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We determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the
presence of nondegeneracy between the up and down quarks and discretization errors, using Wilson and
twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory
(which occurs for sufficiently large nondegeneracy) is continuously connected to the Aoki phase of the
lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push
simulations with physical masses closer to either the CP-violating phase or another phase not present in the
continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these
phases.
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I. INTRODUCTION

It has long been known, in the case of three nondegenerate
light quarks, that there is a transition to a CP-violating phase
when one of the quark masses becomes sufficiently negative
[1]. For example, using leading-order (LO) SU(3) chiral
perturbation theory (χPT), and fixing md and ms, the
transition occurs when mu ¼ −mdms=ðmd þmsÞ [2]. The
neutral pion becomes massless on the transition line, and
within thenewphase the chiral order parameter, hΣi, becomes
complex. For physical QCD this is mostly a curiosity, since
increasingly accurate determinations of the quark masses
indicate clearly that all are positive relative to one another
[3,4]. Thus physical QCD, despite the nondegeneracy of the
up and down quarks, lies away from the critical line.
For lattice QCD (LQCD), however, the situation is less

clear. The position of the transition can be shifted closer to
the physical point by discretization effects. Indeed, it is well
known that, with degenerate Wilson-like1 fermions, dis-
cretization effects can lead to the appearance of a new phase
—the Aoki phase—in which isospin is spontaneously
broken and hΣi is complex [5,6]. In addition, advances
in simulations now allow calculations to be done at the
physical light-quark masses, including, very recently, the
physical nondegeneracy between up and down quarks [7].
It is thus natural to ask how, in LQCD with nondegenerate
quarks, discretization effects change the position and nature
of the CP-violating phase. This question is particularly
acute in the case of twisted-mass fermions, where addi-
tional symmetry breaking is explicitly included.
In this paper we address this question for Wilson-like

and twisted-mass lattice fermions. We do so using χPT,

specifically the versions of χPT in which the effects of
discretization have been included. Our work also allows us
to address a related issue: in what way is the CP-violating
phase of the continuum theory related to the Aoki phase of
the lattice theory?2

Since twisted-mass QCD is only defined for even
numbers of fermion flavors [9], a necessary step for our
work is to rephrase the continuum SU(3) χPT analysis of
Ref. [2] in the two-flavor theory obtained by integrating out
the strange quark. This requires that the contributions of
one of the next-to-leading-order (NLO) low-energy coef-
ficients (l7) be treated as parametrically larger than the
others. Thus we are led to a somewhat nonstandard power
counting, but one which reproduces the SU(3) phase
diagram, including the CP-violating phase, within SU(2)
χPT. This approach has been used before along the line
mu ¼ −md [10]; here we extend the analysis to arbitrary
mass splitting. Similar work has also been done recently in
the context of an effective theory including the η
meson [11].
The organization of this article is as follows. In Sec. II we

briefly recall the results for the phase structure and pion
masses at LO in SU(2) and SU(3) χPT, and show how they
differ. Section III describes the matching of SU(2) and
SU(3) χPT. In Sec. IV, we recall briefly how discretization
effects are incorporated in χPT for degenerate Wilson-like
fermions, and the resulting phase structure. We then present
our first new results: the phase diagram including both
discretization effects and nondegeneracy. In Sec. V we
move onto twisted-mass fermions, focusing first on the
phase diagram and pion masses in the case of maximal
twist, where most simulations have been done because of
the property of automatic OðaÞ improvement [9]. It is
nevertheless interesting to understand how the results with*dhorkel@uw.edu

†srsharpe@uw.edu
1“Wilson-like” indicates that the analysis holds for both

Wilson fermions and various improvements thereof, in particular
for nonperturbatively OðaÞ-improved Wilson fermions.

2This issue has been raised previously by Mike Creutz and his
conjectured answer is confirmed by the present analysis [8].
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untwisted and maximally twisted fermions are connected,
and so, in Sec. VI, we discuss the phase diagram for
general twist.
Up to this stage, our analysis is done using the LO terms

due to the average quark mass, discretization effects and
nondegenerate quark masses. To understand how robust the
results are we consider, in Sec. VII, the impact of including
the next higher-order terms in our power counting. Some
conclusions are collected in Sec. VIII.

II. CONTINUUM VACUUM STRUCTURE
AT LEADING ORDER IN χPT

In this section we review the vacuum structure predicted
by LO χPT for both two and three light flavors. The LO
chiral Lagrangian in Euclidean space-time is, for any
number of light flavors,

Lχ ¼
f2

4
tr½∂μΣ∂μΣ† − ðχΣ† þ Σχ†Þ�; ð1Þ

where Σ ∈ SUðNfÞ and χ ¼ 2B0M (with M the mass
matrix), while f ∼ 92 MeV and B0 are low-energy con-
stants (LECs).
For two light flavors the chiral order parameter can be

parametrized as hΣi ¼ expðiθn̂ · ~τÞ. Although the mass
matrix M ¼ diagðmu;mdÞ has both singlet and triplet
components, the leading-order potential depends only on
the former

VSUð2Þ;LO¼−
f2

4
tr½χΣ†þΣχ†�¼−

f2

2
cosθtr½χ�¼−f2cosθχl:

ð2Þ

In the last step we have defined the convenient quantity
χl ¼ B0ðmu þmdÞ. The potential is minimized at θ ¼ 0 if
χl > 0 and at θ ¼ π if χl < 0, resulting in the phase
diagram sketched in Fig. 1. In terms of the behavior of the
condensate, this is a first-order phase transition at which the

condensate flips sign. This characterization is somewhat
misleading, however, because the two sides of the transition
are related by a nonanomalous flavor rotation. Such a
transformation can change M → −M and Σ → −Σ, while
leaving physics unchanged. Thus by adding an extra
dimension to the phase diagram (as we will do later)
one finds that the two sides are connected.
Expanding the potential about its minimum using

Σ ¼ hΣi expði~π · ~τ=fÞ, we find the standard LO result
for the pion masses, m2

π ¼ jχlj. These thus vanish along
the phase transition line. That they vanish at the origin
follows from Goldstone’s theorem due to the spontaneous
breaking of the exact axial symmetry. That they vanish
away from the origin along the transition line is not
expected from symmetry arguments, and indeed holds,
as we will see, only at LO in χPT.
The phase diagram of the three-flavor theory has a more

interesting structure, as elucidated most extensively by
Creutz [2]. Since ms ≫ mu;md in nature, it is natural to
hold ms fixed and vary the other two quark masses. The
resulting phase diagram at LO is sketched in Fig. 2. The
“normal” region, in which hΣi ¼ 1, ends at a transition line
along which mπ0 vanishes. This occurs (for fixed ms > 0)
when one of the other masses, saymu, becomes sufficiently
negative. The explicit expression for the neutral pion mass
in this phase is

m2
π0SUð3Þ ¼

2

3
B0

�
mu þmd þms

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

u þm2
d þm2

s −mumd −mums −mdms

q �
;

ð3Þ

which vanishes when mu ¼ −mdms=ðmd þmsÞ. The
charged pions remain massive throughout the normal phase
except at the origin.

FIG. 1 (color online). Phase diagram at lowest order in SU(2)
χPT.

