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We propose methods and present calculations that can be used to search for evidence of cosmic fields by
investigating the parity-violating effects, including parity nonconservation amplitudes and electric dipole
moments, that they induce in atoms. The results are used to constrain important fundamental parameters
describing the strength of the interaction of various cosmic fields with electrons, protons, and neutrons.
Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic
sources described by standard-model extensions. Calculations of the effects induced by pseudoscalar
and pseudovector fields are performed for H, Li, Na, K, Cu, Rb, Ag, Cs, Ba, Baþ, Dy, Yb, Au, Tl, Fr, and
Raþ. Existing parity nonconservation experiments in Cs, Dy, Yb, and Tl are combined with these
calculations to directly place limits on the interaction strength between the temporal component, b0, of
a static pseudovector cosmic field and the atomic electrons, with the most stringent limit of
jbe0j < 7 × 10−15 GeV, in the laboratory frame of reference, coming from Dy. From a measurement
of the nuclear anapole moment of Cs, and a limit on its value for Tl, we also extract limits on the interaction
strength between the temporal component of this cosmic field, as well as a related tensor cosmic-field
component d00, with protons and neutrons. The most stringent limits of jbp0 j < 4 × 10−8 GeV and jdp00j <
5 × 10−8 for protons and jbn0j < 2 × 10−7 GeV and jdn00j < 2 × 10−7 for neutrons (in the laboratory frame)
come from the results using Cs. Axions may induce oscillating parity- and time reversal-violating effects in
atoms and molecules through the generation of oscillating nuclear magnetic quadrupole and Schiff
moments, which arise from P- and T-odd intranuclear forces and from the electric dipole moments of
constituent nucleons. Nuclear spin-independent parity nonconservation effects may be enhanced in
diatomic molecules possessing close pairs of opposite-parity levels in the presence of time-dependent
interactions.
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I. INTRODUCTION

In our recent work [1], we proposed methods and
presented atomic calculations that can be used for the
detection of parity nonconservation (PNC) amplitudes and
atomic electric dipole moments (EDMs) that are induced via
the interaction of pseudoscalar and pseudovector cosmic
fields with atomic electrons and nuclei. These methods were
used to extract limits on the interaction strengths of the
temporal component of the pseudovector cosmic field with
electrons and protons. In this work, we describe the method
in greater detail and apply the techniques developed in
Ref. [1] to several more atomic systems and different cosmic
fields. We obtain more accurate limits on the strength of
the interaction with protons and extend our previous

methods to obtain limits on the strength of the pseudovector
cosmic-field interaction with neutrons, by taking into
account nuclear many-body effects, which were recently
considered in Ref. [2]. We also extend our methods to obtain
limits on the interactions of a related tensor cosmic field with
protons and neutrons.
One of the most important unanswered questions in

fundamental physics today is the so-called strong CP
problem. This refers to the puzzling observation that
quantum chromodynamics (QCD) does not appear to
violate the combined charge-parity symmetry (CP), despite
there being no known theoretical reason for its conserva-
tion; see, e.g., Refs. [3–5]. One compelling resolution to
this problem comes from the Peccei–Quinn (PQ) theory,
in which an additional global U(1) symmetry, known as
the PQ symmetry, is introduced into the standard-model
(SM) QCD Lagrangian and is subsequently broken both
spontaneously and explicitly [4] (see also Refs. [6–8]).
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The breaking of the PQ symmetry gives rise to a pseudo-
scalar pseudo-Nambu–Goldstone boson, born from the
QCD vacuum. This particle, known as the axion, causes
the QCD CP symmetry breaking parameter to become
effectively zero, thus in principle alleviating the strong CP
problem. For more detail on this topic we direct the reader
to the review [9] (see also Refs. [10,11]).
Another crucial outstanding problem in modern physics

is the question of dark matter, specifically cold dark matter
(CDM). The astrophysical evidence for the existence of
dark matter is overwhelming; see, e.g., Refs. [12,13];
however, its composition is not known. There have been
many suggestions put forward that attempt to provide a
theoretical framework for dark matter, though no single
theory is a clear leading candidate; see, e.g., Refs. [10,12].
What we do know is that the matter-energy content of the
Universe is dominated by CDM (∼23%) and dark energy
(∼73%); see, e.g., Ref. [14]. Dark energy is proposed to
account for the observed accelerating expansion of the
Universe [15,16]. Even less is known about the composi-
tion of dark energy than of CDM.
The axion, since emerging as a compelling solution to

the strong CP problem, has in fact been identified as a
promising CDM candidate. Axions may constitute a large
fraction of the CDM in the observable Universe. Thus,
axions, if detected, would have a real potential to resolve
both the CDM and strong CP problems, and their detection
would provide a great step forward in our understanding of
the physical world. The decay of supersymmetric axions to
produce axions may also provide a possible explanation for
dark radiation [17–19]. Many methods have been proposed
and applied to the search for axions; for a review we direct
the reader to Refs. [9,10,20–23].
Scalar and pseudoscalar cosmic fields (e.g., the Higgs

and axion fields) have a strong theoretical underpinning.
As well as these, many other background fields are invoked
by theories which extend beyond the SM, for example,
supersymmetric theories and string theory. Many of these
fields, including vector, pseudovector, and tensor fields,
have been conveniently parametrized in the form of the so-
called standard-model extension (SME) [24–26]. In this
work, we focus particularly on the temporal component of
the background pseudovector field, which leads to parity-
violating effects in atoms. Limits on the spatial components
(which lead to parity-even effects) of this cosmic field have
been extracted for the interaction with electrons, protons,
and neutrons; see, e.g., Ref. [27] and references therein.
The prospect that atomic systems could be used as a

probe for dark matter, axions, and other cosmic fields has
been considered in the literature; see, e.g., Refs. [1,28–37].
While the effects induced in atoms by such a cosmic field
may be small, the advantage of using atoms is that atomic
physics methods are highly advanced, and both the
experimental and theoretical accuracy, and hence sensitiv-
ity, can be high.

The existence of a cosmic field that interacts with
electrons via parity-violating interactions can contribute to
the mixing of opposite-parity atomic states, leading to parity-
violating effects in atoms. Parity nonconservation amplitudes
are parity-violating E1 transitions between two states of the
same nominal parity. They are generated by parity-violating
forces; in the conventional case, these include Z0-boson
exchange between the electrons and nucleons and the
electromagnetic interaction of the electrons with parity-
violating nuclear moments that are borne by parity-violating
forces inside the nucleus. Complementary to direct tests
performed at high energy (e.g., at CERN), measurements
of PNC amplitudes and EDMs in atoms are relatively
inexpensive low-energy tests of the standard model; see,
e.g., Refs. [38–40]. The PNC amplitude of the 6s–7s
transition in cesium is the most precise atomic test of the
electroweak theory to date. This precision is due to the
highly accurate (0.35%) measurements [41] (see also
Refs. [42–44]) and the almost equally accurate atomic
calculations (0.5%) that are needed for their interpretation
[45–50]. These studies show that the observed value of the
nuclear weak charge for cesium-133 agrees with the SM
prediction to the 1.5σ level [41,50,51].
In addition to inducing PNC effects and EDMs, cosmic

fields that interact with standard-model fermions can give
rise to other fascinating phenomena. In the case of axions,
this includes the axioelectric effect [28,34,52–57], nuclear
anapole moments, and spin-gravity and spin-axion momen-
tum couplings in atomic, molecular, solid-state, and nuclear
systems [32,58–60]. All of these effects can in principle be
observed. A general pseudoscalar cosmic field need not be
restricted to an axionic one; dark energy and other exotic
fields are also possibilities. We therefore present the
atomic-structure calculations separately from any field
parameters, to avoid any model dependence.
In Sec. II, we first show that a static pseudoscalar cosmic

field cannot give rise to observable P-odd effects in atoms
in the lowest order and then present the necessary theory
and derive expressions for the PNC effects and EDMs
induced in atoms and nuclei by pseudoscalar and pseudo-
vector cosmic fields. We also note that axions may induce
oscillating P- and T-odd effects in molecules through the
generation of oscillating nuclear magnetic quadrupole
moments, which arise from P- and T-odd intranuclear
forces and from the EDMs of constituent nucleons. Nuclear
spin-independent PNC effects may be enhanced in
diatomic molecules possessing close pairs of opposite-
parity levels in the presence of time-dependent interactions,
in contrast to the static case, where only nuclear spin-
dependent PNC effects are enhanced. We go on in Sec. III
to present the methods used for our ab initio relativistic
atomic calculations for pseudovector and dynamic pseu-
doscalar cosmic field–induced PNC amplitudes and atomic
EDMs for a number of neutral atoms and ions. These
calculations are necessary for determining, or placing limits
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upon, important pseudoscalar and pseudovector cosmic-
field parameters, in conjunction with appropriate exper-
imental data. In Sec. IV, we present the results of our atomic
calculations and combine these with existing PNC experi-
ments in cesium, thallium, ytterbium, and dysprosium to
give limits on the interaction strengths of static pseudo-
vector and tensor cosmic fields with electrons, protons, and
neutrons. We also discuss possible systems for experimen-
tally obtaining limits on the interaction strengths of
dynamic cosmic fields with standard-model fermions.

