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We calculate masses of the technipions in the walking technicolor model with the anomalous dimension
γm ¼ 1, based on a holographic model which has a naturally light technidilaton ϕ as a composite Higgs
with massmϕ ≃ 125 GeV. The one-family model (with four weak doublets) is taken as a concrete example
in such a framework, with the inputs being Fπ ¼ v=2≃ 123 GeV andmϕ ≃ 125 GeV as well as γm ¼ 1. It
is shown that technipion masses are enhanced by the large anomalous dimension to typically Oð1Þ TeV.
We find a correlation between the technipion masses and SðTCÞ, the S parameter arising only from the
technicolor sector. The current LHC data on the technipion mass limit thus constrains SðTCÞ to be not as
large as Oð1Þ, giving a direct constraint on the technicolor model building. This is a new constraint on the
technicolor sector alone, quite independent of other sectors connected by the extended-technicolor-type
interactions—in sharp contrast to the conventional S parameter constraint from the precision electroweak
measurements.
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I. INTRODUCTION

The mystery of the origin of the masses of the funda-
mental particles is one of the most important issues to be
revealed in elementary particle physics. Even though the
property of the 125 GeV scalar boson discovered at the
LHC seems to be quite consistent with that of the Higgs
boson in the Standard Model (SM) so far, there are several
reasons for possible existence of the physics beyond the
SM, such as the dynamical origin of the mass of the Higgs
itself. Technicolor (TC) [1,2] is an attractive candidate for
such alternatives. Phenomenologically viable TC models,
walking TC (WTC) models [3,4], based on the approx-
imately scale invariant dynamics [the ladder Schwinger-
Dyson (SD) equation], having a large mass anomalous
dimension, γm ≃ 1, predicted the existence of a light
composite scalar boson as a pseudo-Nambu-Goldstone
(NG) boson associated with the spontaneous breaking of
the approximate scale invariance. That is called the tech-
nidilaton, which can be identified with the 125 GeV boson
discovered at the LHC [5–7].
Recent lattice studies [8] actually indicate the existence

of a light flavor-singlet scalar bound state in QCD with a
large number of massless flavors Nf ¼ 8, which is a
candidate theory for the walking technicolor with anoma-
lous dimension near unity, as was suggested by several
lattice results [9]. Such a light scalar could be a candidate
for the technidilaton. (Note that a similar light scalar was

also found on the lattice Nf ¼ 12 QCD [10], which may be
a generic feature of the conformal dynamics, though not
walking.)
Here we note that, as we have repeatedly emphasized

[5–7,11], the technidilaton cannot be exactly massless:
Although the scale symmetry is spontaneously broken by
the condensate of the technifermion bilinear operator which
is nonsinglet under the scale transformation, it is at the
same time explicitly broken by the same condensate, giving
rise to the nonperturbative scale anomaly even if the
coupling is nonrunning in the perturbative sense. (The
coupling runs by the condensate formation due to non-
perturbative dynamics.) Thus it is this nonzero technidila-
ton mass Mϕ, arising from the nonperturbative scale
anomaly due to the chiral condensate in WTC, that can
dynamically explain the origin of the Higgs mass which is
left mysterious in the SM. This is somewhat analogous to
the η0 meson in ordinary QCD, where the chiral Uð1ÞA
symmetry is spontaneously broken by the condensate and
explicitly broken also by the anomaly [the chiral Uð1ÞA
anomaly] and hence cannot be exactly massless.
Nevertheless, it is regarded as a pseudo-NG boson à la
Witten-Veneziano having a parametrically massless limit,
i.e., the large Nc limit [with fixed ratio Nf=Ncð≪ 1Þ,
Veneziano limit] in a way that the chiral Uð1ÞA anomaly
tends to zero (only as a limit, not exactly zero).
The mass of the technidilaton as a pseudo-NG boson

comes from the nonperturbative trace anomaly θμμ ≠ 0 due
to of the chiral condensate and can be estimated through the
partially conserved dilatation current (PCDC) relation [4].
A precise ladder evaluation of MϕFϕ based on this PCDC
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relation reads [12] ðMϕFϕÞ2 ¼ −4hθμμi≃ 0.154 · NfNTC·
m4

D ≃ ð2.5 · v2EWÞ2 · ½ð8=NfÞð4=NTCÞ�, where v2EW ¼
ð246 GeVÞ2 ¼ NDF2

π ≃ 0.028 · NfNTC ·m2
D (the Pagels-

Stokar formula), with NDð¼ Nf=2Þ being the number of
the electroweak doublets for SUðNTCÞ gauge theory. Thus
the mass of the Higgs boson discovered at the LHC,
Mϕ ≃ 125 GeV≃ vEW=2, can be obtained when we take
vEW=Fϕ ¼ 2Fπ=Fϕ ≃ 1=5 ¼ 0.2 [vEW ¼ 2Fπ for NTC ¼
4; Nf ¼ 8 (the Farhi-Susskind one-family model [13])].
Amazingly, this value of Fϕ turned out to be consistent with
the LHC Higgs data [5].
Note the scaling Mϕ=vEW ∼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NfNTC

p
and Fϕ=vEW∼

ðNTCNfÞ0, which is a generic result independent of the
ladder approximation. This implies the existence of a limit,
the so-called Veneziano limit, namely, the large NTC limit
with Nf=NTC ¼ fixed (≫ 1, though) (so as to be close to
the conformal window), where the technidilaton has a
vanishing mass Mϕ=vEW → 0 in such a way that the
nonperturbative scale anomaly in units of the weak scale
vanishes hθμμi=v4EW ∼ 1=ðNfNTCÞ → 0 in that limit. Thus a
light technidilaton Mϕ=vEW ≪ 1 is naturally realized near
such a Veneziano limit, as is the case for the walking regime
of the large-Nf QCD [14].12

More recently, in the holographic WTC model [16] on
which we based this paper, it was shown [7] that with the
holographic parameter G corresponding to the gluon con-
densate, we haveMϕ=ð4πFπÞ≃ 3=ð2 ffiffiffiffiffiffi

Nc
p Þð1þGÞ−1 → 0,

withFϕ=Fπ ≃ ffiffiffiffiffiffiffiffiffi
2Nf

p
asG → ∞. This implies that the scale

symmetry is parametrically realized in a way that the
nonperturbative scale anomaly does vanish: hθμμi ¼
−ðM2