FIG. 2 (color online). Phase diagram at lowest order in SU(3)
χPT with fixed strange-quark mass. Equations for the positions of
phase transition lines are given in the text.
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Moving outside the normal phase one enters a
CP-violating phase in which the condensate is complex.
The explicit form is

hΣi ¼

0
B@

exp iϕ 0 0

0 exp iψ 0

0 0 exp−iðϕþ ψÞ

1
CA ð4Þ

where the phases satisfy

mu sinϕ ¼ md sinψ ¼ −ms sin ðϕþ ψÞ: ð5Þ
In this case there is a genuine phase transition at the
boundary. It is of second order: hΣi is continuous, and a
single pion becomes massless.
The phase diagram is symmetric under both mu↔md

interchange and inversion through the origin (with ms
fixed). Inversion is brought about by a nonanomalous axial
isospin transformation, which also changes the condensate
as shown in Fig. 2. We note that the CP-violating region is
of finite width.3 Specifically, as one moves away from the
origin along the mu ¼ −md diagonal, the width of this
region grows proportionally to ðmu −mdÞ2=ms.
As the figure shows, there are additional phase bounda-

ries in the second and fourth quadrants. These occur,
however, when jmuj; jmdj > jmsj, and thus lie far from
the region of physical interest. In the rest of our analysis,
we consider only the region in which jmuj; jmdj ≪ jmsj,
and thus zoom in on the vicinity of the origin in Fig. 2.

III. MATCHING SU(2) AND SU(3) χPT FOR
NONDEGENERATE QUARKS

If we choose the quark masses to satisfy jmuj;
jmdj ≪ jmsj ≪ ΛQCD, then the properties of pions can be
simultaneously described by both SU(2) and SU(3) χPT, and
the predictions of the two theories must agree. The results of
the previous section show that this is not the case if we work
to LO in both theories—the CP-violating phase is absent in
SU(2) χPT. The discrepancy is resolved by noting that the
CP-violating phase has a width proportional to ðmu −mdÞ2,
indicating that it arises at NLO in SU(2) χPT. In this section
we recall how the two theories are matched, and show how
the CP-violating phase can then be obtained in SU(2) χPT
when including the resulting NLO term.
To do the matching, one considers quantities accessible

in both SU(2) and SU(3) theories, namely pion masses and
scattering amplitudes. Expanding the LO SU(3) result in
powers of mu;d=ms, the leading terms match with the LO
SU(2) result, while the first subleading terms match with an
NLO SU(2) contribution. The subleading terms in the

SU(3) results are in fact proportional to ðmu −mdÞ2,
because they arise from intermediate η propagators and
involve two factors of the π0 − η mixing amplitude. The
only source of such mass dependence at NLO in the SU(2)
theory is the l7 term in the NLO potential

VSUð2ÞNLO ¼ −
l3

16
½trðχ†Σþ Σ†χÞ�2 þ l7

16
½trðχ†Σ − Σ†χÞ�2:

ð6Þ
Writing χ as

χ ¼ χl1þ ϵτ3; with ϵ ¼ B0ðmu −mdÞ; ð7Þ
we see that only the ϵ part contributes to the l7 term. Thus
this term leads to contributions proportional to ðmu −mdÞ2.
Other NLO contributions (i.e. those proportional to differ-
ent NLO LECs or coming from loops) do not have this
mass dependence.
The simplest quantity with which to do the matching is

the neutral pion mass, and this was used to determine the
value of l7 in Ref. [12]. The LO SU(3) result [given in
Eq. (3) above] expands to

m2
π0SUð3ÞLO ¼ χl −

ϵ2

4B0ms
þO

�
ϵ2mu;d

B0m2
s

�
: ð8Þ

The SU(2) result at NLO is

m2
π0SUð2ÞNLO ¼ χl −

2l7ϵ
2

f2
þO

�
χ2l
Λ2
χ

�
; ð9Þ

where Λχ ¼ 4πf is the chiral scale. The χ2l contributions
arise from terms in the NLO chiral Lagrangian (including
l3) as well as from chiral logarithms. Equating these two
results one finds [12]

l7 ¼
f2

8B0ms
: ð10Þ

One can show that with this value for l7, contributions to
all pion n-point amplitudes proportional to ϵ2=ms agree in
the two theories.
We stress that in this matching we are not taking into

account “standard” NLO contributions, i.e. those sup-
pressed relative to LO results by factors of mu;d=ΛQCD ∼
ðmπ=ΛχÞ2 (up to logarithms). Such contributions arise in
both SU(3) and SU(2) χPT and must be included in a full
NLOmatching. This is not necessary for our purposes since
such terms lead to small isospin-conserving corrections to
the vacuum structure and pion masses—they do not
introduce qualitatively new effects. By contrast, the ϵ2

terms that we keep lead to isospin breaking, and are the
leading-order contributions which do so. Indeed, for this
reason l7 is not renormalized at this order, since, as already
noted, one-loop chiral logarithms do not contain a term

3The theory along the mu ¼ −md diagonal is identical to that
with mu ¼ md at θQCD ¼ π, and has been discussed extensively
in the literature. In particular, a χPT analysis of this theory has
been given in Ref. [10].
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proportional to ϵ2. Thus it is consistent to work with the
classical potential, rather than the one-loop effective
potential. This is not the case for other LECs such as
l3, which are renormalized and thus scale dependent [12].
We can formalize this by noting that standard NLO

contributions are parametrically smaller than the terms we
keep by a factor of ms=ΛQCD. This allows the development
of a consistent power-counting scheme in which the ϵ2

terms are larger than generic m2 contributions.4 We discuss
this in the following section. To be consistent we should
also account for NLO contributions in SU(3) χPT of size
ms=ΛQCD relative to LO terms. These, however, lead only
to a renormalization of the SU(2) constants f and B0

relative to their SU(3) counterparts. Since we work hence-
forth entirely in the SU(2) theory, we choose to leave this
renormalization implicit.
We now show that the inclusion of the l7 term leads to

the same phase diagram as found in the LO SU(3) analysis.
Given the matching result Eq. (10), we always assume
l7 > 0 in the following. Using hΣi ¼ expðiθn̂ · ~τÞ, the
potential becomes

VSUð2Þ ¼ −f2ðχl cos θ þ clϵ2n23sin
2θÞ; ð11Þ

where cl ¼ l7=f2. Since l7 > 0, the potential is always
minimized by choosing jn3j ¼ 1. Since n3 ¼ 1 and n3 ¼
−1 are related by changing the sign of θ, we can, without
loss of generality, set n3 ¼ 1. The resulting potential is
stationary with respect to θ at the “normal” values θ ¼ 0
and π, and in addition at

cos θ ¼ χl
2clϵ2

: ð12Þ

This new stationary value always leads to the global
minimum of the potential where it is valid, i.e. when
j cos θj ≤ 1. Thus, for fixed ϵ, there is a new phase for
−2clϵ2 ≤ χl ≤ 2clϵ2, within which hΣi is complex and
CP is violated. Although cos θ is fixed, the sign of θ is not,
with the two possible vacua being related by a CP trans-
formation. This phase matches continuously onto the
normal phases with cos θ ¼ �1 at its boundaries. Thus
the phase transition is of second order.
The resulting phase diagram is sketched in Fig. 3. This is

not only qualitatively similar to the central portion of the
LO SU(3) phase diagram (Fig. 2), but is in fact in complete
quantitative agreement at the appropriate order. For exam-
ple, expanding the SU(3) result for the phase boundary,

mu ¼ −md=ð1þmd=msÞ, in powers of mu;d=ms, and
keeping only the leading nontrivial term, one finds that
the boundary occurs at χl ¼ ϵ2=ð4B0msÞ. This agrees with
the SU(2) result χl ¼ 2l7ϵ

2=f2 using the matching con-
dition (10). We have also checked that the pion masses
agree throughout the phase plane. We do not quote results
for pion masses here, since they are included in the more
general analysis presented below.
The fact that the CP-violating phase can be reproduced

within SU(2) χPT was first explained by Smilga [10]. His
work considered only the case mu ¼ −md, which, as noted
above, is the same as mu ¼ md with θQCD ¼ π. The
analysis presented here gives the (very simple) generali-
zation to arbitrary nondegenerate quark masses. There is
also a close relation between our analysis and the recent
work of Aoki and Creutz [11]. These authors do not use
χPT per se, but rather an effective theory containing both
pions and the η meson. If the η were integrated out then
their theory would reduce to that we consider here,
including the l7 term, plus small corrections. We think,
however, that it is preferable to work in a strict effective
theory framework, in which only the light particles are kept
as dynamical degrees of freedom.

