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We investigate the possibility of a composite Z0 vector boson. For the compositeness, the required gauge
coupling g in low energy is not so big, g2=ð4πÞ≳ 0.015 in the case of theUð1ÞB−L model. We show that the
Stückelberg model is effectively induced in low energy via the fermion loop from the Nambu-Jona-Lasinio
model having the vectorial four-fermion interaction. In terms of the renormalization group equations, this
situation is expressed by the compositeness conditions. We find that the solutions of the renormalization
group equations with the compositeness conditions are determined by the infrared fixed points. As a result,
the ratio of the masses of the extra electroweak singlet scalar and the right-handed neutrino is fixed.
The mass of the composite Z0 boson contains the contribution Δ of the Stückelberg mass term.
This nonzero Δ might be a remnant of a strongly interacting theory in high energy.
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I. INTRODUCTION

Recently, the Higgs boson has been discovered at the
LHC [1]. The Higgs mass is revealed around 125 GeV, and
the nature seems to be consistent with the standard model
(SM) [2]. This suggests that the magnitude of the Higgs
quartic coupling λH is λH ∼ 0.1. It then turns out that the
perturbation works up to a very high energy scale, although
λH becomes negative at some scale [3]. Recall that the color
and weak gauge interactions are asymptotic free within the
SM. The SM top-Yukawa coupling yt is also a decreasing
function with respect to the energy scale μ. The hypercharge
gauge coupling gY is increasing, but it stays perturbative up
to the Planck scale ΛPl. Therefore it seems that there is no
room for strongly interacting theories in high energy.
On the other hand, the gravity is apparently strong around

the Planck scale. If the complicated Yukawa structure of the
SM is dynamically generated as in low energy QCD, wemay
expect some strong dynamics in a high energy scale [4,5].
Is there a remnant of such a strong interaction?
Nonzero neutrino mass is one of the evidences of physics

beyond the SM. Considering the quark-lepton correspon-
dence [6–9], the existence of the right-handed neutrinos
is highly possible. The seesaw mechanism might help to
generate tiny neutrino masses [10]. Since the Majorana
mass term explicitly breaks the lepton number, we may
introduce an extra complex scalar field and a Majorana
Yukawa coupling between the scalar and the right-handed
neutrino. A simple extension of the SM including the above
is the B − L model [11,12]. The right-handed neutrino is
now inevitably required in order to cancel the anomaly of
the Uð1ÞB−L gauge current.
In this paper, we explore the possibility of a composite

Z0. Note that we do not need such a strong Uð1Þ gauge

coupling, if the strong coupling region is around the Planck
scale or that of grand unified theories.
The Landau pole Λ of the Uð1Þ gauge interaction is

expressed as Λ ¼ M expð8π2=ag2Þ, where g and a denote
the Uð1Þ gauge coupling and the coefficient of the
renormalization group equation (RGE) for g, respectively.
The typical mass scale of theUð1Þ gauge boson isM. In the
case of Uð1ÞY , the Landau pole is well above the Planck
scale, Λ ∼ 1042 GeV by taking M ∼ 100 GeV, a ¼ 41=6,
and g2Y=ð4πÞ≃ 0.01. This is the reason the Uð1ÞY gauge
interaction stays perturbative. However, to obtain Λ≲ ΛPl,
we just need g2=ð4πÞ ≳ 0.015 for the Uð1ÞB−L model,
where a ¼ 12 [13]. This lower bound is about half of the
weak coupling square, g22=ð4πÞ≃ 0.03. Of course, bigger
Uð1ÞB−L gauge coupling implies an exponentially smaller
scale of the Landau pole. In any case, if g2=ð4πÞ ≳ 0.015
for the Uð1ÞB−L model is established in experiments, this
suggests the existence of the strong interaction in high
energy. If so, we may expect that the Z0 boson associated
with the Uð1ÞB−L model is composite. (For the earlier
approach, see, e.g., Ref. [14].)
First, we show that the strong gauge coupling limit of

the Stückelberg model [15,16] corresponds to the Nambu-
Jona-Lasinio (NJL) model with the vectorial four-fermion
interaction. Next, we argue that the Stückelberg model is
effectively induced in low energy via the bubble diagram.
For the conceptual diagrams, see Figs. 1 and 2. The
compositeness at the scale Λ can be described by the
compositeness conditions,