II. THEORY

A. Parity-violating interactions of fermions
with cosmic fields

Except where explicitly noted, we use natural units,
ℏ ¼ c ¼ 1, throughout. In this work, we consider two
distinct sources of cosmic fields. Pseudoscalar (PS) fields,
such as axions, are described by the Lagrangian density

LPS ¼ −iζmfϕψ̄γ
5ψ þ ηð∂μϕÞψ̄γμγ5ψ ; ð1Þ

where ζ and η are dimensionless constants quantifying the
interaction strength of fermions with the PS cosmic field
via a direct and derivative-type coupling, respectively; mf
is the mass of the fermion in question; ψ is the fermion
wave function with the Dirac adjoint ψ̄ ≡ ψ†γ0; and γμ

(with μ ¼ 0; 1; 2; 3) and γ5 ¼ iγ0γ1γ2γ3 are the Dirac
matrices.
Here, ϕ ¼ ϕðr; tÞ is the dynamic PS field in question. In

the next section wewill see that an interaction of the form (1)
with a static field will not lead to any parity-violating effects
in atoms in the lowest order. The field ϕ (for example, an
axion field or a light pseudoscalar dark-matter field) obeys
the Klein–Gordon equation, ½∂μ∂μ þm2�ϕ ¼ 0. We take
this field to be classical and real, so that

ϕðr; tÞ ¼ cosðωϕt − pϕ · rþ ξÞ; ð2Þ

where pϕ and ωϕ are the momentum and energy of the
pseudoscalar field particle (e.g., the axion), respectively, and
ξ is a phase factor. We have absorbed the amplitude of the
field into the constants η and ζ. With a redefinition of the
phase factor at a fixed point in space, we can express this
field more simply as ϕðr; tÞ ¼ cosðωϕtÞ. This is valid so
long as the time scale of an experiment is sufficiently short
that the evolution of the pϕ · r term in (2), which corresponds
to the motion of the observer with respect to the coordinates,
is small compared with the evolution of the ωϕt term over
the course of the experiment. This will usually be the case,
since the typical speed of a PS cosmic field relative to Earth
is expected to be v ∼ 10−3; see, e.g., Ref. [12]; a brief
discussion of the coherence time is given toward the end of
the paper.
We also consider terms from the local Lorentz invari-

ance-violating SME [24–26],

LSME ¼ 1

2
iψ̄Γν∂

↔
νψ − ψ̄Mψ ; ð3Þ

where

M ¼ aμγμ þ bμγμγ5 þ
1

2
Hμνσ

μν; ð4Þ

Γν ¼ cμνγμ þ dμνγμγ5 þ eν þ ifνγ5 þ
1

2
gλμνσλμ; ð5Þ

σλμ ¼ i½γλ; γμ�=2, where ½A;B� ¼ AB − BA is the commu-

tator, and A∂↔ νB ¼ Að∂νBÞ − ð∂νAÞB, where the deriva-
tives act on the wave functions only (not the fields). The
relativistic interaction Hamiltonians due to Eqs. (4) and (5)
are

ĥM ¼ a0 þ ajγ0γj þ b0γ5 þ bjγ0γjγ5

þ iH0jγ
j þ 1

2
Hjkϵ

jklγlγ
5 ð6Þ

and

ĥΓ ¼ c00γ0γjpj − ðc0j þ cj0Þpj − cjkγ0γjpk −mc00γ0

þ d00γ0γjγ5pj − ðd0j þ dj0Þγ5pj − djkγ0γjγ5pk

−mfdj0γjγ5 −mfe0 − ejγ0pj − ifjγ0γ5

− ϵjklgj00γlγ5pk þ iðgj0k þ gjk0Þγjpk

þ 1

2
ϵjklgjkmγlγ5pm −

1

2
mfϵ

jklgkl0γ0γjγ5; ð7Þ

respectively [61]. (Also see Ref. [61] for a derivation of
the nonrelativistic form of the above Hamiltonian.) In the
above equations, the Lorentz indices are separated into their
time and space components, with Latin characters j; k; l; m
running 1 through 3, and γa ¼ −γa. We use the standard
(þ − −−) metric, and a summation over repeated indices is
assumed.
We note that interactions of cosmic fields with fer-

mions are not limited to those described by the SME
Lagrangian (3). For example, dimension-5 operators that
are linear in the electromagnetic gauge-field strength, see,
e.g., Refs. [29,62], can produce static electric dipole
moments of fundamental particles [29] and contribute to
the splitting of the magnetic dipole moments of fermions
and their antifermion partners [62,63].

B. Interaction of electrons with pseudoscalar
and pseudovector cosmic fields

The direct PS interaction [first term of the right-hand side
of (1)], and the time-derivative part of the derivative-type
PS interaction [second term on the right-hand side of (1)],
lead to interaction Hamiltonians of the form
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ĥPSiγ0γ5 ¼ iζmf cosðωϕtÞγ0γ5; ð8Þ

and

ĥPSγ5 ¼ ηωϕ sinðωϕtÞγ5; ð9Þ

which we shall refer to as the PS iγ0γ5 and the PS γ5

interactions, respectively.1 The fundamental vertices for the
interactions (8) and (9) are represented by the same
Feynman diagram (presented in Fig. 1). Interactions of
this form with atomic electrons will manifest themselves as
oscillating contributions to PNC amplitudes and atomic
EDMs.
It is also possible for parity-violating interactions of

electrons with a cosmic field to produce static PNC effects
in atoms. For this, we consider the Lagrangian correspond-
ing to the interaction of electrons with the pseudovector
(PV) field, bμ (Fig. 2),

LPV
γ5

¼ −bμψ̄γμγ5ψ
¼ −b0ψ†γ5ψ þ b · ψ†αγ5ψ ; ð10Þ

where α ¼ γ0γ, and we have absorbed the strength of the
interaction into the definition of the field bμ ¼ ðb0;−bÞ.
The temporal-component term of this coupling leads to the
interaction Hamiltonian

ĥPVγ5 ¼ b0ðtÞγ5; ð11Þ

which could be either static [b0ðtÞ ¼ b0] or dynamic
[b0ðtÞ ¼ b0 sinðωbtÞ] (the choice of phase here is entirely
arbitrary and is chosen for later convenience). We refer to
this interaction as either the static or dynamic PV γ5

interaction. In the dynamic case, the effects of (11) will
mimic those of (9). In the static case, however, they will
mimic the conventional nuclear spin-independent (NSI)
PNC signal induced by Z0-boson exchange between the
nucleus and electrons, described by the Hamiltonian

ĥQW
¼ GF

2
ffiffiffi
2

p QWρðrÞγ5; ð12Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi weak con-
stant,QW is the nuclear weak charge, and ρ is the normalized
nucleon density. In the standard model,QW is approximately
equal to the number of neutrons in the nucleus.
The spatial-derivative component terms in (1), and the

spatial component terms in (10), lead to interaction terms of
the form σ · Beff , where σ is the spin of a SM fermion and
Beff is an effective magnetic field due to the momentum of
the PS or PV cosmic field, and thus give no parity-violating
effects. The best current limits on such static interactions of
a cosmic field with electrons, protons, and neutrons, using
the notation of the SME parametrization [26], are j ~beXj <
1.3 × 10−31 GeV, j ~beY j < 1.3 × 10−31 GeV [64], j ~bp⊥j <
1.6 × 10−33 GeV [2], and j ~bn⊥j < 8.4 × 10−34 GeV [65]
(see also Ref. [2]), respectively, where the subscripts denote
the field components in the Sun-centered celestial equato-
rial frame. Here and throughout this work, the superscripts
e, p, and n denote the particle species: electron, proton, and
neutron, respectively. For further details on the broad range
of experiments performed in this field and a brief history of
recent developments in the improvement of these limits, we
refer the reader to Refs. [26,64–72]. A comprehensive list
of the limits extracted for the various interaction constants
has been compiled in Ref. [27]. Indirect limits have been
obtained for the SME parameter ~beT through linear combi-
nations of several SME parameters, constrained at the level
of ∼2 × 10−27 GeV [64]. Indirect limits have also been
obtained for the SME parameter ~bnT [68]. In the present work,
we consider the extraction of direct limits on the P-odd
effects induced by the temporal component of the field, b0
[as defined in Eq. (11)], for electrons, protons, and neutrons,
which are complementary to the limits derived from P-even
fermion effects discussed above. We will not be considering
the cosmic field-induced interaction σ · Beff further in this
work, but note that such an interaction can also be sought in
an oscillatory form (see, e.g., Refs. [32,60]).
Note that any effective Hamiltonian that is proportional

to the γ5 or iγ0γ5 matrices will lead to a mixing of opposite-
parity states in atoms and thus could contribute to parity
nonconserving amplitudes. In this sense, the calculations

FIG. 1. Fundamental vertex for the interaction of an electron
with a pseudoscalar cosmic field ϕ via the coupling (1).

