffi

2
p

πAo
4 −

4β2ε0ε∥
Γo
f


r : ð118Þ

The relation derived in Eq. (111) incorporates all the
possible effects within SM. It includes a finite lepton mass,
electromagnetic correction to hadronic operators at all
orders and all factorizable and nonfactorizable contribu-
tions including resonances to the decay. It can be seen from
the Eq. (106) the term T λ=Γo

f contains T 1=Γo
f which is

expressed in Eq. (88) in terms of the asymmetries A10 and
A11 which can be measured experimentally and the other
term ðελ=Γo

f
1
2Þ depends only on the observables and one

form-factor ratio P1. Thus, the relation in Eq. (111) is
complete and exact in the sense that it involves all the
eleven observables and only one hadronic input which can
be reliably estimated using HQET.

VI. OBSERVABLES AT KINEMATIC
EXTREME POINTS

In this section we will briefly discuss the limiting value
of the observables at the two kinematic extremities of q2,
the dilepton invariant mass squared. The minimum q2

value, q2 ¼ q2min ¼ 4m2 and the endpoint q2 ¼ q2max ¼
ðmB −mK� Þ2. The values of the observables we obtain
below can be experimentally verified and any exception
must imply NP.

(i) Case-I: q2 ¼ 4m2

It is easy to see that at q2min the two leptons carry equal
momentum and recoil against the K�. In the dilepton rest
frame the two leptons carry zero momentum. Hence, angles
θl and ϕ cannot be defined. The angular distribution in
Eq. (13) thus implies that all asymmetries i.e. A4, A5, AFB,
A7, A8 and A9 must vanish in this limit. This implies that

there is no preferred direction, leading to the conclusion
that all helicities are equally probable.
Using the expressions of the observables derived in the

previous section [Eqs. (85a) and (85b)] we can write

Fo
L ¼ 1

Γo
f

�
β2ΓfFL þ 1

3
ðΓo

f − β2ΓfÞ
�

¼
β→0

1

3
: ð119Þ

This limiting value holds for the other two helicity fractions
as well. Hence, at the kinematic starting point we can write

Fo
λ ¼
q2→4m2

1

3
; λ ∈ fL;⊥; ∥g: ð120Þ

We conclude that each observed helicity fraction should be
1=3 at q2min, which can be easily verified experimentally.
The asymmetries defined in Eqs. (89) and (90) also vanish
at q2 ¼ q2min implying ðT 1=Γo

fÞ → 1
3
[from Eq. (88)]. Thus

the observable Ao
4 from Eq. (111) at q2 ¼ q2min is given by

Ao
4 ¼β→0

ffiffiffi
2

p

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo
L −

T1

Γo
f

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fo
∥ −

T 1

Γo
f

s
¼

Fo
λ
→1
3

T1
Γo
f
→1
3

0 ð121Þ

as it was expected above.
(i) Case-II: q2 ¼ ðmB −mK� Þ2

In this kinematic limit the K� is at rest and the two leptons
go back to back in the B meson rest frame. Therefore, we
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can always choose the angle ϕ to be zero. The entire decay
takes place in one plane, resulting in vanishing F⊥. Also,
the left and right chirality of the leptons contribute equally.
These together results in only the angular asymmetry A4

being finite with all other asymmetries vanishing. The
relations among the various angular coefficients at this
kinematical endpoint are derived in Ref. [28] where it is
explicitly shown that

FLðq2maxÞ ¼
1

3
; AFBðq2maxÞ ¼ 0: ð122Þ

Solving for the other observables from Eq. (3.2) of
Ref. [28] we can write

F⊥ðq2maxÞ ¼ 0; F∥ðq2maxÞ ¼
2

3
; ð123Þ

A4ðq2maxÞ ¼
2

3π
; A5;7;8;9ðq2maxÞ ¼ 0: ð124Þ

These limiting values of the observables imply that ελ → 0
at the extremum q2 ¼ q2max as can be seen from Eqs. (108)–
(110). The lepton mass can be safely ignored at q2max as it
would have almost no effect at this end point hence, we
have dropped the “o” index from all the observables for this
discussion only. Thus, in the limit ελ → 0, we find that
Eq. (111) reduces to Eq. (80). Hence, the observable A4 at
q2 ¼ q2max turns out to be

A4 ¼
8A5AFB

9πF⊥
þ

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FLF⊥ − 8

9
A2
5

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F∥F⊥ − 4

9
A2
FB

q
πF⊥

¼
AFB→0
A5→0

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
FLF∥

p
π

¼
FL→

1
3

F∥→
2
3

2

3π

which exactly matches with the limit predicted
in Eq. (124).