IV. INCLUDING DISCRETIZATION EFFECTS
FOR WILSON-LIKE FERMIONS

In this section we recall how lattice artifacts can be
incorporated into χPT, and study their impact on the phase
structure described above at leading nontrivial order. We do
this for untwisted Wilson-like fermions—twist will be
considered in the following sections. The method leads
to the chiral effective theory describing lattice simulations
close to the continuum limit. We begin by recalling the
analysis for degenerate quarks and then add in nondege-
neracy. We work entirely in the two-flavor theory obtained
after the strange quark (and the charm quark too, if present)

FIG. 3 (color online). Phase diagram from SU(2) χPT including
the l7 term with l7 > 0. Equations for the positions of phase
transition lines are given in the text.

4The numerical basis for this power counting is not very
strong. For example, l7 and l3ðμÞ are comparable in size for
reasonable values of the scale μ. Thus the numerical size of the
standard NLO corrections we are dropping may be comparable to
those proportional to ϵ2 that we are keeping. The key point,
however, is that we are interested in qualitatively new effects,
rather than a precise quantitative description.
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has been integrated out. For untwisted Wilson-like fer-
mions (unlike for twisted-mass fermions), the analysis
could also be carried out within SU(3) χPT, but there is
no advantage to doing so as the dominant long-distance
dynamics lies in the SU(2) sector.
Both quark masses and discretization effects break chiral

symmetry, and it is important to understand the relative size
of these effects. Our focus here is on state-of-the-art
simulations, which have mu;d close to their physical
values (mu ≈ 2.5 MeV and md ≈ 5 MeV in the modified
minimal-
subtraction scheme at μ ¼ 2 GeV), and lattice spacings
such that 1=a ≈ 3 GeV. In this case, the relative size of
discretization effects is characterized by aΛQCD ≈ 0.1
(using ΛQCD ¼ 300 MeV), so that

aΛ2
QCD ≈ 30 MeV ≫ mu;d ≈ a2Λ3

QCD ≈ 3 MeV: ð13Þ

The appropriate power counting is thus (in schematic
notation) a2 ∼m. This is the Aoki regime, in which the
competition between discretization and mass effects leads
to an interesting phase structure [5,6].
Discretization effects can be incorporated into χPT

following the method of Ref. [6]. For unimproved (or
partially improved) Wilson fermions, the dominant discre-
tization effect is proportional to a. In the pion sector,
however, this contribution can be absorbed entirely into a
common shift in all quark masses [6], and we assume below
that this shift has been made. The first nontrivial discre-
tization effect is that proportional to a2. This changes the
LO potential to [6]

Va2 ¼ −
f2

4
trðχ†Σþ Σ†χÞ −W0½trðÂ†Σþ Σ†ÂÞ�2: ð14Þ

Here we are using the notation of Ref. [13], in which Â ¼
2W0a1 is a spurion field, with dimensions of mass squared,
and is proportional to the identity matrix in flavor space.
W0 and W0 are new LECs.
The analysis of the vacuum structure for degenerate

quarks was given in Ref. [6]. Since Va2 is independent of
the ϵ, the results are unchanged at LO in the presence of
nondegeneracy. To determine the vacuum we must minimize

Va2 ¼ −f2ðχl cos θ þ w0cos2θÞ; ð15Þ

where w0 ¼ 64W0W2
0a

2=f2. For w0 < 0, the analysis is
essentially the same as that for VSUð2Þ with l7 > 0, as given
in the previous section. Stationary points are at cos θ ¼ �1
and

cos θ ¼ −
χl
2w0 ; ð16Þ

with the latter being the global minimum where valid
(j cos θj ≤ 1). This leads to the phase diagram shown in
Fig. 4, with an Aoki phase [5] separated from the normal

phases by second-order transitions at jχlj ¼ −2w0. Strictly
speaking, the name “Aoki phase” has been applied previ-
ously only on the diagonal mu ¼ md axis, but in the present
approximation it holds also for nondegenerate quarks.
Within the Aoki phase the potential is independent of the
direction of the condensate, n̂, so that there are two massless
Goldstone bosons, the charged pions. Parity and flavor are
violated within this phase. With the canonical choice of the
direction of the condensate, n̂ ¼ ẑ, CP is also violated.
For w0 > 0, the global minimum lies at cos θ ¼ signðχlÞ,

with a first-order transition at χl ¼ 0. The phase diagram is
thus identical to that in the continuum (Fig. 1). The only
difference is that here the yellow line indicates a genuine
first-order transition, since on the lattice there are no
symmetries connecting the two sides. This case is referred
to as the first-order scenario [6].
We are now ready to combine the effects of nondege-

neracy with discretization errors. This requires that we
adopt an appropriate power-counting scheme for the
relative importance of ϵ2, m and a2, where m indicates a
generic quark mass. Recalling that ϵ2 terms are enhanced
compared to generic m2 terms we use

m∼a2> ϵ2>ma∼a3>aϵ2>m2∼ma2∼a4…: ð17Þ

This can be thought of as treating ϵ ∼ a1þδ, with
0 < δ < 1=2. The utility of this power counting is that it
allows us to first add the ϵ2 term to those proportional to m
and a2, and then consider terms of order ma ∼ a3 at a later
stage (in Sec. VII below). Indeed, we could, for the
purposes of this section, set δ ¼ 0, and treat the ϵ2 term
as of LO. We do not do so, however, since this would
require us to later treat aϵ2 terms as of the same size as
those proportional to ma ∼ a3. Nevertheless, we will
loosely describe the inclusion of m, a2 and ϵ2 terms as
constituting our LO analysis, while treating the ma ∼ a3

FIG. 4 (color online). Phase diagram in LO SU(2) χPT
including discretization effects with w0 < 0 (Aoki scenario).
Equations for the positions of phase transition lines are given
in the text.
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terms as being of NLO. Terms of yet higher order will not
be considered.
With the power counting in hand, we can extend the

inclusion of discretization errors into χPT to incorporate the
effects of nondegeneracy. This leads to the appearance of
new operators in the Symanzik effective Lagrangian, and
thus, potentially, to new terms in the chiral Lagrangian. The
constraints on additional operators in the Symanzik
Lagrangian in the presence of nondegeneracy were worked
out in Ref. [14]. Using their results within our power-
counting scheme, we find that the lowest-order new
operator is ∼aϵ2ψ̄ψ . This is, however, of higher order
than we consider here.5 All other operators are of yet higher
order. Thus, at the order we work, nondegeneracy only
enters our calculation through the continuum l7 term. The
LO potential thus becomes

Va2;l7 ¼ −
f2

4
trðχ†Σþ Σ†χÞ −W0½trðA†Σþ Σ†AÞ�2

þ l7

16
½trðχ†Σ − Σ†χÞ�2: ð18Þ

We stress that it is self-consistent to determine the vacuum
structure and pion masses from a tree-level analysis of
Va2;l7 since loop effects only come in at Oðm2; ma2; a4Þ.
In terms of the parameters of hΣi, the potential is now

given by

−
Va2;l7

f2
¼ χl cos θ þ clϵ2n23sin

2θ þ w0cos2θ: ð19Þ

As before, we can set n3 ¼ 1without loss of generality. The
stationary points are at cos θ ¼ �1 and

cos θ ¼ χl
2ðclϵ2 − w0Þ : ð20Þ

The latter minimizes the potential if clϵ2 − w0 > 0 and is
valid for j cos θj ≤ 1. This results in the phase diagrams of
Figs. 5(a) and 5(b) for w0 < 0 and w0 > 0, respectively. In
the former case, corresponding to the Aoki phase for
degenerate quarks, the second-order transition lines lie at