ϕF
2
ϕÞ=4 ∼ v4EW=ðNfNcÞð1þ GÞ−2 → 0, in the strong

gluon condensate limit G → ∞ due to an additional factor
1=ð1þ GÞ−2 [besides the factor 1=ðNfNcÞ]. It was also
shown [7] that in thisG → ∞ limit the technidilaton behaves
as a NG boson much lighter than other bound states, such as
the techni-ρ and the techni-a1:Mϕ=Mρ;Mϕ=Ma1 → 0. This
is indeed analogous to the flavor-singlet η0 meson which
parametrically behaves like a NG boson of the axial Uð1ÞA
symmetry à laWitten-Veneziano in the large Nc limit, as we

mentioned above. In fact it naturally realizes Mϕ ≃ Fπ ≃
125 GeV for G≃ 10 in the one-family model [7]. Besides
the lattice studies mentioned above, similar arguments for
realizing such a parametrically light dilaton are given in
somewhat different holographic contexts [17].
Once the technidilaton mass is tuned to 125 GeV, the

holography determines the technidilaton couplings (essen-
tially controlled by the decay constant Fϕ) to the SM
particles, which nicely reproduce the present LHC data for
the Higgs boson, where the best fit value of the technidi-
laton decay constant in the case of the one-family model is
vEW=Fϕ ¼ 0.2 − 0.4ðNTC ¼ 4; 3Þ (depending on the
electroweak singlet technifermion numbers) [7].
In this paper, based on the holographic model of

Ref. [7,16], we study another phenomenological issue of
the generic WTC, the technipions, which are the leftover
(pseudo-)NG bosons besides the (fictitious) NG bosons
absorbed into SM gauge bosons. They exist in a large class
of theWTC having largeNf,Nf > 2 and will be a smoking
gun of this class of WTC in the future LHC. As a concrete
realization of the WTC, we here consider the Farhi-
Susskind one-family model [13], inspired by the lattice
studies on Nf ¼ 8 QCD, which, as already mentioned,
suggest the existence of a light flavor-singlet scalar [8]
and the walking behavior as well [9]. The model consists of
NTC copies of a whole generation of the SM fermions, in
such a way that the TC sector of the model is SUðNTCÞ
gauge theory with four weak doublets, namely, eight
fundamental Dirac fermions Nf ¼ 2ND ¼ 8. The global
chiral symmetry breaking pattern is then SUð8ÞL×
SUð8ÞR=SUð8ÞV , resulting in the emergence of 63 NG
bosons. Three of them are eaten by the SM weak gauge
bosons, while 60 technipions remain as physical states. All
of the technipions become massive through the explicit
breaking of the chiral SUð8ÞL × SUð8ÞR symmetry due to
the SM gauge interactions and the extended TC (ETC)
gauge interactions, and the technipions thereby become
pseudo-NG bosons. An estimation of the masses of these
technipions is very important for the studies of collider
phenomenologies, though it is a challenging task due to the
need for nonperturbative calculations. This paper is the first
attempt to compute the technipion masses using models of
holographic dual.
In Ref. [18], the mass of the charged technipions

originating from the electromagnetic interaction and also
the analogous mass of the colored technipions were studied
in the large-Nf QCD by using the BS equation with the
improved ladder approximation with two-loop running
coupling. Furthermore, in Ref. [19], all of the masses of
technipions in the one-family model were estimated in the
ladder analysis. However, it should be noted that the results
obtained by using the improved ladder analysis, though
qualitatively good, have ambiguities in quantitative esti-
mate which come from their systematic uncertainty origi-
nating from the approximation itself. Also, a recent lattice

1One might think that such a large Nf (and NTC) would result
in the so-called S parameter problem. We shall later discuss why
this is not necessarily the case.

2A more specific computation [15] via the ladder Bethe-
Salpeter (BS) equation combined with the ladder SD equation in
the large Nf QCD implies Mϕ ∼ 4Fπ in the walking regime.
Although it is much lighter than the technivector/axial vector with
mass ∼12Fπ , it implies Mϕ ≃ 500 GeV [11] in the one-family
model, which is still somewhat larger than the LHC Higgs model.
Such a ladder BS calculation as it stands corresponds to the
flavor-nonsinglet scalar mass, totally ignoring the full gluody-
namics such as the mixing with the glueball and the effects of the
axialUð1ÞA anomaly (the instanton effects). Inclusion of such full
gluodynamics will further lower the flavor-singlet scalar meson
mass [14].
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result [9] indicates that SUð3Þ gauge theory with eight
fundamental fermions (which is exactly the case for the
one-family TC with NTC ¼ 3) possesses walking nature,
which is contrasted with the improved ladder analysis
showing that it is deep inside the chiral symmetry breaking
phase without walking signals. We would need another
nonperturbative method having a different systematic
uncertainty to make the quantitative estimate a more
reliable comparison with the experiments.
Besides from-the-first-principle calculations on the lat-

tice, one such method would be the holographic approach,
which is based on the gauge-gravity duality [20] and is
more useful for the phenomenological studies in the sense
that desirable values of phenomenologically relevant quan-
tities can be easily obtained by tuning input parameters of
the effective holographic model. In the application to the
WTC, based on the popular (bottom-up) holographic QCD
[21,22], with the setting of the anomalous dimension
as γm ¼ 0 through the bulk scalar mass parameter, we
shall engineer the walking theory by implementing the
large anomalous dimension γm ¼ 1 instead of γm ¼ 0

[7,16,23,24]. Particularly in the model having the techni-
dilaton [7,16], we can tune the input holographic param-
eters (besides the mass anomalous dimension), so as to
adjust the physical quantities, such as the mass of the
composite Higgs (technidilaton) and the weak scale as well
as the S parameter, to the experimental values. Once those
holographic parameters are fixed, other phenomenological
quantities which can be calculated from the holographic
model become predictions. In Ref. [25], by using the same
holographic model as Refs. [7,16], the hadronic leading
order contributions in QCD and WTC to the anomalous
magnetic moment (g − 2) of leptons were calculated. It was
shown that, in the case of real-life QCD, the known QCD
contributions to the (g − 2) of leptons are correctly repro-
duced; then they were applied to the calculation of the
contribution from the WTC dynamics.
Here we adopt a similar approach for the estimation of

the masses of the technipions in the one-family model of
WTC, based on the first order perturbation of the explicit
chiral symmetry breaking by the “weak gauge couplings”
of SM gauge interactions and the ETC gauge interactions
(Dashen’s formula), while the full nonperturbative contri-
butions of the WTC sector are included by the holography
(or its effective theory). This is the same strategy as the
QCD estimate of the πþ − π0 mass difference, where the
explicit chiral symmetry breaking is given by the QED
lowest order coupling, while the full QCD nonperturbative
contributions are estimated through the current correlators
by various methods, like ladder, holography, lattice, etc.
It will be shown that technipion masses in the one-family

model are enhanced due to the walking dynamics typically
to the order of Oð1Þ TeV, qualitatively the same as the
previous estimate [19], with somewhat larger value. The
large enhancement of the technipion mass has long been