VII. NEW PHYSICS ANALYSIS

In this section, we demonstrate the possibility of how
new physics could be tested using the relations derived in
this paper. The basis of our analysis is the relation, which
involves all the nine observables FL, F∥, F⊥, AFB, A4, A5,
A7, A8, A9 and a single form-factor ratio P1 derived in
Eq. (79). Since the helicity fractions are related by
FL þ F∥ þ F⊥ ¼ 1, we eliminate F∥. All the observables
have been measured by LHCb Collaboration using 1 fb−1

data. However, currently the observables A7, A8 and A9 are
measured to be consistent with zero. Equations (108)–(110)
therefore imply that ελ are all consistent with zero. In
Sec. V we have shown that the most conservative allowed
parameter space remains unaltered even if the small lepton
mass term is dropped compared to q2 and the imaginary

contributions to the amplitudes are completely ignored.
Since the inclusion of ελ reduces the parameter space of
observables, in order to check the consistency of measured
observables we take a conservative approach and set all the
ελ’s to be equal to zero for the numerical analysis. Thus, the
relation among the observables reduces to Eq. (80) which is
in terms of six observables FL, F∥, F⊥, AFB, A4, A5 and is
completely free from any form-factor dependence. If A7, A8

and A9 are measured to be nonzero in future experiments
with reduced uncertainties, ελ can be solved iteratively
using Eqs. (108)–(110) and an exact numerical analysis can
always be done. We, emphasize that a nonzero ελ would
only restrict the allowed parameter space depicted in
Figs. 1, 2 and 3 further as was already pointed out in
Sec. V. Later in this section we will, nevertheless, solve for
ελ in terms of A7, A8 and A9 since the predicted value A

pred
4

depends on the values of ελ.
We use the SM relation derived in Eq. (80), for ελ ¼ 0

and 4m2=q2 → 0 instead of Eq. (111), to check for
consistency between measurements of all the observables.
As noted above a finite value for ελ would provide a
stronger constraint and since ελ’s are consistent with zero,
Eq. (80) provides a more conservative test. In order to
perform the test we define a χ2 function

χ2 ¼ 1

4

��
Aexp
4 −Apred

4

ΔAexp
4

�
2

þ
�
Fexp
L −FL

ΔFexp
L

�
2

þ
�
Fexp
⊥ −F⊥
ΔFexp

⊥

�
2

þ
�
Aexp
FB −AFB

ΔAexp
FB

�
2

þ
�
Aexp
5 −A5

ΔAexp
5

�
2
�
;

ð125Þ

where Aexp
4 ; Fexp

L ; Fexp
⊥ ; Aexp

FB ; A
exp
5 indicate experimental

central values of the observables and
ΔAexp

4 ;ΔFexp
L ;ΔFexp

⊥ ;ΔAexp
FB ;ΔA

exp
5 are the experimental

uncertainties. The statistical and systematic uncertainties
are added in quadrature for all the numerical analysis
presented. We used Mathematica [29] to do all the
numerical calculations presented in this paper. The χ2

function in Eq. (125) is minimized in the 4-dimensional
parameter space of the observables by varying each of them
simultaneously within the allowed region i.e. 0 ≤ FL ≤ 1,
0 ≤ F⊥ ≤ 1, −1 ≤ AFB ≤ 1, −1 ≤ A5 ≤ 1, while Apred

4 is
taken to be the theoretically calculated value for A4 using
Eq. (80). The minimized χ2 function is projected in
different sets of planes of the observables, ðFL; F⊥Þ,
ðAFB; FLÞ, ðAFB; A5Þ ðA5; FLÞ, ðA5; F⊥Þ and ðAFB; F⊥Þ
for the contour plots. In Fig. 1 we show the allowed
domain of FL − F⊥ values for all the six q2 bins corre-
sponding to the q2 values in the range ð0.1–2Þ GeV2,
ð2–4.34Þ GeV2, ð4.34–8.68Þ GeV2, ð10.09–12.86Þ GeV2,
ð14.0–16.0Þ GeV2 and ð16.0–19.0Þ GeV2. The pink, yel-
low and blue correspond to 1σ, 2σ and 3σ confidence level
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regions. The black squares correspond to the experimen-
tally measured central value and the green points corre-
spond to best fit values obtained by minimizing χ2 using
Eq. (125). As can be seen form Fig. 1 the bounds derived in
this paper, involving only observables, have resulted in very
significantly constraining the allowed parameters range of
observables.
If it were true that there are no significant nonfactor-

izable contributions to the decay mode, rendering ~Cλ
9

independent of the helicity index “λ,” we can solve for
~C9 as was shown in Ref. [2]. The ratio of ~C9=Ĉ10 so
obtained could be inverted to solve for AFB resulting in
the constraint between FL and F⊥ given in Eq. (55) of
Ref. [2]. The narrow constraint region between the two
solid black lines depicted in FL − F⊥ plane in Fig. 1 is
derived assuming real transversity amplitudes, form
factors are calculated at leading order in ΛQCD=mb using
HQET and the estimate that ~C9=Ĉ10 ¼ −1 is used. We
emphasize that except for the two solid black lines for
each of the q2 bins all other information in Fig. 1 is
completely free from any theoretical assumption. As can
be seen from Fig. 1 the best fit values as well as the

experimentally measured central values are largely not
inside the narrow constraint region within two solid black
lines. This indicates that there could exist any or all of
the possibilities: imaginary contributions to the trans-
versity amplitudes or sizable nonfactorizable contribu-
tions or higher order corrections in HQET could also be
relevant.
The allowed range for observables AFB − FL is

depicted in Fig. 2 for all the six bins. The color code
and markers follow the same convention used in Fig. 1.
The constraint of the allowed triangular region between
two solid black line comes from Eq. (53) of Ref. [2].
Once again the constraint region within the solid black
triangular depicted in AFB − FL plane is derived assum-
ing real transversity amplitudes, form factors calculated at
leading order in ΛQCD=mb using HQET and the estimate
that ~C9=Ĉ10 ¼ −1. However, note that the constraints
depicted by the contour plots are completely free from
any theoretical assumptions. The allowed region in the
other four planes of observables i.e. AFB − A5, A5 − FL,
A5 − F⊥ and AFB − F⊥ are shown in Fig. 3. We
emphasize once again that the plots are free from any

