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We present a numerical analysis of helicity independent nucleon generalized parton distributions (GPDs)
using the known formalism based on inclusion of higher Fock states in the soft-wall approach of the anti–de
Sitter/QCD model. We calculate the momentum space GPDs by matching the electromagnetic form factors
in the AdS model to the sum rules in QCD. We investigate their Mellin moments, transverse impact
parameter GPDs, transverse mean square radius, and transverse width. We further extend this work to
investigate the charge and anomalous magnetization densities for both unpolarized and transversely
polarized nucleons. A comparison of results on density functions with phenomenological parametrization
is also presented.
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I. INTRODUCTION

Generalized parton distributions (GPDs) are fundamen-
tal quantities of theoretical and experimental endeavor in
the recent past and give us essential information about the
internal structure of nucleons [1]. They represent a natural
interpolation between electromagnetic form factors (EFFs)
and parton distribution functions (PDFs). The first
moments of GPDs are related to the EFFs and reduce to
the PDFs in the forward limit. The study of these quantities
is further significant to understand the issues related to the
spin and orbital angular momentum of the constituents, as
well as spatial structure of the nucleon. There are several
extensive reviews about GPDs in the literature [1,2]. GPDs
are a function of the longitudinal momentum fraction of the
active quark (x), the longitudinal momentum fraction
transferred or skewness parameter (ζ), and the square of
the momentum transferred (t ¼ −Q2). At zero skewness
(ζ ¼ 0), the Fourier transform of GPDs with the momen-
tum transfer in transverse direction gives impact parameter
dependent GPDs [3], which have probabilistic interpreta-
tion in terms of density functions [4]. They provide us with
information about partonic distributions in the transverse
impact parameter or position space and give an estimate of
separation of the struck quark and center of momentum of
the nucleon.
GPDs enter in the measurements of amplitudes of hard

exclusive processes like deeply virtual Compton scattering
and vector meson production [5]. Various experiments, such
as H1 and ZEUS at DESY [6], COMPASS at CERN [7], and
Hall A and CLAS at Jefferson Lab [8], have measured GPDs
for valence quarks. The upcoming experiments with high
luminosity and wider kinematic range, such as COMPASS-II
[9] and 12 GeV energy upgrade at Jefferson Lab [10], will
significantly advance the measurements of GPDs for sea
quarks, gluons, and transverse single spin asymmetries.
However, the numerical analysis is partially framework
dependent and requires modeling of GPDs into functional

form [11–14]. The Euclidean lattice QCD is another
important framework but the successes are limited by the
uncertainties arising from the statistical errors, extrapolation
to the physical quark mass, and complexities of numerical
algorithms, etc. [2]. Further, the dynamical observables in
the Minkowski space-time are not directly obtained from the
Euclidean lattice computations [15]. This paved the way for
the formulations of alternative approaches to extract infor-
mation about GPDs and to make precise predictions in the
nonperturbative regime.
Recently, light-front holography (LFH) emerged as a

promising technique to unravel the structure of hadrons
[16]. It is based on AdS/CFT correspondence between the
string theory on a higher-dimensional anti–de Sitter (AdS)
space and conformal field theory (CFT) in physical space-
time to study the hadronic properties [17]. LFH methods
were originally introduced by matching the matrix elements
of dynamical observables, e.g., electromagnetic current
matrix elements in AdS space with the corresponding
expressions from light-front quantization in physical
space-time [18]. This provides a precise mapping of the
string modes Φ in the AdS fifth dimension to the hadron
light-front wave functions ψ [19]. Though LFH is a
semiclassical approximation for strongly coupled quantum
field theories [20], it successfully explains the general
properties of mesons, e.g., mass spectra including the
Regge trajectories [21], electromagnetic and gravitational
form factors [22], decay constants, decay widths, distribu-
tion amplitudes [23], and other physical quantities [24].
The AdS/QCD wave function has been further used to
investigate the form factors, branching ratios, distribution
amplitudes for the radiative and semileptonic B decays to
light vector mesons [25].
During the past few years significant progress has been