FIG. 2. Fundamental vertex for the interaction of an electron
with a pseudovector cosmic field bμ via the coupling (10).

1Note that the “γ5” interaction appears as γ0γ5 in the Lagran-
gian (and vice versa); this possibly confusing notation stems from
the extra γ0 in ψ̄ ¼ ψ†γ0.
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provided in this work are general and can be applied to any
source leading to an interaction in the above forms.
The matrix elements of the γ5 and iγ0γ5 operators are not

entirely independent of one another. Considering the
relativistic Hamiltonian for an N electron atom of nuclear
charge Z in the presence of electrostatic interactions,

Ĥ ¼
XN
{¼1

�
α{ · p{ þmeðγ0{ − 1Þ − Ze2

r{
þ
X
|<{

e2

r{|

�
; ð13Þ

where p{ is the relativistic momentum of the {th electron,
r{| ¼ jr{ − r|j, and e ¼ jej is the elementary charge, the two
operators in question are related via the useful identity

iγ0kγ
5
k ¼

i
2me

½Ĥ; γ5k� ð14Þ

(proved below), from which it follows that

hbjiγ0kγ5kjai ¼
i

2me
ðEb − EaÞhbjγ5kjai; ð15Þ

where the states a and b are eigenstates of the atomic
Hamiltonian (13) with eigenvalues Ea and Eb, respectively.
Note that for the standard choice of angular wave functions,
the matrix elements of the iγ0γ5 operator are real and hence
symmetric, whereas the γ5 operator gives rise to imaginary
matrix elements and are antisymmetric. Equation (15)
maintains this symmetry. To prove the relation in the case
of the electrostatic Hamiltonian (13), note that the com-
mutator in Eq. (14) reduces to

½Ĥ; γ5k� ¼
X
{

ð½α{; γ5k� · p{ þme½γ0{ ; γ5k�Þ

¼ 2meγ
0
kγ

5
k: ð16Þ

We have made use of the relation fγμ; γ5g ¼ 0 for
μ ¼ 0; 1; 2; 3 (fx; yg ¼ xyþ yx is the anticommutator).
This relation holds equally well if we had used the
Hartree–Fock Hamiltonian (including core polarization) in
place of the “exact”Hamiltonian (13). In that case, the many-
body wave functions and energies that appear in Eq. (15)
would be replaced by their single-particle counterparts.
The atomic PNC amplitude can then be written as

Ea→b
PNC ¼

X
k

hgbðtÞjdkjgaðtÞi; ð17Þ

where dk ¼ −erk is the operator of the electric dipole (E1)
interaction and j ~ai ¼ jai þ jδai is the perturbed wave
function associated with the atomic state a, with jai the
unperturbed wave function, and jδai is the correction to the
wave function due to the PNC interactions (8), (9), or (11).
Likewise, the induced atomic EDM can be expressed as

daEDM ¼
X
k

hgaðtÞjdkjgaðtÞi: ð18Þ

C. Interaction of atomic electrons with a static
pseudoscalar field and other SME terms

Before we present the formulas for j ~ai, we discuss
briefly the effects of a possible static pseudoscalar inter-
action and show that such an interaction cannot give rise to
observable P-odd amplitudes in atoms in the lowest order
(though note that a static pseudovector field can). To see
this for a derivative-type coupling, note that the time
derivative in the interaction Lagrangian density (1) van-
ishes for a static field ϕ. The spatial-derivative terms in (1)
lead only to P-even effects, since they cannot lead to
mixing of opposite-parity atomic states.
To see this for the direct pseudoscalar coupling [first

term on the right-hand side of (1)], we prove a general
relation that states that any static interaction Hamiltonian,
ĥ, that can be expressed in the form

ĥ ¼ ½Ĥ; ô�; ð19Þ

where Ĥ is the atomic Hamiltonian (13), will not give rise
to any electromagnetic amplitudes, which have the form
jμAμ ¼ ψ†

bðA0 þ α · AÞψa, in atoms, where Aμ ¼ ðA0;AÞ is
the photon field. This will hold so long as the commuta-
tor ½A0 þ α · A; ô� ¼ 0.
Using time-independent perturbation theory, the wave

function, j ~ai ¼ jai þ jδai, perturbed to first-order by the
interaction ĥ can be written as

j ~ai ¼ jai þ
X
n

jnihnjĥjai
Ea − En

¼ jai − ôjai; ð20Þ

and

h ~aj ¼ haj þ hajô; ð21Þ

where, with the use of the relation (19), the energy
denominators cancel, and the summation is reduced to
unity by closure. One can also check that j ~ai in (20) is the
solution of the Dirac equation with the perturbation (19).
Hence, the correction induced by the static interaction ĥ to
any general electromagnetic interaction is reduced to

hbjðA0 þ α · AÞjδai þ hδbjðA0 þ α · AÞjai
¼ hbj½A0 þ α · A; ô�jai: ð22Þ

There are thus no corrections to electromagnetic amplitudes
if the commutator in (22) is equal to zero. Note also that any
operator satisfying Eq. (19) automatically has no diagonal
matrix elements and has null expectation values for an
energy eigenstate.
In the case of PNC amplitudes and atomic EDMs,

including (17) and (18), the relevant electromagnetic
interaction operator is the E1 operator, d. For the static
pseudoscalar interaction [Eq. (8) with ωϕ ¼ 0], ĥ ¼ iγ0γ5,
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and from Eq. (14), ô ∝ γ5. Since ½γ5; r� ¼ 0, the static
pseudoscalar field does not give rise to any observable
P-odd transitions or EDMs in atoms in the lowest order.
Also, since the commutator is equal to zero, the correction
to the wave function (20) does not contribute to the Dirac
charge or current densities jμ.
The PV field (10) and the dynamic PS fields (1) will be

examined in detail in the rest of the paper. Here, we turn our
attention briefly to some of the other fields in the SME and
discuss what possible parity-violating effects they could
give rise to in atomic systems.
The aμ term in the SME Lagrangian (4) is equivalent to

interactionwith a constant vector potential and does not give
rise to observable effects in atoms. It is also easy to check
directly that aμα ¼ i½Ĥ; aμr� and that therefore constant aμ
contributions vanish in atoms.We note, however, that due to
the CPT-odd charge nonconservation—the fact that these
fields may couple to different fermion species with different
interaction strengths or charges—interactions involving
more than one fermion species, such as in particle decays,
may be affected.
The ej interaction term can be expressed as ĥej ¼ γ0e · p,

which gives no effects in atoms. This can be demonstrated
as follows. Using the relations ½Ĥ; γ� ¼ −2γ0pþ 2meα,
and ½Ĥ; r� ¼ −iα, which hold for the atomic Hamiltonian
(13), this term can be expressed as

ĥej ¼ e ·

�
Ĥ; imer −

1

2
γ

�
; ð23Þ

which is in the form of Eq. (19) and hence gives no atomic
effects due to Eqs. (20) and (22).
The d00 and djk terms in the SME (7) lead to interaction

Hamiltonians proportional to d00Σ̂ · p and djkΣ̂jpk, respec-

tively, where Σ̂ ¼ ð σ 0
0 σ Þ is the Dirac spin matrix. These

terms both lead to parity-violating effects in atoms. We
consider the d00 term for interactions with nucleons in
Sec. II E. In the nonrelativistic limit, this term will not lead
to any atomic effects via an interaction with electrons, since
in this limit it can be expressed ime½ĤNR; σ · r�, where ĤNR
is the nonrelativistic Schrödinger Hamiltonian. The H0j,
gjkm, and gj00 terms in (6) and (7) also lead to parity-
violating effects in atoms, though we do not consider these
in this work.
Many of the terms in the SME Lagrangian (3) are

proportional to p in the nonrelativistic limit and, because
of the relation p ¼ ime½ĤNR; r�, give no atomic effects in
this limit. The c0j terms, which in the nonrelativistic limit
scale as p, also produce P-odd effects due to relativistic
corrections. Also, they introduce direction and frame-
dependent anisotropies in the electron energy-momentum
relation [31,68,73].
The other terms in Eqs. (6) and (7) give rise to P-even

interactions and do not contribute to atomic parity-violating

effects. These terms do, however, contribute to other
interesting phenomena, such as bound-state energy shifts
and modulations in clock transition frequencies. For more
information and detailed discussions of many of these
terms, see, e.g., Refs. [24–27].

