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We determine the baryon octet and decuplet masses as well as their wave functions in a covariant
three-body Faddeev approach. We work in an approximation where irreducible three-body forces are
neglected. In the two-body interactions we take into account a well-explored rainbow-ladder kernel as well
as flavor dependent meson-exchange terms motivated from the underlying quark-gluon interaction.
Without flavor dependent forces we find agreement with the experimental spectrum on the 5–10 percent
level. Including the flavor dependent terms on an exploratory level delivers a Σ − Λ splitting with the
correct sign although the magnitude is still too small.
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I. INTRODUCTION

Most of the mass of ordinary matter in the observable
Universe is generated by the strong interaction. Therefore,
it is important to understand the mechanisms of mass
generation in QCD, the theory of strong interactions. Of
particular theoretical interest is the calculation of the
hadron spectrum from QCD and its comparison with the
experimentally measured masses. For this reason, great
effort is put forth to overcome the technical difficulties of
lattice QCD and provide reliable ab initio calculations of
hadron properties (see, e.g. [1–6] and references therein).
The combination of Dyson-Schwinger equations (DSE)

and Bethe-Salpeter equations (BSE) provides, ideally, an
alternative approach to first principle QCD. Complementary
to the lattice, it provides insight into the underlying mecha-
nism of mass generation in QCD and the details of the
interaction mechanisms at work in binding quarks and gluon
together into hadrons. In practice, of course, challenges arise.
Most prominently for most applications the infinite set of
DSE that define a theory must be truncated into something
manageable, which in turn induces the necessity of model-
ing. It is nevertheless remarkable that, even with the simplest
truncations, the framework is able to reproduce fairly well
many hadron observables (see, e.g. [7,8] for overviews).
Despite this fact, the deficiencies of these simple truncations
are apparent when the details of the interaction are probed,
such as in the calculation of baryon form factors [9–11] or in
meson and baryon excited states [12–16]. A major current
focus is therefore to improve the approximation of the quark-
gluon interaction in the DSE/BSE system [17–25].
The calculation of bound states, especially of baryons, in

the DSE/BSE formalism is also technically challenging. A
fully covariant three-body calculation of the nucleon [26],
delta and omega [27] masses has already been achieved.
However, for baryon octet and decuplet states with both

u=d- and s-quark content only a simplified two-body
framework using the quark-diquark approximation has
been considered so far [28]. In this work, we overcome
those technical difficulties and unify, for the first time, the
treatment of light and strange baryons in the three-body
approach. We explore the merits of the simplest truncation
of the quark-gluon interaction compatible with Poincaré
covariance and chiral symmetry, namely, the rainbow-
ladder truncation and provide first steps to include flavor
dependent interactions responsible for details such as the
Σ − Λ splitting in the spectrum. The methodology pre-
sented here sets the stage for future, more sophisticated,
schemes beyond the simple rainbow-ladder framework.
The paper is organized as follows. In Sec. II we briefly

summarize the covariant DSE/BSE formalism. A more
detailed description of the formalism is given in
Appendix A. In Sec. III we discuss the masses of the
baryon octet and decuplet in the rainbow-ladder truncation
and explore the possible effect of flavor dependent inter-
actions beyond rainbow-ladder. Potential future develop-
ments are discussed in the conclusions, Sec. IV.

II. REVIEW OF THE FORMALISM

In the Bethe-Salpeter framework, a baryon is described by
the three-body Bethe-Salpeter amplitude ΓABCDðp1; p2; p3Þ,
where we use fABCg as generic quark indices for spin,
flavor and color indices (e.g. A → fα; a; rg, respectively).
The amplitude depends on the three quark momenta p1;2;3,
which can be expressed in terms of two relative momenta
p and q and the total momentum P [see Eq. (A3) in
Appendix A]. It is decomposed in a tensor product of a spin-
momentum part to be determined and flavor and color parts
which are fixed,

ΓABCDðp; q; PÞ ¼
�X

ρ

Ψρ
αβγIðp; q; PÞ ⊗ Fρ

abcd

�
⊗

ϵrstffiffiffi
6

p :
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The color term ϵrst=
ffiffiffi
6

p
fixes the baryon to be a color

singlet and the flavor terms Fρ
abcd are the quark-model

SUð3Þ-symmetric representations (see Appendix B).
The index ρ denotes the representation of the SUð3Þ
group to which the baryon belongs (mixed-symmetric or
mixed-antisymmetric representation for the baryon octet
and only the symmetric representation for the baryon
decuplet).
The spin-momentum part of the Bethe-Salpeter ampli-

tude, Ψρ
αβγIðp; q; PÞ, is a tensor with three Dirac indices

α; β; γ associated to the valence quarks and a generic index
I whose nature depends on the spin of the resulting bound
state. They can in turn be expanded in a covariant basis
fτðp; q;PÞg,

