
One-loop decays A0 → ZZ;Zγ;γγ within the 2HDM and its search at the LHC

J. L. Diaz-Cruz*

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, C.P. 72570
Puebla, Puebla, Mexico and Departamento de Física, CINVESTAV, Apartado Postal 14-740,

07000 México, D. F., Mexico

C. G. Honorato† and M. A. Pérez‡

Departamento de Física, CINVESTAV, Apartado Postal 14-740, 07000 México, D. F., Mexico

J. A. Orduz-Ducuara§

Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla,
C.P. 72570 Puebla, Puebla, Mexico

(Received 9 May 2014; published 20 November 2014)

The general two-Higgs doublet model (2HDM) contains a rich spectrum of neutral and charged
Higgs bosons, whose detection would be a clear signal of new physics. When the Higgs potential is CP
conserving, the spectrum includes a pseudoscalar mass eigenstate A0, which does not couple to vector
bosons at tree level. However, fermionic loops (top and bottom mainly) induce the coupling AVV 0 (with
V; V 0 ¼ γ; Z) at higher orders. We evaluate the amplitude for the decays A0 → ZZ; Zγ; γγ, including a
generic fermionic loop contribution, and present results on the branching ratios for 2HDM-I,II and III.
Current LHC searches on heavy Higgs bosons are used as an estimate to constrain the allowed mass
range for A0.
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I. INTRODUCTION

After many years of planning and preparation, the LHC
has found evidence of a Higgs-like particle, with mass
mh ¼ 125–126 GeV [1,2]. It is remarkable that the
observed Higgs mass falls within the range preferred by
the analysis of electroweak precision tests, within the
Standard Model [3]. Although the measured couplings
point towards a SM Higgs interpretation for such particle,
more data will be needed in order to determine whether
this resonance belongs to the SM or to some of its
extensions; in the later case its properties could deviate
from the SM expectations [4].
On the other hand, the LHC has also searched for signals

of new physics beyond the SM, either through the pro-
duction of new particles or by looking for anomalous
couplings for the SM particles [5]. However, so far current
LHC studies have not detected any evidence of new
physics, and the resulting bounds on the associated scale
has been pushed into the TeV territory [6]. In fact, the
weakest bounds are precisely on the search for heavy Higgs
particles [7–9], which are predicted in many models of
new physics, including SUSY, XD, GUTs etc [10–13].
Thus, searching for those Higgs particles could provide the
first signal on physics beyond the SM. Furthermore, this

task could be attempted now with some degree of
optimism, because once the LHC has detected a scalarlike
state, it seems possible that more scalars could appear in
the future LHC data.
One of the simplest extensions of the SM consists of the

addition of an extra Higgs doublet, the so-called two-Higgs
doublet model (2HDM), which has been widely studied in
all the presentations that have been proposed (2HDM I, II,
III, X, Y, etc.) [14]. Some interesting properties of the
2HDM include

(i) A rich Higgs boson spectrum is predicted within
this model, which includes three neutral degrees of
freedom and one charged Higgs boson (H�),

(ii) Among the neutral states, the model predicts the
existence of a pseudoscalar state A0, which would be
a clear sign of new physics, and whose phenom-
enology we are interested in.

(iii) When the Higgs potential is CP conserving, A0 is
also a mass eigenstate [15]

(iv) Because of the quantum number assignments and
discrete symmetries of the model, this state does not
couple to vector bosons at tree level. However, such
couplings could be induced at loop level [16,17].1
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1Besides presenting a numerical study of these loop-induced
decays, Ref. [17] also presents an analysis of the reaction
pp → VV, but before data on 126 GeV Higgs were presented
by the LHC.
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In this paper, we are interested in studying the one-loop
decays of the pseudoscalar A into a pair of vector bosons,
namely A0 → ZZ; Zγ; γγ, within the context of the two-
Higgs doublet model (2HDM), some of these decays have
been studied in effective Lagrangian context [18,19].
We shall work within the versions of the model where
the Higgs sector respects CP symmetry, which could occur
in 2HDM-I, II and III; in this case A0 is actually a mass
eigenstate. The loop amplitude for A → VV 0 receives
contributions from heavy fermions, mainly from the top
and bottom quarks.
It turns out that the fermionic contribution within 2HDM