R 1

0.1 q2 2.0 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

FL

F

R 1

2.0 q2 4.34 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

1.0

FL

F

R 1

4.34 q2 8.68 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

FL

F

R 1

10.09 q2 12.86 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

FL

F

R 1

14 q2 16 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

FL

F

R 1

16 q2 19 GeV2

0.0 0.2 0.4 0.6 0.8 1.0

FL

F

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). The χ2 projection onto the plane of observables FL and F⊥. The experimental values of all the observables are
taken from 1 fb−1 LHCb measurements Ref. [5]. The green dots corresponds to best fit value from χ2 minimization and the black
squares corresponds to the measured central value. The pink (dark), yellow (light) and blue (darkest) correspond to the 1σ, 2σ and 3σ
confidence level regions respectively. If the amplitudes are real, nonfactorizable contributions vanish and the form factors were reliably
evaluated at leading order in HQET, then using SM estimated values of Wilson coefficients we find FL − F⊥ are constrained to lie in the
narrow region between the two solid black lines. See text for details.
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theoretical uncertainty. In most of the contour plots
depicted in Figs. 1, 2 and 3 the best fit points (green
point) lie at the edge of the boundaries except for the
third bin. The experimental measured central values
(black squares) are mostly overlapping with the best
fit points except for fourth and sixth bin. In the fourth bin
the black squares stay outside the physically allowed
region. In third bin both the best fit and experimental
measurement are very consistent with the allowed region
and sit almost at the center of it. It is interesting to note
that the best fits are always in the 1σ region perhaps
validating the LHCb data set.
In Fig. 4 the measured Gaussian A4 distribution is

compared with the distribution of Apred
4 computed using

Eq. (80). In evaluating the right-hand side of Eq. (80) we
have used a Gaussian distribution of the observables FL,
F⊥, A5 and AFB with experimental central value as the
mean and errors as the standard deviation from Ref. [5].
The plots correspond to a simulated theory sample of 144,
76, 281, 169, 114 and 124 events corresponding to first
through sixth q2 bins. These may be compared with 140,
73, 271, 168, 115 and 116 events obtained for the
respective bins by LHCb using 1 fb−1 data [5]. We have
randomly chosen the number of events to be statistically

consistent with the LHCb observation in each bin for this
decay mode. As should be expected fewer events survive
the constraint of Eq. (80) when the best fit points are at the
edge of the permissible contour regions in Figs. 1, 2 and 3.
The simulated A4 values corresponding to the LHCb
measurement for all six bins are shown in red (dark)
histogram and the yellow (light) histogram corresponds to
the values of Apred

4 computed using Eq. (80). For a
comparison, the probability distribution function (PDF)
curves corresponding to 1000 times more events are also
shown for theory using brown (light) curve and data using
red (dark) curve.
The mean and 1σ regions for the theoretically calculated

Apred
4 distributions are shown in Fig. 5. We compare the two

cases where lepton masses is ignored [Eq. (80)] with the
case where lepton mass is finite [Eq. (111)]. The purple
(light) bands correspond to the massless case and the gray
(dark) band corresponds to the massive case. The error bars
in red correspond to the experimentally measured [5]
central values and errors in A4 for the respective q2 bins.
The values of Apred

4 obtained from the Eq. (80) seem to
visually agree reasonably with the experimental measure-
ments within the error bands in all the bins except for the
first and the fifth bin. A large discrepancy in fifth bin can
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FIG. 2 (color online). The χ2 projection onto the plane of observables FL and AFB. The experimental values of all the observables are
taken from Ref. [5]. The color codes are the same as in Fig. 1. If the amplitudes are real, nonfactorizable contributions vanish and the
form factors were reliably evaluated at leading order in HQET then using SM estimated values of Wilson coefficients we find AFB − FL
are constrained to lie in the two solid black triangular region. See text for details.
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FIG. 3 (color online). The χ2 projection onto the sets observables A5 − AFB, A5 − FL, A5 − F⊥ and AFB − F⊥ for various q2 bins going
vertically from first to the sixth bin. The experimental values of all the observables are taken from Ref. [5]. The color codes are same as
in Fig. 1.
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also be seen here. There is also a slight tension in first bin,
which could be partly due to the lepton mass effect. The
corrections due to mass terms can be incorporated if the
asymmetries A10 and A11 are measured in the future. In the
absence of such measurements we have used the theoretical
estimate of form factors [13] to evaluate the effect of the
finite mass contribution. Details are depicted in Fig. 5. The
mass contributions only affect the first bin, the other bins
are unaffected. As expected the agreement improves for the
first bin if the mass contributions are added. While Fig. 5
indicates only a mild disagreement between the measured
and predicted values of A4, the distributions in Fig. 4 carry
much more information than the mean and averages.
We have compared the two simulated distributions shown
in the histograms using the Mathematica routine
“DistributionFitTest” [30]. The P-values obtained by com-
paring the two are found to be less than 10−9 for each of the

bins, except the second and fourth bins, where the P-values
obtained are 2.54 × 10−5 and 6.47 × 10−6 respectively.
A small P-value indicates that one should reject the
hypothesis that all observables are consistent with the
SM relation of Eq. (80).
In order to ascertain that the discrepancy in the A4