noted to be a generic feature of the large anomalous
dimension [26], and it has been shown concretely in the
explicit walking dynamics, with γm ¼ 1 based on the ladder
SD equation [3] and in the large-Nf QCDwith γm ≃ 1 [18].
A striking fact is that although the explicit chiral symmetry
breakings are formally very small due to the weak gauge
couplings, the nonperturbative contributions from theWTC
sector lift all the technipion masses to the TeV region so
that they all lose the nature of the “pseudo-NG bosons.”
This is actually a universal feature of the dynamics with
large anomalous dimension, amplification of the symmetry
violation [2], as dramatically shown in the top quark
condensate model [27], based on the Nambu-Jona-
Lasinio model with large anomalous dimension γm ¼ 2.
Note that although the leftover light spectrum is just three
exact NG bosons absorbed into W=Z bosons, our theory is
completely different from the Nf ¼ 2 model with the
symmetry breaking of SUð2ÞL × SUð2ÞR=SUð2ÞV . In fact
the three exact NG bosons as well as the technidilaton are a
composite of the linear combinations of all of the Nf ¼ 8

technifermions.
Here it is to be noted that the possible back reaction of

the SM sector to the technidilaton mass through these weak
gauge couplings (top loop and EW gauge boson loops),
which is of potentially large quadratic divergence, actually
was computed in the effective theory for WTC (dilaton
chiral perturbation theory) coupled weakly to the SM
sector, the result being negligibly small due to the largeness
of Fϕ (see Sec. III B of Ref. [6]).
We also show that there is a correlation between the

technipion masses and SðTCÞ, which is the magnitude of the
contribution to the S parameter only from the TC sector,
and that the latter cannot be as large as Oð1Þ due to the
constraints from the currently available LHC data on the
masses of the technipions. This is a new constraint on
the TC dynamics alone, quite independent of the conven-
tional S parameter constraint from the precision electro-
weak measurements, which may involve not only the TC
sector but also the large contributions from another sector
through the ETC interactions in such a way that they could
largely cancel each other out, as suggested in the Higgsless
models [28].
This paper is organized as follows. In the next section,

after the one-family model is briefly reviewed, the holo-
graphic model formulated in Refs. [7,16] is applied for the
calculation of the masses of the technipions in the one-
family model. Constraints from the currently available
LHC data, as well as implications for the future collider
phenomenology, are discussed in Sec. III. Section IV is
devoted to a summary of the paper. In Appendix A, as a
check of the reliability of our calculations, we monitor the
same holographic method by applying the estimation of the
masses of colored technipions to the πþ − π0 mass differ-
ence in real-life QCD. In Appendix B, the current correlator
obtained from the holographic calculation is compared to
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that obtained from ladder BS calculation, the results being
consistent with each other.

II. HOLOGRAPHIC ESTIMATE
OF TECHNIPION MASSES

In the Farhi-Susskind one-family model [13], eight
flavors of technifermions (techniquarks Qc and technilep-
tons L) are introduced: Qc ≡ ðUc;DcÞT (where c ¼ r; g; b
is the QCD color charge) and L≡ ðN;EÞT , all having
SUðNTC) charge, which are further embedded in a larger
extended TC group, say SUðNTC þ 3Þ, by involving three
generations of SM fermions. The chiral symmetry therefore
is SUð8ÞL × SUð8ÞR, which is broken by the technifermion
condensation hF̄Fi ≠ 0 (F ¼ Q;L) down to SUð8ÞV ,
resulting in the emergence of 63 NG bosons. Three of
them are eaten by W and Z bosons, while the other 60
remain as physical states. These are called technipions.
Technipions obtain their masses through the explicit break-
ing effects (such as SM gauge interactions and extended TC
four-fermion interactions) and become pseudo-NG bosons.
The technipions are classified by the isospin and QCD
color charges, which are listed in Table I together with the
currents coupled to them, where the notation follows the
original literature [13]. For construction of the chiral
Lagrangian described by those technipions, readers may
refer to Ref. [19].
The holographic model proposed in Ref. [16] is based

on a bottom-up approach to the holographic dual of QCD
(the “hard-wall model”) [21,22], with the input of the
anomalous dimension γm ¼ 0 of the QCD case being
simply replaced by γm ¼ 1, the value expected in the
walking theory. The model incorporates the SUðNfÞL ×
SUðNfÞR gauge theory defined on five-dimensional anti–
de Sitter (AdS) space-time, which is characterized by the
metric ds2 ¼ gMNdxMdxN ¼ ðL=zÞ2ðημνdxμdxν − dz2Þ,
with ημν ¼ diag½1;−1;−1;−1�. Here, M and N (μ and ν)

represent five-dimensional (four-dimensional) Lorentz
indices, and L denotes the curvature radius of the AdS
background. The fifth direction, denoted as z, is compac-
tified on an interval, ϵ ≤ z ≤ zm, where z ¼ ϵ (which will
be taken to be 0 after all of the calculations are done) is the
location of the ultraviolet (UV) brane, while z ¼ zm is that
of the infrared (IR) brane. The model introduces a bulk
scalar ΦS which transforms as a bifundamental representa-
tion field under the SUðNfÞL × SUðNfÞR gauge symmetry;
a field which is dual to the (techni)fermion bilinear operator
F̄F. The mass parameter for ΦS, mΦS

, is thus holograph-
ically related to γm as m2

ΦS
¼−ð3−γmÞð1þγmÞ=L2. When

we apply the model for the calculations of physical
quantities in WTC models, we take γm ¼ 1. In addition,
as in Ref. [7,16] we include another bulk scalar, ΦG, dual to
the (techni)gluon condensation operator G2

μν, which has
vanishing mass parameter since its conformal dimension is
taken to be 4.3 Thanks to this additional explicit bulk scalar
field ΦG, this holographic model is the only model which
naturally improves the matching with the operator product
expansion (OPE) of the underlying theory (QCD and
WTC) for current correlators so as to reproduce the gluonic
1=Q4 term. This term is clearly distinguished from the same
1=Q4 term from chiral condensate in the case of a WTC
with γm ¼ 1.
The action of the model is given as [16]

S5 ¼ Sbulk þ SUV þ SIR; ð1Þ

where Sbulk denotes the five-dimensional bulk action,

TABLE I. The technipions and their color and isospin repre-
sentation, as well as associated currents in the one-family model
[13]. Here λa (a ¼ 1;…; 8) are the Gell-Mann matrices, τi SUð2Þ
generators normalized as τi ¼ σi=2 (i ¼ 1; 2; 3) with the Pauli
matrices σi, and the label c stands for the QCD color index
c ¼ r; g; b.

Technipion Color Isospin Current

θia Octet Triplet 1ffiffi
2

p Q̄γμγ5λaτ
iQ

θa Octet Singlet 1

2
ffiffi
2

p Q̄γμγ5λaQ

Ti
c ðT̄i

cÞ Triplet Triplet 1ffiffi
2

p Q̄cγμγ5τ
iL (h.c.)

Tc (T̄c) Triplet Singlet 1

2
ffiffi
2

p Q̄cγμγ5L (h.c.)