made in the application of AdS/QCD models to baryons
[26]. The electromagnetic form factors for the nucleon have
been calculated using the nonminimal couplings [27] and
light-front quark model with SU(6) spin flavor symmetry
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[28]. One can also constrain the information on GPDs for
valence quarks indirectly via the sum rules that connect
them with form factors. This procedure has been used to
investigate the GPDs in the hard-wall model [29] and soft-
wall model [30,31]. It is significant to mention here that in
the hard-wall model, an IR boundary z0 ¼ 1=ΛQCD is put in
the AdS space, while in the soft-wall model, a soft IR cutoff
in the fifth dimension is introduced by a background
dilation field or confining potential [32].
Gutsche et al. [33] have presented a variant of the

holographic soft-wall model with the inclusion of higher
Fock states. The high Fock states’ components are holo-
graphically incorporated via studying the dynamics of 5D
fermion fields of different scaling dimension in AdS space
in accordance with gauge/gravity duality. We distinguish
this approach (with inclusion of higher Fock states) from
the previous soft-wall model [30] via referring to it as the
“modified soft-wall model.” The modified soft-wall model
successfully explains the mass spectrum and electromag-
netic and axial isovector form factors for the nucleon;
therefore, it is interesting and intriguing to extend this
approach to obtain GPDs using the LFH mapping.
We perform the matching of nucleon form factors

considering the two approaches: sum rules in QCD and
expressions obtained from the modified soft-wall model.
We investigate the GPDs and their x-moments in the
momentum space as these quantities are directly measured
from the lattice QCD [2]. The Fourier transform of GPDs to
transverse position space gives the probability density for
finding a valence quark at a particular transverse position
inside a nucleon; this gives impetus on the calculation of
GPDs in the impact parameter space. The transverse charge
and anomalous magnetization densities are directly con-
nected to the Fourier transform of EFFs, whereas the
integration over parton momentum fractions (x) for the
GPDs yields EFFs and consequently relates the transverse
charge and anomalous magnetization density with the
GPDs in impact parameter space. It is interesting to
investigate the transverse charge densities for unpolarized
and polarized nucleons and measure the spatial distribution
of partons in the transverse plane.
This work is organized as follows. In Sec. II, we follow

the work of Ref. [33] and outline the essential results of
EFFs in the modified soft-wall model of AdS/QCD. In
Sec. III, we present the numerical results for GPDs for up
and down quarks in the momentum space and also discuss
their x-moments. We further discuss the impact parameter
dependent GPDs including their transverse mean squared
radii and transverse width in Sec. IV. Charge and mag-
netization densities for both unpolarized and transversely
polarized nucleons will be discussed in Sec. V. We also
present the results for the flavor contributions of up and
down quarks and a comparison with the phenomenological
parametrization in the same section. Summary and con-
clusions are presented in Sec. VI.

II. NUCLEON ELECTROMAGNETIC FORM
FACTORS AND WAVE FUNCTION

In this section, we will reproduce the relevant results by
Gutsche et al. [33] for the derivation of EFFs and wave
functions in the modified soft-wall model. This approach is
based on an action which describe hadrons with the soft-
wall breaking of conformal symmetry by introducing a
quadratic dilation field φðzÞ ¼ κ2z2. The quadratic depend-
ence of the dilaton field produces linear Regge-like mass
spectra for hadron masses. Also, the Dirac fermion field
Ψðx; zÞ propagating in the 5-dimensional AdS space is with
different twist dimensions which correspond to the con-
tribution of the higher Fock state components. The nucleon
structure is considered as a superposition of three valence
quark states with the contribution of higher Fock states
including quarks, antiquarks, and gluons via studying the
dynamics of 5-D Dirac fermion fields of different scaling
dimensions in AdS space [33].
The AdS/QCD interaction action which generates the

nucleon form factors is expressed as

SVint ¼
Z

d4xdz
ffiffiffi
g

p
e−φðzÞLV

intðx; zÞ; ð1Þ

where g ¼ jgMN j and φðzÞ ¼ κ2z2 is the quadratic dilaton
field with κ as the free scale parameter. The interaction
Lagrangian containing the minimal and nonminimal cou-
plings of fermion and vector AdS fields is given as