D. Perturbed wave functions and formulas for the
atomic PNC amplitudes and EDMs

To analyze the dynamic effects, we apply first-order
time-dependent perturbation-theory with a slow turn on of
the perturbation (see, e.g., Ref. [32] for further details) and
find that the perturbed wave function corresponding to the
unperturbed atomic state jai due to the considered dynamic
interactions is given by

jgaðtÞi ¼ jai þ
X
n

cðaÞn ðtÞjni; ð24Þ

where

cðaÞn ðtÞ ¼
P

{hnjV̂{jai
ðEa − EnÞ2 − ω2

ϕ

½−i∂tfðtÞ þ ðEa − EnÞfðtÞ�:

ð25Þ

Here, fðtÞ ¼ ηωϕ sinðωϕtÞ and V̂ ¼ γ5 when we consider
the PS γ5 interaction (9), fðtÞ ¼ ζme cosðωϕtÞ and V̂ ¼
iγ0γ5 when we consider the PS iγ0γ5 interaction (8), and
fðtÞ ¼ b0 sinðωbtÞ and V̂ ¼ γ5 when we consider the
dynamic case of the PV γ5 interaction (11). The index ı
denotes summation over atomic electrons. In deriving
Eq. (25), we have neglected the natural widths of the
considered states. While we do not consider these widths in
this work, they may affect the phase in (25) when
considering resonance phenomena.
Therefore, the general PNC amplitude can be expressed

to first order in the PNC interaction as

Ea→b ¼
X
n;{;|

�hbjd|jnihnjV̂{jai
ðEa − EnÞ2 − ω2

ϕ

½−i∂tfðtÞ þ ðEa − EnÞfðtÞ�

þ hbjV̂{jnihnjd|jai
ðEb − EnÞ2 − ω2

ϕ

½i∂tfðtÞ þ ðEb − EnÞfðtÞ�
�
:

ð26Þ

Note that Eq. (26) also applies for induced atomic EDMs,
for which the initial and final atomic states are identical.
It is now convenient to make one further approximation,

namely that the energy of the field particle is much smaller
than the energy separation between all opposite-parity
states of interest, i.e., ωϕ ≪ jEa;b − Enj for all n. For a
relatively light field particle, there is no loss of generality in
making this assumption, except in the case where the
atomic system of interest possesses close levels of opposite
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parity, which will be investigated for dysprosium,
ytterbium, and barium in the coming sections.
With this assumption we can present four comparatively

simple formulas for the dynamic PNC amplitudes and
atomic EDMs induced by the pseudoscalar interactions for
both the γ5 and iγ0γ5 cases presented in Eqs. (8) and (9):

EPS
PNCðγ5Þ ¼ ηωϕ sinðωϕtÞKPNC; ð27Þ

EPS
PNCðiγ0γ5Þ ¼

ζωϕ

2
sinðωϕtÞKPNC; ð28Þ

dPSEDMðγ5Þ ¼ −2iηω2
ϕ cosðωϕtÞKEDM; ð29Þ

and

dPSEDMðiγ0γ5Þ ¼ −iζω2
ϕ cosðωϕtÞKEDM: ð30Þ

For the PV interaction presented in Eq. (11), the induced
PNC amplitude is given by

EPV
PNCðγ5Þ ¼ b0ðtÞKPNC; ð31Þ

where in the static case b0ðtÞ ¼ b0 is a constant and in the
dynamic case b0ðtÞ ¼ b0 sinðωbtÞ oscillates. In the
dynamic case, the PV γ5 interaction also gives rise to an
oscillating atomic EDM, given by

dPVEDMðγ5Þ ¼ −2ib0ωb cosðωbtÞKEDM: ð32Þ

In the above equations, we have defined KPNC and KEDM as

KPNC ¼
X
n;{;|

�hbjd{jnihnjγ5| jai
Ea − En

þ hbjγ5| jnihnjd{jai
Eb − En

�
ð33Þ

and

KEDM ¼
X
n;{;|

hajd{jnihnjγ5| jai
ðEa − EnÞ2

: ð34Þ

These quantities will henceforth be referred to as the atomic
structure coefficients.
The formulas (27)–(32) provide the connection between

the atomic-structure calculations and the fundamental
physics, which is necessary to extract quantitative infor-
mation about the fields in question. In deriving these
equations, we made use of the relation (15). Notice that
the atomic structure coefficients are the same for both the γ5

and iγ0γ5 cases. Note also that Eq. (34) shows that no
EDMs are induced by these fields in atomic states of zero
angular momentum, since in this case the scalar operator γ5

couples only intermediate states of zero angular momen-
tum, while the vector operator d cannot couple states of
zero angular momentum.

For the dynamic fields, in the case where ωϕ∼
jEa;b − Enj, for a particular n, one has to use the complete
equation (26) for the term corresponding to this n. In this
case, which can occur in atomic systems which possess a
pair of close opposite-parity levels, there may be additional
enhancement from this term. The rest of the amplitude can
be given by one of Eqs. (27)–(32) with this particular term
excluded. Note that in the limit that ωϕ=b ≫ jEa;b − Enj for
all n (i.e., a heavy field particle) the expression (26)
vanishes to lowest order.
In the nonrelativistic limit, the matrix element of the γ5

operator reduces to

hbjγ5{ jai→NR
iðEb − EaÞhb0jσ{ · r{ja0i; ð35Þ

where the wave functions jn0i are the two-component Pauli
spinors (as opposed to the wave functions jni, which are
four-component Dirac spinors). This term scales as 1=c; the
next lowest-order corrections are of order 1=c3. This means
that in the nonrelativistic case the operator γ5 can be replaced
with i½ĤNR; σ · r�, and therefore, by Eqs. (19)–(22), theKPNC
coefficients (33) vanish in the nonrelativistic limit.
In the calculations, this leads to significant cancellation

between the hbjdjδai and hδbjdjai terms in the sum (33).
If the calculations were exact, this would eliminate the
nonrelativistic part of the amplitude and leave only the
relativistic corrections, constituting the correct result. In
practice, however, the cancellation leads to significant
instabilities in the calculations. To bypass this problem,
we express the γ5 operator via the exact relation

γ5{ ¼ i½Ĥ; Σ̂{ · r{� þ 2γ5{ K̂{; ð36Þ
which holds for the atomic Dirac–Coulomb Hamiltonian
(13). Notice the similarity between the commutator term in
(36) and the nonrelativistic expression (35). Matrix ele-
ments of this commutator term between atomic states scale
as 1=c, whereas for the γ5K̂ term they scale as 1=c3. Here,

K̂ ¼ ð k̂ 0
0 k̂

Þ, with k̂≡ −1 − σ · L [k̂Ωκ ¼ κΩκ for the

spherical spinor Ωκ with the Dirac quantum number
κ ¼ ðl − jÞð2jþ 1Þ], see, e.g., Ref. [74], L and l are the
operator and value of the orbital angular momentum, and j
is the total angular momentum of the single-electron atomic
states. The commutator in (36) cancels exactly in the
amplitude and does not contribute—see Eqs. (19)–(22).
We can, therefore, calculate the KPNC coefficients free of
large cancellation by using only the last term in (36). Note
that there are no such cancellations in the sum (34) for the
KEDM coefficients, which can be calculated directly with
high numerical precision.

E. Interactions with nucleons and via
hadronic mechanisms

Note that PS and PV cosmic fields can also interact with
the nucleus, giving rise to nuclear anapole moments and
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nuclear Schiff moments, which contribute to nuclear spin-
dependent (NSD) PNC amplitudes and atomic EDMs
respectively; see, e.g., Refs. [30,32,60]. In Ref. [32], it
was shown that an interaction of the form (9) can give rise
to a nuclear anapole moment (AM), a P-odd, T-even
nuclear moment that normally arises due to parity-violating
nuclear forces [75].
In this work, we consider nuclear anapole moments

induced by the interaction between nucleons and the static
PV interaction of the form (11), which in the nonrelativistic
limit reads

ŴNR ¼ bN0 σ · p=mN; ð37Þ
where bN0 is the cosmic-field amplitude including the
interaction strength between the cosmic field and a nucleon,
and σ, p, and mN are the spin, momentum, and mass of the
nucleon. We also consider the interaction of the SME d00
term in (3) with nucleons. In the nonrelativistic limit, this
term leads to an interaction Hamiltonian of the form [61]

ŴNR ¼ −dN00σ · p: ð38Þ

Both interactions (37) and (38) will contribute to the
nuclear AM. The Hamiltonian representing the NSD PNC
interaction of a valence electron with the nuclear AM is
given by