Ψρ
αβγIðp; q; PÞ ¼ fρi ðp2; q2; z0; z1; z2ÞτiαβγIðp; q;PÞ; ð2Þ

where the scalar coefficients ffg depend on Lorentz scalars
p2, q2, z0 ¼ cpT ·cqT , z1 ¼ p̂ · P̂ and z2 ¼ q̂ · P̂ only. The
subscript T denotes transverse projection with respect to
the total momentum and vectors with hat are normalized.
A covariant basis can be obtained using symmetry require-
ments only; for positive-parity spin-1=2 baryons it contains
64 elements [29,30] whereas for spin-3=2 baryons it
contains 128 elements [27]. The task of solving the
bound-state equation is now greatly facilitated, as one only
needs to solve for the scalar functions f.
The amplitudes Ψ are, in general, solutions of a three-

body BSE (see Fig. 1), for which one needs to specify
the three-particle and two-particle irreducible kernels, Kð3Þ
and Kð2Þ, respectively. In the Faddeev approximation the
three-body irreducible interactions are neglected, and we
refer to the simplified BSE as the Faddeev equation. Central
elements of the Faddeev equation are the full quark
propagator S (omitting now Dirac indices),

S−1ðpÞ ¼ Aðp2Þðipþ Bðp2Þ=Aðp2ÞÞ; ð3Þ

with vector and scalar dressing functions Aðp2Þ and Bðp2Þ.
The ratio Mðp2Þ ¼ Bðp2Þ=Aðp2Þ is a renormalization
group invariant and describes the running of the quark
mass with momentum. The dressing functions are obtained
as solutions of the quark DSE,

S−1ðpÞ¼ S−10 ðpÞþZ1fg2CF

Z
q
γμDμνðp−qÞΓνðp;qÞSðqÞ;

ð4Þ
which also contains the full quark-gluon vertex Γν and the
full gluon propagator Dμν; S0 is the (renormalized) bare
propagator with inverse

S−10 ðpÞ ¼ Z2ðipþmÞ; ð5Þ
where m is the bare quark mass and Z1f and Z2 are
renormalization constants. The renormalized strong cou-

pling is denoted by g and
R
q ¼

R d4q
ð2πÞ4 abbreviates a four-

dimensional integral in momentum space supplemented
with a translationally invariant regularization scheme.
Under certain symmetry requirements, the practical

solution of the Faddeev equation can be greatly simplified
by relating the three two-body interaction diagrams in
Fig. 1. As shown in Appendix A, taking the flavor part of
the Faddeev amplitudes as representations of the SUð3Þ
group induces a specific transformation rule for the spin-
momentum part under interchange of its valence-quark
indices. In this case the Faddeev equation for the coef-
ficients f reduces to

fρi ðp2; q2; z0; z1; z2Þ
¼ CF ρρ0;λ

1 Hij
1 g

ρ00;λ
j ðp02; q02; z00; z

0
1; z

0
2Þ

þ CF ρρ0;λ
2 Hij

2 g
ρ00;λ
j ðp002; q002; z000; z

00
1; z

00
2Þ

þ CF ρρ0;λ
3 gρ

0;λ
i ðp2; q2; z0; z1; z2Þ; ð6Þ

with the color factor C, the flavor matrices F , the rotation
matrices H and other symbols defined in Appendix A.
Here, the index λ runs over all elements in a given flavor
state (e.g. λ ¼ 1; 2 for the mixed-symmetric flavor wave
function of the proton and λ ¼ 1; 3 for the mixed-
antisymmetric one; see Appendix B). The simplification
is that one needs to solve for one of the diagrams only,

gρ;λi ðp2; q2; z0; z1; z2Þ

¼
Z
k
Tr

�
τ̄iβαIγðp; q; PÞKαα0;ββ0 ðp; q; kÞδγγ00Sðλ1Þα0α00 ðk1Þ

× Sðλ2Þβ0β00 ðk2Þτjα00β00γ00Iðpð3Þ; qð3Þ; PÞ
�

× fρjðp2
ð3Þ; q

2
ð3Þ; z

ð3Þ
0 ; zð3Þ1 ; zð3Þ2 Þ; ð7Þ

FIG. 1 (color online). Diagrammatic representation of the three-body Bethe-Salpeter equation with amplitude Ψ. Full quark
propagators are denoted by straight lines with black dots. The interaction between the quarks are encoded in the three-body and
two-body kernels Kð3Þ and Kð2Þ.