χl ¼ �2ðclϵ2 − w0Þ: ð21Þ

Thus the width of the phase grows as jϵj increases.
Furthermore, comparing to Fig. 4, we see that the continuum
CP-violating phase and the Aoki phase are continuously
connected.6 The only subtlety in this connection is that the
condensate definitely points in the n3 direction for ϵ ≠ 0 (i.e.
the direction picked out by the nondegenerate part of the
mass term), whereas for ϵ ¼ 0 the direction is arbitrary.
In the first-order scenario, Fig. 5(b), the first-order tran-

sition along themu ¼ −md line reaches only to clϵ2 ¼ w0, at
which point the CP-violating phase appears. The second-
order transition lines are then given by jχlj ¼ 2ðclϵ2 − w0Þ,
i.e. by the same equation as in the Aoki scenario.
We next calculate the pion masses throughout the phase

plane, expanding about the vacuum as

Σ ¼ expðiθτ3Þ expði~π · ~τ=fÞ: ð22Þ

Outside the CP-violating phase, we find

m2
π0
¼ jχlj − 2ðclϵ2 − w0Þ; ð23Þ

m2
π� ¼ m2

π0
þ 2clϵ2; ð24Þ

while within the CP-violating phase we have

FIG. 5 (color online). Phase diagrams including effects of both discretization and nondegeneracy. Darker (blue) and lighter (yellow)
lines indicate transitions of, respectively, second and first order. Equations for the positions of phase transition lines are given in the text.
(a) Aoki scenario (w0 ≤ 0). (b) First-order scenario (w0 > 0).

5Furthermore, when mapped to the chiral Lagrangian, it leads
to contributions which can be absorbed by making the untwisted
mass m have a weak dependence on ϵ. Thus it does not lead to
new phases, but only to a small distortion of the phase diagram. 6This result is in agreement with Creutz’s conjecture [8].
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m2
π0
¼ 2ðclϵ2 − w0Þsin2θ; ð25Þ
m2

π� ¼ 2clϵ2; ð26Þ
where θ is given in Eq. (20). These results are plotted vs χl
for various characteristic choices of ϵ and w0 in Fig. 6.

Figures 6(a) and 6(b) show the continuum results for
degenerate and nondegenerate masses, respectively. The
neutral pion mass vanishes along the second-order tran-
sition line, as expected. The full degeneracy at χl ¼ 0 is
due to the fact that the theory regains flavor symmetry (with

FIG. 6 (color online). Pion masses for untwisted Wilson fermions including the effects of both discretization (w0 ≠ 0)
and nondegeneracy (ϵ ≠ 0). m2

π0
is shown by solid (blue) lines, and m2

π� is shown by dashed (red) lines. Explicit expressions
for the masses are given in the text. Vertical scales differ between the figures. (a) w0 ¼ clϵ2 ¼ 0. (b) w0 ¼ 0, clϵ2 > 0.
(c) w0 < 0, clϵ2 ¼ 0. (d) w0 > 0, clϵ2 ¼ 0. (e) w0 < 0, clϵ2 > 0. (f) clϵ2 ¼ w0 > 0. (g) clϵ2 > w0 > 0.
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θQCD ¼ π) at this point. A characteristic feature of the
spectrum at this order is that the charged pion mass is
independent of χl within the CP-violating phase. This
holds also when discretization errors are included.
Figures 6(c) and 6(d) show the spectrum for degenerate

quarks with discretization errors included, respectively, for
the Aoki and first-order scenarios, reproducing the results
of Ref. [6].
Our new results are those of Figs. 6(e)–6(g), which

include the effects of both discretization errors and
nondegeneracy. In this case the charged and neutral pion
masses differ in general. Figure 6(e) shows the behavior
in the Aoki scenario, where mπ0 vanishes on the phase
transition lines, and rises above mπ� in the central region
of the CP-violating phase. There are thus two values of
χl where all pions are degenerate, but these are acci-
dental degeneracies and not indicative of any symmetry.
For the first-order scenario Fig. 6(f) shows the spectrum
when ϵ is chosen so that the plot passes through the end
point of the second-order transition line, while Fig. 6(g)
shows what happens as one moves through the CP-
violating phase. In this case, there are no degenerate
points.
Simulations using Wilson-like fermions at physical

masses, including isospin breaking, have recently begun
[7]. What is the significance of our results for such
simulations? The main issue is whether discretization
effects can move the CP-violating phase such that it lies
closer to, or even includes, the physical point. Clearly one
wants to avoid simulating in this phase, since it has a
different vacuum structure from the continuum theory. But
even lying close to a second-order transition could lead to
algorithmic issues due to critical slowing down. What we
have found is that the phase does move closer to the
physical point in the Aoki scenario [Fig. 5(a)]. In this
scenario, the CP-violating phase now includes a region of
positive quark masses. On the other hand, for the first-order
scenario, discretization effects move the CP-violating
phase away from the physical point. A positive aspect of
our results is that discretization errors lead only to a overall
shift in pion masses (outside of the CP-violating phase), so
that the difference m2

π� −m2
π0

takes its continuum value
2clϵ2 in both scenarios.

V. TWISTED-MASS FERMIONS AT
MAXIMAL TWIST

In this section we extend the previous analysis to
twisted-mass fermions [15] at maximal twist. Such fer-
mions have the important practical property of automatic
OðaÞ improvement [9]. They are being used to simulate
QCD with quarks at or near their physical masses [16,17],
and isospin breaking is now being included [18]. The main
question we address here is the same as for untwisted
fermions: how do discretization effects change the con-
tinuum phase structure and pion masses?

In the continuum, twisted-mass fermions are obtained by
a nonanomalous axial rotation,

LQCD ¼ ψ̄ðDþml þ ϵlτ3Þψ
→ ψ̄ðDþmleiγ5τ1ω þ ϵlτ3Þψ
¼ ψ̄ðDþmþ iγ5τ1μþ ϵlτ3Þψ ; ð27Þ

with ml¼ðmuþmdÞ=2, ϵl¼ðmu−mdÞ=2, m¼mlcosω,
μ ¼ ml sinω, and ω is the twist angle. Conventionally,m is
called the untwisted (average) mass and μ the twisted
(average) mass. Choosing the twist in a direction orthogo-
nal to τ3 leaves the ϵl term unchanged. In the continuum
this is a convenience, but not a necessity. Once one
discretizes D with a Wilson term, however, it is mandatory
to twist in a direction orthogonal to τ3 if one wants to keep
the fermion determinant real [19].7 By convention, this
direction is chosen to be τ1. The rescaled mass matrix that
enters χPT is now

χ ¼ χleiτ1ω þ ϵτ3

¼ χl cosω1þ iχl sinωτ1 þ ϵτ3

¼ m̂1þ iμ̂τ1 þ ϵτ3; ð28Þ
and is no longer Hermitian. Here we have defined

m̂¼ 2B0m¼ χl cosω and μ̂¼ 2B0μ¼ χl sinω ð29Þ
following Ref. [13].
To determine the effective chiral theory for twisted-mass

lattice QCD the first step is to determine the additional
operators in the Symanzik Lagrangian that are induced by
twisting. As in the untwisted case, the form of the allowed
operators can be obtained from the analysis of Ref. [14],
which includes both twist and nondegeneracy. In fact, since
μ̂2 is smaller than ϵ2 in our power counting, the inclusion of
twist does not change the result for the untwisted case,
namely that the lowest-order new operator is ∼aϵ2 and of
higher order than we are working. Thus at LO the extension
χPT to include twist and discretization errors is accom-
plished by simply using the twisted χ of Eq. (28) in the
potential Va2;l7 of Eq. (18).
Using our standard parametrization of hΣi this gives

