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We investigate the possibility of a composite Z’ vector boson. For the compositeness, the required gauge
coupling g in low energy is not so big, ¢>/(4z) 2 0.015 in the case of the U(1)z_, model. We show that the
Stiickelberg model is effectively induced in low energy via the fermion loop from the Nambu-Jona-Lasinio
model having the vectorial four-fermion interaction. In terms of the renormalization group equations, this
situation is expressed by the compositeness conditions. We find that the solutions of the renormalization
group equations with the compositeness conditions are determined by the infrared fixed points. As a result,
the ratio of the masses of the extra electroweak singlet scalar and the right-handed neutrino is fixed.
The mass of the composite Z' boson contains the contribution A of the Stiickelberg mass term.
This nonzero A might be a remnant of a strongly interacting theory in high energy.
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I. INTRODUCTION

Recently, the Higgs boson has been discovered at the
LHC [1]. The Higgs mass is revealed around 125 GeV, and
the nature seems to be consistent with the standard model
(SM) [2]. This suggests that the magnitude of the Higgs
quartic coupling Ay is Ay ~ 0.1. It then turns out that the
perturbation works up to a very high energy scale, although
Ay becomes negative at some scale [3]. Recall that the color
and weak gauge interactions are asymptotic free within the
SM. The SM top-Yukawa coupling y, is also a decreasing
function with respect to the energy scale . The hypercharge
gauge coupling gy is increasing, but it stays perturbative up
to the Planck scale Ap,;. Therefore it seems that there is no
room for strongly interacting theories in high energy.

On the other hand, the gravity is apparently strong around
the Planck scale. If the complicated Yukawa structure of the
SM is dynamically generated as in low energy QCD, we may
expect some strong dynamics in a high energy scale [4,5].
Is there a remnant of such a strong interaction?

Nonzero neutrino mass is one of the evidences of physics
beyond the SM. Considering the quark-lepton correspon-
dence [6-9], the existence of the right-handed neutrinos
is highly possible. The seesaw mechanism might help to
generate tiny neutrino masses [10]. Since the Majorana
mass term explicitly breaks the lepton number, we may
introduce an extra complex scalar field and a Majorana
Yukawa coupling between the scalar and the right-handed
neutrino. A simple extension of the SM including the above
is the B — L model [11,12]. The right-handed neutrino is
now inevitably required in order to cancel the anomaly of
the U(1),_, gauge current.

In this paper, we explore the possibility of a composite
7. Note that we do not need such a strong U(1) gauge
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coupling, if the strong coupling region is around the Planck
scale or that of grand unified theories.

The Landau pole A of the U(1) gauge interaction is
expressed as A = M exp(87°/ag*), where g and a denote
the U(1) gauge coupling and the coefficient of the
renormalization group equation (RGE) for g, respectively.
The typical mass scale of the U(1) gauge boson is M. In the
case of U(1)y, the Landau pole is well above the Planck
scale, A ~ 10*? GeV by taking M ~ 100 GeV, a = 41/6,
and g3 /(4x) = 0.01. This is the reason the U(1), gauge
interaction stays perturbative. However, to obtain A < Ap,,
we just need ¢*>/(4r) = 0.015 for the U(1)z_; model,
where a = 12 [13]. This lower bound is about half of the
weak coupling square, ¢3/(4x) = 0.03. Of course, bigger
U(1)g_; gauge coupling implies an exponentially smaller
scale of the Landau pole. In any case, if ¢*>/(4z) = 0.015
for the U(1)z_, model is established in experiments, this
suggests the existence of the strong interaction in high
energy. If so, we may expect that the Z’' boson associated
with the U(1),_; model is composite. (For the earlier
approach, see, e.g., Ref. [14].)

First, we show that the strong gauge coupling limit of
the Stiickelberg model [15,16] corresponds to the Nambu-
Jona-Lasinio (NJL) model with the vectorial four-fermion
interaction. Next, we argue that the Stiickelberg model is
effectively induced in low energy via the bubble diagram.
For the conceptual diagrams, see Figs. 1 and 2. The
compositeness at the scale A can be described by the
compositeness conditions,

where y and A are the Majorana Yukawa interaction and
the quartic coupling of the extra complex scalar field,
respectively, as in the Bardeen, Hill, and Lindner (BHL)
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FIG. 1. Conceptual diagram of the induced propagator for y
by the scalar four-fermion interaction represented by the black
dots.