HÈLIOS SANCHIS-ALEPUZ AND CHRISTIAN S. FISCHER PHYSICAL REVIEW D 90, 096001 (2014)

096001-2



where now the quark at the position l in each term of
the flavor wave function is denoted by the superindex λl.
The internal relative momenta pð3Þ, qð3Þ [and analogously

for zð3Þ0 , zð3Þ1 and zð3Þ2 ] are obtained from (A3) upon
substitution of the quark momenta by the internal counter-
parts k1 ¼ p1 − k and k2 ¼ p2 þ k. The conjugate of the
covariant basis τ̄ has been defined in [27,29] and it is
assumed that the basis fτg is orthonormal.
So far we have not specified the two-body kernel Kαα0;ββ0

and, in fact, the simplification (6), (7) applies for any kernel
provided that Kαα0;ββ0 ¼ Kββ0;αα0 . However, the kernel con-
tains all possible two-body irreducible interactions among
two quarks and for any practical implementation of Eq. (7)
one must truncate it. The two-body kernel is related to the
integration kernel in the quark DSE via the requirements
of chiral symmetry expressed by axial vector and vector
Ward-Takahashi identities [31–33], leading to massless
pions in the chiral limit from the pseudoscalar-meson
BSE. Using crossing symmetry, the quark-antiquark kernel
is then related to the quark-quark kernel that appears in the
Faddeev equation. With these restrictions, if the full gluon
propagator and full quark-gluon vertex in (4) are truncated
to their tree-level part, the corresponding two-body kernel
is a single-gluon exchange with a tree-level vector-vector
coupling to quarks. All nonperturbative effects from both
the gluon and the vertex are encoded in an effective
coupling αeff which has to be modeled. This is the rain-
bow-ladder truncation of the DSE/BSE system. In a series
of works [24,25], this truncation has been extended to
include effects from the four-quark Green’s function in the
quark-gluon interaction parametrized in terms of (off shell)
meson exchange. In the DSE and Bethe-Salpeter kernel,
theses effects can be represented by one-pion exchange
between the quarks while still maintaining the pseudo-
Goldstone nature of the pion; see [24] for details. In the
following we specify the rainbow-ladder gluon and pion
exchange parts of the resulting interaction and then discuss
our results.

A. Effective coupling of one-gluon exchange

For the effective interaction in the rainbow-ladder
truncation we use the Maris-Tandy model [34,35] which
has been employed frequently in hadron studies within
the rainbow-ladder BSE/DSE framework. Despite its sim-
plicity it performs very well when it comes to purely
phenomenological calculations of ground-state meson and
baryon properties in certain channels; see e.g. [13] of a
corresponding discussion. It combines the relevant parts in
the quark self-energy according to

Z1fCF
g2

4π
DμνðkÞΓνðp; qÞ ¼ Z2

2CFTk
μν
αeffðk2Þ

k2
γν; ð8Þ

such that the resulting kernel in the baryon Faddeev
equation is given by

KRL
αα0β0βðkÞ ¼ −4πCFZ2

2

αeffðk2Þ
k2

TμνðkÞγμαα0γνβ0β; ð9Þ

with gluon momentum k ¼ p − q, transverse projector Tk
μν

and the effective running coupling αeff given by

αeffðk2Þ ¼ πη7
�
k2

Λ2

�
2

e−η
2 k2

Λ2

þ 2πγmð1 − e−k
2=Λ2

t Þ
ln½e2 − 1þ ð1þ k2=Λ2

QCDÞ2�
: ð10Þ

This interaction reproduces the one-loop QCD behavior of
the quark propagator at large momenta and features a
Gaussian distribution of interaction strength in the inter-
mediate momentum region that provides for dynamical
chiral symmetry breaking. The scale Λt ¼ 1 GeV is intro-
duced for technical reasons and has no impact on the
results. Therefore, the interaction strength is characterized
by an energy scale Λ and a dimensionless parameter η that
controls the width of the interaction. For the anomalous
dimension we use γm ¼ 12=ð11NC − 2NfÞ ¼ 12=25, cor-
responding to Nf ¼ 4 flavors and Nc ¼ 3 colors. For the
QCD scale ΛQCD ¼ 0.234 GeV.
The scale Λ ¼ 0.72 GeV is adjusted to reproduce the

experimental pion decay constant from the truncated pion
BSE. This as well as several other pseudoscalar ground-
state observables turn out to be insensitive to the value of η
in the range of values of η between 1.6 and 2.0; see, e.g.
[9,36,37]). Moreover, the current-quark masses are fixed
to reproduce the physical pion (for the u/d quarks) and kaon
(for the s quark) masses. The corresponding values are
mu=dðμ2Þ ¼ 3.7 MeV andmsðμ2Þ ¼ 85 MeV. The renorm-
alization scale is chosen to be μ2 ¼ ð19 GeVÞ2.