Lintðx; zÞ ¼
X
i¼þ;−

X
τ

cτΨ̄i;τðx; zÞV̂iðx; zÞΨi;τðx; zÞ; ð2Þ

with

V̂�ðx; zÞ ¼ QΓMVMðx; zÞ �
i
4
ηV ½ΓM;ΓN �VMNðx; zÞ

� gVτ3ΓMiΓzVMðx; zÞ: ð3Þ

Here Ψ�;τðx; zÞ is the five-dimensional fermion fields with
spin J ¼ 1=2 and scaling dimension τ; VMðx; zÞ is the
vector fields and the holographic dual of the electromag-
netic field; VMN ¼ ∂MVN − ∂NVM is the stress tensor of
the vector field; Q ¼ diagð1; 0Þ is the nucleon charge
matrix; τ3 ¼ diagð1;−1Þ is the Pauli isospin matrix; and
ΓM ¼ ϵMa Γa and Γa ¼ ðγμ;−iγ5Þ are the five-dimensional
Dirac matrices.
Following Ref. [33], the expressions for Dirac and Pauli

nucleon form factors are given as

Fp
1 ðQ2Þ ¼ C1ðQ2Þ þ gVC2ðQ2Þ þ ηpVC3ðQ2Þ;

Fp
2 ðQ2Þ ¼ ηpVC4ðQ2Þ;

Fn
1ðQ2Þ ¼ −gVC2ðQ2Þ þ ηnVC3ðQ2Þ;

Fn
2ðQ2Þ ¼ ηnVC4ðQ2Þ; ð4Þ
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where CiðQ2Þ are the structure integrals expressed as

C1ðQ2Þ ¼ 1

2

Z
∞

0

dzVðQ2; zÞ
X
τ

cτð½fLτ ðzÞ�2 þ ½fRτ ðzÞ�2Þ;

C2ðQ2Þ ¼ 1

2

Z
∞

0

dzVðQ2; zÞ
X
τ

cτð½fRτ ðzÞ�2 − ½fLτ ðzÞ�2Þ;

C3ðQ2Þ ¼ 1

2

Z
∞

0

dzz∂zVðQ2; zÞ
X
τ

cτð½fLτ ðzÞ�2 − ½fRτ ðzÞ�2Þ;

C4ðQ2Þ ¼ 2mN

Z
∞

0

dzzVðQ2; zÞ
X
τ

cτfLτ ðzÞfRτ ðzÞ: ð5Þ

The functions fLτ ðzÞ and fRτ ðzÞ are the bulk profiles of
fermions corresponding to the left- and right-handed
ground-state nucleons with radial quantum number
n ¼ 0. The ground-state nucleon wave functions are
expressed as

fLτ ðzÞ ¼
ffiffiffiffiffiffiffiffiffi
2

ΓðτÞ

s
κτzτ−1=2e−κ

2z2=2; ð6Þ

fRτ ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

Γðτ − 1Þ

s
κτ−1zτ−3=2e−κ

2z2=2: ð7Þ

The VðQ2; zÞ is the bulk-to-boundary propagator of the
transverse massless vector bulk field in terms of the gamma
function ΓðaÞ and Tricomi confluent hypergeometric func-
tion Uða; b; zÞ [34]

VðQ2; zÞ ¼ Γ
�
1þ Q2

4κ2

�
U

�
Q2

4κ2
; 0; κ2z2

�
: ð8Þ

The propagator in Eq. (8) can be conveniently written in an
integral representation [34]

VðQ2; zÞ ¼ κ2z2
Z

dx
ð1 − xÞ2 x

Q2

4κ2e−κ
2z2x=ð1−xÞ: ð9Þ

The bulk-to-boundary propagator VðQ2; zÞ satisfies the
normalization condition and follows the ultraviolet boun-
dary VðQ2; 0Þ ¼ 1 and infrared boundary VðQ2;∞Þ ¼ 0
condition. The analytical expressions for nucleon form
factors are obtained in Ref. [33] after substituting the
hadronic states with twist τ dimensions Eqs. (6)–(7), the
integral representation of the bulk-to-boundary propagator
Eq. (9), in the structure integrals Eq. (5). It has already been
proven to give satisfactory agreement to data on
nucleon form factors with the minimum number of free
parameters [33].