I, II depends only on the Yukawa Lagrangian parameters,
which reduce in the end to tan β (the ratio of the vacuum
expectation values, i.e. tan β ¼ v2=v1) and the fermion
masses. On the other hand, within the 2HDM-III, where
one assumes some texture structure for the Yukawa
matrices [20], one needs to consider additional parameters,
which are called χij [21]. For i ≠ j those couplings would
induce flavor-changing neutral currents (FCNC) mediated
by the scalars, while for i ¼ j those couplings would
correct the usual 2HDM predictions for the diagonal
Higgs-fermion couplings [22]. The dominant contribution
to the loop amplitude in the low and moderate tan β (≃1–5)
comes from the top quark. For larger values of tan β,
which seem disfavored by low energy constraints on the
2HDM, the bottom quark contribution should also be
included.
The organization of this paper goes as follows. Section II

contains a discussion of the general 2HDM and its limiting
cases, focusing on the Higgs-fermion couplings. Section III
includes a discussion of the decay amplitude for the process
A → VV0, written in general terms, i.e., including the most
general couplings of the pseudoscalar A0 with fermions; we
also present the simplified expressions for the decay widths
of the decays A0 → ZZ; Zγ; γγ. Then, in Sec. IV we discuss
the numerical results for the branching ratios, and we
identify regions of parameters where those decays show a
large branching ratio. Then we study the constraints that
current searches for heavy Higgs bosons at the LHC could
impose on the parameters of the model. This is done
through the evaluation of the signal strengths (RZZ), which
are used as an estimate for the signal coming from
A0 → ZZ. Our conclusions are left for Sec. V.

II. THE TWO-HIGGS DOUBLET MODEL (2HDM)

In order to specify the 2HDM versions, of types I , II and
III, one needs to define the Yukawa sector, which includes
the interactions of the Higgs doublets with the quarks
and leptons. Interactions with gauge bosons come from
the covariant derivatives, and the pattern of spontaneous
symmetry breaking is associated with the Higgs potential
[23]. The general 2HDM-III is defined by the Yukawa
Lagrangian [24]

L ¼ Yu
1Q̄

0
L
~Φ1u0R þ Yu

2Q̄
0
L
~Φ2u0R þ Yd

1Q̄
0
LΦ1d0R

þ Yd
2Q̄

0
LΦ2d0R þ H:c:; ð1Þ

where

Q0
L ¼

�
uL
dL

�
;

Q̄0
L ¼ ðūL; d̄LÞ;

Φ1 ¼
�
ϕ�
1

ϕ1

�
;

Φ2 ¼
�
ϕ�
2

ϕ2

�
;

~Φj ¼ iσ2Φ�
j ¼

�
ϕj

�

−ϕ∓
i

�
; ð2Þ

and ϕi ¼ 1ffiffi
2

p ðvi þ ϕ0
i þ iχiÞ.

For the purposes of this paper, it suffices to consider
the case when the Higgs sector is CP conserving, then the
CP-even Higgs states (h and H) come from the mixing of
the real parts of the neutral components, ϕ0

1 and ϕ0
2, while

one combination of the imaginary components, χ01 and χ02,
give place to the pseudo-Goldstone boson (needed to give
mass to the Z boson), while the corresponding orthogonal
combination denotes the CP-odd state A0. The mixing
angles α and β that appear in the neutral Higgs mixing,
corresponds to the standard notation, i.e. tan β ¼ v2=v1.
Then, the interactions of the pseudoscalar Higgs boson

(A0) with the up-type quarks, are given by the following
Lagrangian [25],

Lneutral
up ¼ ūiðSuijA þ iγ5Pu

ijAÞujA0 þ H:c:; ð3Þ

with

SuijA ¼ i
ffiffiffiffiffiffiffiffiffiffiffimimj

p
2

ffiffiffi
2

p
v cos β

ðχij − χ†ijÞ; ð4Þ

Pu
ijA ¼ 1

2v
MU

ij cot β −
ffiffiffiffiffiffiffiffiffiffiffimimj

p
2

ffiffiffi
2

p
v sin β

ðχij þ χ†ijÞ: ð5Þ

Similar equations hold for d-type quarks and leptons
(see [25]).
As discussed in Ref. [24], the assumption of universal

textures for the Yukawa matrices, allows to express one
Yukawa matrix, for instance Yf