1

g2ðΛÞ ¼
1

y2ðΛÞ ¼ 0;
λðΛÞ
y4ðΛÞ ¼ 0; ð1Þ

where y and λ are the Majorana Yukawa interaction and
the quartic coupling of the extra complex scalar field,
respectively, as in the Bardeen, Hill, and Lindner (BHL)*michioh@isc.chubu.ac.jp
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approach [17] of the top condensate model [18–20]. (See
also the earlier attempt [21].) The behavior of y2=g2 is
controlled by the Pendleton-Ross–type infrared fixed point
(PR-IRFP) [22]. Also, we find that λ=g2 is determined by an
infrared fixed point. In our approach, the ratio of the masses
of the extra scalar χ and the right-handed neutrino νR is
fixed to Mχ=MνR ≈ 1.2. In sharp contrast to the conven-
tional Uð1ÞB−L model, the Z0 mass has the contribution of
the Stückelberg mass term, so that Δ≡M2

Z0=g2 − 4v2χ > 0,
where hχi ¼ vχ=

ffiffiffi
2

p
. This nonzero Δ might be the remnant

of the strong dynamics in high energy.
Although we study only a fine-tuning scenario with a

light composite Z0 in this paper, it might be more natural
that the masses of Z0, χ, and νR are around the compos-
iteness scale Λ. In the latter case, we will use the seesaw
mechanism [10]. We here mention that the Higgs potential
can be stabilized owing to the tree level threshold correc-
tions for the Higgs quartic coupling, which is generated
by the Z0 loop effect [23]. We will investigate such a
possibility elsewhere.

II. STÜCKELBERG FORMALISM AND
COMPOSITE VECTOR FIELD

A. Strong coupling limit of the Stückelberg model

Let us first revisit the Stückelberg formalism for the
massive photon [11,16]. Introducing the Stückelberg scalar
field B, the Lagrangian density of a massive vector field Aμ

is

L ¼ Lψ þ Lg þ Lgf ; ð2Þ

with

Lψ ¼ ψ̄ i∂ψ þ gψ̄Aψ ; ð3Þ

Lg ¼ −
1

4
FμνFμν þ 1

2
g2f2

�
Aμ −

1

gf
∂μB

�
2

; ð4Þ

and

Lgf ¼ −
1

2
ð∂μAμ þ gfBÞ2; ð5Þ

where ψ is a four-component fermion, Fμν denotes the field
strength,

Fμν ≡ ∂μAν − ∂νAμ; ð6Þ
and we represented the mass of the vector field Aμ by a
gauge coupling constant g times a parameter f having
mass-dimension one. Although ψ may have a Dirac mass, it
is irrelevant in the following discussions. The parts of Lψ

and Lg are invariant under the (infinitesimal) local Uð1Þ
transformation,

δAμ ¼ ∂μωðxÞ; δB ¼ gfωðxÞ; ð7Þ

δψ ¼ igωψ ; δψ̄ ¼ −igωψ̄ : ð8Þ

Unlike the Proca field, this system is power-counting
renormalizable. We also note that we can rewrite the gauge
fixing term by using the Becchi-Rouet-Stora-Tyutin
(BRST) construction.1

We may normalize Aμ and B as gAμ → Aμ and gB → B,
and then we read the gauge sector,

Lg → −
1

4g2
FμνFμν þ 1

2
f2
�
Aμ −

1

gf
∂μB

�
2

; ð9Þ

also the gauge fixing term becomes

Lgf → −
1

2g2
ð∂μAμ þ gfBÞ2: ð10Þ

Formally, taking the limit of g → ∞, we obtain

L ¼ ψ̄i∂ψ þ ψ̄Aψ þ 1

2
f2A2

μ −
1

2
f2B2; ð11Þ

where we dropped the total derivative term. The Stückelberg
fields Aμ and B are now the auxiliary ones, and thus, by
performing the Gauss integral, we find

L → ψ̄i∂ψ −GVðψ̄γμψÞ2; ð12Þ
with GV ¼ 1=ð2f2Þ and Aμ ∼ ψ̄γμψ . That is, the NJL model
with the vectorial four-fermion interaction is equivalent to
the strong coupling limit of the Stückelberg model.