III. GENERALIZED PARTON DISTRIBUTIONS
AND THEIR MOMENTS

In this section, we calculate the GPDs for the nucleon
using the correspondence procedure based on light-front
holography. We perform a matching of the matrix elements
for nucleon form factors considering two approaches: one
is sum rules in QCD and the other is expressions obtained
in the modified soft-wall model of AdS/QCD with arbitrary
twist dimensions. The sum rules relate the GPDs for
unpolarized quarks with the form factors [4]

Fq
1ðQ2Þ ¼

Z
1

0

dxHq
vðx;Q2Þ; ð10Þ

Fq
2ðQ2Þ ¼

Z
1

0

dxEq
vðx;Q2Þ: ð11Þ

We have defined the GPDs for valence quarks (minus
antiquark) as Hq

vðx;Q2Þ ¼ Hqðx; 0; Q2Þ þHqð−x; 0; Q2Þ
and Eq

vðx;Q2Þ ¼ Eqðx; 0; Q2Þ þ Eqð−x; 0; Q2Þ for the zero
skewness. The Dirac and Pauli form factors for the nucleon
are given by charge weighted sum

FN
i ðQ2Þ ¼

X
q

eNq F
q
i ðQ2Þ; ð12Þ

with appropriate coefficients epu ¼ end ¼ 2
3
, and epd ¼ enu ¼

− 1
3
. We restrict ourselves to the contribution from the

valence quarks only, whereas the contributions of heavier
strange and charm quarks have been ignored.
The explicit expressions for up and down quark GPDs in

the modified soft-wall model by exploiting the integral
representation of bulk-to-boundary propagator VðQ2; zÞ are
given as

Hqðx;Q2Þ ¼
X
τ

cτqðx; τÞxQ2=4κ2 ;

Eqðx;Q2Þ ¼
X
τ

cτeqðx; τÞxQ2=4κ2 : ð13Þ

The quark distribution functions qðx; τÞ and eqðx; τÞ are

qðx; τÞ ¼ αq1γ1ðx; τÞ þ αq2γ2ðx; τÞ þ αq3γ3ðx; τÞ;
eqðx; τÞ ¼ αq3γ4ðx; τÞ: ð14Þ

The flavor coupling parameters αqi and γiðxÞ are expressed
as

αu1 ¼ 2; αu2 ¼ gV; αu3 ¼ 2ηpV þ ηnV;

αd1 ¼ 1; αd2 ¼ −gV; αd3 ¼ ηpV þ 2ηnV; ð15Þ

and
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γ1ðx; τÞ ¼ −
1

2
ð1 − 2τ þ xτÞð1 − xÞτ−2;

γ2ðx; τÞ ¼
1

2
ð1 − xτÞð1 − xÞτ−2;

γ3ðx; τÞ ¼ ð1 − 3xτ þ x2τ þ x2τ2Þð1 − xÞτ−2;

γ4ðx; τÞ ¼
2Mn

κ
τ

ffiffiffiffiffiffiffiffiffiffi
τ − 1

p
ð1 − xÞτ−1: ð16Þ

We consider the three leading order dimensions (twist
τ ¼ 3; 4; 5) which correspond to the contribution of quarks,
antiquarks, and gluons. It is important to mention here that
for twist τ ¼ 3, these results are the same as predictions of
the soft-wall model [30]. In Figs. 1(a)–1(b), we have
presented the behavior of spin conserving GPDHu=dðx; t ¼
−Q2Þ as a function of x for different values of t ¼
−0.5;−1;−2 GeV2 for up and down quarks. The qualita-
tive behavior of GPD is the same for both quarks. The
profile function increases with x, obtains a maxima
and then falls to zero as x → 1. It is interesting to note
that the falloff behavior is faster for the down quark. In
Figs. 1(c)–1(d), we present the spin changing GPDs
Eu=dðx; tÞ as a function of x for different values of t for
the up and down quarks. In this case also the GPDs increase
to a maximum value and then decrease; however, the falloff
behavior with x is the same for both up and down quarks.