Pi Singlet Triplet 1

2
ffiffi
3

p ðQ̄γμγ5τ
iQ − 3L̄γμγ5τiLÞ

P0 Singlet Singlet 1

4
ffiffi
3

p ðQ̄γμγ5Q − 3L̄γμγ5LÞ

3Note that in our holographic model based on the popular static
hard-wall model [21,22], having the IR brane at zm fixed by hand
(which explicitly breaks the conformal invariance in the fifth
dimension), the dilaton/radion for stabilizing the IR brane at zm as
discussed in some holographic models [29] is set to have a large
mass of order Oð1=zmÞ ¼ several TeV’s (see Table II) and is
irrelevant to our discussions of the technidilaton. In fact our
technidilaton [7,16] is identified as a bound state of technifermion
and antitechnifermion, which holographically corresponds to the
ground state in Kaluza-Klein (KK) modes for the flavor-singlet
part of the bulk scalar ΦS, in sharp contrast to the radion and
dilaton in other holographic WTC models [17,30]. Actually, the
flavor-singlet part in ΦS mixes with a glueball-like scalar from
ΦG. However, as shown in Ref. [16], the mixing turns out to be
negligible when one requires the present holographic model to
reproduce the UV asymptotic behaviors of current correlators in
the OPE. Moreover, the lowest glueball as the lowest KK mode of
ΦG was explicitly computed to be near 20 TeV, much heavier than
the 125 GeV technidilaton as the fermionic bound state from ΦS
in the walking case (γm ¼ 1; G≃ 10) [7], which is in sharp
contrast to the QCD case (γm ¼ 0; G≃ 0.25) where both the
glueball (from ΦG) and the flavor-singlet fermionic bound state
(from ΦS) are comparably heavy ≃1.2–1.3 GeV (and may be
strongly mixed) [25].
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Sbulk ¼
Z

d4x
Z

zm

ϵ
dz

ffiffiffi
g

p 1

g25
ecGg

2
5
ΦG

�
1

2
∂MΦG∂MΦG

þ Tr½DMΦ
†
SD

MΦS −m2
ΦS
Φ†

SΦS�

−
1

4
Tr½LMNLMN þ RMNRMN �

�
; ð2Þ

and SUV;IR are the boundary actions which are given in
Ref. [7]. The covariant derivative acting on ΦS in Eq. (2) is
defined as DMΦS ¼ ∂MΦS þ iLMΦS − iΦSRM, where
LMðRMÞ≡ La

MðRa
MÞTa, with LMðRMÞ being the five-

dimensional gauge fields and Ta being the generators of
SUðNfÞ which are normalized as Tr½TaTb� ¼ δab. LðRÞMN

is the five-dimensional field strength which is defined as
LðRÞMN ¼ ∂MLðRÞN − ∂NLðRÞM − i½LðRÞM;LðRÞN �, and
g is defined as g ¼ det½gMN � ¼ ðL=zÞ10.
The five-dimensional vector and axial-vector gauge

fields VM and AM are defined as VM ¼ ðLM þ RMÞ=
ffiffiffi
2

p
and AM ¼ ðLM − RMÞ=

ffiffiffi
2

p
. It is convenient to work with

the gauge-fixing Vz ¼ Az ≡ 0 and take the boundary
conditions Vμðx; ϵÞ ¼ vμðxÞ, Aμðx; ϵÞ ¼ aμðxÞ, and
∂zVμðx; zÞjz¼zm ¼ ∂zAμðx; zÞjz¼zm ¼ 0, where vμðxÞ and
aμðxÞ correspond to sources for the vector and axial-vector
currents, respectively. We solve the equations of motion
for (the transversely polarized components of) the Fourier
transformed fields, Vμðq;zÞ¼vμðqÞVðq;zÞ and Aμðx; zÞ ¼
aμðqÞAðq; zÞ, where Vðq; zÞ and Aðq; zÞ denote the profile
functions for the bulk vector and axial-vector gauge fields.
We then substitute the solutions back into the action

in Eq. (2) to obtain the generating functional W½vμ; aμ�
holographically dual to WTC. Evaluating the UV asymp-
totic behaviors of the vector and axial-vector current
correlators ΠVðQ2Þ and ΠAðQ2Þ, with Q2 ≡ −q2, we can
thus fix the gauge coupling g5 and the parameter cG
appearing in the action to match the asymptotic forms
with the expressions expected from the OPE [16]:

L
g25

¼ NTC

12π2
; cG ¼ −

NTC

192π3
; ð3Þ

After the value of γm is taken to be 1 and a specific
number for NTC is fixed, the remaining parameters in the
holographic model are ξ, zm, and G, where ξ and G
parametrize the IR values for the vacuum expectation
values of the bulk scalars ΦS and ΦG, vSðz ¼ zmÞ and
vχGðz ¼ zmÞ [16]:

vSðzmÞ ¼
ξ

L
;

vχGðzmÞ ¼ 1þ G; ð4Þ

with vχG ¼ hχGðx; zÞi≡ hecGg25ΦGðx;zÞ=2i. Hence, once three
physical quantities are chosen to fix these parameters, we
calculate all other quantities related to WTC models. We

shall choose the technipion decay constant, Fπ , the tech-
nidilaton mass, Mϕ, and the S parameter [actually SðTCÞ
coming from only the TC sector, but denoted as S hereafter]
as those three. Fπ is taken to be Fπ ¼ 123 GeV so that it
reproduces the electroweak (EW) scale v2EW ¼ NDF2

π ¼
ð246 GeVÞ2 with ND ¼ 4, where ND is the number of the
EW doublets that exist in the model. The technidilaton
mass Mϕ is taken to be Mϕ ¼ 125 GeV in order to be
identified with the LHC Higgs boson [7]. As for the S
parameter, we take several values, namely, S ¼ ð0.1; 0.3;
1.0Þ for our study. This is because, although S ¼ 0.1 is a
phenomenologically viable benchmark value, there is a
possibility that even if the WTC dynamics itself produces
a somewhat large value of S, contributions coming from
another part of the model (such as the extended TC
interactions) could partially cancel it in a way similar to
the concept of the fermion-delocalization effect studied in
Higgsless models [28]. The values of parameters (ξ, zm, G)
which reproduce the above mentioned three physical
quantities (Fπ;Mϕ; S) for the cases of NTC ¼ 3; 4, and 5
are summarized in Table II. In the following subsections,
we estimate the masses of the technipions with the
parameter sets listed there.