FIG. 2. Conceptual diagram of the induced propagator for A,
by the vector four-fermion interaction represented by the black
dots.

approach [17] of the top condensate model [18-20]. (See
also the earlier attempt [21].) The behavior of y?/¢? is
controlled by the Pendleton-Ross—type infrared fixed point
(PR-IRFP) [22]. Also, we find that A/ ¢” is determined by an
infrared fixed point. In our approach, the ratio of the masses
of the extra scalar y and the right-handed neutrino vy is
fixed to M,/M,, ~1.2. In sharp contrast to the conven-
tional U(1);_, model, the Z’' mass has the contribution of
the Stiickelberg mass term, so that A = M2, /¢* — 4v2 > 0,
where (y) = v,/V/2. This nonzero A might be the remnant
of the strong dynamics in high energy.

Although we study only a fine-tuning scenario with a
light composite Z’ in this paper, it might be more natural
that the masses of Z’, y, and vy are around the compos-
iteness scale A. In the latter case, we will use the seesaw
mechanism [10]. We here mention that the Higgs potential
can be stabilized owing to the tree level threshold correc-
tions for the Higgs quartic coupling, which is generated
by the Z' loop effect [23]. We will investigate such a
possibility elsewhere.

II. STUCKELBERG FORMALISM AND
COMPOSITE VECTOR FIELD

A. Strong coupling limit of the Stiickelberg model

Let us first revisit the Stiickelberg formalism for the
massive photon [11,16]. Introducing the Stiickelberg scalar
field B, the Lagrangian density of a massive vector field A,
is

L=L,+L,+ Ly (2)
with
L, = widy + gpAy, (3)
L= —F, v tpp (Aﬂ - L0u3>2’ (4)
4 2 af

and
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['gf = _5(8ﬂAM+ng)25 (5)

where y/ is a four-component fermion, F,, denotes the field
strength,

F,=0A,-0A, (6)

and we represented the mass of the vector field A, by a
gauge coupling constant g times a parameter f having
mass-dimension one. Although y may have a Dirac mass, it
is irrelevant in the following discussions. The parts of £,
and £, are invariant under the (infinitesimal) local U(1)
transformation,

6B = gfw(x), (7)

Sy = igoy, Sy = —igoy. (8)
Unlike the Proca field, this system is power-counting
renormalizable. We also note that we can rewrite the gauge
fixing term by using the Becchi-Rouet-Stora-Tyutin
(BRST) construction.

We may normalize A, and B as gA, — A, and gB — B,
and then we read the gauge sector,

e (o) o
also the gauge fixing term becomes
Lyt — _Zng (0,A* + gfB)*. (10)
Formally, taking the limit of g — oo, we obtain
Ezl/‘/ié?l//+l/7Al//+%f2Aﬁ—%szz, (11)

where we dropped the total derivative term. The Stiickelberg
fields A, and B are now the auxiliary ones, and thus, by
performing the Gauss integral, we find

L — idy — Gy (r'y)?, (12)

with Gy, = 1/(2f?) and A* ~ yy*y. That is, the NJL model
with the vectorial four-fermion interaction is equivalent to
the strong coupling limit of the Stiickelberg model.

B. Stiickelberg model as a low energy effective
theory and compositeness conditions

We now start from a model with a Majorana-type scalar
four-fermion coupling and a vector one,

"The Stiickelberg scalar field B has a positive metric, in sharp
contrast to the Nakanishi-Lautrup field, which is introduced in a
general BRST invariant construction of the gauge fixing term.
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L = nidn + Gs(n°n)(m°) — Gy (mr'n)*,  (13)

where 7 is a two-component fermion, for example, a
right-handed neutrino, and #n° is the charge conjugation.
This system classically has a global U(1) symmetry,

n— ey, in— e q. (14)
By introducing auxiliary fields, ¢ ~in¢, ¢'~n°y, and
A, ~ify*n, we can rewrite the model as follows:

L = qidn —nng —in“¢" = My op'¢  (15)
i 1
+rnA, + 5 f3AL (16)

with M3, = 1/Gg and f§ = 1/(2Gy).