B. Stückelberg model as a low energy effective
theory and compositeness conditions

We now start from a model with a Majorana-type scalar
four-fermion coupling and a vector one,

FIG. 1. Conceptual diagram of the induced propagator for χ
by the scalar four-fermion interaction represented by the black
dots.

FIG. 2. Conceptual diagram of the induced propagator for Aμ

by the vector four-fermion interaction represented by the black
dots.

1The Stückelberg scalar field B has a positive metric, in sharp
contrast to the Nakanishi-Lautrup field, which is introduced in a
general BRST invariant construction of the gauge fixing term.
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L ¼ η̄i∂ηþGSðηcηÞðη̄ηcÞ −GVðη̄γμηÞ2; ð13Þ
where η is a two-component fermion, for example, a
right-handed neutrino, and ηc is the charge conjugation.
This system classically has a global Uð1Þ symmetry,

η → eiθη; η̄ → e−iθη̄: ð14Þ

By introducing auxiliary fields, ϕ ∼ η̄ηc, ϕ† ∼ ηcη, and
Aμ ∼ η̄γμη, we can rewrite the model as follows:

L → η̄i∂η − ηcηϕ − η̄ηcϕ† −M2
ϕ;0ϕ

†ϕ ð15Þ

þ η̄γμηAμ þ
1

2
f20A

2
μ; ð16Þ

with M2
ϕ;0 ¼ 1=GS and f20 ¼ 1=ð2GVÞ.

In low energy, the composite scalar and vector fields
acquire the kinetic terms via the bubble diagrams,2 similar
to the top condensate model à la BHL [17]. See also Figs. 1
and 2. The calculation for the vector-vector correlator is
rather tricky, however. As is well known, a sharp cutoff
regularization, which is usually used in the calculation of
the two point function of the scalar sector, is not appro-
priate. Instead, we employ the proper time regularization.
The vacuum polarization diagram then yields

ΠμνðpÞ ¼ −
1

24π2
ðp2gμν − pμpνÞ logΛ2; ð17Þ

where we introduced the cutoff 1=Λ2 in the infrared part of
the proper time integral. Thus the induced effective theory
in a low energy scale μ is

Leff ¼ η̄iDηþ ZϕjDμϕj2 −M2
ϕϕ

†ϕ − λϕðϕ†ϕÞ2

− ηcηϕ − η̄ηcϕ† −
ZA

4
FμνFμν þ 1

2
f2A2

μ; ð18Þ

where Dμη ¼ ∂μη − iAμη, Dμϕ ¼ ∂μϕþ 2iAμϕ, and the
scalar quartic coupling λϕ is induced by the bubble
diagram. The wave function renormalization constants are

Zϕ ¼ 1

16π2
logΛ2=μ2; ZA ¼ 1

24π2
logΛ2=μ2: ð19Þ

Let us introduce

g≡ 1

Z
1
2

A

; y≡ 1

Z
1
2

ϕ

; ð20Þ

and rescale Aμ and ϕ as Aμ → gAμ and ϕ → yϕ, respec-
tively. The effective theory thereby has the canonical
kinetic terms,

Leff ¼ η̄iDηþ jDμϕj2 − ~M2
ϕϕ

†ϕ − ~λϕðϕ†ϕÞ2

− yηcηϕ − yη̄ηcϕ† −
1

4
FμνFμν þ 1

2
g2f2A2

μ: ð21Þ

We further carry out field-dependent rotations for the
fermion and scalar variables,

φ≡ ei
BðxÞ
gf η; φ̄≡ e−i

BðxÞ
gf η̄; ð22Þ

and

χ ≡ e−2i
BðxÞ
gf ϕ; χ† ≡ e2i

BðxÞ
gf ϕ†; ð23Þ

also redefine the gauge field ~Aμ ≡ Aμ þ 1
gf ∂μB. Because we

introduced a redundant field BðxÞ, we should add a delta

function δðξB − 1Þ with ξB ≡ ei
BðxÞ
gf in the path integral.