For all cases the peak of GPDs shifts towards a higher value
of x for the larger value of momentum transferred t as the
struck parton with higher momentum is more likely to have
a higher value of x.
We now use these GPDs to compute higher order

moments in x for the valence GPDs defined as Hq
nðQ2Þ

and Eq
nðQ2Þ:

Hq
nðQ2Þ ¼

Z
dxxn−1Hqðx;Q2Þ;

Eq
nðQ2Þ ¼

Z
dxxn−1Eqðx;Q2Þ: ð17Þ

Integrating over the parameter x give the moments of
GPDs:

Hq
nðQ2Þ ¼ αq1

X
τ

cτβ1nðQ2; τÞ þ αq2
X
τ

cτβ2nðQ2; τÞ

þ αq3
X
τ

cτβ3nðQ2; τÞ;

Eq
nðQ2Þ ¼ αq3

X
τ

cτβ4nðQ2; τÞ: ð18Þ

Here we have defined the parameters βiðQ2; τÞ in terms of
the beta functions Bðm; nÞ
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FIG. 1 (color online). Plots of (a) the generalized parton distributions Huðx; tÞ vs x for fixed values of −t ¼ Q2 for up quark;
(b)Hdðx; tÞ vs x for fixed values of −t for down quark; (c) Euðx; tÞ vs x for fixed values of −t for up quark; and (d) Edðx; tÞ vs x for fixed
values of −t for down quark.
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β1nðQ2; τÞ ¼ 1

2
ð2τ þ aþ n − 1ÞBðaþ n; τÞ;

β2nðQ2; τÞ ¼ −
1

2
ðaþ n − 1ÞBðaþ n; τÞ;

β3nðQ2; τÞ ¼ ðaþ n − 1Þ
�
aþ n − 1 −

aþ n
τ

�
× Bðaþ n; τ þ 1Þ;

β4nðQ2; τÞ ¼ 2Mn

κ
τ

ffiffiffiffiffiffiffiffiffiffi
τ − 1

p
Bðaþ n; τÞ: ð19Þ

The first moments of GPDs give the EFFs discussed in
Eqs. (10)–(11), the second momentsHq

2 and E
q
2 correspond

to gravitational form factors, and the third moments Hq
3

and Eq
3 give form factors of a twist-two operator containing

two covariant derivatives. The higher order moments
generate the form factors of higher-twist operators. In
Figs. 2(a)–2(b), we have plotted the behavior of the first
three moments of GPD Q2Hu=d

n ðQ2Þ with momentum
ffiffiffiffiffi
−t

p
for up and down quarks. In Figs. 2(c)–2(d), we have shown
the behavior of the first three moments of GPDs
Q2Eu=d

n ðQ2Þwith ffiffiffiffiffi
−t

p
for up and down quarks. We observe

that the qualitative behavior of moments of GPD is the
same for up and down quarks. The overall behavior of GPD
moments with t is the same as the behavior of profile
functions with momentum fraction x. We also observed that
the variation of the moments with t becomes slower as

index n increases. This can be understood in terms of a
decrease of the profile functions with momentum fraction
x, which results in a weaker t slope for higher values of x. A
similar trend has been observed in lattice QCD calculations
of GPD moments [15].

IV. GPDS IN IMPACT PARAMETER SPACE

GPDs in the momentum space are related to their impact
parameter dependent parton distribution by the Fourier
transform [3]. The impact parameter GPDs give the
probability density for finding a quark with a longitudinal
momentum fraction (x) and transverse position (b⊥) in a
nucleon, minus the corresponding probability density for
antiquarks for both the parton and nucleon being unpolar-
ized. By definition, the GPDs in transverse impact param-
eter space are given as [3,13]

qðx; b⊥Þ ¼
Z

d2q⊥
ð2πÞ2 e

ιb⊥:q⊥Hðx; q2Þ; ð20Þ

eqðx; b⊥Þ ¼
Z

d2q⊥
ð2πÞ2 e

ιb⊥:q⊥Eðx; q2Þ: ð21Þ

In the modified soft-wall model, the expressions for GPDs
in transverse impact parameter space are
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FIG. 2 (color online). Plots of first three moments of (a) generalized parton distribution Hu
nðx; tÞ vs ffiffiffiffi−p

t for up quark; (b) Hd
nðx; tÞ vsffiffiffiffi−p

t for down quark; (c) GPDEu
nðx; tÞ vs ffiffiffiffi−p

t for up quark; and (d) Ed
nðx; tÞ vs ffiffiffiffi−p

t for down quark.
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qðx; b⊥Þ ¼
X
τ