B. Flavor dependent part of the interaction

In Refs. [24,25] the explicit construction, the chiral
properties and some consequences for meson and baryon
spectra of pion contributions to the quark-quark interaction
have been explored. Since all technical details of this
beyond rainbow-ladder framework have been discussed at
several places already, we refrain from repeating the details
here and merely state the resulting kernel for the exchange
of a pion between two quark lines,

Kpion
αα0ββ0 ðl1; l2; l3; l4;PÞ

¼ 1

2
½Γj

π�αα0
�
l1 þ l2

2
;P

�
½Z2τ

jγ5�ββ0DπðPÞ

þ 1

2
½Z2τ

jγ5�αα0 ½Γj
π�ββ0

�
l3 þ l4

2
;P

�
DπðPÞ: ð11Þ

Here l1..4 are the incoming and outgoing quark momenta,
Γj
πðp;PÞ is the pion Bethe-Salpeter amplitude, with p

being the relative momentum and P the total momentum,
and Dπ is the on shell pion propagator,
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DπðPÞ ¼
1

M2
π þ P2

: ð12Þ

Including the pion exchange kernel in the Faddeev equa-
tion, the resulting total kernel is then given by the sum of
the rainbow-ladder part and the pion exchange part,

Kαα0ββ0 ¼ KRL
αα0ββ0 þ Kpion

αα0ββ0 : ð13Þ

The same is true for he quark DSE; see Refs. [24,25] for
details.
We wish to emphasize some general points related to this

interaction. First, we stress that the pion in Eq. (11) is not
an elementary field. The pion propagator together with the
Bethe-Salpeter amplitudes,

Γj
πðp;PÞ ¼ τjγ5½Eπðp;PÞ − iPFπðp;PÞ

−ipGπðp;PÞ − ½P; p �Hπðp;PÞ�; ð14Þ

describe the propagation of a quark antiquark bound state
and its coupling to two quark lines. The Bethe-Salpeter
amplitudes are determined by the pion BSE with the
corresponding interaction kernel, i.e. one-gluon and pion
exchange. Thus the coupling strength of the pion to the
quark is not a separate model input, but in principle follows
from a self-consistent calculation. In practice, one may
resort to suitable approximations as detailed below. In
general, however, the combined interaction of one-gluon
plus pion exchange is derived and motivated from the
structure of the QCD Dyson-Schwinger equations [24] and
not some extra element added “on top of QCD.”

III. RESULTS

A. Spectrum for one-gluon exchange

We start our investigation using the one-gluon exchange
part of the rainbow-ladder kernel, Eq. (9), only. This part is
flavor blind, and as a consequence the bound state masses
are determined by their quark content only. That is,
although the symmetry properties of the flavor part of
the Faddeev amplitude are important to relate all three
diagrams in the Faddeev equation, this flavor part plays no
further role in the calculation of the spectrum in the present
truncation. As a consequence, in the baryon octet, theΛ and
Σ baryons are degenerate. Moreover, since we use the same
current-quark mass for the u=d quarks, all members in the
same isospin multiplet are degenerate.
Table I shows the calculated masses of the three

representatives of the baryon octet and compares them to
the experimental values. As an estimate of the model
uncertainty, we calculate for a fixed value of the parameter
Λ and for a range of values from η ¼ 1.6 to η ¼ 2.0 as
discussed above; we give the central value of this band
together with the range of results indicated in brackets.
The result for the nucleon is not new and was presented for

the first time in [26]. It is in excellent agreement with the
experimental value. To fully appreciate that, one must recall
that not only the truncation and model used are among the
simplest one can define, but also that the model parameters
were fit in the pseudoscalar meson sector. Still, the agree-
ment in the baryon sector is remarkable. For baryons with
one strange quark the mass obtained is lower than the
experimental value for both the Σ multiplet and the Λ
singlet. However, the error is reasonably small, namely
∼10% if compared with the Σ and ∼4% if compared with
the Λ. The same qualitative behavior appears for the Ξ
baryons (or uss state), where we find a ∼6% deviation as
compared to experiment.
In Table II we show the results of the corresponding

representatives in the baryon decuplet. The states with
equal quark content, namely the Δ and the Ω were already
given in [27].1 The agreement with experiment in these
cases is also remarkable. For the newly calculated spin-3=2
states, Σ� (uus) and Ξ� (uss), we observe the same
qualitative behavior as for their octet counterparts. The
resulting masses are below the experimental values, with an
error of only ∼4% in both cases.
Despite these relatively small differences between our

results and the experimental values a clear deficiency of
the rainbow-ladder truncation is manifest: there is no
mechanism to generate a mass splitting between the Λ
and Σ baryons. In order to improve this situation a flavor
dependent interaction is necessary for a more complete
description of the octet and decuplet baryons. In this respect
one can think of two different categories of flavor depen-
dent two-body kernels. The first one would have a quark-
mass dependence manifest already in the effective coupling
of the rainbow-ladder kernel reflecting the underlying mass
dependence of the quark line going through the quark-
gluon vertex. We test this heuristically in the next section
through a minimal modification of the effective interaction.
The second possibility would be a kernel with an explicit
nondiagonal flavor part which, in particular, would

TABLE I. Positive-parity baryon octet masses (in GeV) at the
physical point from the rainbow-ladder truncated Faddeev equa-
tion. We give the central value of the bands corresponding to a
variation of η between 1.6 ≤ η ≤ 2.0 with the half-width of the
bands added in brackets. We compare also with experimental
values [38].