Although the fermion path integral measure yields an
anomaly from these rotations, this is because we considered
a simple model just for a schematic explanation. In the next
section, we study an anomaly-free theory. Any vectorial
four-fermion couplings consistent with the symmetry
would be possible at the compositeness scale Λ, but, only
the anomaly-free combinations among the composite gauge
interactions should be left in low energy.
In any case, the theory is then

Leff ¼ φ̄ði∂ þ g ~AÞφþ jð∂μ þ 2ig ~AμÞχj2 − ~M2
χχ

†χ

− λðχ†χÞ2 − yφcφχ − yφ̄φcχ†

−
1

4
FμνFμν þ 1

2
g2f2

�
~Aμ −

1

gf
∂μB

�
2

; ð24Þ

which is essentially equivalent to the Stückelberg model
with the complex scalar field. The gauge fixing term comes
from the delta function δðξB − 1Þ added in the partition
function. In the NJL picture, we cannot avoid quadratically
fine-tuning in order to obtain wanted values of the mass
terms for the composite scalar and vector fields in (24)
from (13).
In summary, we introduced the redundant field BðxÞ,

which corresponds to the Stückelberg scalar field, and
thereby the global Uð1Þ symmetry is upgraded to the local
one,

φ → eigωðxÞφ; φ̄ → e−igωðxÞφ̄; ð25Þ

χ → e−2igωðxÞχ; χ† → e2igωðxÞχ†; ð26Þ

~Aμ → ~Aμ þ ∂μω; B → Bþ gfωðxÞ: ð27Þ

2Although we here introduced only a two-component fermion
just for a pedagogical explanation, in a realistic Z0 model
discussed later, there are many fermions: Three νR’s contribute
to both Figs. 1 and 2, and also the SM fermions contribute to
Fig. 2, because they have the B − L charges. Thus the 1=N
approximation is applicable.
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In the hidden local symmetry approach for the chiral
symmetry breaking, the polar decomposition of the com-
plex scalar field is used [24,25]. The hidden symmetry is
essentially connected with the ambiguity of the polar
decomposition. If we apply the same manner in the above
model, theUð1Þ symmetry is explicitly broken down owing
to the Majorana-type interaction. In our approach, when the
χ field develops a nonzero vacuum expectation value
(VEV) in some low energy scale, the local Uð1Þ symmetry
is spontaneously broken down. In this case, the gauge field
acquires the mass from both the nonzero VEVof χ and the
Stückelberg mass term built in the model from the very
beginning.
Furthermore, it turns out that the Stückelberg model as a

low energy effective theory corresponds to the composite
model in a high energy scale Λ, when we impose the
compositeness conditions,

1

g2ðΛÞ ¼
1

y2ðΛÞ ¼ 0;
λðΛÞ
y4ðΛÞ ¼ 0: ð28Þ

In the next section, we apply this formulation to a
realistic Z0 model.

III. COMPOSITE Z0 MODEL

Let us study the Uð1ÞB−L extension of the SM.
The Lagrangian density is

L ¼ LSM þ Lν þ Lχ þ LZ0 þ Lgf ; ð29Þ

where LSM represents the SM part, and

Lν ¼
X

f¼1;2;3

νfR iDνfR; ð30Þ

Lχ ¼ jDμχj2 −M2
χχ

†χ − λχðχ†χÞ2 − λχHjHj2jχj2

− Yjkν
jc
R ν

k
Rχ − Yjkν

j
Rν

kc
R χ†; ð31Þ

LZ0 ¼ −
1

4
FμνFμν þ 1

2
g2f2

�
Aμ −

1

gf
∂μB

�
2

: ð32Þ

The fields H and Lgf denote the SM Higgs doublet and
the gauge fixing term, respectively. The Uð1Þ part of the
covariant derivative is