2 , in terms of the quark
masses, and parametrize the flavor changing neutral scalar
interactions (FCNSI) in terms of the unknown coefficients
χij, which appear in the other Yukawa matrix, written in the

mass-eigenstates basis, namely ~YU
2ij ¼ χij

ffiffiffiffiffiffiffiffi
mimj

p
v , although

other combinations are possible, for instance the comple-
mentary textures discussed in Ref. [26]. These parameters
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can be constrained by considering all types of low energy
FCNC transitions; and although these constraints are quite
strong for transitions involving the first and second
families, as well as for the b-quark, it turns out that they
are rather mild for the top quark [27,28].
Furthermore, we only need to look at the diagonal

couplings of A0 to up-, down-type quarks and charged
leptons, denoted generically as fi, because of their con-
tribution to the loop amplitudes. Thus, the relevant
Lagrangian can be written as

Lf
A0 ¼ gmf

i

2mW
f̄iðgfSi þ iγ5gfPiÞfiA0: ð6Þ

When the Yukawa matrices are taken to be Hermitian,
only the pseudoscalar coupling remains; i.e., gfSi ¼ 0, and
one finds for the diagonal coupling,

guPi ¼ cot β −
1

sin β
ðχiiÞ; ð7Þ

where the χii can be taken essentially as free parameters.
For 2HDM I and II, the χ vanish, and thus only the

pseudoscalar part contribute. Table I shows the vertex A0ff̄
for f ¼ u; d type-quarks, within the CP-conserving case.

III. THE GENERAL EXPRESSIONS FOR
THE AMPLITUDES AND DECAY

WIDTHS FOR A → VV0

In this section we shall present the calculation of the one-
loop amplitude for the decay A → VV 0, where V; V 0
represent any neutral SM vector boson (V; V 0 ¼ fγ; Zg).
Due to the parity properties of the pseudoscalar, the vertex
AVV 0 , as well as AWþW−, are not present at tree level,
when the Higgs sector is CP conserving. However, this
vertex could be induced at the one-loop level from different
sources. But in a model where the Higgs potential is CP
conserving, the coupling between A0 and HþH− is also
forbidden, and thus the charged Higgs does not contribute
to the loop-induced vertex AVV 0. While in other models,
such as the MSSM, there are plenty of other particles that
could contribute to the AVV 0 vertex, here we shall focus on
the fermionic contributions only. This choice is made
because of our goal to perform a numerical analysis based
on a few free parameters, as well as the recent limits on

the masses of new particles, beyond the SM, which are
reaching the TeV range, whose contributions to the vertex
AVV 0 are likely to be highly suppressed. The Feynman
diagrams for the amplitude are shown in Fig. 1. We shall
consider the most general A0ff̄ couplings, i.e. allowing for
the possibility of having a new source of CP violating
associated with the non-Hermiticity of the Yukawa matri-
ces.2 Then we shall present specific formulas for the decay
widths within the 2HDM I, II and general III-type.

A. The decay amplitudes for A → VV0

Thus, the amplitude for the process A → VV 0, will be
written in general, namely we shall consider in equation (6).
The fermion-gauge vertices are written as: gVff ¼
−ikVffγμðgfv − gfaγ5Þ, then for V ¼ Z we have kZff ¼

g
4 cos θW

and for V ¼ γ, kγff ¼ ejQfj; gfv ¼ 1; gfa ¼ 0.
The kinematics conditions are defined according to the

following configuration of momentum: p3 ¼ p1 þ p2.
Then according to Fig. 1, we have that: p2

3 ¼ m2
A; p

2
1 ¼

m2
V 0 ; p2

2 ¼ m2
V and 2p1 · p2 ¼ m2

A −m2
V 0 −m2

V .
The general tensorial amplitude for AVV 0 vertex is

written as follows,

Mμ1μ2 ¼ igrfNCkV1ffkV2ff

16mWπ
2ð1 − 2ðr1 þ r2Þ þ ðr1 − r2Þ2Þ2

×Aμ1μ2
VV 0 ϵ�μ1ϵ

�
μ2 ; ð8Þ

where ri ¼
M2

Vi
m2

A
, and

Aμ1μ2
VV 0 ¼ gfSðA1gμ1μ2 þA2p

μ1
2 p

μ2
1 Þ þ gfPA3ϵ

αβμ1μ2p1α
p2β

:

ð9Þ

Here one can see how the A0ff̄ couplings give place to
different tensorial structures, with the pseudoscalar part
(i.e. gfPi) inducing the term proportional to the Levi-Civita
tensor, as expected. The corresponding form factors are
given by

TABLE I. The vertex A0uu and A0dd for 2HDM-I-II and III
type [14].