1=2þ N Σ Λ Ξ

Faddeev 0.930 (3) 1.073 (1) 1.073 (1) 1.235 (5)
Experiment 0.938 1.189 1.116 1.315
Relative difference < 1% 10% 4% 6%

1The difference between the results presented here, especially
for the Δ and the Ω, and those shown in previous calculations is
due to an improvement in the numerics. In particular we have
managed to use more angular points in our numerical integration.
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distinguish between the Λ and Σ baryons. An exploratory
study in this direction is performed in Sec. III C.

B. Exploration of a quark-mass dependent interaction

In this section we investigate, in a very simplistic
manner, the possible effects of a mass dependence in the
model used as the effective interaction in a rainbow-ladder
truncation. In a recent calculation [39] the full quark-gluon
vertex has been solved using its DSE under certain
truncations. There it is observed that the dressing accom-
panying the tree-level component shows a significant
quark-mass dependence, becoming weaker as the quark
mass increases.
In order to mimic this behavior, we allow the strength

parameter Λ of the one-gluon exchange part of the
interaction, Eq. (10), to depend on the quark flavor. We
proceed as follows: for u=d quarks we use the same value
Λ ¼ 0.72 GeV as in the previous section; for the s quark
we weaken the interaction taking Λ ¼ 0.67 GeV instead in
line with the results of [39]. In order to reproduce correctly
the kaon mass we change the s-quark current mass to
msð19 GeVÞ ¼ 91.5 MeV. The resulting values for the
kaon mass and kaon decay constant are 496 and 106 MeV,
respectively. Also, with this choice of parameters, the mass
of a fictitious ss̄ pseudoscalar meson increases by about
∼30 MeV. In the present case we also allow the parameter
η to vary between 1.6 and 2.0 to estimate the model
dependence.
The resulting strange-baryon masses for both the octet

and decuplet are presented in Table III. Contrary to what
might be expected, the masses of all states remain virtually
unchanged as compared to the results presented in
Sec. III A above. The reason for this is a compensation
mechanism: since the same interaction model is used in
both the Faddeev equation and the quark DSE, a weaker
binding in the former is accompanied by less dynamical
quark generation from the latter. For the quark this can be
seen in Fig. 2 where we plot the mass function for both
the original and the modified effective interactions. The
decrease in quark mass together with the weaker binding in
the Faddeev kernel compensate each other.
Within a rainbow-ladder truncation, a quark-mass de-

pendent effective interaction is the only new feature that

one could incorporate in the framework. We have seen that,
for baryons, this doesn’t improve the comparison with
experiment. This is an indication that important corrections
must rather come from missing structures in our interaction
kernel. This is explored in the next section.

C. Exploration of a flavor nondiagonal interaction

In the rainbow-ladder truncation used so far, as well as
in any other truncation with a flavor independent kernel,
the flavor matrices F appearing in (6) and defined in (A11)
are the same for any state in the same SUð3Þ multiplet. In
particular, this means that the spin-1=2 Λ and Σ baryons,
with equal quark content but different symmetry properties
of their flavor amplitudes, will have the same mass and
other properties. If, instead, the interaction kernel features a
flavor dependence via the mixing of quark legs, the flavor
matrices will be different for different states. Such an
interaction kernel has been specified in Sec. II B. Note that
the pion couples to the quark lines according to its flavor
content encoded in the Pauli matrices τ. These generate
the flavor mixing. In particular, this kernel generates the
following flavor matrices for the lambda:

FIG. 2 (color online). Quark mass function as function of the
squared momentum.

TABLE II. Positive-parity baryon decuplet masses (in GeV) at
the physical point from the rainbow-ladder truncated Faddeev
equation. We give the central value of the bands corresponding to
a variation of η between 1.6 ≤ η ≤ 2.0 with the half-width of the
bands added in brackets. We compare also with experimental
values [38].

3=2þ Δ Σ� Ξ� Ω

Faddeev 1.21 (2) 1.33 (2) 1.47 (3) 1.65 (4)
Experiment 1.232 (1) 1.385 (2) 1.533 (2) 1.672
Relative difference 2% 4% 4% 1%

TABLE III. Positive-parity strange-baryon octet (left) and
decuplet (right) masses (in GeV) at the physical point from
the modified (quark-mass dependent) effective interaction. We
give the central value of the bands corresponding to a variation of
η between 1.6 ≤ η ≤ 2.0 with the half-width of the bands added
in brackets.