ĥAM ¼ GFKIffiffiffi
2

p α · I
I

ϰρðrÞ; ð39Þ

where KI ¼ðIþ1=2ÞðIþ1Þ−1ð−1ÞIþ1=2−lN , with lN being
the orbital angular momentum of the valence nucleon, I is
the nuclear spin, and ρ is the nuclear density [75] (see also
Ref. [39]). The dimensionless constant ϰ ¼ ϰa þ ϰCF
quantifies the magnitude of the AM and has contributions
both from parity-violating nuclear forces, ϰa (the conven-
tional AM), and from the interaction of the cosmic field
with the nucleons, ϰCF.
From Eq. (39), we see that the interaction of atomic

electrons with the cosmic field-induced AM has exactly the
same form as their interaction with the conventional (parity-
violating nuclear force-induced) AM, the only difference
being the source of the moment. This means that no new
atomic calculations are required, and a limit on the magni-
tude of ϰCF, and hence bN0 and dN00, can be extracted directly
from existing experiments and calculations.
The magnitude of the AM, ϰCF, is related to the field

parameters bN0 and dN00 by the equation

ϰCF ¼
2

ffiffiffi
2

p
παμNhr2i
GFmN

ðbN0 −mNdN00Þ; ð40Þ

where hr2i and μN are the mean-square radius and magnetic
moment (in nuclear magnetons) of the valence nucleon,
respectively, and α ≈ 1=137 is the fine-structure constant;

see Refs. [32,75] for more details. We take mN ¼
0.94 GeV, μp ¼ 2.8, μn ¼−1.9, and hr2i ¼ ð3=5Þr20A2=3,
where r0 ¼ 1.2 fm and A is the atomic mass number.
The spin of a nucleus with an odd number of nucleons

is, in general, due primarily to a single valence nucleon.
We note, however, that, due to polarization of core nucleons
by the valence nucleon, the nuclear spin can have con-
tributions from both protons and neutrons. This means that
there are contributions to the cosmic field-induced AM
coming from both protons and neutrons [2]. In the case of
cesium, which has nuclear spin I ¼ 7=2, this can be
approximately represented via the relations

bN0 ¼ bp0μphσpz i þ bn0μnhσnz i
μpðhσpz i þ hσnz iÞ

; ð41Þ

and

dN00 ¼
dp00μphσpz i þ dn00μnhσnz i

μpðhσpz i þ hσnz iÞ
; ð42Þ

allowing us to use the measurement [41] of the AM in
cesium to constrain the interaction strengths of the con-
sidered cosmic fields with neutrons, as well as protons.
Here, the superscripts p and n refer to protons and
neutrons, respectively, and hσzi is the expectation value
(z component) of the spin for a particular nucleon. For
thallium, which has nuclear spin I ¼ 1=2, this approxima-
tion is not valid, and so we only extract limits for the
cosmic-field interactions with protons from the results in
thallium, within the single-particle approximation; see
Ref. [2] for more details.
The dynamic PS and PV fields (9) and (11) also induce

oscillating anapole moments in atomic nuclei. This was
considered in Ref. [32]. In the case of a static PV cosmic
field-induced AM, one can immediately extract limits on the
coupling of the fields with protons via the existing NSD
PNC calculations and measurements in cesium [41] and
thallium [76]. This is not the case for the dynamic inter-
actions. For this reason, we consider only the static case.
The QCD axion was previously shown to give rise to

oscillating P- and T-odd nuclear Schiff moments
[30,32,60], which arise from P- and T-odd intranuclear
forces and from the EDMs of constituent nucleons. This
follows from the observation that the QCD Lagrangian
contains the P- and CP-violating term

Lθ
QCD ¼ θ

g2

32π2
Gμν

a ~Gaμν ð43Þ

and that θ may be cast in the form θðtÞ ¼ aðtÞ=fa. Here,
aðtÞ ¼ a0 cosðmatÞ is the oscillating QCD axion field with
fa the axion decay constant, θ is the dimensionless parameter
that quantifies the degree of CP violation, Ga and ~Ga are the
gluonic field tensor and its dual, respectively (with color
index a), and g is the QCD gauge coupling constant.
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Here, we point out that axions may also induce oscillating
P- and T-odd effects in molecules through the generation of
oscillating nuclear magnetic quadrupole moments (MQMs),
which arise from P- and T-odd intranuclear forces and from
the EDMs of constituent nucleons. We note that nuclear
MQMs, unlike nuclear EDMs, are not screened by the
atomic electrons. Both of these mechanisms contribute to
nuclear MQMs, which are linear in θ, and so recasting θ in
the form θðtÞ ¼ aðtÞ=fa leads to our noted inference.
Assuming that these effects are quasistatic, the approximate
magnitudes of such oscillating nuclear MQMs and the
effects they induce in molecules can be obtained for various
cases from the numerical values in Ref. [77] (see also
Refs. [78–81]) by the substitution θ → a0 cosðmatÞ=fa,
with a0=fa ∼ 4 × 10−18 from consideration of the local
CDM density and assuming no fine-tuning of the so-called
misalignment angle; see, e.g., Refs. [30,32,60,82–84].
Note that, when considereing the axion field with the
above assumptions, the coeficicient in Eq. (1) is given by
η ¼ a0=fa.

F. Enhancement of NSI PNC effects
in diatomic molecules

In diatomic molecules with closely spaced pairs of
opposite-parity levels, only static NSD PNC effects, which
are due primarily to the nuclear anapole moment, are
enhanced [81,85–87] (see also Ref. [40]). Static NSI
PNC effects are not enhanced, since the nuclear weak
charge interaction cannot mix a pair of opposite-parity
rotational states. This may be rationalized as follows. After
averaging over the electron wave function, the effective
operator acting on the angular variables may contain three
vectors: the direction of molecular axis N, the electron
angular momentum J, and the nuclear spin angular
momentum I. The only P-odd, T-even operator that can
be formed from these three vectors is proportional to
N · ðJ × IÞ, which contains the nuclear spin. It is also
possible to form the P-odd, T-odd operatorsN · J andN · I,
neither of which contribute to PNC effects in the case of
static interactions [40]. However, for a time-dependent
interaction of the form VðtÞ ∝ N · J cosðωtÞ, there arises an
additional term in the perturbed molecular wave function
that is shifted in phase by π=2 radians compared to the
original term, which is the only (real) term present in the
case of a static interaction of the form N · J—compare with
Eq. (25). Hence, there may be enhancement of both NSI
and NSD PNC effects in diatomic molecules possessing
close pairs of opposite-parity levels in the presence of time-
dependent interactions.

III. METHODS FOR ATOMIC STRUCTURE
CALCULATIONS

We examine a number of different systems and use
different computational methods for the ab initio relativistic

calculations. We outline these briefly and refer the reader to
the relevant sources for more detailed information.

A. Single-valence electron systems

For atoms and ions with one valence electron above a
closed-shell core, we employ the correlation potential
method [45,88]. We start from the mean-field Dirac–
Fock approximation with a VN−1 potential and include
dominating electron correlation effects. The correlation
potential, Σ̂1, which includes a summation of the series
of dominating diagrams, is calculated to all orders of
many-body perturbation theory using relativistic Hartree–
Fock Green’s functions and the Feynman-diagram tech-
nique [45]. We also calculate the correlation potential to
only second order (Σ̂ð2Þ), for use when the all-order method
is not appropriate, and as a test of the accuracy [88].
The correlation potential Σ̂1 is then used to construct the set
of so-called Brueckner orbitals (BOs) for the valence
electron, which are found by solving the Hartree–Fock-
like equations including the operator Σ̂:

ðĤ0 þ Σ̂1 − EnÞψ ðBOÞ
n ¼ 0: ð44Þ

Here,

Ĥ0 ¼ α · pþmeðγ0 − 1Þ − Vnuc þUHF; ð45Þ

is the relativistic Hartree–Fock (RHF) Hamiltonian with
nuclear potential, Vnuc, and Hartree–Fock potential, UHF;
En is the single-particle energy corresponding to the

Bruckner orbital ψ ðBOÞ
n , and the index n denotes valence

states. Core polarization and the PNC and E1 interactions
are included via the time-dependent Hartree–Fock (TDHF)
method [45,88], which is sometimes also referred to as the
random phase approximation (RPA) method.
To calculate the core-polarization corrections, we write

the single-electron wave function in an external PNC and
E1 field using the TDHF method as

ψ ¼ ψ0 þ δψ þ Xe−iωt þ Yeiωt; ð46Þ

where ψ0 is the unperturbed state, δψ is the correction due
to the cosmic field-induced PNC interaction acting alone, X
and Y are corrections due to the E1 interaction acting alone,
and ω ¼ jEa − Ebj is the frequency of the PNC transition
(ω ¼ 0 for EDMs). These corrections are found by solving
the system of TDHF equations self-consistently for the
core,

ðĤ0 − EcÞδψc ¼ −ðĥγ5 þ δV̂γ5Þψ0c;

ðĤ0 − Ec − ωÞXc ¼ −ðd þ δV̂E1Þψ0c;

ðĤ0 − Ec þ ωÞYc ¼ −ðd† þ δV̂†
E1Þψ0c; ð47Þ
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where the index c denotes core states and δV̂γ5 and δV̂E1 are
corrections to the core potential arising from the PNC and
E1 interactions, respectively. Note that in the equa-
tions (47), we have neglected the contribution from ωϕ;
i.e., we have assumed that ωϕ ≪ jEcore − Ea;bj. The core
excitation energy is very large, so this should be valid in
all cases.
The PNC and EDM atomic structure coefficients (33) and

(34) can then be calculated using single-particle energies and
wave functions, with the operators dı and γ5ı replaced by the
effective single-particle operators including the core-
polarization corrections:

P
{d{ → d þ δV̂E1,

P
{γ
5
{ → γ5þ

δV̂γ5 . This is how we calculate the KEDM values; however,
for theKPNC values we use a slightly different method due to
the instabilities caused by the large cancellation discussed
previously.
By expressing the second term on the right-hand side of

(36) as 2γ5K̂ ¼ −2γ0γ5ðγ0K̂Þ, and noting that single-
particle states are eigenstates of γ0K̂ (with eigenvalue κ),
we can use Eq. (15) to express the PNC (single-particle)
matrix elements as

hψnj2γ5K̂jψai ¼
−κa
2me

ðEn − EaÞhψnjγ5jψai: ð48Þ

Upon substitution into the summation for KPNC, we can
invoke the closure relation, and the amplitude for single-
particle states reduces to