Type I Type II Type III

guP cot β cot β cot β − 1
sin β ðχuiiÞ

gdP − cot β tan β tan β − 1
cos β ðχdiiÞ

glP − cot β tan β tan β − 1
cos β ðχliiÞ

0

FIG. 1. Feynman diagram for A → VV 0 decay, only fermion
particles are present. Crossed diagram is not shown.

2The numerical analysis for the case with CPV in the Higgs
potential, and its comparison with CPV from the Yukawa sector,
will be presented in a future publication.
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A1 ¼ gfv1g
f
v2m

2
Aðr21 − 2ðr2 þ 1Þr1 þ ðr2 − 1Þ2Þ

×

��
m2

A

2
ð4rf þ 2r1ðr1ð4rf − r2 − 3Þ − 4ðr2 þ 2Þrf þ r21 þ r2 þ 3Þ − 1ÞC0ðV1; V2Þ

þ 2r1ð1 − r1 þ r2ÞΔB0ðA; V1Þ þ 2r21 − 2ðr2 þ 2Þr1 þ 1

�
þ f1↔2g

�

þ gfa1g
f
a2m

2
Aðr21 − 2ðr2 þ 1Þr1 þ ðr2 − 1Þ2Þ

×

��
m2

A

2
ð2r21ð−4rf − r2 − 1Þ þ 2r1ð8rf þ r2ð4rf − 1Þ − 1Þ − 4rf þ 2r31 þ 1ÞC0ðV1; V2Þ

þ 2ð2r2r1 − r21 − r22 þ 2r1 þ 2r2 − 1ÞBR
0 þ 2ðr22 − r1r2 − 2r2 − r1 þ 1ÞΔB0ðA; V1Þ

þ 2r21 − 2ðr2 þ 2Þr1 þ 1

�
þ f1↔2g

�
;

A2 ¼ gfv1g
f
v2ðfm2

Aðr1 þ r2 − 1ÞC0ðV1; V2Þð2r21ð4rf − r2 − 3Þ − 2r1ð8rf þ r2ð4rf − 5Þ − 3Þ þ 4rf þ 2r31 − 1Þ
þ 4ðr31 þ 4r2r21 − 2r21 − 5r22r1 þ 4r2r1 − ðr21 − ðr2 þ 2Þr1 þ 2r2 þ 1Þr1 þ r1ÞBR

0 ðAÞ
þ 4ð−r31 − 4r2r21 þ 2r21 þ 5r22r1 − 4r2r1 − r1ÞΔB0ðA; V1Þ þ 4r1ðr21 − ðr2 þ 3Þr1 − r2 þ 3Þ − 2g
þ f1↔2gÞ þ ðr1 þ r2 − 1Þgfa1gfa2ðfm2

Að4rf þ 2r1ðr1ð4rf − r2 − 1Þ − 4ðr2 þ 2Þrf þ r21 þ 3r2 − 1Þ þ 1ÞC0ðV1; V2Þ
þ 4ðr21 − 2r1 − r22 þ 2r2ÞBR

0 þ 4ððr2 − 1Þ2 þ ðr2 þ 1Þr1 − 2r21ÞΔB0ðA; V1Þ þ 4r21 − 4ðr2 þ 2Þr1 þ 2g þ f1↔2gÞ;

and

A3 ¼ −m2
Ag

f
v1g

f
v2ðf2r41 − 8ðr2 þ 1Þr31 þ 2ð3r22 þ 4r2 þ 6Þr21 þ 4ðr2 − 2Þr1 þ 1g þ f1↔2gÞC0ðV1; V2Þ