enunciated using the P-values is not due to the imaginary
contributions being ignored we have also preformed a
simulation of all observables, including A7 A8 and A9. We
solved for ε⊥, ε∥ and ε0 using Eqs. (108)–(110). These
values of ε⊥, ε∥ and ε0 depend only on observables and P1.
We assume P1 values (see Ref. [2]) to be P1 ¼ −0.9395,
−0.9286, −0.9034, −0.8337, −0.7156 and −0.4719 for the
first through the sixth bin respectively. We only remark that
if A7, A8 and A9 are measured to be small the results are
even more insensitive to the choice of the P1 value.
Nevertheless, we also studied the effect of varying P1
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FIG. 4 (color online). A comparison of the measured and the predicted A4 values for the six q2 bins assuming that A7, A8 and A9

are all zero. The simulated values of A4 assuming Gaussian error in the LHCb data are shown in red (dark), whereas the yellow
(light) distributions referred to as “Theory” correspond to the values of Apred

4 computed using Eq. (80). The plots correspond to a
simulated theory (LHCb 1 fb−1 data [5]) sample of 144 (140), 76 (73), 281 (271), 169 (168), 114 (115) and 124 (116) events
corresponding to first through sixth q2 bins as depicted in the figure. We have randomly chosen the events to be statistically
consistent with the LHCb observation in each bin for this decay mode. For a comparison, the PDF curves corresponding to 1000
times more events are also shown for theory using brown (light) curve and data using red (dark) curve. We compare the two
simulated distributions shown in the histograms using the Mathematica routine “DistributionFitTest” [30]. The P-values obtained by
comparing the two are found to be less than 10−9 for each of the bins, except the second and fourth bins, where the P-values
obtained are 2.54 × 10−5 and 6.47 × 10−6 respectively.
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within the range P1 � 0.5, to ascertain our claim. Details
will be presented elsewhere. The ελ were solved iteratively
and it was found that they always converged in just a few
iterations. If iteration led to a value of ελ larger than the
derived constraints permitted, a smaller allowed value was
assigned and the iteration continued. In some cases an
oscillatory or randomly varying pattern was observed but in
these cases the starting values of the observables could not
be reproduced, indicating that further constraints imposed
by the chosen values of A7, A8 and A9 could not be
satisfied. The solutions obtained for ελ=

ffiffiffiffiffi
Γf

p
are shown for

each of the six bins in Fig. 6. It can be seen that all the ελ’s
are consistent with zero and even the tails of ε2λ=Γf do not
cross 0.2. Having obtained the values of ελ=

ffiffiffiffiffi
Γf

p
we can

now use the exact relation in Eq. (111) to estimate Apred
4 . A

comparison between the measured A4 and the predicted
value Apred

4 including contributions from A7, A8 and A9 is
done in Fig. 7. It must be emphasized that Apred

4 obtained
using Eq. (111) is exact and takes into account all the
contributions in SM. The asymmetries A10 and A11 [see
Eqs. (89) and (90)] have not yet been measured and Fig. 5
indicates that the lepton mass effects are negligible for all
but the first bin. We hence set T1 ¼ 0 in evaluating Apred

4 .
This ensures that our results depend on only one theoretical
parameter, the ratio of form factors P1 and that parameters
resulting in unmeasurable tiny effects do not complicate the
calculations. As predicted above, an even smaller number
of events are now consistent with the constraints derived in
the paper. Interestingly, Apred

4 now fits better to a Gaussian
distribution as indicated by a Kolmogorov-Smirnov test,
compared to the previous case where transversity

amplitudes were assumed to be real. This is indicative of
the fact that the transversity amplitudes are complex.
However, the values of ελ=

ffiffiffiffiffi
Γf

p
are not large as indicted

in Fig. 6. We have simulated numbers of events consistent
statistically with the number of events observed by LHCb
in each bin. The plots as depicted in Fig. 7 correspond to a
simulated theory (LHCb 1 fb−1 data [5]) sample of 140
(140), 78 (73), 275 (271), 175 (168), 113 (115) and 113
(116) events for the first through sixth q2 bins. The values
of Apred

4 predicted using Eq. (111) have a larger mean and
variance as compared to values obtained using Eq. (80).
The P-values still continue to be smaller than 10−9 for all
the bins, except the second bin where the P-value is
6.78 × 10−3, indicating that we reject the hypothesis that
all observables are consistent with the exact SM relation
of Eq. (111).
The PDF curves comparing the measured value of A4

with both the theoretically predicted values assuming

–0.3–0.2–0.1 0.0 0.1 0.2 0.3

ε ε ε

f

–0.3–0.2–0.1 0.0 0.1 0.2 0.3

f

–0.4 –0.2 0.0 0.2 0.4

0

f

–0.2 –0.1 0.0 0.1 0.2 –0.2 –0.1 0.0 0.1 0.2 –0.4 –0.2 0.0 0.2 0.4

–0.3 –0.2 –0.1 0.0 0.1 0.2 –0.2 – 0.1 0.0 0.1 0.2 0.3 –0.4 –0.2 0.0 0.2 0.4

–0.2 –0.1 0.0 0.1 0.2 –0.2 –0.1 0.0 0.1 0.2 0.3 –0.3 –0.2 –0.1 0.0 0.1 0.2

–0.2 –0.1 0.0 0.1 0.2 –0.2 –0.1 0.0 0.1 0.2 0.3 –0.3 –0.2 - 0.1 0.0 0.1 0.2

–0.2 –0.1 0.0 0.1 0.2 –0.2 –0.1 0.0 0.1 0.2 0.3 –0.2 0.0 0.2 0.4

0.1 q2 2 GeV2

2.0 q2 4.3 GeV2

4.3 q2 8.68 GeV2

14.18 q2 16.0 GeV2

16.0 q2 19.0 GeV2

10.09 q2 12.9 GeV2

FIG. 6 (color online). The solutions for ε⊥=
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Γf