KPNC ¼ 1

me
ðκb þ κaÞhψbjγ5ðd þ δVE1Þjψai; ð49Þ

where we have neglected the core polarization due to the
2γ5K̂ operator, since it is highly suppressed. This expres-
sion requires no summation over intermediate states, does
not contain significant cancellation, and can be calculated
with relatively high accuracy. We include correlations by
using the BOs ψa and ψb for the valence states a and b
in Eq. (49).
For the KEDM coefficients, the first term on the right-

hand side of Eq. (36) does not cancel. In fact, this term
dominates the amplitude [since it leads almost directly to
the nonrelativistic approximation (35)] and scales as 1=c,
whereas the second term scales as 1=c3. Inserting γ5 ≈
i½Ĥ; Σ̂ · r� into (34), we see that the KEDM coefficients for
2S1=2 states are approximately proportional to the static
dipole polarizability, with corrections on the order of
ð1=cÞ3. The constant of proportionality is determined by
Eq. (36) and the angular integrals [89],

KEDMðzÞ≃ −i
X
n

hajdzjnihnjΣ̂ · rjai
Ea − En

≈
i
2e

α0; ð50Þ

where the scalar electric dipole polarizability, α0, is
given by

α0 ¼ −
2e2

3ð2Ja þ 1Þ
X
n

jhajjrzjjnij2
Ea − En

; ð51Þ

where hajjrzjjni is the z component of the reduced matrix
element of the r operator. [Equation (50) relies on the fact
that the radial integrals and energies depend only on the n; l
quantum numbers, and not on j, in the nonrelativistic limit.]
This can be used as an independent test of the calculations.
Rougher (and far less accurate) relations can also be derived
for other states, e.g., the 2P1=2 ground state of thallium,
which are useful for order-of-magnitude estimates.
Note that in the methods described above we have not

included the core polarization contribution that comes
from the simultaneous action of the E1 and PNC fields,
the so-called double core polarization; see, e.g.,
Refs. [45,90]. Core polarization amounts to only a small
correction to the quantities considered in this work, so the
even smaller double core polarization can be safely
neglected in most cases. In the case of thallium, however,
where the single-particle approach is less valid, this may
have a significant impact on the accuracy.

B. Two valence electron atoms

We treat ytterbium and barium as systems with two
valence electrons above a closed shell core and follow
closely the methods employed recently [91,92] to calculate
conventional PNC effects in these atoms. Starting from the
RHF method with the potential UHF created by the N − 2
electrons of the closed-shell core [93], where N is the total
number of electrons, we make use of the combined
configuration interaction (CI) and many-body perturbation
theory (MBPT) method developed in Ref. [94]. Interactions
with external fields and core polarization are taken into
account using the TDHF method as above. For more detail
on this method, see also Refs. [91,95,96].
The effective CIþMBPT Hamiltonian for the system of

two valence electrons has the form

Ĥeff ¼ ĥ1ðr1Þ þ ĥ1ðr2Þ þ ĥ2ðr1; r2Þ; ð52Þ
where ĥ1 is the single-electron part of the RHF
Hamiltonian,

ĥ1 ¼ α · pþmeðγ0 − 1Þ − Vnuc þ UHF þ Σ̂1; ð53Þ
and ĥ2 is the two-electron part,

ĥ2ðr1; r2Þ ¼
e2

r12
þ Σ̂2ðr1; r2Þ: ð54Þ

The additional terms, Σ̂, are the correlation potentials,
which are used to take into account core-valence correla-
tions (see Refs. [94,96] for details). The single electron
correlation potential, Σ̂1, is the same potential as described
above (here, we use only the second-order correlation
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potential, Σ̂ð2Þ) and represents the interaction of a single
valence electron with the atomic core. The two-electron
operator, Σ̂2, represents the screening of the valence-
valence Coulomb interaction by the core electrons.
We also introduce a scaling parameter, Σ̂1 → λκΣ̂1, in

(53), where λκ can take different values for different values
of κ (s1=2, p1=2, etc.) and λκ ≈ 1. The scaling parameters
serve two purposes. First, since the single-particle energies
in Eq. (48) are relatively sensitive to λκ, whereas the radial
integrals are comparatively insensitive, we can use this as a
test of the stability of the calculations. We do this and find
satisfactory stability for both the matrix elements and the
overall PNC amplitudes. Second, in the case of the PNC
transition in ytterbium, a system that possesses a pair of
relatively close levels of opposite parity, we can use the
scaling parameters to fit the important energy differences to
the experimental energies. This is important, since even
modest errors in individual energy levels may lead to an
error of orders of magnitude in an energy interval when it is
particularly small. See Ref. [92] for a detailed discussion on
this point.
The matrix elements are then computed from the sum of

the single-particle contributions. For the single-particle
contributions, we use Eq. (48), which removes all signifi-
cant cancellation into a small factor ∼1=c3 [two factors of c
come from the coefficient me in (48), and the third comes
from the lower (small) component of the Dirac radial wave
function].
Note that we can also use Eq. (35) to approximately

express Eq. (48) as

hψnj2γ5K̂jψai ≈
−iκa
2me

ðEn − EaÞ2hψ 0
njσ · rjψ 0

ai; ð55Þ

where the corrections are of order 1=c3. Equations (48) and
(55) have very different radial integrals; as such, perform-
ing the calculations using both these equations serves as a
good numerical test of our method. We find good agree-
ment between both the matrix elements and the amplitudes
calculated using Eqs. (48) and (55). This is important, since
it justifies neglect of core polarization due to the 2γ5K̂
operator.

C. Dysprosium

The feature of dysprosium that makes it a particularly
interesting system for the study of atomic PNC is the
existence of two nearly degenerate states of opposite parity
and the same total angular momentum, J ¼ 10, at
E ¼ 19797.96 cm−1. We use the notation A for the
even-parity state and notation B for the odd-parity state,
following Ref. [97]. The PNC experiment in dysprosium is
different to those done, for example, in cesium, and it is the
quantity hAjγ5jBi that is of most interest. This is because, in
dysprosium, the mixing of the opposite parity A and B
states is observed directly, whereas in the other experiments

it is transitions between states of the same parity that are
observed [97] (the parity-violating part of these transitions
is enabled by a mixing of many opposite-parity states).
The method we use for the calculations in dysprosium

follows almost exactly previous calculations of conven-
tional PNC effects in this system [98], with the only
exception being the interchange of the operator of the
electron-nucleus weak interaction (12) with those for the
parity-violating interactions with cosmic fields, (9) and
(11). We use the particular CI method described in much
greater detail in Ref. [99]. To construct the single-electron
orbitals, we use a VN potential, where N ¼ 66 is the total
number of electrons.
A different VN Hartree–Fock potential is used for each

different configuration; then the valence states found in the
Hartree-Fock calculations are used as basis states for the CI
calculations. This helps account for the fact that single-
electron states actually depend on the configurations. While
it is possible to account for this dependence within the CI
calculations, it requires a complete set of single-electron
states. These would then be used to construct the many-
electron basis states by redistributing the valence electrons
over the single-electron basis states. Then the actual many-
electron states are found by diagonalizing the matrix of the
effective CI Hamiltonian [93]. This approach works well in
the case of a few valence electrons, e.g., neutral barium and
radium as discussed above. However, for the 12 valence
electrons of dysprosium, it would lead to a matrix of
enormous size, making it practically impossible to saturate
the basis with limited computing resources. The results
with an unsaturated basis are unstable and strongly depend
on where the basis is truncated. Therefore, it is preferable to
account for the differences in the configurations at the
Hartree–Fock, rather than the CI, stage of the calculations.
After the self-consistent Hartree–Fock procedure is done

for each necessary configuration, the effective CI
Hamiltonian for the valence states of dysprosium, with
M ¼ 12 valence electrons, is expressed as

Ĥeff ¼
XM
{¼1

ĥ1ðr{Þ þ
X
|<{

e2

r{|
; ð56Þ

where

ĥ1 ¼ α · pþmeðγ0 − 1Þ − Vnuc þ UHF þ δVp: ð57Þ

Here, UHF is the Hartee–Fock potential due to the N −M
core electrons. We do not use the ab initio correlation
potential as described above; instead it is the term δVp in
Eq. (57) that simulates the effect of valence-core correla-
tions. It is known as the polarization potential and has the
form

δVp ¼ −
αp

2ðr4 þ a40Þ
; ð58Þ
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where αp quantifies the polarization of the core and a0 is a
cutoff parameter, for which we use the Bohr radius. The
term αp is treated as a parameter and is scaled to reproduce
the correct experimental energies. The effect that adding or
removing basis configurations, and making small changes
in the values αp, has on the amplitude is a good way to test
the accuracy of the calculations.
Since the states of interest in dysprosium are practically

degenerate, the commutator term in Eq. (36) does not
contribute to the matrix element. We therefore calculate
the matrix elements of the PNC interaction directly from
the single-particle contributions using Eq. (48). We use the
same configurations and values for αpð≈0.4 a:u:Þ as
in Ref. [98].