− gfa1g
f
a2ðr21 − 2ðr2 þ 1Þr1 þ ðr2 − 1Þ2Þðfm2

Að2r21 − 2r2r1 − 1ÞC0ðV1; V2Þ
− 4ðr1 − r2 þ 1ÞΔB0ðA; V1Þg þ f1↔2gÞ;

where B0ðiÞ ¼ B0ðm2
i ; m

2
f; m

2
fÞ;ΔB0ði; jÞ ¼ B0ðiÞ − B0ðjÞ; C0ði; jÞ ¼ C0ðm2

A;m
2
i ; m

2
j ; m

2
f; m

2
f;m

2
fÞ. We have used the

renormalization method described in [29], which allows us to write: BR
0 ¼ B0ðm2

A;m
2
f þ μ2R;m

2
f þ μ2RÞ − B0ð0; μ2R; μ2RÞ,

where μR denotes a renormalization scale. These expressions show the Bose symmetry explicitly.

B. The decay widths for A0 → ZZ;Zγ;γγ

In this section we shall present the expressions for the decay widths corresponding to the processes: A0 → ZZ; Zγ; γγ,
which follow from the above expressions for the amplitudes.
(1) The expression for the decay width for A0 → ZZ is

ΓðA0 → ZZÞ ¼ mA
κZZrf

ð1 − 4rZÞ1=2
�

gfS
2

ð1 − 4rZÞ3
ðgfa4GZZ

a þ 2gfv
2gfa

2GZZ
av þ gfv

4GZZ
v Þ þ gfP

2

2
ðgfa2FZZ

a − gfv
2FZZ

v Þ2
�
;

ð10Þ

where κZZ ¼ ðNf
CÞ2

64π5
ð gmf

2MW
Þ2ð g

4 cos θW
Þ4. The G’s and F ’s functions contain Passarino-Veltman functions and also depend

on the ratios rf and rZ.
(2) The decay width for A0 → Zγ is given by the following expression:

ΓðA0 → ZγÞ ¼ mA
gfv

2κZγrf
ð1 − rZÞ

ðgfP2m4
AðrZ − 1Þ4C0ðmZ; 0Þ2 þ 2gfS

2ðmA
2ð1 − rZÞð4rf þ rZ − 1ÞC0ðmZ; 0Þ

þ 2ðΔB0ðmA;mZ; 0Þ − 1ÞrZ þ 2Þ2Þ; ð11Þ

where κZγ ¼ ðNf
CÞ2

64π5
ðgmf

2mW
Þ2ð g

4 cos θW
Þ2ðejQfjÞ2.
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(3) The decay width for A0 → γγ is given by

ΓðA0 → γγÞ ¼ mArfκγγðI2fgfP2

þ 2gfS
2ðIfð4rf − 1Þ þ 2Þ2Þ; ð12Þ

where If ¼ C0ð0; 0Þm2
A and κγγ ¼ ðNf

CÞ2
128π5

ð gmf

2mW
Þ2

ðejQfjÞ4

IV. RESULTS AND LHC ANALYSIS

The recent LHC results have shown that the observed
Higgs boson properties are very similar to the ones
predicted by the SM, although some small deviations have
persisted, which would suggest the possible presence of
new physics effects. Within the 2HDM, those new effects
depend on the mixing angles and the scale μ12, and thus in
order to get small deviations with respect to SM, we shall
choose the following set of parameters,

μ12 ¼ 200 GeV ∼ v; ð13Þ

β − α ¼ π

2
þ δ; ð14Þ

where v is the electroweak scale, and δ is small. Thus, the
above scenario remains close to the SM limit.

A. Numerical results for the branching ratios

For the 2HDM of type II, the mass of the charged
Higgs is constrained to be above a value of order 350 GeV.
For the 2HDM of type-I the charged Higgs mass is less

constrained, and it is possible to have a light charged Higgs,
and similarly for the 2HDM of type III [30]. However, in
order to explore a common scenario for 2HDM of type I,II
and III, we shall consider mH� ¼ 350 GeV.
In Fig. 2 we show the results for the branching ratio of