−
Va2;l7

f2
¼ m̂ cos θ þ μ̂n1 sin θ þ clϵ2n23sin

2θ þ w0cos2θ:

ð30Þ

7In Ref. [18], which studied twisted-mass nondegenerate
fermions, the twist was chosen in the τ3 direction. This leads
to a complex fermion determinant, which is avoided in practice
by perturbing at linear order around the isospin-symmetric theory.
Because the twist is in the τ3 direction, our present results do not
apply to these simulations. We will discuss the generalization to
τ3 twist (along with the inclusion of electromagnetism) in an
upcoming work [20].
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We focus in this section on the case of maximal twist,
m̂ ¼ 0, where simple analytic results can be obtained. Even
with this simplification, we note that there is competition
between terms in three directions in Σ: the twist direction
n1, the nondegeneracy direction n3, and the identity
direction (w0 term). Thus we can expect a more complicated
phase structure than for untwisted Wilson fermions.
Furthermore, since nondegenerate twisted-mass quarks
completely break the continuous SU(2) flavor symmetry,
we expect, in general, that all three pion masses will differ.
We find the phase diagrams shown in Fig. 7. Note that

we are now plotting the average mass along the vertical axis
and the difference horizontally. We do this because μ̂ and ϵ
are proportional to parameters that enter the twisted-mass
lattice action. To compare to the earlier plots, one should
rotate those of Fig. 7 by 45° in a clockwise direction. We
see that, at maximal twist, it is the Aoki scenario which is
preferred, in the sense that the CP-violating phase does not
move closer to the physical point. Indeed, the phase
diagram in this scenario is identical to that in the continuum

(Fig. 3), with the replacement χl → μ̂. In the first-order
scenario, by contrast, there is an additional phase [colored
green in Fig. 7(b)] which brings lattice artifacts closer to the
physical point. Thus the relative merits of the two scenarios
are interchanged compared to the untwisted case.
To understand the phase diagrams we first recall the

result for the degenerate case, ϵ ¼ 0, which has been
studied in Refs. [13,21,22]. These works found, for large
jμ̂j, that the condensate is aligned with the twist, i.e. n1 ¼ 1
and sin θ ¼ signðμ̂Þ. This is as in the continuum. In the
Aoki scenario (w0 < 0), this alignment holds for all μ̂, and
there is a first-order transition at μ̂ ¼ 0 where sin θ changes
sign. In the first-order scenario (w0 > 0), there are second-
order transitions at the two points μ̂ ¼ �2w0, at which one
of the pion masses vanishes. For jμ̂j < 2w0 the condensate
smoothly rotates within the group manifold with
sin θ ¼ μ̂=ð2w0Þ. These features are reproduced by our
results along the vertical axes in Fig. 7.
We now explain how these results are generalized to

ϵ ≠ 0. We first observe that we can set n2 ¼ 0. This is
because, for any choice of n1, the cl term in Eq. (30) (with
cl > 0) will be minimized when n23 is maximized, i.e. with
n23 ¼ 1 − n21. Thus there are only two independent varia-
bles, θ and n1. Since n1 satisfies jn1j ≤ 1, we parametrize it
as n1 ¼ cosφ1. Since hΣi is invariant when θ and n̂ change
sign, we need only consider n1 ≥ 0, i.e. 0 ≤ φ1 ≤ π=2. The
stationary points are obtained from simultaneously solving

∂Va2;l7

∂θ ∝ cos θ½μ̂ cosφ1 þ 2 sin θðsin2φ1clϵ2 − w0Þ� ¼ 0;

ð31Þ

∂Va2;l7

∂φ1

∝ sin θ sinφ1½μ̂ − 2 sin θ cosφ1clϵ2� ¼ 0: ð32Þ

The solutions are as follows:
(1) cos θ ¼ 0 (so that sin θ ¼ �1) together with

sinφ1 ¼ 0 (so that n1 ¼ 1). In these cases
Va2;l7=f

2 ¼ ∓μ̂, so that the solution with the lowest
energy is that with sin θ ¼ signðμ̂Þ, giv-
ing Va2;l7=f

2 ¼ −jμ̂j.
(2) sin θ ¼ signðμ̂Þ and n1 ¼ cosφ1 ¼ jμ̂j=ð2clϵ2Þ so

that Va2;l7=f
2 ¼ −μ̂2=ð4clϵ2Þ − clϵ2. This is only

valid when n1 ≤ 1, i.e. jμ̂j ≤ 2clϵ2. There are two
degenerate solutions, with n3 ¼ � sinφ1.

(3) sin θ ¼ μ̂=ð2w0Þ and φ1 ¼ 0 (implying n1 ¼ 1) so
that Va2;l7=f

2 ¼ −μ̂2=ð4w0Þ − w0. This is only valid
when jμ̂j ≤ 2w0. There are two degenerate solutions,
with opposite signs of cos θ.

(4) cos θ ¼ �1 and μ̂n1 ¼ 0, so that Va2;l7=f
2 ¼ −w0.

This never has lower energy than the third solution
and can be ignored.

The first solution is the continuum one discussed above.
The second has lower energy than the first where it is valid,
and goes over to the CP-violating phase when w0 ¼ 0.

FIG. 7 (color online). Phase diagrams at maximum twist
(m̂ ¼ 0). (a) Aoki scenario or continuum (w0 ≤ 0). (b) First-order
scenario (w0 > 0).
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The third solution is relevant only for w0 > 0, in which case
it has the lowest energy when clϵ2 < w0. The condensate in
this phase is independent of ϵ. These considerations lead to
the phase diagrams shown in Fig. 7. The potential is
continuous throughout the phase planes, as is the con-
densate except at the junction between the central (green
colored) phase and the CP-violating phase in Fig. 7(b).
Thus we expect the transitions to be of second order.
We calculate pion masses using the parametrization

Σ ¼ expðiθn̂ · ~τ=2Þ expði~π · ~τ=fÞ expðiθn̂ · ~τ=2Þ;
½hΣi ¼ expðiθn̂ · ~τÞ�:

ð33Þ

Here we are using an axial transformation to rotate from the
twisted basis to the physical basis, which ensures, in the
continuum, that the pion fields have physical flavors [23].
In the continuum-like phase (uncolored in the figures),
which lies in the regions jμ̂j ≥ maxð2clϵ2; 2w0Þ, we find

m2
π1 ¼ jμ̂j − 2w0; m2

π2 ¼ jμ̂j; m2
π3 ¼ jμ̂j − 2clϵ2: ð34Þ

These results are consistent with those of Ref. [24], where a
χPT calculation in this phase is carried out using the
different power-counting m≳ a. Various aspects of these
results are noteworthy. First, all three masses differ. This is
expected since flavor symmetry is completely broken.
Second, the charged pions are not mass eigenstates; instead,
the eigenstates are π1;2 and the neutral pion. These two
points were also noted in Ref. [24]. Third, one of the pion
masses vanishes at each of the phase boundaries: mπ3 at the
boundary with the CP-violating (pink colored) phase, and
mπ1 at the boundary with the central (green colored) phase
in the first-order scenario.8 This is expected since these are
continuous transitions at which a Z2 symmetry is broken
(θ → −θ for the “green phase” and n3 → −n3 for the CP-
violating phase). Finally, in the first-order scenario, there
are four tricritical points at which both mπ3 and mπ1 vanish.
These occur where all three phases meet, i.e.
at jμ̂j ¼ 2clϵ2 ¼ 2w0.
In the central (green) phase we find

m2
π1 ¼2w0−

μ̂2

2w0 ; m2
π2 ¼2w0; m2

π3 ¼2w0−2clϵ2: ð35Þ

Thus mπ2 and mπ3 are independent of μ̂ within this phase.
These results agree with those in the normal phase
[Eq. (34)] at the boundaries. They also show that mπ3
vanishes at the borders with the CP-violating (pink)
phases (clϵ2 ¼ w0).
In the CP-violating phase there is mixing between π1

and π3, with the mass eigenvectors being

~π1 ¼ n1π1 þ n3π3 and ~π3 ¼ −n3π1 þ n1π3; ð36Þ
where we recall that n1 ¼ μ̂=ð2clϵ2Þ and n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n21

p
.