Dμ ¼ ∂μ − iQYðgYYμ þ ~gAμÞ − igQB−LAμ; ð33Þ

where QY and QB−L denote the hypercharge and the B − L
charge, respectively. The gauge couplings of Uð1ÞY and
Uð1ÞB−L are gY and g, respectively. In general, the gauge
mixing coupling ~g appears. It is natural to set ~gðΛÞ ¼ 0,
because of no gauge kinetic mixing term at the compos-
iteness scale Λ. As for the scalar quartic mixing λχH, the
operator jHj2jχj2 has a higher dimension than six at the

compositeness scale Λ. Thus we may safely neglect it,
i.e., λχHðΛÞ ¼ 0.
Unlike the conventional Z0 model, the Stückelberg mass

term is incorporated in this composite model as in Eq. (32).
This is essential in our formalism of the composite
vector field.
The full set of the RGEs for theUð1ÞB−L model is shown

in Refs. [13,26,27]. Essentially, the RGEs for the gauge and
Yukawa couplings are

βg ≡ μ
∂
∂μ g ¼

a
16π2

g3; ð34Þ

βy ≡ μ
∂
∂μ y ¼ y

16π2
½by2 − cg2�; ð35Þ

where we took Yjk ¼ diagðy; y; yÞ. The coefficients of the
RGEs are a ¼ 12, b ¼ 10, and c ¼ 6. We may take the
number of the right-handed neutrinos having relevant
Majorana yukawa couplings to Nν in general, and then
the coefficient b is b ¼ 4þ 2Nν. For details, see
Refs. [27,28]. We fix Nν ¼ 3 hereafter. Imposing the
compositeness conditions, 1=g2ðΛÞ ¼ 1=y2ðΛÞ ¼ 0, we
analytically find the solutions,

1

g2ðμÞ ¼
a
8π2

ln
Λ
μ
;

1

y2ðμÞ ¼
b

aþ c
1

g2ðμÞ ; ð36Þ

where Λ is the compositeness scale. This solution corre-
sponds to the PR-IRFP [22].3 Actually, we can easily
rewrite the RGEs as follows:

ð8π2Þμ ∂
∂μ

�
y2

g2

�
¼ bg2 ·

y2

g2

�
y2

g2
−
aþ c
b

�
; ð37Þ

and hence the solution (36) is the PR-IRFP. Owing to this
nature of the PR-IRFP, if we relax the compositeness
conditions to 1=g2ðΛÞ; 1=y2ðΛÞ ≪ 1 (nonvanishing), the
RG flows are not changed so much. The RGE for λχ is a bit
complicated,

βλχ ≡ μ
∂
∂μ λχ ¼

1

16π2
½20λ2χ þ λχð24y2 − 48g2Þ

− 48y4 þ 96g4�; ð38Þ

where we ignored the numerically irrelevant λ2χH term.
Imposing the compositeness condition for λχ, λχðΛÞ=
y4ðΛÞ ¼ 0, and positivity of λχ in any scale, we obtain
the analytical solution,

3Strictly speaking, the asymptotic free theory, i.e., a < 0, is
used in Ref. [22]. Thus the situation 1=g2ðΛÞ → 0 occurs in low
energy unlike in the asymptotic nonfree theory.
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λχðμÞ ¼
2

25
ð9þ

ffiffiffiffiffiffiffiffi
546

p
Þg2ðμÞ: ð39Þ

This is a new infrared fixed point (IRFP) solution.
Substituting the solutions (36) for g and y, we find

ð16π2Þμ ∂
∂μ

�
λχ
g2

�
¼ 20g2

�
λχ
g2

− kþ

��
λχ
g2

− k−

�
; ð40Þ

where kþ≡ 2
25
ð9þ ffiffiffiffiffiffiffiffi

546
p Þ≃2.589 and k−≡ 2

25
ð9− ffiffiffiffiffiffiffiffi

546
p Þ≃

−1.149. Thus the analytical solution (39) corresponds to
the IRFP in fact.
We depict the RG flows in Fig. 3, by using the full set of

the RGEs. We took mt ¼ 173.5 GeV, mh ¼ 126.8 GeV,
and Λ ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.435 × 1018 GeV. Also, it is reason-
able to put ~gðΛÞ ¼ λχHðΛÞ ¼ 0, as we mentioned before.
Admittedly, the values are nonperturbative in the UV
region, as shown in Fig. 3, but we confirmed that the
flows in the IR region are almost unchanged, even if we
vary the compositeness conditions to g2ðΛÞ; y2ðΛÞ;
λχðΛÞ ∼ 3–10.
How about the nature of the IRFP? We show y=g andffiffiffiffiffi
λχ

p
=g in Fig. 4. These are slightly running, but almost

constants. Numerically, we find the infrared values as
y=g ¼ 1.27; 1.28; 1.31; 1.32; 1.33 and

ffiffiffiffiffi
λχ

p
=g¼ 1.47;1.51;