In low energy, the composite scalar and vector fields
acquire the kinetic terms via the bubble diagrams,2 similar
to the top condensate model a la BHL [17]. See also Figs. 1
and 2. The calculation for the vector-vector correlator is
rather tricky, however. As is well known, a sharp cutoff
regularization, which is usually used in the calculation of
the two point function of the scalar sector, is not appro-
priate. Instead, we employ the proper time regularization.
The vacuum polarization diagram then yields

1
247%

" (p) = - (p*g™ — pp¥)log A2, (17)

where we introduced the cutoff 1/A? in the infrared part of
the proper time integral. Thus the induced effective theory
in a low energy scale yu is

Lot = 7iDy + Zy|D > = M p = 2 (' )?
— V4 1
—nng —im‘p’ —TAF,WF”” +5 AL (18)
where D,n = 0,n—iAn, D, = 0,¢ + 2iA,¢, and the
scalar quartic coupling 44 is induced by the bubble

diagram. The wave function renormalization constants are

1 1
log A2/p2, 7, =
T672 108 /K AT 242

Zy= log A2/u?. (19)

Let us introduce

—_—

, (20)

<
1

1
7 !
Z; ZZ;&
2Although we here introduced only a two-component fermion
just for a pedagogical explanation, in a realistic Z' model
discussed later, there are many fermions: Three vg’s contribute
to both Figs. 1 and 2, and also the SM fermions contribute to
Fig. 2, because they have the B — L charges. Thus the 1/N
approximation is applicable.
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and rescale A, and ¢ as A, — gA, and ¢ — y¢, respec-
tively. The effective theory thereby has the canonical
kinetic terms,

L = 7iDn + |D, > = Mip*dp — 2y (d7 )

_ . 1 1
— yn‘ng — yim‘ et — 7 FuwF" + EngQAﬁ- (21)

We further carry out field-dependent rotations for the
fermion and scalar variables,

_B(x) B(x)

Q= el r 1,

and

.B(x) N B(x)
y=eTg =T (23)

also redefine the gauge field A p=A,+ é 0,B. Because we
introduced a redundant field B(x), we should add a delta

function 6(&g — 1) with &z = "7 in the path integral.
Although the fermion path integral measure yields an
anomaly from these rotations, this is because we considered
a simple model just for a schematic explanation. In the next
section, we study an anomaly-free theory. Any vectorial
four-fermion couplings consistent with the symmetry
would be possible at the compositeness scale A, but, only
the anomaly-free combinations among the composite gauge
interactions should be left in low energy.
In any case, the theory is then

Lo = p(id + gA)gp + (9, + 2igA,)7I* = My'y
— A x)? = yotox — ypox

1 1 ~ 1 2
— 7Pl +58F <Aﬂ T a,,B> , (24)
which is essentially equivalent to the Stiickelberg model
with the complex scalar field. The gauge fixing term comes
from the delta function §(éz — 1) added in the partition
function. In the NJL picture, we cannot avoid quadratically
fine-tuning in order to obtain wanted values of the mass
terms for the composite scalar and vector fields in (24)
from (13).

In summary, we introduced the redundant field B(x),
which corresponds to the Stiickelberg scalar field, and
thereby the global U(1) symmetry is upgraded to the local
one,

g oy (25)

7= e—2igw(x)}(’ XT _)eZigw(x)){T’ (26)

Aﬂ - Aﬂ + 0,0, B — B+ gfw(x). (27)
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In the hidden local symmetry approach for the chiral
symmetry breaking, the polar decomposition of the com-
plex scalar field is used [24,25]. The hidden symmetry is
essentially connected with the ambiguity of the polar
decomposition. If we apply the same manner in the above
model, the U(1) symmetry is explicitly broken down owing
to the Majorana-type interaction. In our approach, when the
y field develops a nonzero vacuum expectation value
(VEV) in some low energy scale, the local U(1) symmetry
is spontaneously broken down. In this case, the gauge field
acquires the mass from both the nonzero VEV of y and the
Stiickelberg mass term built in the model from the very
beginning.