IV. RESULTS AND DISCUSSION

A. Values and accuracy of the atomic
structure coefficients

Results of our calculations for the atomic structure
coefficients KPNC and KEDM [defined in equations (27)
through (34)] are presented in Table I. We present z
components, with jz ¼ minðja; jbÞ.
To estimate the uncertainty, we calculate the valuesKPNC

without including any correlations, including correlations
to second order (Σð2Þ), and including correlations to all
orders (see Sec. III). We take the all-order results as the
midpoint and estimate the uncertainty as the difference

between this and the pure Hartree–Fock (no correlations)
calculations. The second-order results are used as an extra
test; the deviation of the second-order results from the all-
order ones is significantly smaller than the assumed
uncertainty. We also examine the effect that including core
polarization has on the amplitudes and note that its effect is
also smaller than the assumed uncertainty.
Note that we treat thallium here as a single valence

electron system, where the 6s2 electrons are treated as core
states. For this treatment of thallium to yield accurate
results one needs to take into account many higher-order
correlation corrections, such as ladder diagrams [101].
In particular, the double core polarization may give a
significant contribution in this approximation; see Fig. 3.
Therefore, for the Tl KPNC we use only the second-order
correlation potential, and the uncertainty is taken as the size
of these correlation effects. The uncertainty attributed to
thallium takes into account the omitted core-polarization
effects. An alternative method for calculations in thallium is
to treat it as a three-valence-electron system and use the
CIþMBPT method; see, e.g., Ref. [102]. In this approach,
the double core polarization is taken into account auto-
matically. The trivalent CIþMBPTmethod is significantly
more computationally demanding than the methods we
employ in this work, and is not necessary at the currently
desired level of accuracy; more complete calculations can
be performed when further experimental work in this area is
undertaken.
For hydrogen, we perform the calculations both using

exact Dirac–Coulomb wave functions and numerical wave
functions including finite-nuclear-size effects. The differ-
ence between these two approaches is negligible at the
desired accuracy. The h2sjγ5j2pi matrix element is almost
identically zero numerically (without including radiative
corrections). This means that despite being a seemingly
good candidate for a Dy-type stark-interference experi-
ment, where the PNC matrix element is measured directly
(see Ref. [97]), hydrogen is unlikely to yield informative
results in this case. The uncertainty estimates in the hydrogen
1s–2s KEDM value comes mainly from a truncation of the
basis used for the summation, and the uncertainty for the 1s

TABLE I. Calculations of the PNC and EDM atomic structure
coefficients [jz ¼ minðja; jbÞ] for several atomic systems, valid
in the case that ωϕ ≪ jEa;b − Enj. Values are presented in atomic
units.

PNC EDM

Transition KPNCði10−6Þ State KEDM

H 1s–2s 0.1447(2) 1s 0.0164(1)
Li 2s–3s 0.219(3) 2s 0.60(1)
Na 3s–4s 0.224(4) 3s 0.61(1)
K 4s–5s 0.242(4) 4s 1.09(5)

4s–3d3=2 −0.307ð6Þ
Cu 4s 0.16(3)a

Rb 5s–6s 0.247(5) 5s 1.22(8)
Ag 5s 0.17(5)a

5s–4d3=2 −0.30ð1Þ
Cs 6s–7s 0.256(5) 6s 1.6(2)

6s–5d3=2 −0.22ð3Þ
Ba 1S0–3D1 −0.5ð1Þ
Baþ 6s–5d3=2 −0.02ð1Þ
Yb 1S0–3D1 −8ð2Þ
Au 6s 0.12(4)a

Tl 6p1=2–6p3=2 0.22(5) 6p1=2 0.2(1)
Fr 7s–8s 0.253(6) 7s 1.3(2)

7s–6d3=2 −0.25ð3Þ
Raþ 7s–6d3=2 −0.08ð3Þ

aFrom polarizability calculations [100].

FIG. 3. Example Feynman–Goldstone diagram for the contri-
bution to the cosmic PNC transition (33) in thallium arising from
the double core polarization by the PNC cosmic-field (cross) and
the electric-dipole (dot) interaction. The 6s state is treated as a
state in the core. The wavy line is the Coulomb interaction with
multipolarity k.
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KPNC value reflects the omission of QED effects, which
become important at this scale (∼1=c3).
In the case of atomic EDMs, there is no cancellation as

for the KPNC values, and these magnitudes are compara-
tively stable. The accuracy of these calculations is expected
to be relatively high, with the dominating uncertainty
coming from the inclusion of electron correlations. We
take as an estimate of the uncertainty the difference
between the calculations performed with the second-order
and the all-order correlation potentials. As noted above, the
expression for the EDM atomic structure coefficients (34)
can be reduced to a form very similar to that of the electric
dipole scalar polarizability (50). We use this fact as a test of
our calculations and find excellent agreement using pub-
lished polarizability values; better than 1% for lithium and
sodium and better than 5% for most other atoms; see, e.g.,
Ref. [103]. The decline in agreement for the higher Z
systems is due to the larger role of relativistic effects here,
since Eq. (50) is a nonrelativistic approximation.
From the results in Table I, we see that the magnitudes of

PNC amplitudes in general increase with increasing atomic
mass. This can be understood as a relativistic effect, since
the amplitude vanishes in the nonrelativistic limit. However,
we note that the magnitudes increase considerably more
slowly with Z than the Z3 dependence of conventional NSI
PNC effects induced by Z0-boson exchange between atomic
electrons and nucleons [104,105]. This means that light
atoms may also be suitable candidates for searches of
pseudoscalar and pseudovector cosmic field-induced effects.
Since the considered interaction is one with an external

cosmic field, as opposed to a nuclear-sourced field as in the
case of conventional atomic PNC, the amplitudes are not
necessarily restricted by the value of the wave functions on
the nucleus. In conventional PNC, this has the effect of
greatly suppressing contributions from higher orbital angu-
lar momentum (l) states, in which electrons do not spend as
much time near the nucleus. This limits the magnitude of
the PNC effect in many transitions, such as the A-B matrix
element in dysprosium, that have otherwise ideal condi-
tions (high nuclear charge Z, very close opposite-parity
levels). Such restrictions were noted very early; see, e.g.,
Ref. [38]. In the cosmic field-induced PNC effect, however,
this restriction does not apply.
For the dynamic interactions, the results presented in

Table I are valid only in the case that ωϕ ≪ jEa;b − Enj. As
stated above, this should generally not be a problem, except

for when there exists a pair of close opposite-parity levels in
the summation (26). Such a pair of close levels appears in
barium, dysprosium, and ytterbium. In Table II, we present
calculations of the 2γ5K̂ matrix element between states that
correspond to close levels of opposite parity in these atoms.
For dysprosium, it is actually the quantity hBjγ5jAi, as

opposed to the PNC amplitude EPNC, that is directly of
interest, since the transitions between B and A are directly
measured in the dysprosium experiments. To determine the
uncertainty in this quantity, we examine the effect of
removing configuration states from the basis. Note that in
the conventional PNC case the hAjĥQW

jBi matrix element is
highly dependent on the configurations used [98]. We
perform the calculations including only the leading two
configurations for each state, as well as including all 12 of
the configurations considered in Ref. [98], and many
combinations in between. We find, in fact, that this makes
little difference to the final amplitude, meaning it is quite
stable. We take the uncertainty in this value to cover the
range of values obtained between using only the leading two
configurations for each state and using all 12 considered
basis configurations. Despite making relatively large
changes to the energies, modest modifications to αp make
only small changes to the amplitude, smaller than the
assumed level of accuracy.

B. Limits on the interactions of a
pseudovector cosmic field

For the static case, the PV interaction will manifest itself
as a small addition to the PNC amplitude of a transition
between two states of the same nominal parity. Therefore,
by combining the results of the conventional (QW induced)
PNC experiments and calculations with the calculations of
the cosmic field-induced PNC amplitude [given by Eq. (31)
and Table I], it is possible to extract limits on the values of
the PV cosmic-field coupling constants b0. We present
these limits in Table III.
The most stringent limit comes from the results in

dysprosium. This is due mainly to the significantly low
absolute uncertainty in both the theoretical and experimen-
tal limits on the ĥQW

matrix element.
We have used the available NSD PNC measurements for

cesium and thallium to extract limits on the constants bp0
and bn0 that quantify the interaction strength of a PV cosmic
field (37) with protons and neutrons, respectively. We also

TABLE II. Matrix elements of the 2γ5K̂ operator for Ba, Ra, Dy, and Yb between nearly degenerate opposite-
parity levels.