Σ=Λ Ξ

1.07 (1) 1.22 (1)

Σ� Ξ� Ω

1.32 (2) 1.47 (2) 1.64 (4)
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F 1 ¼
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2

0

−
ffiffi
3

p
2

0

!
; F 2 ¼

 
1
2

0ffiffi
3

p
2

0

!
;

F 3 ¼
�−1 0

0 0

�
; ð15Þ

and for the sigma

F 1 ¼
�
0 −1

2
ffiffi
3

p

0 −1
6

�
; F 2 ¼

�
0 1

2
ffiffi
3

p

0 −1
6

�
;

F 3 ¼
�
0 0

0 1
3

�
: ð16Þ

A self-consistent calculation, where the quark DSE, the
pion BSE and the Faddeev equation are all solved with
the inclusion of the kernel (11), was presented in [25] for
the case of the nucleon and Δ baryons. In the case of the
baryon octet and decuplet, a self-consistent calculation
would imply solving the DSE/BSE system with an exten-
sion of the kernel (11) in which the exchange of any
member of the pseudoscalar meson octet is allowed. This is
beyond the scope of the present work. However, we can
illustrate the effect of these types of interactions with the
pion exchange only, i.e. Eq. (11), in a minimal approxi-
mation where we replace the pion amplitude Γπ , by the
exact solution of its leading amplitude in the chiral limit
Γπðp;PÞ ¼ γ5Bðp2Þ=fπ . Here fπ is the pion decay con-
stant and Bðp2Þ the quark dressing function (3). Following
[25] we use a higher interaction parameter Λ ¼ 0.84, but
we maintain here the aforementioned quark masses. The
resulting Λ and Σ masses are shown in Table IV. Although
this simplified interaction generates an exceedingly small
splitting,2 it has the correct sign and therefore serves to
illustrate what kind of interaction kernels must be included
in order to reproduce correctly the baryon octet spectrum.
As such, this not a new result. Flavor dependent

interaction terms have been discussed in great detail in
the context of quark-model calculations; see e.g. [40–45]
and Refs. therein. The novelty of our approach lies in the
fact that our framework is entirely based on QCD. As
already discussed above, the flavor dependent interaction
terms are not introduced by adding additional fundamental
meson fields to the theory but appear self-consistently as a
result of dynamical chiral symmetry breaking and the
formation of colorless bound states that in turn may
contribute to QCD correlation functions. We believe this
is important conceptual progress as compared to previous
approaches.

IV. SUMMARY

We presented a fully covariant three-body calculation of
the octet and decuplet baryon spectrum in the rainbow-ladder
truncated DSE/BSE approach. We showed that a simple
rainbow-ladder–like interaction is sufficient to reproduce the
mass spectrum of the octet and the decuplet on a level better
than ten percent. However, when it comes to the fine details,
the deficiencies of this type of interaction become apparent.
In particular, it was necessary to include flavor nondiagonal
interaction terms to induce a splitting between the Λ and Σ
baryons of the octet and decuplet. These terms have been
motivated and derived from the underlying quark-gluon
interaction in previous work [24,25]. In principle, although
with much increased numerical effort, it is possible to include
these interaction terms in a much more complete manner.
This will be the subject of future work.
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APPENDIX A: FADDEEV EQUATION WITH
DIFFERENT FLAVORS

The method described in this appendix was first intro-
duced in [9] for the nucleon Faddeev equation and applied
in [27] for the delta and omega. Here, we review its main
aspects making explicit the possibility of having quarks
with different masses in the problem.
Being a representation of a three-quark Green’s function,

the three-body Bethe-Salpeter amplitude (1) must be
antisymmetric in the quark indices fA; B;Cg. The color
part ϵrst is already antisymmetric in order to restrict the
state to be a color singlet, which implies that the product of
the flavor and spin-momentum parts must be symmetric.
Assuming flavor-SUð3Þ symmetry (the same symmetry
arguments would hold, of course, if we take the flavor
symmetry group larger) one constructs the usual octet and
decuplet representations for baryons (see, e.g. [46] and
Appendix B). There are two flavor octets, one symmetric

TABLE IV. Lambda and Sigma baryon masses (in GeV) at the
physical point from the flavor dependent kernel (11), using B=fπ
for the full pion amplitude. We give the central value of the bands
corresponding to a variation of η between 1.6 ≤ η ≤ 2.0 with the
half-width of the bands added in brackets.

Λ Σ

1.161 (7) 1.164 (9)

2To ensure that this is not a purely numerical effect, we have
run the calculation enhancing the effect of (11) by an artificial
large factor. We confirmed that the splitting is indeed an effect of
the flavor-mixing kernel.
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and one antisymmetric with respect to the first two quark
indices. The physical octet is a quantum superposition of
these two. There is only one flavor decuplet, whose states
are symmetric in all their indices. That is, each baryon is
associated to a flavor wave function Fρ

abc, with ρ ¼ 1; 2 for
the antisymmetric and symmetric octet representations,
respectively, and ρ ¼ 1 for the decuplet representations.
We will be interested here in the quark permutations
ð123Þ → ð231Þ and ð123Þ → ð312Þ, under which the

product of spin-momentum and flavor parts transforms
symmetrically,

Ψρ
αβγIðp1; p2; p3ÞFρ

abcd ¼ Ψρ
βγαIðp2; p3; p1ÞFρ0

bcad;

Ψρ
αβγIðp1; p2; p3ÞFρ

abcd ¼ Ψρ
γαβIðp3; p1; p2ÞFρ0

cabd: ðA1Þ

In general, the Faddeev equation reads

ΓABCIðp; q; PÞ ¼
Z
k
½KBB0;CC0 ðk2; ~k3; kÞδAA00SB0B00 ðk2ÞSC0C00 ð~k3ÞΓA00B00C00Iðpð1Þ; qð1Þ; PÞ�

þ
Z
k
½KAA0;CC0 ðk3; ~k1; kÞδBB00SA0A00 ð~k1ÞSC0C00 ðk3ÞΓA00B00C00Iðpð2Þ; qð2Þ; PÞ�

þ
Z
k
½KAA0;BB0 ðk1; ~k2; kÞδCC00SA0A00 ðk1ÞSB0B00 ð~k2ÞΓA00B00C00Iðpð3Þ; qð3Þ; PÞ�; ðA2Þ

with

p ¼ ð1 − ζÞp3 − ζðp1 þ p2Þ; p1 ¼ −q −
p
2
þ 1 − ζ

2
P;

q ¼ p2 − p1

2
; p2 ¼ q −

p
2
þ 1 − ζ

2
P;

P ¼ p1 þ p2 þ p3; p3 ¼ pþ ζP; ðA3Þ

and ζ ¼ 1=3 is a momentum partitioning parameter.
The internal quark propagators depend on the internal
quark momenta ki ¼ pi − k and ~ki ¼ pi þ k, with k being
the exchanged momentum. The internal relative momenta,
for each of the three terms in the Faddeev equation, are

pð1Þ ¼pþk; pð2Þ ¼p−k; pð3Þ ¼p;

qð1Þ ¼q−k=2; qð2Þ ¼q−k=2; qð3Þ ¼qþk: ðA4Þ

The kernel contains spin-momentum, flavor and color parts
as well,

KAA0;BB0 ðp1;p2;pÞ¼Kαα0;ββ0 ðp1;p2;pÞkFaa0bb0kCrr0;ss0 : ðA5Þ

Moreover, we write the flavor wave functions as a sum of
several terms,

Fρ
abcd ¼

XdF
λ

Fρ;λ
abcd; ðA6Þ

where dF is the number of such terms [for example, the
antisymmetric component of the Ξ0 is ðuss − susÞ= ffiffiffi

2
p

and
therefore dF ¼ 2]. The action of the propagators on the
Faddeev amplitudes in (A2) can therefore be written as a
sum of dF terms, for instance

SAA0 ðp1ÞSBB0 ðp2ÞΓA0B0CIðp1; p2; p3Þ

¼
X
ρ

XdF
i

Sðλ1Þαα0 ðp1ÞSðλ2Þββ0 ðp2ÞΨρ
αβγIðp1; p2; p3ÞFρ;i

abc;

ðA7Þ
where, for example, for the first term in the antisymmetric
component of the Ξ0 given above, Sðλ1Þ and Sðλ2Þ would be
the propagators for u and s quarks, respectively.
We wish to make use of (A1) to relate the first two terms

in (A2) to the third one, which has simpler kinematics and
is hence easier to calculate. First, it is necessary to realize
that if the third term in the equation is evaluated for relative
momenta fp; qg then, considering the permutation of
momenta in (A1), the kinematics of the first term is the
same as that of the third term but evaluated at the trans-
formed momenta fp0; q0g,

�
p1 ¼ −q −

p
2
þ P

3

�
≡
�
p0
3 ¼ p0 þ P

3

�
�
k2 ¼ q −

p
2
þ P

3
− k

�
≡
�
k01 ¼ −q0 −

p0

2
þ P

3
− k

�
⇒ p0 ¼ −q −

p
2
; q0 ¼ −

q
2
þ 3p

4
;�

~k3 ¼ pþ P
3
þ k
�
≡
�
~k02 ¼ q0 −

p0

2
þ P

3
þ k
�
; ðA8Þ

and the kinematics of the second term is the same as that of the third term but evaluated at the transformed
momenta fp00; q00g,
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�
~k1 ¼ −q −

p
2
þ P

3
þ k

�
≡
�
~k002 ¼ q00 −

p00

2
þ P

3
þ k

�
�
p2 ¼ q −

p
2
þ P

3

�
≡
�
p00
3 ¼ p00 þ P

3

�
⇒ p00 ¼ q −

p
2
; q00 ¼ −

q
2
−
3p
4
:�

k3 ¼ pþ P
3
− k

�
≡
�
k001 ¼ −q00 −

p00

2
þ P

3
− k

�
: ðA9Þ

Putting in all the elements defined above and permuting the indices in (A2) as in (A1), and after renaming dummy indices
conveniently, Eq. (A2) now becomes