Furthermore, it turns out that the Stiickelberg model as a
low energy effective theory corresponds to the composite
model in a high energy scale A, when we impose the
compositeness conditions,

=0. (28)

In the next section, we apply this formulation to a
realistic Z' model.
III. COMPOSITE Z' MODEL
Let us study the U(l)gz_; extension of the SM.
The Lagrangian density is

L=Lsm+ L, +L,+ Ly + Ly, (29)

where Lgyy represents the SM part, and

> vhivig, 30

=123

L, =

L, =D = My = 2,0 2 = Ay | HP [y P

— Yk vy — Y prvin’ (31)

1 1 1 2
Ly ==7FuP" +54f (A,, - ﬁa,,3> . (32)
The fields H and L, denote the SM Higgs doublet and

the gauge fixing term, respectively. The U(1) part of the
covariant derivative is

Dy = a;t - iQY(gYYﬂ + gA}l) - ngB—LAw (33)

where Qy and Qp_; denote the hypercharge and the B — L
charge, respectively. The gauge couplings of U(1), and
U(1)g_, are gy and g, respectively. In general, the gauge
mixing coupling § appears. It is natural to set g(A) =0,
because of no gauge kinetic mixing term at the compos-
iteness scale A. As for the scalar quartic mixing 4y, the
operator |H|*|y|*> has a higher dimension than six at the
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compositeness scale A. Thus we may safely neglect it,
ie, 4,u(A)=0.

Unlike the conventional Z’ model, the Stiickelberg mass
term is incorporated in this composite model as in Eq. (32).
This is essential in our formalism of the composite
vector field.

The full set of the RGEs for the U(1),_, model is shown
in Refs. [13,26,27]. Essentially, the RGEs for the gauge and
Yukawa couplings are

0 a
ﬂgzﬂa—Mg:@f, (34)
0 y
Py E'Lt&_,uy = Fﬂz[byz el (35)

where we took Y, = diag(y, y,y). The coefficients of the
RGEs are a = 12, b = 10, and ¢ = 6. We may take the
number of the right-handed neutrinos having relevant
Majorana yukawa couplings to N, in general, and then
the coefficient b is b =4+42N,. For details, see
Refs. [27,28]. We fix N, =3 hereafter. Imposing the
compositeness conditions, 1/¢?(A) = 1/y*(A) =0, we
analytically find the solutions,

1 a A 1 b

:—h‘]—’ g
G (u) 8z p V() a+cgi(u)

. (36)

where A is the compositeness scale. This solution corre-
sponds to the PR-IRFP [22].3 Actually, we can easily
rewrite the RGEs as follows:

and hence the solution (36) is the PR-IRFP. Owing to this
nature of the PR-IRFP, if we relax the compositeness
conditions to 1/¢g*(A),1/y*(A) < 1 (nonvanishing), the
RG flows are not changed so much. The RGE for 4, is a bit
complicated,

0 1
Biy = Higahe = T PO + 4y (247° ~ 487)
— 48y* + 964], (38)

where we ignored the numerically irrelevant AjH term.
Imposing the compositeness condition for 1,, 4,(A)/
y*(A) =0, and positivity of 4, in any scale, we obtain
the analytical solution,

3Stn'ctly speaking, the asymptotic free theory, i.e., a <0, is
used in Ref. [22]. Thus the situation 1/¢g?(A) — 0 occurs in low
energy unlike in the asymptotic nonfree theory.
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A1) = 5 (9 + V5H6)2(3). (39)

This is a new infrared fixed point (IRFP) solution.
Substituting the solutions (36) for g and y, we find

g (i 2 A
N ARy LY
1m0k (92> 209 (92 k+> (92 k_>’ (40)

where k, =2Z(9+/546) =2.589 and k_=2%(9—/546)~
—1.149. Thus the analytical solution (39) corresponds to
the IRFP in fact.