p
, ε∥=
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p
and

ε0=
ffiffiffiffiffi
Γf

p
using distributions with 140, 78, 275, 175, 113 and 113

events for first through sixth q2 bins. The number of events are
chosen to be statistically consistent with the number of events
observed by LHCb [5] in each bin for this decay mode. All the
ελ’s are consistent with zero and even at extreme cases ε2λ=Γf

values are less than 0.2.
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FIG. 5 (color online). The mean values and 1σ regions for
theoretically calculated A4 distributions excluding lepton masses
[Eq. (80)] and with massive leptons [Eq. (111)] are shown in
purple (light) and gray (dark) bands respectively. The simulated
samples consist of 50,000 events to start with, for each bin. The
observables A7, A8 and A9 are assumed to be zero. The error bars
in red correspond to the experimentally measured [5] central
values and errors in A4 for the respective q2 bins.
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completely real transversity amplitudes (ελ ¼ 0) and most
general complex transversity amplitudes (ελ ≠ 0) are
shown in Fig. 8 for fifth bin (14.0 ≤ q2 ≤ 16.0 GeV2).
We have chosen the fifth bin for this detailed study since the
tension between the predicted value and experimentally
observed value appears to be the largest as can be seen from
Figs. 4, 5 and 7. The PDFs depicted in the figure are
generated using 4 × 105 random events resulting in the
simulated values of A4 for each curve. If ελ ≠ 0 only 6708
of the points survived the constraints of Eq. (111). LHCb
data assuming Gaussian error is shown in the leftmost red
(dark) plot, whereas the central brown (lighter) distribution
corresponds to the theoretically calculated A4 using
Eq. (79) and the rightmost blue (light) distribution is for
A4 predicted using Eq. (111). The values of all other
observables used in the two equations are randomly
generated assuming Gaussian measurements of the
LHCb 1 fb−1 data.

In this section we have discussed the constraints already
imposed by the 1 fb−1 LHCb data [5] on the parameter
space of observables. We also compare the measured
values of A4 with those predicted using the new relations
derived in this paper. We made several observations that
indicate possibly sizable nonfactorizable contributions and
imaginary contribution and also possible higher order
corrections in HQET to the transversity amplitudes. In
addition, the P-values comparing the measured A4 with
the predicted value indicates new physics. However, we
refrain from drawing even the obvious conclusions given
that, results for 3 fb−1 data will soon be presented by the
LHCb Collaboration. However, we emphasize that the
approach developed in this paper could not only con-
clusively indicate presence of significant nonfactorizable
contributions and need for higher order power corrections
to form factors but also the presence of NP with larger
statistics.
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FIG. 7 (color online). A comparison of the measured and predicted A4 values for the six q2 bins considering all the measured
observables. The simulated values of A4 assuming Gaussian error in the LHCb data are shown in red (dark), whereas the blue
(light) distributions referred to as “Theory” correspond to the values of Apred

4 computed using Eq. (111). The plots correspond to a
simulated theory (LHCb 1 fb−1 data [5]) sample of 140 (140), 78 (73), 275 (271), 175 (168), 113 (115) and 113 (116) events
corresponding to first through sixth q2 bins as depicted in the figure. The number of events are chosen to be consistent statistically
with the number of events observed by LHCb in each bin for this decay mode. The values of all other observables used in the two
equations are randomly generated using LHCb data assuming Gaussian measurements. We find that the P-values obtained using the
Mathematica routine “DistributionFitTest” [30] comparing the two distributions are always less than 10−9 for all bins except the
second bin where the P-value is 6.78 × 10−3.
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VIII. CONCLUSIONS

In this paper we have derived a new relation involving all
the CP conserving observables that can be measured in the
decay B → K�lþl− using an angular study of the final
state for the decay. The relation provides a very clean and
sensitive way to test SM and search for NP by probing
consistency between the measured observables. The rela-
tion reduces to the one derived in Ref. [2], when certain
reasonable assumptions were made. Since, the relation is
intended to be used as probe in search for NP, it is
imperative that no avoidable assumptions be made. We
have generalized previous results with this objective in
mind. The new derivation is parametrically exact in the SM
limit and incorporates finite lepton and quark masses,
complex amplitudes enabling resonance contributions to
be included, electromagnetic correction to hadronic oper-
ators at all orders and all factorizable and nonfactorizable
contributions to the decay.
We write the most general form factors and amplitudes in

Sec. II based only on Lorentz invariance and gauge
invariance. Our approach differs from what is usually done
in literature as we make no attempt to evaluate hadronic
parameters but eliminate them in favor of measured
observables to the extent possible. Hence, our conclusions
are not limited in general by the order of accuracy up to
which the calculations are done.