A. Color-singlet technipion masses

The color-singlet technipions P0 ∼ ðQ̄γ5Q − 3L̄γ5LÞ
and Pi¼1;2;3 ∼ ðQ̄γ5σ

iQ − 3L̄γ5σiLÞ listed in Table I obtain
their masses through the extended TC-induced four-
fermion interaction,

LETC
4-fermiðΛETCÞ ¼

1

Λ2
ETC

ðQ̄QL̄L − Q̄γ5σ
iQL̄γ5σiLÞ: ð5Þ

The masses can be estimated by using the current algebra as

m2
Pi;0 ¼ 1

F2
π
h0j½QPi;0 ; ½QPi;0 ;LETC

4-fermiðΛETCÞ��j0i; ð6Þ

where QPi;0 denotes the chiral charges defined as
QPi;0 ¼ R

d3xJ0
Pi;0ðxÞ, with the corresponding currents

Jμ
P0;iðxÞ listed in Table I. The Pi and P0 masses are thus

evaluated to be [19]

TABLE II. Parameter sets which reproduce Fπ ¼ 123 GeV,
Mϕ ¼ 125 GeV, and S ¼ ð0.1; 0.3; 1.0Þ.
NTC ξ G z−1m ½TeV�
3 (0.014, 0.024, 0.044) (9.7, 9.7, 9.8) (5.2, 3.0, 1.6)
4 (0.015, 0.027, 0.048) (8.3, 8.3, 8.4) (4.7, 2.7, 1.5)
5 (0.016, 0.029, 0.052) (7.3, 7.3, 7.4) (4.4, 2.5, 1.4)
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m2
P0 ¼ 5

2

h0jF̄Fj0i2ΛETC

F2
πΛ2

ETC
;

m2
Pi ¼ 4

h0jF̄Fj0i2ΛETC

F2
πΛ2

ETC
; ð7Þ

where we used h0jL̄Lj0i ¼ 1=3h0jQ̄Qj0i≡ h0jF̄Fj0i. The
ratio m2

P0=m2
Pi ¼ 5=8 is a salient prediction of the one-

family model, independent of the walking dynamics.
The present holographic model gives a formula for the

technifermion condensate h0jF̄Fj0i renormalized at the
extended TC scale ΛETC as [7,16]

h0jF̄Fj0iΛETC
¼ −

ffiffiffi
3

p
NTC

12π2
ΛETCξð1þGÞ

z2m
: ð8Þ

This allows us to express the Pi;0 masses in Eq. (7) as
follows:

mP0 ¼
ffiffiffi
5

2

r ffiffiffi
3

p
NTC

12π2Fπ

ξð1þ GÞ
z2m

;

mPi ¼ 2

ffiffiffi
3

p
NTC

12π2Fπ

ξð1þGÞ
z2m

: ð9Þ

Using the parameter set given in Table II, we thus calculate
the Pi;0 masses to obtain the numbers listed in Table III.4

With smaller ξ values, as in Table II, which ensures the
presence of the light technidilaton [7], the technipion decay
constant Fπ can be approximated to be

Fπ ≃
ffiffiffiffiffiffiffiffiffiffi
NTC

12π2

r
ξð1þ GÞ

zm
: ð10Þ

Putting this into Eq. (9) thus leads to the approximate
formula for the Pi;0 masses:

mP0 ≃
ffiffiffi
5

2

r ffiffiffiffiffiffiffiffiffi
NTC

p
2πzm

;

mPi ≃ 2

ffiffiffiffiffiffiffiffiffi
NTC

p
2πzm

; ð11Þ

by which one can check that the numbers listed in Table III
are well reproduced.

B. Color-triplet and -octet technipion masses

The color-octet and -triplet technipions θið0Þa ∼
Q̄γ5λaσ

ið12×2ÞQ and Tið0Þ
c ∼ Q̄cγ5σ

ið12×2ÞL listed in
Table I acquire their masses by QCD gluon interactions.5

The masses can be estimated by assuming the one-
gluon exchange contribution, given as an integration over
the momentum carried by the vector and axial-vector
correlators ΠV;A:

m2
3;8 ¼

3C3;8

4πF2
π

Z
∞

0

dQ2αsðQ2Þ½ΠVðQ2Þ − ΠAðQ2Þ�; ð12Þ

with the group factor C3ð8Þ ¼ 4=3ð3Þ for the color-triplet

(-octet) technipion, Q≡ ffiffiffiffiffiffiffiffi
−q2

p
being the Euclidean

momentum. Again the ratio m3=m8 ¼ 4=9 is a salient
prediction of the one-family model, independent of the
walking dynamics. In Eq. (12) we have incorporated theQ2

dependence of the QCD gauge coupling αs.
The present holographic model gives the formulas for

ΠVðQ2Þ and ΠAðQ2Þ as [7,16]

ΠVðAÞðQ2Þ ¼ NTC

12π2
∂zVðAÞðQ2; zÞ

z

����
z¼ϵ→0

: ð13Þ

The vector and axial-vector profile functions VðQ2; zÞ
and AðQ2; zÞ are determined by solving the following
equations:

½−Q2 þ ω−1ðzÞ∂zωðzÞ∂z�VðQ2; zÞ ¼ 0;�
−Q2 þ ω−1ðzÞ∂zωðzÞ∂z − 2

�
L
z

�
2

½vSðzÞ�2
�
AðQ2; zÞ ¼ 0;

ð14Þ

with the boundary conditions VðQ2;zÞjz¼ϵ→0¼
AðQ2;zÞjz¼ϵ→0¼1. In Eq. (14) the vacuum expectation
value vSðzÞ and a function ωðzÞ are given as [7,16]

TABLE III. The predicted values of the color-singlet technipion
masses for NTC ¼ 3; 4, and 5 with Fπ ¼ 123 GeV, Mϕ ¼
125 GeV and S ¼ ð0.1; 0.3; 1.0Þ fixed.
NTC mP0 ½TeV� mPi ½TeV�
3 (2.3, 1.3, 0.72) (2.9, 1.7, 0.91)
4 (2.4, 1.4, 0.76) (3.0, 1.7, 0.96)
5 (2.5, 1.4, 0.79) (3.1, 1.8, 0.99)

4These P0;i mass values are somewhat larger than those
obtained in Ref. [19] based on an estimate helped by the
(improved) ladder SD analysis. This is because of the difference
of the size of the intrinsic mass scale obtained in both approaches:
In the present holographic model, a typical hadron mass scale
such as the dynamical mass of technifermions mF is predicted to
be ≃4πFπ ¼ O ðTeVÞ, while the mF estimated by the ladder
approximation tends to get smaller than 1 TeV. The larger mF
gives rise to the larger size of the hadron spectrum, except the
technidilaton protected by the scale symmetry [7].