cτqðx; τÞ
κ2

π logð1=xÞ e
b2⊥κ2

logðxÞ;

eqðx; b⊥Þ ¼
X
τ

cτeqðx; τÞ
κ2

π logð1=xÞ e
b2⊥κ2

logðxÞ: ð22Þ

In Fig. 3(a), we have plotted the behavior of uðx; bÞ with
x for fixed values of b ¼ 0.1; 0.3; 0.5 fm and in Fig. 3(b),
we have shown the behavior of same GPD with the
impact parameter b for fixed values of x ¼ 0.4; 0.6; 0.8.
In Figs. 3(c)–3(d), we plot the same GPDs dðx; bÞ for the
down quark for the same set of parameters. Similar plots
showing the behavior of GPDs eu=dðx; bÞ are shown in
Fig. 4. The qualitative behavior of GPDs qðx; bÞ and
eqðx; bÞ is the same for both up and down quarks. In both
cases, the maxima of GPDs shifted towards a lower value of
x as b increases; therefore the transverse profile is peaked at
b ¼ 0 and falls off further. It is also interesting to observe
that for the small values of b, the magnitude of GPD qðx; bÞ
is larger for the up quark than down quark, whereas the
magnitude of the GPD eqðx; bÞ is marginally larger for the
down quark than up quark.
An estimate of the transverse size of a hadron is given by

the generalized transverse mean squared radius [35]

hr2n⊥ iqch ¼
R
d2b⊥b2⊥

R
dxxn−1qðx; b⊥ÞR

d2b⊥
R
dxxn−1qðx; b⊥Þ

¼
R
d2b⊥b2⊥H

q
nðQ2ÞR

d2b⊥Hq
nðQ2Þ ; ð23Þ

which coincides with the standard transverse mean square
charge radius for n ¼ 1. The transverse charge radii in the
modified soft-wall model for the up and down quarks are
comparable with each other (hr2⊥iuch ¼ 0.406 fm2 and
hr2⊥idch ¼ 0.372 fm2). The transverse size of the nucleon
depends significantly on parameter x; we define the trans-
verse width

hr2⊥ðxÞiqch ¼
R
d2b⊥b2⊥qðx; b⊥ÞR
d2b⊥qðx; b⊥Þ

¼ −4
∂ logHðx;Q2Þ

∂Q2

����
Q2¼0

¼ logð1=xÞ
κ2

: ð24Þ

It is significant to note here that the x-dependence of the
transverse width in the modified soft-wall model is the
same as the soft-wall model [30].
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FIG. 3 (color online). Plots of (a) uðx; b⊥Þ vs x for fixed values of b ¼ 0.1; 0.3; 0.5 fm for up quark; (b) uðx; b⊥Þ vs the impact
parameter b ¼ jb⊥j for fixed values of x ¼ 0.4; 0.6; 0.8 for up quark; (c) dðx; b⊥Þ vs x for fixed values of b for down quark; and
(d) dðx; b⊥Þ vs b for fixed values of x for down quark.
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V. TRANSVERSE CHARGE AND
MAGNETIZATION DENSITIES

The charge and magnetization densities in the transverse
plane for an unpolarized nucleon are defined by the Fourier
transforms of EFFs. Since the EFFs are related to the
GPDs via the sum rules, the transverse charge densities
are related to the impact parameter dependent GPDs. The
quark transverse densities can be obtained from the flavor
decomposition of the densities of the proton and neutron by
invoking the charge and isospin symmetry. The density
functions are not directly measured in experiments; how-
ever, an estimate can be obtained from the analysis of hard-
scattering data on EFFs [11]. We compare our results with
the global fit to data on EFFs using the functional form of
Q2 dependence, referred to as “Kelly parametrization.” The
charge density ðρNchÞ in transverse impact parameter space is
expressed as

ρNchðb⊥Þ ¼
X
q

eNq

Z
1

0

dxqðx; b⊥Þ

¼
Z

d2q⊥
ð2πÞ2 F

N
1 ðq2Þeιq⊥·b⊥ : ð25Þ

In the modified soft-wall model of AdS/QCD, the results
for transverse charge density for an unpolarized nucleon are