The decay is described by six transversity amplitudes
which survive in the massless lepton case. If the mass of the
lepton is finite yet another amplitude contributes to
the decay. We have shown in Sec. V that the corrections
to the amplitude arising from finite lepton mass can be
determined completely from observables measured using
angular analysis. These contributions are suppressed by
m2=q2 and may be difficult to measure. A theoretical
estimate also shows that they are insignificant in all but the
first bin. We therefore began by focusing attention on the
massless case which is described by the six transversity
amplitudes alone. The massive lepton case was considered
later to derive an exact relation valid in the SM limit. Even
if the mass effects are too tiny to distinguish an attempt to
measure them would ensure that the predictions are reliable
and free from theoretical parameters.
We started bywriting the most general parametric form of

the transversity amplitude in the SM given in Eq. (17) that
takes into account comprehensively all the contributions
within SM. Unlike the derivations in Ref. [2] the general
transversity amplitude is now allowed to be complex, by
introducing three additional parameters ελ. This, however,
poses no problem since there are three extra observables A7,
A8 and A9 given in Sec. III, which are nonvanishing in the
complex transversity amplitudes limit. Hence, dealing with
complex amplitude introduces only a technical difficulty of
solving for additional variables iteratively.
Using this general amplitude a new relation [see

Eq. (80)] involving all the nine CP conserving observables
is derived in Sec. IV, that is exact in the SM limit assuming
massless leptons. The new derivation incorporates the
effect of electromagnetic correction of hadronic operators
to all orders and all factorizable and nonfactorizable
contributions including resonance effects to the decay. In
addition to the nine observables, this new relation depends
only on one form-factors ratio: P1. The new relation
becomes independent of P1 and reduces to the one derived
in Ref. [2] in the limit that the asymmetries A7, A8 and A9

are all zero.
As mentioned repeatedly the inclusion of lepton mass

contribution is trivial in our approach; the effect on all the
observables is directly obtained in terms of asymmetries
given in Eqs. (89) and (90) that can be measured as shown
in Sec. V. The new relation obtained is generalized to
include the lepton mass effects in Eq. (111). It is important
to note that it involves only observables and the form-factor
ratio P1 and is free from any assumption within the SM
framework. This relation also implies three inequalities
given in Eqs. (113a)–(113c) which impose constraints on
the parameter space of observables. We also presented three
new relations between the observables that are exact at the
zero crossings of angular asymmetries Ao

FB, Ao
5 and

Ao
FB þ ffiffiffi

2
p

Ao
5. These are particularly interesting if the mass

effect and the imaginary contributions to the Wilson
coefficients Ĉ7 and Ĉ9 are ignored, as they reduce to
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FIG. 8 (color online). A PDF plot comparing the measured fifth
bin (14.0 ≤ q2 ≤ 16.0 GeV2) value of A4 with the two theoreti-
cally predicted values. One assuming ελ ¼ 0 or completely real
transversity amplitudes and the other with ελ ≠ 0 or complex
transversity amplitudes. The mean and errors for all the observ-
ables are assumed to be those measured by LHCb using 1 fb−1

data set. All errors are assumed to beGaussian. The PDFs depicted
in the figure are generated using 4 × 105 random events resulting
in the simulated values ofA4 for each curve. If ελ ≠ 0 only 6708 of
the points survived the constraints. The plot corresponding to
LHCb A4 measurement is shown in left most red (dark) plot,
whereas the central brown (lighter) distribution corresponds to the
theoretically calculated A4 using Eq. (79) and the right most blue
(light) distribution is for A4 predicted using Eq. (111).
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simple form presented in Eq. (115). Another interesting
aspect is that the form-factor ratios P1, P2 and P3 can each
be written in terms of observables and P1. In the limit of
vanishing A7, A8 and A9 (i.e. negligible imaginary con-
tributions), the form-factor ratios can be measured purely in
terms of helicity fractions.
The limiting values of the observables at the minimum

and maximum values of q2 are discussed in Sec. VI based
on very general arguments. It is interesting to note that at
q2 ¼ 4m2 all angular asymmetries vanish and each of the
helicity fraction approaches 1=3. At the maximum value of
q2max similar results can be obtained.
In Sec. VII, we have highlighted the possible ways to

check the consistency of the measured observables using
the SM relation derived. It was noted that the inclusion of
nonzero ελ indicating complex contributions to the ampli-
tudes invariably reduces the allowed parameter space of the
observables. Hence, in order to check the consistency of
measured observables we take a conservative approach and
set all the ελ’s to be equal to zero for the analysis. This was
necessary since A7, A8 and A9 are all consistent with zero.
The relation among the observables, hence, reduces to
Eq. (80) which is in terms of six observables FL, F∥, F⊥,
AFB, A4, A5 and is completely free from any form-factor
dependence. The χ2 function in Eq. (125) was minimized in
the 4-dimensional parameter space of the observables FL,
F⊥, AFB and A5 to check the consistency between the
experimentally measured values by varying each of them
simultaneously within the permissible domain and Apred