A B ΔEBA ðcm−1Þ [106] hBj2γ5K̂jAi ði a:u:Þa
Ba 5d2ð1D2Þ 5d6pð1Do

2Þ −12.34 0.3ð1Þ × 10−9

Dy 4f105d6sðJ ¼ 10Þ 4f95d26sðJ ¼ 10Þ 0.7ð2Þ × 10−8

Yb 5d6sð3D1Þ 6s6pð1Po
1Þ −579.12 0.29ð6Þ × 10−8

aFor ease of comparison with the literature, note that 0.7×10−8 a:u: ¼ 50 MHz.
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use these measurements to constrain the constants dp00 and
dn00 that appear in (38), which quantify the interaction
strengths of protons and neutrons with the SME dμν tensor
field (7).Wepresent these limits in Table IV. In extracting the
limits,we have taken thevalues of the conventional (nuclear-
forced induced) AM as ϰa ¼ 0.19 and assumed a 30%
uncertainty for the nuclear theory for cesium and ϰa ¼
0.17 with 60% uncertainty for thallium; see, e.g., Ref. [39].
Thenuclear spin in both cesiumand thallium is primarily due
to the valence protons. For thallium, we use a single-particle
picture and therefore extract limits for the proton only. For
cesium,we use Eqs. (41) and (42), alongwith values for hσpz i
and hσnzi, from Ref. [2], to determine the proton and neutron
limits. The differences between the bp0 limits for cesium
presented in Table IVand those of Ref. [1] is that in Ref. [1]
we used the single-particle approximation.
These field-nucleon coupling limits are to be compared

with the field-electron coupling limits obtained from PNC
amplitude measurements and from direct determination of
weak interaction matrix elements, which are tabulated in
Table III. The latter limits are by far the more stringent.
Note that ongoing AMmeasurements with Fr, Yb, and BaF
will also lead to limits on PV cosmic-field couplings to
protons and neutrons [108,113–115].

C. Experimental accessibility of dynamic effects

After the first observation in bismuth [116], conventional
atomicPNCeffectshavesincebeenobserved in lead, cesium,
thallium, and ytterbium; see Refs. [41,44,76,108,117,118]
and references within. Atomic PNC experiments have also
been proposed for the here considered single-valence

systems francium, rubidium, Baþ, and Raþ, see, e.g.,
Refs. [113,119–125], as well as barium, radium, and other
heavy elements [92], and are ongoing for dysprosium
[126,127].
Of the atoms considered here, EDM measurements have

been performed using the rubidium [128], cesium [129], and
thallium [130] atoms. They have also been performed using
mercury [131,132], xenon, and helium [133], and the meta-
stable 3P2 excited state of xenon [134], as well aswith several
molecules; see, e.g., Refs. [135–138]. Most recently, EDM
measurements in molecules with P- and T-odd nuclear
magnetic quadrupolemoments have also been proposed [77].
For static effects, only measurements of static PNC

amplitudes from conventional PNC experiments are needed
to place limits on the cosmic-field parameters. Data from
such experiments already exist for some systems. For the
dynamic effects, however, a completely different style of
experiment, in which one would measure small oscillations
in the PNC amplitude or atomic EDM, is needed. The
frequency and amplitude of these oscillations would enable
one to extract values (or at least limits) on the relevant field
parameters [30,33,60]. For example, if we consider an
axion field, a determination of the frequency of oscillations
would lead directly to a value for the mass of the particle.
Combined with this information, the amplitude of these
oscillatory effects would lead to a determination of the
constants η, ζ, or b0. Such searches would be comple-
mentary to a recent proposal to use axion-induced
P-conserving M1 transitions [139].
The frequencies of the dynamic effects induced by

pseudoscalar and pseudovector fields are determined

TABLE III. Comparison of calculated and observed PNC amplitudes in Cs, Tl, and Yb, and the relevant weak
matrix element in Dy, and extraction of limits on the electron-cosmic field interaction parameter, be0.

EQW
PNC ði10−11 a:u:Þ

Transition Experiment Theory jbe0j limit (GeV)

Cs 6s–7s 0.8353(29) [41] 0.8428(38) [50] 2 × 10−14

Tl 6p1=2–6p3=2 24.8(2) [76] 25.6(7) [107] 2 × 10−12

Yb 1S0–3D1 87(14) [108] 110(14) [91] 2 × 10−12

hAjĥQW
jBi ði10−16 a:u:Þa

Experiment Theory jbe0j limit (GeV)

Dy 3.5(4.5) [97] 6(6) [98] 7 × 10−15

a
3.5×10−16 a:u: ¼ 2.3 Hz; 6×10−16 a:u: ¼ 4 Hz.

TABLE IV. Theoretical and observed values for the nuclear AM constant ϰa for Cs and Tl and the extracted limits
on the proton—and neutron-cosmic field interaction parameters, bp;n0 and dp;n00 .

ϰa b0 limits (GeV) d00 limits

Observed Theory jbp0 j jbn0 j jdp00j jdn00j
133Cs −0.364ð62Þ [41,109] 0.15–0.23 [110,111] 4 × 10−8 2 × 10−7 5 × 10−8 2 × 10−7
203;205Tl −0.22ð30Þ [76,112] 0.10–0.24 [111] 8 × 10−8 9 × 10−8
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(primarily) by the masses of the particles associated with
these fields. These masses cannot be predicted in an ab
initio manner from existing theory, and, as such, we treat
them as independent variables in the present work. In the
case of axions, the “classical” region (10−6 − 10−4 eV) and
the “anthropic” region (10−10 − 10−8 eV) are regarded as
two of the more likely windows in which the axion mass
may lie; see, e.g., Ref. [9]. Axions lying in the classical or
anthropic regions would lead to oscillations with frequen-
cies on the order of GHz and MHz, respectively. For the
case of axions, the coherence time, τc ∼ 2π=mav2, may be
estimated from Δωa=ωa ∼ ð1

2
mav2=maÞ ∼ v2, where a

virial velocity of v ∼ 10−3 would be typical in our local
Galactic neighborhood, and ωa ≈ma [30,33].
In the case of an axion field, with the assumption that

axions saturate the CDM density of the Galaxy, the
coefficients in (1) can be recognized as η ¼ ζ ¼
a0=fa ∼ 4 × 10−18; see, e.g., Ref. [32]. For the PS fields
presented in Eq. (1), this leads to oscillating atomic EDMs
with magnitudes on the order of 10−38e · cm.
It is also possible to gain a further enhancement in

the sensitivity of the EDM measurements; see, e.g.,
Refs. [30,32,33,60], where oscillating EDM experiments
have been recently considered. This can be achieved by
tuning the experiment to a specific frequency in order
to bring about a resonance, with ðEa − EnÞ2 ≃ ω2

ϕ; see
Eq. (25). Similar techniques have already been shown to
work using the practically degenerate A and B states in
dysprosium [97] and could potentially be implemented in
systems such as barium, radium, thorium, and singly
ionized actinium, which also possess pairs of very close
levels of opposite parity [92].

V. CONCLUSION

We have performed relativistic calculations of parity
nonconservation amplitudes and atomic electric dipole
moments induced by the interaction of pseudoscalar and
pseudovector cosmic fields with atomic electrons for H, Li,
Na, K, Cu, Rb, Ag, Cs, Ba, Baþ, Dy, Yb, Au, Tl, Fr, and
Raþ. We have shown that a static pseudoscalar cosmic field
cannot give rise to observable P-odd effects in atoms in the
lowest order, but in contrast, a static pseudovector cosmic
field can. Candidates for such cosmic fields include dark
matter (such as axions) and dark energy, as well as a number
of more exotic sources, e.g., those described by Lorentz
invariance-violating standard-model extensions [25].
For the case of a static pseudovector field, these

calculations can be combined with existing parity non-
conservation measurements to extract 1σ limits on the
strength of the electron-cosmic field coupling. From
existing data and calculations, we find that dysprosium
gives the most stringent limit for the interaction strength
between the temporal component of the pseudovector field

and the atomic electrons: jbe0j < 7 × 10−15 GeV in the
laboratory frame of reference. Also, using the existing
measurement of the nuclear anapole moment of cesium and
the limit on the value of the thallium nuclear anapole
moment, in conjunction with their respective theoretically
predicted values, we extract limits on the strength of the
proton-cosmic field couplings bp0 and dp00. By taking into
account nuclear many-body effects [2], we also extract 1σ
limits on the strength of the neutron-cosmic field couplings.
We find that the more stringent limits of jbp0 j <
4 × 10−8 GeV and jdp00j < 5 × 10−8 for protons and jbn0j <
2 × 10−7 GeV and jdn00j < 2 × 10−7 for neutrons come
from the anapole moment results for cesium. These limits
on the temporal components b0, which are derived from
P-odd fermion effects, are complementary to the existing
limits on the interaction of the spatial components b of a
static PV field with electrons, protons, and neutrons, which
are derived from the P-even fermion effects; see,
e.g., Ref. [27].
Finally, we mention that cosmic-field searches need not

be restricted only to atomic systems. Searches for cosmic
field-induced electric dipole moments can also be per-
formed in solid-state systems. Static electron electric dipole
moment experiments in ferroelectrics are discussed in
Refs. [140,141], for instance, and solid-state systems have
already been proposed for use in the detection of axion dark
matter (see, e.g., Refs. [33,142]). We also mention that
transient electric dipole moments may also be induced by
cosmic fields in the form of topological defects [143].
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