the pseudoscalar boson A0 for the 2HDM of type I and II.
For THDM-I (see plot a (left) in Fig. 2), we can see that
whenever the channels Zh; ZH;WH� are kinematically
allowed, they become dominant, and the rest of the modes
are suppressed, except for the decay into top quark pair,
which can dominate in a small window around 350–
400 GeV. The mode A0 → γγ has a BR of order 10−3 in
the best case, for mA ≃ 200 GeV, while the BR0s for the
modes γZ and ZZ are suppressed with respect to γγ by one
and two orders of magnitude, respectively. However, when
the mass of A is not enough to produce the final states
Zh; ZH;WH�, the modes bb̄; gg or even ττ could become
relevant.
For 2HDM-II (see plot b (right) in Fig. 2) the modes bb̄

and ZH are the dominant channels, while the decay
into gluons gets more suppressed. In this case the mode
A0 → γγ has a BR of order 2 × 10−5, at most, for
mA ≃ 350 GeV, while the BR for the modes γZ and ZZ
is about one order of magnitude smaller.
In Fig. 3 we present the results for the BR corresponding

to the 2HDM of type III, in the CP-Conserving limit.
But even in this case the Yukawa couplings are different
with respect to the models with Z2-symmetry, as it was
shown in table I. In plot a (left) we considered χff ¼ −1,
and for a light boson A0 the most importan channel is
A0 → bb̄. In this case we find BRðA0 → γγÞ≃ 2 × 10−4 for

(a) (b)

FIG. 2. Branching ratios for the pseudoscalar A0 in 2HDM of type I and II. The parameter are: mH ¼ 300 GeV, mh ¼ 125 GeV,
m�

H ¼ 350 GeV, tan β ¼ 5 and δ ¼ 0.1.
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mA ≃ 350 GeV. For the same mass, the modes A0 →
γZ; ZZ have BR’s of order 10−5. On the another hand,
in plot b (right), we fix χff ¼ 1, and this choice signifi-
cantly affects the channels A0 → bb̄ and A0 → ττ, reducing
them even by about one order of magnitude. For this
reason, the BRðA0 → ggÞ becomes the dominant one for
low masses. But now the mode γγ gets enhanced, and can
reach BR of order 6 × 10−3. The modes γZ and ZZ are also
enhanced, but have BR at most of order 3 × 10−4.
In order to understand the dependence of the branching

ratios on the parameters of the model, we present in Fig. 4,

the total decay width for the pseudoscalar A0 state, as a
function of tan β, for the models of type I, II and III. In plot
a) (left) we have chosen a value of A mass slightly above
the threshold for the decay into top quark pair, namely
mA ¼ 355 > 2mt, while for plot b) (right) we have fixed
mA ¼ 200 GeV. We can see that for 2HDM-I, the total
width decreases with tan β, because all fermionic couplings
go like cot β, and this is so for both mass values of A.
For 2HDM-II one notice that for mA ¼ 200 GeV, the total
width just grows with tan β, a situation that reflects the fact
that the total width is dominated by the decay A → bb̄,

(a)
(b)

FIG. 3. Branching ratios for the pseudoscalar A0 within 2HDM of type III in the CP-conserving limit. The parameter are choosen as:
mH ¼ 300 GeV, mh ¼ 125 GeV, mH� ¼ 350 GeV, tan β ¼ 5 and δ ¼ 0.1.

]
V e

G[

]
Ve

G[

(a) (b)

FIG. 4. Behavior of total width ΓA as a function of tan β. The parameter are chosen as mH ¼ 300 GeV, mh ¼ 125 GeV, mH� ¼
350 GeV and δ ¼ 0.1. The assignment of line codes appears in the plot a, where we fixed mA ¼ 355 GeV (> 2mt), while in plot b we
take mA ¼ 200 GeV.
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while for mA ¼ 200 GeV the total width starts decreasing
for low tan β (≃1–4), but then increases with tan β > 4.
In this case, such behavior reflects the interplay between
the decays A → bb̄ and A → tt̄. In the case of the 2HDM
of type III, we observe a behavior of the total decay width
that grows with tan β, but with a more milder dependence.
In Fig. 5, we show the tan β dependence of the BR into

gamma pairs, as well as the corresponding partial width.
When one chooses a valuemA ¼ 355 GeV, we can see that
for 2HDM-I and 2HDM-II, the decrease of BRðA → γγÞ
with tan β, just reflects the corresponding behavior of
ΓðA → γγÞ; while for 2HDM-III the dependence of
BRðA → γγÞ on tan β comes from a combined effect
of the tan β dependence of the partial and total widths.
On the other hand, when we choose mA ¼ 200 GeV,
within 2HDM-I BRðA → γγÞ remains constant, despite
the fact that ΓðA → γγÞ decreases with tan β, but in this
case the total width shows a similar suppression, which
explains the constant value of BRðA → γγÞ. Similar behav-
ior is obtained for the modes A → Zγ and A → ZZ. Overall,
one can see from these plots, that the 2HDM-II present the
most sensitive results, showing a variation of about four
orders of magnitude for γγ and γZ, and more than four
orders of magnitude for ZZ. In contrast, the 2HDM-III with