4

was evaluated using the relation in Eq. (80). The projec-
tions of the minimized χ2 function are studied for the
various pairs of observables as shown in the contour plots
of Figs. 1–3. In most of the contour plots the best fit (green)
points lie at the edge of the boundaries except for the third
bin. The experimental measured central values (black
squares) generally lie within the contours except for the
fourth and sixth bin. It is interesting to note that the best fits
are always in the 1σ region perhaps validating the LHCb
data set.
We compared the two distributions generated by exper-

imental measurement and theoretical prediction of the
observable A4, assuming that A7, A8 and A9 are all zero
in Fig. 4. The number of events for the “Theory” histogram
are chosen to be consistent statistically with the number of
events observed by LHCb in the 1 fb−1 [5] data set for each
of the bins. The mean values together with 1σ error bands
are shown in Fig. 5 with a comparison between the
massless and massive lepton case. It is found that lepton
mass can be ignored except for the first q2 bin. The fifth bin
shows a large discrepancy whereas the other bins are in
reasonable agreement. Since the A4 distributions in
Fig. 4 carry much more information than the mean and
averages, we compare the two simulated distributions
shown in the histograms using the Mathematica routine
“DistributionFitTest” [30]. The P-values obtained by

comparing the two are found to be less than 10−9 for each
of the bins, except the second and fourth bins, where the P-
values obtained are 2.54 × 10−5 and 6.47 × 10−6

respectively.
In order to understand better the role of the imaginary

contributions that were earlier ignored, we have also
preformed a simulation of all observables including A7

A8 and A9. The solutions for ε⊥, ε∥ and ε0 shown in Fig. 6
indicate that all the ελ’s are consistent with zero and even
the tails of ε2λ=Γf do not cross 0.2. A comparison of the
measured and predicted A4 values for the six q2 bins
considering all the measured observables (including A7, A8

and A9) are shown in Fig. 7. Interestingly, Apred
4 now fits

better to a Gaussian distribution than the ελ ¼ 0 case as
indicated by a Kolmogorov-Smirnov test, implying pos-
sible imaginary contributions to the transversity ampli-
tudes. The P-values still continue to be smaller than 10−9

for all the bins, except the second bin where the P-value
is 6.78 × 10−3, indicating that we reject the hypothesis
that all observables are consistent with the exact SM
relation of Eq. (111). Since the discrepancy seems to be
the largest for the fifth bin (14.0 ≤ q2 ≤ 16.0 GeV2), we
have performed a detailed comparison of the PDF curves
for both the theoretically predicted values using ελ ¼ 0
and ελ ≠ 0 with the measured value of A4 as shown
in Fig. 8.
In this paper we have derived a relation among the

observables by taking into account all possible effects
within standard model by restricting ourselves to rely only
on one hadronic input. The violation of this relation will
provide a smoking gun signal of new physics. We have
explicitly shown how the relation can be used to test SM,
and confirm our understanding of the hadronic effects. We
used the 1 fb−1 LHCb measured values of the observables
to highlight the possible ways for the search of new physics
that might contribute to this decay with the derived
relations.
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APPENDIX A: DERIVATION OF rλ SOLUTIONS

Here we present the derivation of r∥, r⊥ and r0 solutions
defined in Eq. (35). Starting with the first set of equations
(Set-I) involving r∥ and r⊥ in terms of the observables
given in Eqs. (54), (55) and (56) we have

r2∥ þ Ĉ2
10 ¼

F0
∥ΓfP2

1

2F 2⊥
; ðA1Þ
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r2⊥ þ Ĉ2
10 ¼

F0⊥Γf

2F 2⊥
; ðA2Þ

Ĉ10ðr∥ þ r⊥Þ ¼
AFBΓfP1

3F 2⊥
: ðA3Þ

Multiplying Eq. (A1) and (A2) we can write

F0
∥F

0⊥Γ2
fP

2
1

4F 4⊥
¼ ðr∥r⊥ − Ĉ2

10Þ2 þ Ĉ2
10ðr∥ þ r⊥Þ2

¼ ðr∥r⊥ − Ĉ2
10Þ2 þ

A2
FBΓ2

fP
2
1

9F 4⊥

hence,

r∥r⊥ − Ĉ2
10 ¼ �ΓfP1

2F 2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0
∥F

0⊥ −
4A2

FB

9

r
: ðA4Þ

Now expressing Ĉ2
10 in terms of r2∥ using Eq. (A1) and in

terms of r2⊥ using Eq. (A2) we can write

2r∥r⊥ − 2Ĉ2
10 ¼ 2r∥r⊥ −

�
F0
∥ΓfP2

1

2F 2⊥
− r2∥

�
−
�
F0⊥Γf

2F 2⊥
− r2⊥

�

¼
�
ðr∥ þ r⊥Þ2 −

F0
∥ΓfP2

1

2F 2⊥
−
F0⊥Γf

2F 2⊥

�
: ðA5Þ

Equating Eqs. (A4) and (A5) we get

r∥ þ r⊥ ¼ �
�
F0
∥ΓfP2

1

2F 2⊥
þ F0⊥Γf

2F 2⊥
� ΓfP1

2F 2⊥
Z0
1

�1
2

¼ � ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

½P2
1F

0
∥ þ F0⊥ � P1Z0

1�
1
2 ðA6Þ

where Z0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F0

∥F
0⊥ − 16

9
A2
FB

q
. Now, Eqs. (A1) and (A2)

imply

r2∥ − r2⊥ ¼ F0
∥ΓfP2

1

2F 2⊥
−
F0⊥Γf

2F 2⊥
; ðA7Þ

which gives r∥ − r⊥ to be

r∥ − r⊥ ¼ � ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

P2
1F

0
∥ − F0⊥

½P2
1F

0
∥ þ F0⊥ � P1Z0

1�
1
2

: ðA8Þ

To fix the sign ambiguity of the radical let us consider the
zero crossing point of the observable AFB where,

r∥ þ r⊥jAFB¼0 ¼ �
ffiffiffiffiffi
Γf

p
ffiffiffi
2

p
F⊥

	 ffiffiffiffiffiffiffi
F0⊥

q
� P1

ffiffiffiffiffiffi
F0
∥

q 

¼ 0: ðA9Þ

It can be easily seen from Appendix B that P1 is always
negative and thus the positive sign ambiguity has to be
chosen within the radical. Solving Eqs. (A6) and (A8) we
get the expressions for r∥ and r⊥ given in Eqs. (64) and
(65). Similarly, following all the steps stated above for the
other two sets of equations (Set-II and Set-III) we get the
solutions for r0 [in Eq. (67)] and two more expressions for
the variable r⊥ [Eqs. (68) and (72)].
Generalization of Eqs. (A6) and (A8) for the massive

case in Sec. V is trivial from here. Below we present the
explicit expressions for both massless and massive cases.