Ψρ
αβγIðp; q; PÞ ¼ CF ρρ0;λ

1

Z
k
½Kββ0;γγ0 ðk01; ~k02; kÞδαα00Sðλ2Þβ0β00 ðk01ÞSðλ3Þγ0γ00 ð~k02ÞΨρ0

β00γ00α00Iðp0ð3Þ; q0ð3Þ; PÞ�

þ CF ρρ0;λ
2

Z
k
½Kαα0;γγ0 ðk001; ~k002; kÞδββ00Sðλ1Þγ0γ00 ð~k001ÞSðλ3Þα0α00 ðk002ÞΨρ0

γ00α00β00Iðp00ð3Þ; q00ð3Þ; PÞ�

þ CF ρρ0;λ
3

Z
k
½Kαα0;ββ0 ðk1; ~k2; kÞδγγ00Sðλ1Þα0α00 ðk1ÞSðλ2Þβ0β00 ð~k2ÞΨρ0

α00β00γ00Iðpð3Þ; qð3Þ; PÞ�; ðA10Þ

where the contraction of the color parts of the kernel and
those of the Faddeev amplitudes (before the permutation of
indices) gives a global factor C and, similarly, the con-
traction of the corresponding flavor parts leads to the flavor
matrices

F ρρ0;λ
1 ¼ F† ρ

bac k
F
bb0cc0F

ρ0;λ
b0c0a;

F ρρ0;λ
2 ¼ F† ρ

bac k
F
aa0cc0F

ρ0;λ
c0a0b;

F ρρ0;λ
3 ¼ F† ρ

bac k
F
aa0bb0F

ρ0;λ
a0b0c: ðA11Þ

If we denote the result of the integral in the third line of

the last equation as ½Ψð3Þ
λ1λ2

�ρ
αβγI

ðp; q; PÞ, it is clear that if the
kernel is such that Kαα0;ββ0 ðk1; k2; kÞ ¼ Kββ0;αα0 ðk1; k2; kÞ
then we have

Ψρ
αβγIðp; q; PÞ ¼ CF ρρ0;λ

1 ½Ψð3Þ
λ2λ3

�ρ0
βγαI

ðp0; q0; PÞ
þ CF ρρ0;λ

2 ½Ψð3Þ
λ1λ3

�ρ0
γαβI

ðp00; q00; PÞ
þ CF ρρ0;λ

3 ½Ψð3Þ
λ1λ2

�ρ0
αβγI

ðp; q; PÞ: ðA12Þ
Therefore, the problem has been reduced to the calculation
of only one of the diagrams in the Faddeev equation for
all possible combinations of pairs of quarks. If we rewrite
(A12) in terms of the coefficients f of the expansion of the
Fadddeev amplitudes in a covariant basis (2) we finally
obtain Eq. (6) with

Hij
1 ¼ ½τ̄iβαIγðp; q; PÞτjβγαIðp0; q0; PÞ�; ðA13Þ

Hij
2 ¼ ½τ̄iβαIγðp; q; PÞτjγαβIðp00; q00; PÞ�: ðA14Þ

APPENDIX B: FLAVOR AMPLITUDES

For convenience, we reproduce here the usual quark-
model flavor amplitudes of baryons Fabc. The octet is

composed of a superposition of states which are
symmetric (S) or antisymmetric (A) under the exchange
of the first two indices. In terms of quarks these combi-
nations are shown in Tables V and VI.

TABLE V. Baryon octet flavor amplitudes.

State S A

p 1ffiffi
2

p ðudu − duuÞ 1ffiffi
6

p ð2uud − udu − duuÞ
n 1ffiffi

2
p ðudd − dudÞ 1ffiffi

6
p ðuddþ dud − 2dduÞ

Σþ 1ffiffi
2

p ðusu − suuÞ 1ffiffi
6

p ð2uus − usu − suuÞ
Σ0 1

2
ðusdþ dsu − sud − sduÞ 1ffiffiffiffi

12
p ð2udsþ 2dus − usd

−dsu − sud − sduÞ
Σ− 1ffiffi

2
p ðdsd − sddÞ 1ffiffi

6
p ð2dds − dsd − sddÞ

Ξ0 1ffiffi
2

p ðuss − susÞ 1ffiffi
6

p ðussþ sus − 2ssuÞ
Ξ− 1ffiffi

2
p ðdss − sdsÞ 1ffiffi

6
p ðdssþ sds − 2ssdÞ

Λ0 1ffiffiffiffi
12

p ð2uds − 2dusþ sdu
−dsuþ usd − sudÞ

1
2
ðusdþ sud − dsu − sduÞ

TABLE VI. Baryon decuplet flavor amplitudes.

State S

Δþþ uuu

Δþ 1ffiffi
3

p ðuudþ uduþ duuÞ
Δ0 1ffiffi

3
p ðuddþ dudþ dduÞ

Δ− ddd

Σ�þ 1ffiffi
3

p ðuusþ usuþ suuÞ
Σ�0 1ffiffi

6
p ðudsþ usdþ dusþ dsuþ sudþ sduÞ

Σ�− 1ffiffi
3

p ðddsþ dsdþ sddÞ
Ξ�0 1ffiffi

3
p ðussþ susþ ssuÞ

Ξ�− 1ffiffi
3

p ðdssþ sdsþ ssdÞ
Ω− sss
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