χff ¼ 1 is less sensitive to tan β; this scenario presents
small variations (of order unity) for all cases.
In Fig. 6 we show the branching ratio for A → Zγ,

and the corresponding partial decay width, as function of
tan β. For mA ¼ 355 GeV, the BR for this mode decrease
with tan β, within 2HDM-I, II and III (with χ ¼ −1),
while within 2HDM-III with χ ¼ 1, the BR remains almost
constant. On the other hand, when one chooses mA ¼
200 GeV, we find that the BR decreases with tan β, within
2HDM-II and 2HDM-III (with χ ¼ −1), while within
2HDM-I and 2HDM-III (with χ ¼ 1), the BR remains
almost constant.
On the other hand, we show in Fig. 7 the tan β

dependence of BRðA → ZZÞ and ΓðA → ZZÞ. When
mA ¼ 355 GeV the branching ratios decreases as function
of tan β within 2HDM-I, II and 2HDM-III (with χ ¼ −1),
while within 2HDM-III with χ ¼ 1, the BR remains
almost constant. When mA ¼ 200 GeV the BR decreasses
with tan β within 2HDM-II and III (with χ ¼ −1);
while within 2HDM-I and 2HDM-III (with χ ¼ 1), the
BR remains almost constant. We also notice that the
ΓðA → ZZÞ have a sharp decrease within 2HDM-II for
tan β ∼ 5 and within 2HDM-III (with χ ¼ −1) for
tan β ∼ 12, respectively.

]
Ve

G [
]

Ve
G[
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FIG. 5. Behavior of BRðA0 → γγÞ and ΓðA0 → γγÞ as a function of tan β. The parameter are chosen as: mH ¼ 300 GeV,
mh ¼ 125 GeV, mH� ¼ 350 GeV and δ ¼ 0.1. The assignment of line codes appears in plot a.
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B. Constraints from LHC search for
heavy Higgs bosons

The first constraint that any extended model should
fulfill nowadays is the occurrence of a light Higgs state with
a mass near mh0 ≃ 125 GeV. After considering the results,
including statistical and systematic uncertainties reported
by ATLAS and CMS [1,2], we consider a central value for
mh0 of 125 GeV and an uncertainty of �3 GeV; i.e., we
accept a value of mh0 in our numerical analysis if it lies
within the range 122–128 GeV. Next, we also need to fullfil
the constraints coming from the comparison with the
SM-like Higgs signal observed at the LHC.
Thus, in order to compare the signal rate observed for

the SM-like Higgs signals, with mass mh0 ≃ 125 GeV,
arising within the 2HDM model, one can describe the
signal strength by the following ratios:

RXX ¼ σðgg → h0Þ
σðgg → ϕsmÞ

BRðh0 → XXÞ
BRðϕsm → XXÞ ð15Þ

for X ¼ γ; Z.
Within the so-called narrow-width approximation, we

can write the above expression for RXX as follows:

RXX ¼ Γðh0 → ggÞ
Γðϕsm → ggÞ

BRðh0 → XXÞ
BRðϕsm → XXÞ : ð16Þ

According to the CMS Collaboration the signal strength
for the γγ channel is Rγγ ¼ 0.78þ0.28

−0.26 , while for the ZZ
channel it is RZZ ¼ 0.9þ0.30

−0.24 . Thus, the light Higgs boson
of the 2HDM, should satisfy the above conditions, which
is achieved in our scenarios because the properties of
the light Higgs boson were chosen to be very similar to
the SM.
On the other hand, the LHC has also presented limits

on the mass of a heavier Higgs boson, which could be used
in order to obtain some constrains on the mass of the
pseudoscalar state A. We are aware that the pseudoscalar
nature of A will affect the distributions of the particles
appearing in the final states, and strictly speaking those
bounds that searched for the SM-Higgs can not be applied
to the pseudoscalar. However, we shall assume that those
differences are small enough, at least in order to obtain an
estimate for the constraints on the corresponding mass.
For this purpose, we evaluate the ratio