5This is analogous to the electromagnetic effects on the QCD
pion. In Appendix A, we apply the same method used here for the
calculation of the πþ − π0 mass difference and show that the
holographic calculation reproduces the experimental value with
good accuracy.
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vSðzÞ ¼
ξð1þGÞ

L
ðz=zmÞ2

1þGðz=zmÞ4
logðz=ϵÞ
logðzm=ϵÞ

;

ωðzÞ ¼ L
z

�
1þG

�
z
zm

�
4
�

2

: ð15Þ

Thus ðΠV − ΠAÞ in Eq. (13) is evaluated as a function of the
holographic parameters ξ; G and the IR position zm. (For
details, see Refs. [7,16].)
Using the parameter sets given in Table II, we thus

estimate the colored technipion masses for S ¼
ð0.1; 0.3; 1.0Þ to obtain the values given in Table IV.6 In
evaluating the integral over Q2 in Eq. (12), we have
introduced the UV cutoff Λ2

UV ¼ ð4 × 106 GeVÞ2, which
is consistent with the current bound from the flavor changing
neutral current [31]. As for the QCD gauge coupling αsðQ2Þ,
the one-loop running coupling is used with taking 5, 6,
and ð6þ 2NTCÞ flavors as the number of active colored
fermions in regions Q2<m2

t , m2
t <Q2< ð4πFπÞ2, and

ð4πFπÞ2 < Q2, respectively, where ð4πFπÞ corresponds to
the size of the dynamical mass scale of the technifermions
estimated from the present holographic model [7,16]. The
value of the coupling at the Z boson mass scale, αsðm2

ZÞ ¼
0.1182 [32], is used as input, and an infrared regularization is
introduced in such a way that αsðQ2Þ takes the constant
value αsðQ2 ¼ 1GeV2Þ in the regionQ2 < 1GeV2. We have
ensured that infrared regularization dependence is negligible
for the estimation of technipion masses.
In Fig. 1, we show ðΠVðQ2Þ − ΠAðQ2ÞÞ calculated from

Eq. (13) for the case of NTC ¼ 4. General tendencies of
ðΠVðQ2Þ − ΠAðQ2ÞÞ for the case of NTC ¼ 3 and 5 are

similar to the case of NTC ¼ 4.7 In the figure, solid, dashed,
and dotted curves correspond to the cases of S ¼ 0.1, 0.3,
and 1.0, respectively. Since ðΠVðQ2Þ − ΠAðQ2ÞÞ at Q2 ¼ 0
is equal to F2

π , which is adjusted to be ð123 GeVÞ2 by
tuning the parameters so that the model reproduces
vEW ¼ 2Fπ ¼ 246 GeV, all of the curves take the same
value at Q2 ¼ 0. However, slopes of each curve at Q2 ¼ 0
are different since it is proportional to the magnitude of the
S parameter,

S ¼ −4πND
d

dQ2
ðΠVðQ2Þ − ΠAðQ2ÞÞjQ2¼0: ð16Þ

From this, we understand the general tendency of the above
results: Namely, the smaller the value of the S parameter,
the heavier the masses of technipions due to the larger
contribution in the integral of Eq. (12). This is telling us an
important thing. As we wrote earlier in this section, the EW
precision measurements do not necessarily require that the
contribution to the S parameter from the TC dynamical
sector, denoted as SðTCÞ before, is small, because the
ultimate value of the S parameter depends on how the
TC sector is embedded in the whole model together with
the SM fields. On the other hand, the correlation between
the slope of ðΠVðQ2Þ − ΠAðQ2ÞÞ atQ2 ¼ 0 and the mass of
the colored technipions shown here rather directly constrain
the contribution to the S parameter from the TC dynamics
itself if the experimental lower bound of the mass of the
colored technipion become larger. In the next section, we
will show that the current LHC bounds on the masses of
technipions are already placing the constraint that the
contribution to the S parameter from the TC sector should
not be as large as Oð1Þ.

TABLE IV. The predicted values of the color-triplet (m3) and
-octet (m8) technipion masses for NTC ¼ 3; 4, and 5 with
Fπ ¼ 123 GeV, Mϕ ¼ 125 GeV and S ¼ ð0.1; 0.3; 1.0Þ fixed.
NTC m3½TeV� m8½TeV�
3 (3.0, 1.9, 1.1) (4.6, 2.8, 1.6)
4 (2.9, 1.8, 1.0) (4.4, 2.7, 1.5)
5 (2.9, 1.7, 1.0) (4.3, 2.6, 1.5)

FIG. 1 (color online). ΠVðQ2Þ − ΠAðQ2Þ calculated from the
holographic WTC model for the case of NTC ¼ 4. Solid, dashed,
and dotted curves correspond to the cases of S ¼ 0.1, 0.3, and
1.0, respectively.

6In Ref. [19] the colored technipion masses were estimated to
be somewhat smaller than those listed in Table IV. The estimate in
Ref. [19] was based on an assumption that ðΠV − ΠAÞ in the
integrand in Eq. (12) is dominated in the UV region and hence
can be replaced with the OPE expressions from the UV cutoff
down to some IR scale ∼4πFπ . As shown in the present study,
however, such an assumption results in underestimating the
masses. This is the main reason for the difference between the
estimated size of the colored technipion masses in the present
study and Ref. [19]. Apart from this point, the present holo-
graphic estimation of the mass of all of the technipions is roughly
consistent with the ladder estimate of Ref. [19], as long as it is
compared with the parameter choice corresponding to the ladder
estimate.

7In Appendix B, the current correlator obtained from the
holographic calculation is compared to that obtained from the
ladder BS calculation.
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To summarize, we have calculated the masses of the
technipions in the one-family TC model and have shown
that those are rather heavy, raging from ∼1 to 4.6 TeV
depending on the NTC and the input value of the S
parameter. One thing which should be noted here is that
the existence of heavy technipions does not necessarily
mean that the scale of explicit breaking of chiral symmetry
is also large. Indeed, the reason why we obtained large
technipion masses here is that the contribution from the UV
energy scale is enhanced due to the large mass anomalous
dimension γm ¼ 1, though the explicit breaking itself is a
rather small perturbation. And, accordingly, we expect the
walking behavior to persist all the way down to the intrinsic
dynamical scale of the TC model, without decoupling of
any degree of freedom of the technifermion.

III. LHC PHENOMENOLOGY

As we have estimated the masses of technipions in the
one-family model, we discuss collider phenomenologies
related to the technipions in this section. First we discuss
the constraints from the currently available LHC data,
then we briefly mention implications for the future collider
phenomenology.

A. Current LHC limits on the technipions

1. Color-octet technipion θ0a
The relevant cross sections and partial decay widths

for two-body decays are read off from Ref. [19]. For the
reference values for the mass of θ0a given in Table IV, we
compute the total width of θ0a and the branching ratios to
obtain the numbers shown in Table V. Table V implies that
the digluon and tt̄ events at the LHC may provide good
probes for the discovery of θ0a. In Table VI we show the
predicted signal strengths of θ0a at the 8 TeV LHC for gg
and tt̄ channels for the reference values of the θ0a masses

listed in Table IV. These signals can be constrained by the
current LHC limits on searches for new resonances in the
dijet and tt̄ channels [33,34] as shown in Table VII. Thus
the current LHC data, especially on the tt̄ channel, have
already excluded the color-octet technipion θ0a with the
mass mθ0a

≃ 1.5 for ðNTC; SÞ ¼ ð3; 1.0Þ; ð4; 1.0Þ and with
the mass ≃1.6 TeV for ðNTC; SÞ ¼ ð5; 1.0Þ.