We depict the RG flows in Fig. 3, by using the full set of
the RGEs. We took m, = 173.5 GeV, m;, = 126.8 GeV,
and A = 1/+/87G = 2.435 x 10'® GeV. Also, it is reason-
able to put g(A) = 4,4(A) = 0, as we mentioned before.
Admittedly, the values are nonperturbative in the UV
region, as shown in Fig. 3, but we confirmed that the
flows in the IR region are almost unchanged, even if we
vary the compositeness conditions to ¢*(A),y*(A),
A, (A) ~ 3-10.

How about the nature of the IRFP? We show y/¢g and
\//17/ g in Fig. 4. These are slightly running, but almost
constants. Numerically, we find the infrared values as
v/g=1.27,1.28,1.31,1.32,1.33 and \/Z/g: 1.47,1.51,
1.55,1.57,1.59 for A =2.435x 10'8,10%,10'°, 108,
10% GeV, respectively. Analytical expressions suggest

v/9=3/V5=1342 and \/A,/g=1/2(9+V/546)/5=
1.609.

Taking the VEV of y as (v,) = x/\@’ the square of the
masses of vg, y, and Z' are

M?, =2y*v3, M3 = 22,03,
M2, =4gv2 + P f2. (41)

10" 10" 10" 10" 10"
u (GeV)

102 10° 107 10°

FIG. 3 (color online). The RG flows of g, y, and 1,. We took
A =1/4/872G = 2.435 x 10'® GeV, and imposed the compos-
iteness conditions, 1/¢*(A) =1/y*(A)=0 and 1(A)/y*(A)=0.
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10° 10" 10" 10" 10" 10'°
u (GeV)

102 10° 107

FIG. 4 (color online). The IRFP nature of ,/4,/g (upper solid
line) and y/g (lower solid line). We took A =1/v/82G =
2.435 x 10'® GeV. The upper and lower dashed lines correspond

to the approximate values 1/2(9 + v/546)/5=1.609 and

3/V/5 = 1.342, respectively.

The IRFP solutions yield the mass relation between v
and y,

M y

VR

M 1
My VA 1.2. (42)

In sharp contrast to the conventional approach for Z/,
we have the contribution of the Stiickelberg mass to M,

M2,
zg—§—4U§:f2>o. (43)

If the experiments such as LHC and ILC observe A > 0

and confirm ¢*/(4x) = 0.015, it implies the compositeness
of Z'.

IV. SUMMARY AND DISCUSSIONS

We studied the composite Z’ vector boson. We found that
the strong coupling limit of the Stiickelberg model corre-
sponds to the NJL model and that the Stiickelberg model is
effectively induced in low energy via the fermion loop from
the NJL model. This correspondence can be encoded in
terms of the RGEs with the compositeness conditions.
We showed that the RG flows are determined by the IRFP.
The nature of the IRFP yields the mass ratio, M,/

M, = \/A_X/y ~1.2. The Z' mass is composed of the
VEV of y and the Stiickelberg mass. Owing to this extra
mass term, the constraints of the Z' model from the
precision measurements, the bounds of the direct searches
at Tevatron, LHC, etc. [29-31], should be relaxed. If A =
MZ,/g* —4v% > 0 is established in experiments [32], this
might be evidence of the strong dynamics in high energy.
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We here considered a scenario that the composite Z’
boson survives in low energy. From the viewpoint of the
naturalness, however, the masses of Z’, y, and vy might
not be so far below the compositeness scale A. In this
case, the seesaw mechanism may work. We also note
that the Higgs potential can be stabilized by the tree
level shift of the Higgs quartic coupling essentially

PHYSICAL REVIEW D 90, 096004 (2014)

generated by the Z’ loop contribution [23]. Our approach
is unlikely to be applicable to the Stiickelberg extension
of the SM [33], because the weak and hypercharge
gauge couplings are perturbative up to the Planck scale.
However, the dark matter might be connected with the
composite Z' [34]. We will study several such scenarios
elsewhere.
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