ρNchðb⊥Þ ¼
κ2

π

X
q

eNq
X
τ

cτ

Z
1

0

dx
qðx; τÞ
logð1=xÞ e

b2⊥κ2

logðxÞ: ð26Þ

In Figs. 5(a)–5(b), we have plotted the transverse charge
density with the impact parameter b for proton and neutron
in the AdS/QCD and Kelly parametrization. The overall
trend in the behavior of densities is the same as Kelly
parametrization [36]. It has been observed that the proton
charge density has a large positive value at the center of the
core which falls off further as b increases. The neutron
charge density reveals a negative core at b values smaller
then 0.3 fm, a positive contribution at the intermediate b
values, and negative contribution at large distances more
than 1.5 fm. The results for the neutron charge density are
more interesting as they contradict the previous idea of
positive charge density at core due to one gluon exchange
or pion-cloud contribution. Our results match well with the
findings of a model independent analysis of charge density
of the neutron using the data on EFFs [36].
To get an insight into the contributions of the different

quark flavors, we have plotted the charge densities for the
up and down quarks in Figs. 5(c)–5(d). One can observe
that the up quark charge density is large and positive when
compared to the down quark; this leads to the positive value
of proton charge density over the entire range. On the other
hand, the contribution of both up and down quarks are
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FIG. 4 (color online). Plots of (a) euðx; b⊥Þ vs x for fixed values of b ¼ 0.1; 0.3; 0.5 fm for up quark; (b) euðx; b⊥Þ vs the impact
parameter b ¼ jb⊥j for fixed values of x ¼ 0.4; 0.6; 0.8 for up quark; (c) −edðx; b⊥Þ vs x for fixed values of b for down quark; and
(d) −edðx; b⊥Þ vs b for fixed values of x for down quark.
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FIG. 5 (color online). Plots of transverse charge densities ρNchðb⊥Þ with impact parameter b⊥ for (a) proton and (b) neutron. (c) and
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comparable for the neutron. At the center of the neutron the
up quarks have more negative charge density which gives
the negative core surrounded by the positively charged
proton. Future experimental information on neutron EFFs
could render the present situation more precise.
The magnetization density ðρNmÞ in transverse impact

parameter space is given as

~ρNmðb⊥Þ ¼
X
q

eNq

Z
1

0

dxeqðx; b⊥Þ

¼
Z

d2q⊥
ð2πÞ2 e

ιq⊥·b⊥FN
2 ðq2Þ; ð27Þ

however, the true anomalous magnetization density in the
transverse plane is expressed as

ρNmðb⊥Þ ¼ −b
∂ ~ρNmðbÞ
∂b : ð28Þ

In the modified soft-wall model of AdS/QCD, we have

ρNmðb⊥Þ ¼
2b2κ4

π

X
q

eNq
X
τ

cτ

Z
1

0

dx
eqðx; τÞ
logð1=xÞ2 e

b2⊥κ2

logðxÞ: ð29Þ

In Figs. 6(a)–6(d), we have plotted the behavior of
anomalous magnetization densities with the impact param-
eter b for the proton and neutron and their flavor con-
tribution in the AdS/QCD holography and Kelly
parametrization. It is interesting to observe that our model
predictions overlap significantly with the predictions of
Kelly parametrization for all cases. The transverse anoma-
lous magnetization density is positive for the proton and
negative for the neutron in consistency with the measured
values of the anomalous magnetic moments. The magneti-
zation densities of the up and down quarks are comparable
but both are magnetized in opposite direction.
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It is also instructive to investigate the transverse charge
densities inside the transversely polarized nucleon. We
consider a nucleon polarized in the xy direction with the
transverse polarization direction S⊥ ¼ cosϕsx̂þ sinϕsŷ.
Following Ref. [37], charge density in a transverse plane
for a transversely polarized nucleon is