The masses are

m2
~π1
¼2clϵ2−2w0; m2

π2 ¼2clϵ2; m2
~π3
¼2clϵ2−

μ̂2

2clϵ2
:

ð37Þ

Note that m ~π1 and mπ2 are independent of μ̂, while the ~π3
mass vanishes along the boundaries with the standard
phases. The latter result is consistent with the results above
because, on these boundaries jn1j ¼ 1 and so ~π3 ¼ �π3.
A puzzling feature of these results is what happens at the

boundaries between the central (green) and CP-violating
(pink) phases. According to Eq. (35) it is the mass of π3
which vanishes there, while Eq. (37) has the mass of ~π1
vanishing. These appear to be different particles. This is
related to a second puzzle, namely that the condensate is
discontinuous across the boundary (which lies at
w0 ¼ clϵ2):

hΣiBoundaryGreen ¼ i
μ̂

2w0 τ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ̂2

4w02

s
1 vs

hΣiBoundaryPink ¼ i
μ̂

2w0 τ1 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ̂2

4w02

s
τ3: ð38Þ

Here the � signs correspond to the two choices of vacuum
state on each side. This situation can be understood by
noting that, at the boundary, the vacuum manifold expands
to a line which includes all four values of the condensate
given in Eq. (38):

hΣi ¼ i
μ̂

2w0 τ1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

μ̂2

4w02

s
ðcosϕþ iτ3 sinϕÞ; ð39Þ

where ϕ is arbitrary. The presence of this flat direction is
the reason that one pion is massless, since there is no
breaking of a Z2 symmetry to explain the masslessness. The
orientation of the flat direction, which is the direction of the
massless pion, depends on the position along this vacuum
manifold, and thus is different on the two sides of the
transition. In this way the two puzzles above are simulta-
neously explained.
Results for pion masses are plotted in Fig. 8. We choose

the same parameters for the plots as for the untwisted case
(Fig. 6) so as to allow a clear comparison. The figures
illustrate the discussion given above.

VI. ARBITRARY TWIST

In this section we give a brief discussion of the phase
diagram at arbitrary twist. This allows us to understand how
the phase diagrams presented above for untwisted and
maximally twisted quarks are related to one another. We

8In the degenerate case (ϵ ¼ 0) Refs. [13,21,22] found that it is
mπ3 which vanishes at jμ̂j ¼ 2w0, rather than mπ1 . This difference
arises because we twist in the τ1 direction rather than the τ3
direction used in Refs. [13,21,22].
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focus on the phase diagram, and in particular, the position of
the critical manifold where one or more pions are massless.
For arbitrary twist, the potential is given in Eq. (30). As

before, minimization leads to n2 ¼ 0, so the potential
depends only on θ and φ1 (defined by cosφ1 ¼ n1). The
equations for stationary points are

−m̂ sin θ þ cos θ½μ̂ cosφ1 þ 2 sin θðclϵ2sin2φ1 − w0Þ� ¼ 0;

ð40Þ

and Eq. (32). We focus on the case when both m̂ and μ̂ are
nonzero, since the special cases when one of these vanish
have been discussed above.

FIG. 8 (color online). Pion masses for maximally twisted fermions including the effects of both discretization (w0 ≠ 0) and
nondegeneracy (ϵ ≠ 0).m2

π2 is shown by solid (blue) lines,m
2
π3 (andm

2
~π3
) by dotted (red) lines andm2

π1 (andm
2
~π1
) by dashed (green) lines.

Not all lines are visible in some figures due to degeneracies. Mixing of pions occurs only within the CP-violating phase in panels (e) and
(g). Explicit expressions for masses and mixing are given in the text. Vertical scales differ between the figures. (a) w0 ¼ clϵ2 ¼ 0.
(b) w0 ¼ 0, clϵ2 > 0. (c) w0 < 0, clϵ2 ¼ 0. (d) w0 > 0, clϵ2 ¼ 0. (e) w0 < 0, clϵ2 > 0. (f) w0 > 0, clϵ2 ¼ w0. (g) w0 > 0, clϵ2 > w0.
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When jμ̂j; jm̂j ≫ clϵ2; jw0j the solution which minimizes
the potential has

n1 ¼ cosφ1 ¼ 1; n3 ¼ sinφ1; tan θ ≈
μ̂

m̂
: ð41Þ

The last equation becomes an equality in the continuum
limit, and simply describes how the condensate twists to
compensate the twist in the mass. Discretization errors

(here proportional to w0) lead to a small deviation in θ from
this continuum result. We do not quote the analytic form as
it is not illuminating. In fact, the result for θ turns out to
be independent of the nondegeneracy ϵ, so the results for
the condensate given for the degenerate theory in
Refs. [13,21,22] remain valid in this phase. This phase
is the extension of the “uncolored” phases in Figs. 5 and 7
to arbitrary twist. At a general position in this phase, the

FIG. 9 (color online). Location of the critical manifold for arbitrary twist. Results are shown only for ϵ > 0 since the phase diagrams
are symmetric under reflection in the ϵ ¼ 0 plane. The left panels show three-dimensional plots, and the right panels show contour plots.
For w0 > 0, the contour plots do not include the two critical lines which reach down to the ϵ ¼ 0 plane. The scale used for m̂ and μ̂ is the
same, while that for ϵ is arbitrary. See the text for the equations describing the critical manifold. (a) Aoki scenario (w0 < 0).
(b) Continuum (w0 ¼ 0). (c) First-order scenario (w0 > 0).
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mass eigenstates are π1, π2 and π3 [using the parametriza-
tion of Eq. (33)] and all have different masses.
As ϵ2 increases, we expect, based on the results of the

previous two sections, that we will enter a phase which is
connected to the CP-violating (pink) phases found above.
This should have a condensate having components in both
the n1 and n3 directions, and θ taking nonextremal values.
Indeed, if sin θ and sinφ1 are both nonzero, Eq. (32) is
solved by

sin θ cosφ1 ¼
μ̂

2clϵ2
: ð42Þ

This requires that clϵ2 ≥ jμ̂j. Inserting this into Eq. (40)
then yields

cos θ ¼ m̂
2ðclϵ2 − w0Þ ; ð43Þ

which is valid if 2ðclϵ2 − w0Þ ≤ m̂. The solution given by
Eqs. (42) and (43) turns out to give the absolute minimum
of the potential where it is valid. Its boundary with the
continuum-like phase occurs when j cosφ1j ¼ 1, and is
thus described by�

m̂
2ðclϵ2 − w0Þ

�
2

þ
�

μ̂

2clϵ2

�
2

¼ 1: ð44Þ

For fixed ϵ, this is an ellipse in the m̂, μ̂ plane. One pion
(π3) is massless along this critical surface.
Within the CP-violating phase all pions are massive, with

the mass eigenstates being π2 and a mixture of π1 and π3.
The general expressions for these masses are uninformative,
and we quote only the results along the boundary of this
phase. Here, in addition to the massless π3 we find

m2
π1 ¼ 2clϵ2 −

2w0μ̂2

ð2clϵ2Þ2
; m2

π2 ¼ 2clϵ2: ð45Þ

The only other critical lines are those we found at
maximal twist, namely at m̂ ¼ 0, μ̂ ¼ 2w0 and clϵ2 ≤ w0.