1.55;1.57;1.59 for Λ ¼ 2.435 × 1018; 1015; 1010; 108;
106 GeV, respectively. Analytical expressions suggest

y=g¼ 3=
ffiffiffi
5

p ¼ 1.342 and
ffiffiffiffiffi
λχ

p
=g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9þ ffiffiffiffiffiffiffiffi

546
p Þ

q
=5¼

1.609.
Taking the VEVof χ as hvχi ¼ vχ=

ffiffiffi
2

p
, the square of the

masses of νR, χ, and Z0 are

M2
νR ≃ 2y2v2χ ; M2

χ ≃ 2λχv2χ ;

M2
Z0 ≃ 4g2v2χ þ g2f2: ð41Þ

The IRFP solutions yield the mass relation between νR
and χ,

Mχ

MνR

¼
ffiffiffiffiffi
λχ

p
y

≈ 1.2: ð42Þ

In sharp contrast to the conventional approach for Z0,
we have the contribution of the Stückelberg mass to MZ0 ,

Δ≡M2
Z0

g2
− 4v2χ ¼ f2 > 0: ð43Þ

If the experiments such as LHC and ILC observe Δ > 0

and confirm g2=ð4πÞ≳ 0.015, it implies the compositeness
of Z0.

IV. SUMMARY AND DISCUSSIONS

We studied the composite Z0 vector boson. We found that
the strong coupling limit of the Stückelberg model corre-
sponds to the NJL model and that the Stückelberg model is
effectively induced in low energy via the fermion loop from
the NJL model. This correspondence can be encoded in
terms of the RGEs with the compositeness conditions.
We showed that the RG flows are determined by the IRFP.
The nature of the IRFP yields the mass ratio, Mχ=
MνR ¼ ffiffiffiffiffi

λχ
p

=y ≈ 1.2. The Z0 mass is composed of the
VEV of χ and the Stückelberg mass. Owing to this extra
mass term, the constraints of the Z0 model from the
precision measurements, the bounds of the direct searches
at Tevatron, LHC, etc. [29–31], should be relaxed. If Δ≡
M2

Z0=g2 − 4v2χ > 0 is established in experiments [32], this
might be evidence of the strong dynamics in high energy.

0

1

2

3

4

5

103 105 107 109 1011 1013 1015 1017 1019

μ (GeV)

λχ

y

g

FIG. 3 (color online). The RG flows of g, y, and λχ . We took
Λ ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 2.435 × 1018 GeV, and imposed the compos-
iteness conditions, 1=g2ðΛÞ¼ 1=y2ðΛÞ¼ 0 and λðΛÞ=y4ðΛÞ¼ 0.

 0
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y/g

√λχ/g

FIG. 4 (color online). The IRFP nature of
ffiffiffiffiffi
λχ

p
=g (upper solid

line) and y=g (lower solid line). We took Λ ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p ¼
2.435 × 1018 GeV. The upper and lower dashed lines correspond

to the approximate values
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9þ ffiffiffiffiffiffiffiffi

546
p Þ

q
=5≃ 1.609 and

3=
ffiffiffi
5

p ≃ 1.342, respectively.
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We here considered a scenario that the composite Z0
boson survives in low energy. From the viewpoint of the
naturalness, however, the masses of Z0, χ, and νR might
not be so far below the compositeness scale Λ. In this
case, the seesaw mechanism may work. We also note
that the Higgs potential can be stabilized by the tree
level shift of the Higgs quartic coupling essentially

generated by the Z0 loop contribution [23]. Our approach
is unlikely to be applicable to the Stückelberg extension
of the SM [33], because the weak and hypercharge
gauge couplings are perturbative up to the Planck scale.
However, the dark matter might be connected with the
composite Z0 [34]. We will study several such scenarios
elsewhere.
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