ρNT ðbÞ ¼ ρNchðbÞ −
sinðϕb − ϕsÞ

2MNb
ρNmðbÞ; ð30Þ

where MN is the mass of the nucleon and the transverse
impact parameter b⊥ ¼ bðcosϕbx̂þ sinϕbŷÞ. The second
term in the above expression measures the deviation from
circular symmetric unpolarized charge density and depends
on the orientation of b⊥ relative to the transverse spin
direction S⊥.
In Figs. 7(a)–7(b), we present a comparison of the

behavior of charge density for the unpolarized and trans-
versely polarized proton and neutron and compare them
with the Kelly parametrization. The transverse charge
densities for the proton polarized transversely along the
positive x direction (ϕs ¼ 0) are distorted in the negative by
direction. The transverse polarization of the proton leads to

an induced electric dipole moment along the negative by
axis due to relativistic effects. In the case of the neutron, the
negative charge is located in the center of the neutron
surrounded by the positive charge. When the neutron is
transversely polarized along the x axis, the negative charge
is shifted to the negative by direction and the positive
charge move towards to the positive by direction. This
result follows from the fact that the neutron anomalous
magnetic moment itself is negative, which yields an
induced electric dipole moment along the positive by axis.
Our results are the same as the predictions of the other
phenomenological models, such as the chiral quark soliton
model [38], lattice QCD [39], finite radius approximation
[40], parametrization approach [37], soft-wall model
[41], etc.
We investigated the quark transverse charge densities

inside the unpolarized and transversely polarized nucleon
in Figs. 7(c)–7(d), since they reveal information about the
inner structure of the nucleon. The up quark transverse
charge density inside the transversely polarized nucleon is
shown to be shifted to the negative by direction, while for
the down quark it is distorted in the positive by direction.
The down quark is found to be more influenced due to the
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FIG. 8 (color online). Plots of charge densities in the transverse plane for the (a) unpolarized proton, (b) transversely polarized proton,
(c) unpolarized neutron, and (d) transversely polarized neutron. The transverse polarization is taken along the x direction.
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transverse polarization of the nucleon. We have also plotted
the top panel of the charge densities in the transverse plane
for the unpolarized and polarized proton and neutron in
Figs. 8(a)–8(d) for the sake of completeness. Also, we
presented the top view for the up and down quark charge
densities in the transverse plane for both the unpolarized
and transversely polarized nucleon in Figs. 9(a)–9(d).

VI. SUMMARY AND CONCLUSION

In this work, we have presented a numerical analysis of
the helicity independent generalized parton distributions
(GPDs) for the nucleon in the known formalism of the soft-
wall model with the inclusion of high Fock states. This
approach is based upon the light-front holography principle
to match the matrix elements for nucleon electromagnetic
form factors in AdS modes with the sum rules in QCD that
relate the GPDs with form factors. We have presented the
explicit results for the up and down quark GPDs and their
Mellin moments in the momentum space. We investigated
the GPDs in the impact parameter space as the Fourier
transform of GPDs to transverse position space gives access
to the distribution of partons in the transverse plane. It has

been observed that the magnitude of GPDs Hðx;Q2Þ and
qðx; bÞ are larger for the up quark than down quark,
whereas for GPDs Eðx;Q2Þ and eqðx; bÞ the magnitudes
are comparable for up and down quarks.
We calculated the charge and anomalous magnetization

densities for the unpolarized and transversely polarized
nucleons as the transverse charge densities give us impor-
tant information about the spatial distribution of partons in
the transverse plane. The unpolarized nucleon densities are
symmetric in the transverse plane, whereas they become
distorted for the transversely polarized nucleon. In the case
of a proton polarized transversely along the positive x
direction, the corresponding transverse charge density is
shifted to the negative by direction. In the case of a neutron
polarized transversely along the x axis, the positive charges
move towards the positive by direction while the negative
charges are forced to the negative by direction. We have
also performed the flavor decomposition of the transverse
charge densities inside the polarized nucleon for up and
down quarks. The up quark transverse charge density for
the nucleon transversely polarized along the negative x axis
is found to be shifted to the positive by direction while the
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FIG. 9 (color online). Plots of charge densities in the transverse plane for (a) unpolarized up quark, (b) transversely polarized up quark,
(c) unpolarized down quark, and (d) transversely polarized down quark. The transverse polarization is taken along the x direction.
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down quark is more distorted in the opposite direction;
however, the distortion in the down quark is found to be
much stronger than in the up quark. The overall agreement
between the AdS/QCD predictions and the Kelly para-
metrization approach is remarkable.
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