The position of the critical manifold resulting from
these considerations is shown in Fig. 9 for both scenarios
and in the continuum. The CP-violating phases lie within
the (distorted) cone-shaped regions. The contour plots
show how the circular contours of the continuum are
distorted by discretization effects into ellipses. We note
that, in the first-order scenario shown in Fig. 9(c), if one
passes through any point in the rectangular region in
the ðm̂; ϵÞ plane between the two critical lines there is a
first-order transition at which the condensate changes
discontinuously.

VII. HIGHER ORDER

In this section we consider the effect on the previous
results of the inclusion of the next highest-order terms in
our power counting, i.e. those scaling as a3 ∼ma. At this
order we can still determine the vacuum using the classical
potential of the chiral theory. The OðmaÞ term in this
potential is standard; see, e.g. Ref. [25]. The Oða3Þ terms
have been discussed for ϵ ¼ 0 in Ref. [26]; the results carry
over unchanged to ϵ ≠ 0 since the first additional term
involving ϵ scales as aϵ2 and is of higher order in our power
counting. The relevant additional terms entering the poten-
tial are

Va3 ¼ −
wf2

32W0a
trðχ†Σþ Σ†χÞtrðA†Σþ Σ†AÞ

−
w3f2

ð8W0aÞ3
½trðA†Σþ Σ†AÞ�3; ð46Þ

where w and w3 are new LECs. There is also a term
proportional to trðA†AÞtrðA†Σþ Σ†AÞ, but this can
removed by (yet another) redefinition of χ. Inserting our
standard parametrization hΣi ¼ expðiθn̂ · ~τÞ, and combin-
ing the results with that from the LO potential, we obtain

FIG. 10 (color online). Phase diagrams for untwisted Wilson quarks including the NLO OðmaÞ term proportional to w. Compare to
LO results in Fig. 5. (a) Aoki scenario (w0 < 0). (b) First-Order Scenario (w0 > 0).
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−
Va2;l7;a3

f2
¼ ðm̂ cos θ þ μ̂n1 sin θÞð1þ w cos θÞ

þ clϵ2n23sin
2θ þ w0cos2θ þ w3cos3θ: ð47Þ

The new LECs should satisfy jwj ≪ 1 and jw3j ≪
jw0j; jclϵ2j in order to be consistent with our power
counting.
We begin by considering the untwisted theory, μ̂ ¼ 0,

where the phase diagram and pion masses can be deter-
mined analytically. In this case m̂ ¼ χl. As previously, the
potential is minimized with n3 ¼ 1, so that

−
Va2;l7;a3

f2
→ χl cos θð1þ w cos θÞ þ clϵ2sin2θ

þ w0cos2θ þ w3cos3θ: ð48Þ

The stationary points satisfy

sin θ½χl − 2ðχlw − clϵ2 þ w0Þ cos θ þ 3w3cos2θ� ¼ 0;

ð49Þ

which is solved by sin θ ¼ 0 (i.e. giving the usual con-
tinuum solutions with cos θ ¼ �1) and by the solutions to

FIG. 11 (color online). Pion masses for untwisted Wilson fermions including the effects of the NLO w term with w > 0 (but with
w3 ¼ 0). The figures should be compared to the LO results in Figs. 6(c)–6(g), respectively. See Fig. 6 for notation. (a) w0 < 0, clϵ2 ¼ 0,
w > 0. (b) w0 > 0, clϵ2 ¼ 0, w > 0. (c) w0 < 0, clϵ2 > 0, w > 0. (d) clϵ2 ¼ w0 > 0, w > 0. (e) clϵ2 > w0 > 0, w > 0.
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the quadratic function of cos θ in parentheses. The latter
will lead to CP-violating vacua.
To simplify the discussion we consider the impact of the

new terms separately. We first set w3 ¼ 0. Then we can take
w > 0 without loss of generality, since simultaneously
changing w → −w, θ → θ þ π and χl → −χl leaves the
potential unaffected. As the w contribution to Eq. (49)
leaves the function in parentheses linear in cos θ, the
analysis is little changed from that at LO (see Sec. IV).
We find that the CP-violating solution,

cos θ ¼ χl
2ðclϵ2 − w0 − χlwÞ

; ð50Þ

minimizes the potential where it is valid, i.e. wherever
j cos θj < 1. The endpoints of this phase give second-order
transitions occurring at masses

χl ¼ � 2ðclϵ2 − w0Þ
1� 2w

: ð51Þ

Thus the phase boundaries are no longer symmetric with
respect to χl ¼ 0. As in the LO case, if w0 > 0 and
clϵ2 < w0, the transition becomes first order (with the w
term having no impact since the transition occurs at
χl ¼ 0). The resultant phase diagrams are shown in Fig. 10.
We have also calculated the pion masses. In the CP-

conserving phases the results are

m2
π0
¼ jχljð1þ signðχlÞ2wÞ − 2ðclϵ2 − w0Þ; ð52Þ

m2
π� ¼ m2

π0
þ 2clϵ2: ð53Þ

The only change from the LO results [Eqs. (23) and (24)] is
that the slope with respect to χl is no longer symmetric
when χl changes sign. In the CP-violating phases we find

m2
π0

¼ 2ðclϵ2 − w0 − χlwÞsin2θ and m2
π� ¼ 2clϵ2;

ð54Þ

where again only the former result is changed. The
resulting pion masses are shown in Fig. 11, and show
clearly the above-mentioned asymmetry.
We now consider the impact of the w3 term, setting

w ¼ 0. Again, without loss of generality, we can assume
w3 > 0. The CP-violating stationary points are now
obtained from Eq. (49) by solving a quadratic equation,
leading to the solutions

cos θ� ¼ ðclϵ2 − w0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðclϵ2 − w0Þ2 − 3χlw3

p
3w3

: ð55Þ

It is straightforward to see from the properties of a cubic
that, since w3 > 0, only the θ− solution can lead to a

minimum of the potential. Whether it does lead to a
minimum is a more subtle question than in the LO analysis.
We begin by discussing the limit of small jw3j.

Specifically, if we assume jclϵ2 − w0j ∼ jχlj ≫ jw3j, the

FIG. 12 (color online). Phase diagrams for untwisted Wilson
fermions including the NLO Oða3Þ term proportional to w3.
Compare to LO results in Fig. 5. (a) Aoki scenario with
w0 < −3w3 < 0. (b) Aoki or first-order scenario with −3w3 <
w0 < w3 (and w3 > 0). (c) First-order scenario with w0 > w3 > 0;
cos θ in pink region is as is in (a) and (b).
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square root in Eq. (55) can be expanded in powers of w3. It
is then straightforward to show that one recovers the LO
results aside from small corrections proportional to
jw3=ðclϵ2 − w0Þj. In particular, if clϵ2 − w0 > 0 there is
a CP-violating phase ending in second-order transitions to
continuum-like phases, while if clϵ2 − w0 < 0 there is a
first-order transition.
The positions of these transitions are, however, shifted

slightly by the w3 term. The boundaries of the CP-violating
phase occur when cos θ− ¼ �1 which gives

χl ¼ �2ðclϵ2 − w0Þ − 3w3; ð56Þ

without any Oðw2
3Þ corrections. In words, the boundaries

are simply offset from the LO result [Eq. (21)] by −3w3. In
the first-order scenario, the transition occurs at the value of
χl such that the potentials at cos θ ¼ �1 agree. This
happens when

χl ¼ −w3; ð57Þ
so that the first-order transition line is offset from the LO
result χl ¼ 0 by −w3 (again, without any higher-order
corrections).
More interesting changes occur when jclϵ2 − w0j ∼ jw3j.