2. Color-singlet technipion P0

The formulas for relevant cross sections and partial
decay widths are read off from Ref. [19]. For the predicted
values for the mass of P0 listed in Table III, we calculate the
total width of P0 and branching ratios to obtain the values
shown in Table VIII. From this, one can see that the digluon
and tt̄ events at the LHC may be channels for the discovery
of P0. For each channel the predicted signal strengths of P0

at the 8 TeV LHC for the reference values of the mass listed
in Table III are displayed in Table IX. In comparison with
the current LHC limits listed in Table X, we thus see that
the color-singlet technipion P0 has already been excluded
for the masses 720, 760, and 790 GeV corresponding to the
cases of ðNTC; SÞ ¼ ð3; 1.0Þ; ð4; 1.0Þ; ð5; 1.0Þ, respectively.

3. Color-triplet technipions T0;i
c

The LHC experiments have placed stringent constraints
on the scalar leptoquarks ðLQ1;2;3Þ [35], in which the most
stringent bound on the mass has been set on the second
generation leptoquark LQ2 as

mLQ2
≥ 1070 GeV; ð17Þ

with a 100% branching ratio for the decay to μνμ þ 2j
being assumed. Though the coupling property of the color-
triplet technipion T0;i

c depends highly on the modeling of
the extended TC, we may apply the above strongest bound
on the T0;i

c masses. Comparing the reference values of the

TABLE V. The decay properties of the color-octet technipion θ0a (total width Γtot
m

θ0a
normalized to the mass and branching ratios, BR) for

NTC ¼ 3; 4, and 5 with the predicted masses (m8) listed in Table IV.

NTC mθ0a [TeV] Γtot
m

θ0a
=mθ0a BRgg (%) BRgZ;gγ (%) BRtt (%) BRbb;cc (%)

3 (4.6, 2.8, 1.6) (0.15, 0.064, 0.030) (49, 26, 11) ∼0 (51, 74, 89) ∼0
4 (4.4, 2.7, 1.5) (0.20, 0.075, 0.031) (61, 37, 16) ∼0 (39, 63, 84) ∼0
5 (4.3, 2.6, 1.5) (0.26, 0.086, 0.034) (70, 46, 23) ∼0 (30, 54, 77) ∼0

TABLE VI. The predicted production cross sections times branching ratios of the color-octet technipion θ0a at the
8 TeV LHC for the reference values of masses listed in Table IV for NTC ¼ 3; 4; 5 and S ¼ ð0.1; 0.3; 1.0Þ. The
production process is restricted to the gluon-gluon fusion (ggF), which is highly dominant at the LHC. ACMS ≃ 0.6
is the acceptance of digluon jets used at the CMS experiments [33].

NTC mθ0a
½TeV� σθ

0
a

ggF × BRðθ0a → ggÞ ×ACMS½fb� σθ
0
a

ggF × BRðθ0a → tt̄Þ½fb�
3 (4.6, 2.8, 1.6) (0.0004, 0.1, 2.2) (0.011, 7.8, 510)
4 (4.4, 2.7, 1.5) (0.0019, 0.36, 8.4) (0.034, 16, 1200)
5 (4.3, 2.6, 1.5) (0.0051, 0.96, 19) (0.059, 30, 1700)
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T0;i
c masses listed in Table IV with the bound in Eq. (17),

we thus see that the current LHC data have excluded
the color-triplet technipions T0;i

c with the masses at around
1.0–1.1 TeV, corresponding to the cases of ðNTC; SÞ ¼
ð3; 1.0Þ; ð4; 1.0Þ; ð5; 1.0Þ.

B. Implications for technirho searches

A typical signature of the dynamical EW symmetry
breaking scenario at hadron colliders is the existence of
the new vector particle, called the technirho, which is an
analogue of the ρ meson in QCD. In the case of the one-
family model, there are various kinds of technirho mesons
from the viewpoint of the SM gauge representation, in a
similar way as technipions have various SM gauge repre-
sentations. In general, technirho mesons are produced
through the mixing with the SM gauge boson which is
produced by the Drell-Yan (DY) process, though how they
decay depends on the mass relation among technirho

mesons and technipions. The mass of the technirho meson
can be calculated by the holographic method as

Mρ ≃ ð3.6; 2.1; 1.1Þ TeV for S ¼ ð0.1; 0.3; 1.0Þ: ð18Þ

(NTC dependence is negligible.) Because of the large
enhancement of the technipion masses (see Tables III
and IV), decay channels of the technirho mesons to a pair
of technipions are closed; therefore, they decay to SM
particles or a SM particle plus one technipion. In the case of
the isotriplet technirho mesons (ρ�;3), they dominantly
decay to a pair of gauge bosons or to one gauge boson plus
one technipion, like

pp→
DY

ρ� → W� þ P3 or Z þ P�;

pp→
DY

ρ3 → W� þ P∓: ð19Þ

TABLE VIII. The decay properties of the color-singlet technipion P0 (total width Γtot
mP0

normalized to the mass and branching ratios,
BR) for NTC ¼ 3; 4, and 5 with the predicted masses of P0 listed in Table III.

NTC mP0 [TeV] Γtot
mP0

=mP0 BRgg (%) BRγγ;Zγ;ZZ (%) BRtt (%) BRbb;cc;ττ (%)

3 (2.3, 1.3, 0.72) (0.033, 0.024, 0.019) (43, 21, 8) ∼0 (57, 79, 92) ∼0
4 (2.4, 1.4, 0.76) (0.047, 0.028, 0.020) (59, 33, 14) ∼0 (41, 67, 87) ∼0
5 (2.5, 1.4, 0.79) (0.066, 0.035, 0.022) (71, 45, 21) ∼0 (29, 56, 79) ∼0

TABLE IX. The production cross sections times branching ratios for P0 → gg and tt̄ channels evaluated at the 8 TeV LHC for the P0

mass listed in Table III. The production process is limited to ggF, which is highly dominant at the LHC. The signal strengths for digluon
events have been multiplied by ACMS ≃ 0.6, the acceptance of digluon jets used in the CMS experiments [33].

NTC mP0 ½TeV� σP
0

ggF × BRðP0 → ggÞ ×ACMS½fb� σP
0

ggF × BRðP0 → tt̄Þ½fb�
3 (2.3, 1.3, 0.72) (0.10, 1.2, 5.6) (3.4, 130, 1800)
4 (2.4, 1.4, 0.76) (0.20, 2.8, 15) (3.0, 150, 2500)
5 (2.5, 1.4, 0.79) (0.23, 5.0, 31) (2.5, 160, 3100)

TABLE X. The current upper limits on the resonance mass m from the digluon jet and tt̄ channels reported in ATLAS and CMS
experiments at 8 TeV read off from Refs. [33,34]. The selected values of the resonance mass correspond to the P0 masses in Table IV.

m [TeV] σggjCMS8TeV
exp [fb] σtt̄jCMS8TeV

exp [fb] σtt̄jATLAS8TeVexp [fb]

(2.3, 1.3, 0.72) (44; 350; � � �) (48, 230, 660) (72, 170, 2300)
(2.4, 1.4, 0.76) (42; 210; � � �) (45, 180, 580) (75, 160, 2100)
(2.5, 1.4, 0.79) (33; 210; � � �) (45, 180, 580) (75, 160, 1600)