RXX ¼ σðgg → A0ÞBRðA0 → XXÞ
σðgg → ϕsmÞBRðϕsm → XXÞ ð17Þ

]Ve
G[

] Ve
G[

(a)
(b)

(c) (d)

FIG. 6. Behavior of BRðA0 → ZγÞ and ΓðA0 → ZγÞ as a function of tan β. The parameter are chosen as: mH ¼ 300 GeV,
mh ¼ 125 GeV, mH� ¼ 350 GeV and δ ¼ 0.1. The assignment of line codes appears in plot a.
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¼ ΓðA0 → ggÞBRðA0 → XXÞ
Γðϕsm → ggÞBRðϕsm → XXÞ ð18Þ

at a mass value mϕsm
¼ mA, which we vary over the range

180 < mA < 360 GeV, in order to stay below the threshold
for the decay into top pair, which becomes dominant then.
The results are shown in the following Fig. 8, which shows
the values of RZZ and Rγγ vs mA for 2HDM-I, II and III.
We have included the CMS exclusion contour for each

channel (ZZ and γγ), and whenever the predictions from the
models fall above these lines, such scenarios would be
excluded.
From the left figure, we can see that all models satisfy

the constraints imposed by the heavy Higgs search in the
ZZ channel. On the other hand, we can see from the right
figure, that the values of Rγγ bounded at LHC, could
exclude themass range100 < mA < 160 GeVfor the2HDM
of type III for the choice χ ¼ 1. The 2HDM of type II satisfy

]
Ve

G[
]

Ve
G[

(a)

(b)

(d)(c)

FIG. 7. Behavior of BRðA0 → ZZÞ and ΓðA0 → ZZÞ as a function of tan β. The parameter are chosen as: mH ¼ 300 GeV,
mh ¼ 125 GeV, mH� ¼ 350 GeV and δ ¼ 0.1. The assignment of line codes appears in the plot a.

FIG. 8. RZZ and Rγγ vs mA in 2HDM-I-II and III.
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this constraint for the mass range 180 < mA < 360 GeV,
while 2HDM-I and 2HDM-III (with χ ¼ −1) seem to be
excluded only in the mass range 138 < mA < 144 GeV.
These are promising results which deserve to be looked
at in more detail by the experimental LHC Collaborations.

V. CONCLUSIONS

As it is well known, the general two-Higgs doublet
model (2HDM) contains a rich spectrum of neutral and
charged Higgs bosons, whose detection at current and
future colliders would be a clear signal of new physics.
When the Higgs potential is CP conserving, the neutral
spectrum includes a pseudoscalar mass eigenstate A0. Even
in this case, the interactions of A0 with fermions could
include aCP-violating contribution, arising from a possible
non-Hermiticity of the Yukawa matrices. When the Higgs
sector is CP conserving, the A0 boson does not couple to
vector bosons at tree level. However the coupling (AVV 0) is
generated at loop level, from fermionic and bosonic loops.
The dominant contribution in the low and moderate tan β
(≃1–5), comes from the top quark, while for larger values
of tan β, the bottom quark contribution becomes relevant.

We have evaluated the generic fermionic contribution to
the decays A0 → ZZ; Zγ; γγ, including its scalar and
pseudoscalar vertices. Then, we have presented numerical
results for the branching ratios. We found that there are
regions of parameters where such loop-induced modes
could reach significant branching ratios. Current LHC
searches for heavy Higgs bosons are used to derive an
estimated constraint on the parameters of the models. We
find that for 2HDM-II the whole mass range is acceptable,
for our choices of parameters, while the 2HDM-III with
χ ¼ 1 is excluded in the mass range (100 < mA <
160 GeV). On the other hand, 2HDM-I and 2HDM-III
(with χ ¼ −1) seem to be excluded only in the mass range
138 < mA < 144 GeV. These scenarios should be further
studied at the LHC13 in order to confirm the estimates for
exclusion limits presented in this paper.
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