Note that this does not require that w3 be large, but rather
that there is a cancellation between the clϵ2 and w0 terms.
Here we encounter a phenomenon first noted at ϵ ¼ 0 in
Ref. [26]: one can have a first-order transition from the
continuum-like phase into the CP-violating phase, fol-
lowed by a second-order transition to the other continuum-
like phase. This occurs when the local minimum at θ− (with
j cos θ−j < 1 and cos θ− real) has the same potential as that
at cos θ ¼ 1. Then, as χl is reduced, θ jumps from θ ¼ 0 to
θ−. This is possible with a cubic potential, but not with a
quadratic. Solving

Va2;l7;a3ðθ−Þ ¼ Va2;l7;a3ð0Þ ð58Þ

leads to the following equation for the first-order boundary:

χl ¼ ðw0 − clϵ2 − 3w3Þðw0 − clϵ2 þ w3Þ
4w3

: ð59Þ

As one moves along this boundary cos θ− varies. The
boundary ends when either cos θ− ¼ 1, so there is no jump
in θ, and the transition becomes second order, or when
cos θ− ¼ −1, so there is only a first-order transition without
the subsequent CP-violating phase. Combining Eqs. (55)
and (59) we find that the transition becomes second order at

χl ¼ clϵ2 − w0 ¼ 3w3; ð60Þ

while it becomes first order at

χl ¼ clϵ2 − w0 ¼ −w3: ð61Þ

The first of these equations can be satisfied if w0 > −3w3,
and so reaches from the first-order scenario (w0 > 0) into a
small region of the Aoki scenario. The second requires
w0 > w3 and thus occurs only in the first-order scenario.
These results lead to the phase diagrams shown in

Fig. 12. We see that the changes due to the w3 term are
more substantive than those due to the w term.
We show the corresponding pion masses in Figs. 13–15;

for the sake of brevity we do not quote the analytic forms.
Figure 13 shows two “slices” through the phase diagram of
Fig. 12(a). These should be compared to the LO results in
Figs. 5(c) and 5(e), respectively.
In Fig. 14 we show two slices through the phase diagram

of Fig. 12(b). The first, at ϵ ¼ 0, shows the first-order
transition, at which all pion masses are discontinuous. The
charged pions become massless in the CP-violating/Aoki
phase, while the neutral pion is massive. In the second slice,
for which ϵ satisfies 0 < clϵ2 < w0 þ 3w3, the disconti-
nuities remain, but all pions are massive in the CP-violating
phase (except at the lower boundary where the neutral pion
mass vanishes). Once clϵ2 ≥ w0 þ 3w3, the pion masses
behave as in Fig. 13(b).

FIG. 13 (color online). NLO pion masses for untwisted Wilson fermions with w3 > 0 and w ¼ 0. Results are for the Aoki scenario
with w0 < −3w3 < 0, corresponding to the phase diagram of Fig. 12(a). Notation is as in Fig. 6. (a) clϵ2 ¼ 0, −w0 < −3w3 < 0.
(b) clϵ2 > 0, −w0 < −3w3 < 0.
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In Fig. 15 we show four slices through the phase diagram
of Fig. 12(c). The first (at ϵ ¼ 0) shows how the w3 term
leads to a discontinuity in the pion masses at the first-order
transition, unlike at LO. This was first observed in
Ref. [26]. For nonzero ϵ, the charged and neutral pions
are no longer degenerate, and both have a discontinuity.
When one reaches clϵ2 ¼ w0 − w3, the neutral pion
becomes massless at the transition point, as shown in

the second slice. This is the beginning of the CP-violating
phase. As ϵ2 increases further, one has both first- and
second-order transitions, as shown in the third slice. The
final slice shows the value of ϵ2 at which the first-order
transition turns into a second-order transition. For larger
values of ϵ2 the pion masses behaves as in Fig. 13(b).
The higher-order analysis in the twisted case is more

complicated. Maximal twist no longer occurs, in general, at

FIG. 14 (color online). Examples of NLO pion masses for untwisted Wilson fermions with w3 > 0 and w ¼ 0. Results are
for −3w3 < w0 < w3, corresponding to the phase diagram of Fig. 12(b). (a) clϵ2 ¼ 0, −3w3 < w0 < w3. (b) clϵ2 ≥ w0 þ 3w3,
−3w3 < w0 < w3.

FIG. 15 (color online). NLO pion masses for untwisted Wilson fermions with w3 > 0 and w ¼ 0. Results are for the first-order
scenario with w0 > w3, corresponding to the phase diagram of Fig. 12(c). (a) clϵ2 ¼ 0, w0 > w3 > 0. (b) clϵ2 ¼ w0 − w3, w0 > w3 > 0.
(c) w0 − w3 < clϵ2 < w0 þ 3w3, w0 > w3 > 0. (d) clϵ2 ¼ w0 þ 3w3, w0 > w3 > 0.
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m̂ ¼ 0, so one is forced to do the analysis for both m̂ and μ̂
nonvanishing. In practice, this requires numerical minimi-
zation of the potential. The resulting phase diagram and
pion masses for ϵ ¼ 0 have been discussed in detail in
Ref. [26]. The addition of isospin breaking leads both to
small quantitative changes, and to qualitative changes in
small regions of the phase plane. We restrict ourselves

here to showing how the NLO terms impact the critical
manifold (on which at least one pion is massless). The
Aoki and first-order scenarios are shown, respectively, in
Figs. 16 and 17.
The main effect is a distortion of the elliptical cross

sections of the critical manifold. In addition, the two
vertical critical lines in the first-order scenario are shifted

FIG. 16 (color online). Location of the critical manifold in the Aoki scenario (w0 < 0) including NLO terms. Notation is as in Fig. 9.
(a) w3 ¼ w ¼ 0. (b) w3 ¼ 0, w > 0. (c) w0 < −3w3 < 0, w ¼ 0.
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slightly in position. The most significant qualitative change
is the appearance of a hole in the manifold when
w0 > w3 > 0, which is (barely) visible above the μ̂ ¼ 0
axis in the right panel of Fig. 17(c). This occurs because of
the extended first-order transition region seen in the
untwisted phase diagram of Fig. 12(c).
We end this section by addressing the question of

whether higher-order effects move unphysical phases

closer to the point with physical masses. The answer
depends on the sign of w and w3. For untwisted fermions,
the results of Figs. 10–17, show that positive w and w3

move unphysical phases away from the physical point.
Conversely, negative values of these LECs would move
the phases closer. For twisted-mass fermions the answer
is more complicated, depending on the choice of
twist angle.

FIG. 17 (color online). Location of the critical manifold in the first-order scenario (w0 > 0) including NLO terms. Notation is as in
Fig. 9. (a) w3 ¼ w ¼ 0. (b) w3 ¼ 0, w > 0. (c) w0 > w3 > 0, w ¼ 0.
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VIII. CONCLUSIONS

In this work we have studied how using nondegenerate
up and down quarks changes the phase structure caused by
competition between quark mass and discretization effects.
We draw two main conclusions. First, the continuum CP-
violating phase is continuously connected to the Aoki
phase induced by discretization effects. Second, discreti-
zation effects can move the theory with physical quark
masses closer to, or even into, unphysical phases. Whether
this happens depends on both the twist angle and the details
of the discretization (the latter impacting the values of the
LECs w0, etc.). Our overall message is that a complicated
phase structure lies in the vicinity of the physical point and
simulations should be careful to avoid unphysical phases.
For twisted-mass fermions our results for pion masses

extend those of Ref. [24] into the Aoki regime (m ∼ a2). In
the continuum-like phase, with both twisting and non-
degeneracy, the eigenstates are π1, π2 and π3, with all three
pions having different masses. Our formulas may be of use
in removing the discretization effects from masses deter-
mined in simulations, although we stress again that Oðm2Þ
terms dropped in our power counting may be important if
precision fitting is required.

One shortcoming of this work is that it does not include
electromagnetic effects. In the pion sector, these lead to
isospin breaking that is generically larger than that from
quark nondegeneracy, and can also impact the phase
structure.9 We will discuss the impact of electromagnetism
in an upcoming work, building upon the recent analysis
of Ref. [28].
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