TABLE VII. The current 8 TeV LHC upper limits on the resonance mass m from the digluon jet and tt̄ channels reported by the
ATLAS and CMS collaborations read off from Refs. [33,34]. The selected values of the resonance mass correspond to the θ0a mass
predicted from the present holographic model displayed in Table IV.

m [TeV] σggjCMS8TeV
exp [fb] σtt̄jCMS8TeV

exp [fb] σtt̄jATLAS8TeVexp [fb]

(4.6, 2.8, 1.6) (0.94, 17, 150) (� � � ; 38; 120) (� � � ; 74; 110)
(4.4, 2.7, 1.5) (1.1, 18, 120) (� � � ; 40; 150) (� � � ; 78; 140)
(4.3, 2.6, 1.5) (1.2, 22, 120) (� � � ; 41; 150) (� � � ; 75; 140)
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In the case of the isosinglet and color-singlet (ρ0)/color-
octet technirho mesons (ρ08), there is a possibility that those
technirhos dominantly decay to the technidilaton ðϕÞ and
the photon/gluon, like

pp→
DY

ρ0 → ϕþ γ;

pp→
DY

ρ08 → ϕþ g: ð20Þ

The detailed study of collider phenomenologies will be
presented in future publications.

IV. SUMMARY

In this paper, we calculated the masses of the technipions
in the one-family WTC model based on a holographic
approach which is known to be successful in the case of
QCD. It was shown that technipion masses are enhanced
due to the walking dynamics to as large as Oð1Þ TeV,
somewhat larger than the previous estimates [19].
Constraints from currently available LHC data, as well
as implications for the future collider phenomenology
were also discussed. In particular, we found a correlation
between the technipion masses and the technicolor con-
tribution to the S parameter, SðTCÞ, which gives a constraint
on the WTC model building solely from the current LHC
data on the technipion mass limit: SðTCÞ should not be as
large as Oð1Þ. This is a new constraint on the contribution
to the S parameter from the technicolor dynamics alone,
in contrast to the full S parameter constraint from the
precision electroweak measurements.
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APPENDIX A: πþ − π0 MASS DIFFERENCE
IN REAL-LIFE QCD

Here, we apply the same method used in Sec. II B for the
calculation of the πþ − π0 mass difference in real-life QCD.
The dominant part of the mass difference between πþ and
π0 comes from the explicit breaking of the chiral symmetry
due to the electromagnetic interaction. The formula for this
mass difference is quite similar to the one in Eq. (12): We
just have to replace αsðQ2Þ → αEM ≃ 1=137, C3;8 → 1 and
identify Fπ as the pion decay constant fπ ≃ 92 MeV,

Δm2
π ≡m2

πþ −m2
π0

¼ 3αEM
4πf2π

Z
∞

0

dQ2½ΠVðQ2Þ − ΠAðQ2Þ�: ðA1Þ

Parameters of the holographic model are chosen so that it
reproduces correct asymptotic behavior of the current
correlators and experimental values of physical quantities.
The optimal choice of the parameters is [16]

γm¼0; ξ¼3.1; G¼0.25; z−1m ¼347MeV: ðA2Þ

ΠVðQ2Þ − ΠAðQ2Þ obtained from the holographic calcu-
lation with the above input parameters is shown in Fig. 2.
By inserting this ΠVðQ2Þ − ΠAðQ2Þ into Eq. (A1), we
obtain Δm2

π ≃ ð32 MeVÞ2, in reasonable agreement with
the experimental value Δm2

π ≃ ð35 MeVÞ2 [32]. We have
also calculated Δm2

π by taking G ¼ 0 so that we could see
the effect of gluon condensation, though the result was
almost the same as in the case of G ¼ 0.25. This is
reasonable since the gluon condensation effect is expected

FIG. 2 (color online). ΠVðQ2Þ − ΠAðQ2Þ in real-life QCD
obtained from the holographic calculation with the input param-
eters shown in Eq. (A2).

FIG. 3 (color online). ΠVðQ2Þ − ΠAðQ2Þ calculated from the
holographic WTC model for the case of NTC ¼ 3, compared with
that calculated from the inhomogeneous BS equation with the
improved ladder approximation in Ref. [18]. Solid, dashed, and
dotted (red) curves correspond to the cases of S ¼ 0.1, 0.3, and
1.0 obtained from the holographic calculation, while the dash-
dotted (blue) curve is the one calculated from the ladder BS
equation. Both the vertical and the horizontal axes are normalized
by F2

π.
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to contribute to ΠVðQ2Þ and ΠAðQ2Þ in the same way,
so the effect cancels in the integration of Eq. (A1). The
result can be translated to the form Δmπ ≡mπþ −mπ0 ¼

Δm2
π

mπþþmπ0
≃ 3.7 MeV, where we used experimental values of

mπþ þmπ0 in the denominator. This is compared to the
result in Ref. [21] obtained by using the same holographic
model except that, in their calculation, no gluonic-
condensation effect is incorporated. They obtained Δmπ ≃
3.6–4.0 MeV depending on the choice of input parameter ξ,
which is in reasonable agreement with our result.

APPENDIX B: COMPARISON TO THE
LADDER BS CALCULATION

In this appendix, we compare ΠVðQ2Þ − ΠAðQ2Þ,
calculated from the holographic WTC model, with that
calculated from the inhomogeneous BS equation with the
improved ladder approximation in Ref. [18]. In Fig. 3, we
show ΠVðQ2Þ − ΠAðQ2Þ for the case of NTC ¼ 3 [solid,
dashed, and dotted (red) curves correspond to the cases
of S ¼ 0.1, 0.3, and 1.0] obtained from the holographic
calculation, along with the one calculated from the

ladder BS equation [dash-dotted (blue) curve]. Both
the vertical and the horizontal axes are normalized by
F2
π . ΠVðQ2Þ − ΠAðQ2Þ, obtained from the ladder BS

calculation shown in the figure, is the same as that shown
in Fig. 6 in Ref. [18]. See Ref. [18] for a detailed
explanation for the calculation. From the figure, we
see that the one calculated from the ladder BS equation
is similar to the one calculated from the holographic
method with S ¼ 1.0, and each gives the contribution to
the mass of the color-triplet technipion 1.2 and 1.1 TeV,
respectively. This similarity can be understood from the
fact that the ladder BS calculation show that the con-
tribution to the S parameter from one EW doublet
(denoted as Ŝ) is about 0.3 [18], while S ¼ 1.0 in the
one-family model means Ŝ ¼ 0.25 since the one-family
model has four EW doublets. The slope of ΠVðQ2Þ −
ΠAðQ2Þ is proportional to the magnitude of Ŝ, thus the
similarity between the ladder calculation and the holo-
graphic calculation with S ¼ 1.0 (Ŝ ¼ 0.25) is a confir-
mation of the consistency between the two calculation
methods.
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