r∥ þ r⊥ ¼

8>>><
>>>:

�
ffiffiffiffi
Γf

pffiffi
2

p
F⊥

�
P2
1

	
F∥ −

2ε2∥
Γf



þ
	
F⊥ − 2ε2⊥

Γf



þ P1Z0

1

�1
2

massless case

� ffiffiffiffi
Γo
f

pffiffi
2

p
F⊥β

�
P2
1

	
Fo
∥ −

T ∥
Γo
f



þ
	
Fo⊥ − T ⊥

Γo
f



þ P1Zo

1

�1
2

massive case

ðA10Þ

r∥ − r⊥ ¼

8>>>>>>>><
>>>>>>>>:

�
ffiffiffiffi
Γf

pffiffi
2

p
F⊥

P2
1

	
F∥−

2ε2
∥

Γf



−
	
F⊥−

2ε2⊥
Γf



h
P2
1

	
F∥−

2ε2
∥

Γf



þ
	
F⊥−

2ε2⊥
Γf



þP1Z0

1

i1
2

massless case

� ffiffiffiffi
Γo
f

pffiffi
2

p
F⊥β

P2
1

	
Fo
∥−

T ∥
Γo
f



−
	
Fo⊥−

T ⊥
Γo
f



h
P2
1

	
Fo
∥−

T ∥
Γo
f



þ
	
Fo⊥−

T ⊥
Γo
f



þP1Zo

1

i1
2

massive case

ðA11Þ
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Using Eqs. (A3) and (A10) we can write

Ĉ10 ¼

8>>>>>><
>>>>>>:

�AFB

ffiffiffiffiffiffi
2Γf

p
P1

3F⊥
h
P2
1

	
F∥−

2ε2
∥

Γf



þ
	
F⊥−

2ε2⊥
Γf



þP1Z0

1

i1
2

massless case

�Ao
FB

ffiffiffiffiffiffi
2Γo

f

p
P1

3F⊥
h
P2
1

	
Fo
∥−

T ∥
Γo
f



þ
	
Fo⊥−

T ⊥
Γo
f



þP1Zo

1

i1
2

massive case

ðA12Þ

APPENDIX B: FORM FACTORS

The form factors F λ and ~Gλ can be related to the form
factors X i and Yi introduced in Eqs. (3) and (4) by
comparing the expressions for AL;R

λ in Eqs. (15a)–(15c)
with Eq. (17) as follows:

F⊥ ¼ N
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
K� ; q2Þ

q
X3; ðB1aÞ

~G⊥ ¼ N
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

B;m
2
K� ; q2Þ

q
2ðmb þmsÞ

q2
Ĉ7Y3 þ � � � ;

ðB1bÞ

F ∥ ¼ 2
ffiffiffi
2

p
NX1; ðB1cÞ

~G∥ ¼ 2
ffiffiffi
2

p
N
2ðmb −msÞ

q2
Ĉ7Y1 þ � � � ; ðB1dÞ

F 0 ¼
N

2mK�
ffiffiffiffiffi
q2

p ½4k:qX1 þ λðm2
B;m

2
K� ; q2ÞX2�; ðB1eÞ

~G0 ¼
N

2mK�
ffiffiffiffiffi
q2

p 2ðmb −msÞ
q2

× Ĉ7½4k:qY1 þ λðm2
B;m

2
K� ; q2ÞY2� þ � � � ; ðB1fÞ

where these X i’s and Yi’s can be related to the well-known
form factors V, A0;1;2 and T1;2;3 by comparing with Ref. [6]
which are known up to next-to-next-to-leading order in
HQET. However, it should be noted that the F λ and ~Gλ

values are not directly used anywhere throughout our paper.
Only the value of P1 is used to solve for ελ using
Eqs. (108)–(110).

X0 ¼ −
2mK�

q2
A0ðq2Þ; ðB2aÞ

X1 ¼ −
1

2
ðmB þmK� ÞA1ðq2Þ; ðB2bÞ

X 2 ¼
A2ðq2Þ

mB þmK�
; ðB2cÞ

X 3 ¼
Vðq2Þ

mB þmK�
; ðB2dÞ

Y1 ¼
1

2
ðm2

B −m2
K�ÞT2ðq2Þ; ðB2eÞ

Y2 ¼ − T2ðq2Þ −
q2

m2
B −m2

K�
T3ðq2Þ; ðB2fÞ

Y3 ¼ − T1ðq2Þ: ðB2gÞ

Here a point to be noted that as the form factors A1 and A2

are always positive the ratio

2k:qðmB þmK� Þ2
λðm2

B;m
2
K� ; q2Þ

A1

A2

≥ 0 ðB3Þ

giving rise to the fact that F ∥ and F 0 always have the same
sign which is negative.
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