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The phase structure of QCD with imaginary chemical potential provides information on the phase
diagram of QCD with real chemical potential. With imaginary chemical potential iμI ¼ iπT, previous
studies show that the Roberge-Weiss (RW) transition endpoints are triple points at both large and small
quark masses, and second order transition points at intermediate quark masses. The triple and second order
endpoints are separated by two tricritical ones. We present simulations with Nf ¼ 2 Wilson fermions to
investigate the nature of RW transition endpoints. The simulations are carried out at 8 values of the hopping
parameter κ ranging from 0.020 to 0.140 on different lattice volumes. The Binder cumulant, susceptibility,
and reweighted distribution of the imaginary part of the Polyakov loop are employed to determine the
nature of RW transition endpoints. The simulations show that the two tricritical points are within the ranges
0.070–0.080 and 0.120–0.140, respectively.
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I. INTRODUCTION

The study of QCD phase diagram is of great importance
theoretically and phenomenologically; overviews may be
found in Refs. [1,2] and references therein. On and below the
scales of a baryon mass which is relevant to heavy ion
collision and astrophysics, the nonperturbative nature of
QCD warrants the Monte Carlo (MC) simulation of lattice
QCD. Although substantial progress has been achieved
at zero baryon density, the MC simulation of lattice QCD
is accompanied by the “sign” problem when studies are
extended to finite density, for example, see Ref. [3]. To date,
many indirect methods have been proposed to circumvent the
sign problem; overviews with references to these methods
can be found in Refs. [3,4]. One of these methods consists of
simulating QCD with imaginary chemical potential for
which the fermion determinant is positive [5–13].
QCD with imaginary chemical potential has a rich phase

structure, and it not only deserves detailed investigation in its
own right theoretically, but also has significant relevance to
physics at zero or small real chemical potential [5–8,14–18].
The tricritical line found at the imaginary chemical potential,
with its associated scaling law, imposes constraints on the
phase diagram of QCD at real chemical potential [5].
The partition function of QCD with complex chemical

potential has two important symmetries [19]: reflection
symmetry in μ ¼ μR þ iμI and periodicity in imaginary
chemical potential. The Zð3Þ symmetry is explicitly broken
at the presence of dynamical quarks for real chemical

potential. However, for complex μ, due to the periodicity of
partition function in imaginary chemical potential, the Zð3Þ
symmetry is restored. Different Zð3Þ sectors are distin-
guished by the Polyakov loop. Transition between adjacent
Zð3Þ sectors in μI is analytic for low temperature, and is of
first order [Roberge-Weiss (RW) transition] for high
temperature. The first order transition that takes place at
critical values of the imaginary chemical potential μI=T ¼
ð2nþ 1Þπ=3 [19–21] forms a transition line, thus the first
order transition line in the high temperature region neces-
sarily ends at an endpoint TRW when the temperature is
decreased sufficiently low.
Recent numerical studies [5–7] show that the RW

transition endpoints are triple points for small and heavy
quark masses, and second order points for intermediate
quark masses. So there exist two tricritical points separating
the first order transition points from the second ones.
Moreover, it is pointed out [5,17,18] that the scaling
behavior at the tricritical points may shape the critical line
which separates different transition regions for real chemi-
cal potential, and thus, the critical line for real chemical
potential is expected to be qualitatively consistent with the
scenario suggested in Refs. [11,12] which show that the
first order transition region shrinks with increasing real
chemical potential.
Most of studies for finite density QCD have been

performed using staggered fermion action or the improved
versions. The disadvantages of staggered fermion discre-
tization [22–24] warrants studies of lattice QCD with a
different discretization. In Refs. [25,26], Wilson fermion is
employed to investigate the nature of the RW transition
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endpoints, but the κ values in Ref. [26] are limited from
0.155 to 0.198.
In this paper, proceeding with our previous work [26]

along this direction, we attempt to investigate the RW
transition line endpoints withNf ¼ 2Wilson fermions with
κ ranging from 0.020 to 0.140. In Sec. II, we define the
lattice action with imaginary chemical potential and the
physical observables we calculate. Our simulation results
are presented in Sec. III followed by discussions in Sec. IV.

II. LATTICE FORMULATION WITH IMAGINARY
CHEMICAL POTENTIAL

We consider a system with Nf ¼ 2 degenerate Wilson
fermions whose partition function with chemical potential
is

Z ¼
Z

½dU�½dψ̄ �½dψ �e−Sg−Sf

¼
Z

½dU�ðDetM½U; θ�ÞNfe−Sg ; ð1Þ

where Sg is the gauge action, and Sf is the quark action with
the quark imaginary chemical potential μI ¼ θT. For Sg, we
use the standard one-plaquette action

Sg ¼ β
X
p

�
1 −

1

Nc
ReTrUp

�
; ð2Þ

where β ¼ 6=g2, and the plaquette variable Up is the
ordered product of link variables U around an elementary
plaquette. For Sf, we use the standard Wilson action

Sf ¼
XNf

f¼1

X
x;y

ψ̄fðxÞMx;yðU; κ; μÞψfðyÞ; ð3Þ

where κ is the hopping parameter, related to the bare
quark mass m and lattice spacing a by κ ¼ 1=ð2amþ 8Þ.
The fermion matrix is

Mx;yðU; κ; μÞ ¼ δx;y − κ
X3
j¼1

½ð1 − γjÞUjðxÞδx;y−ĵ

þ ð1þ γjÞU†
jðx − ĵÞδx;yþĵ�

− κ½ð1 − γ4ÞeaμU4ðxÞδx;y−4̂
þ ð1þ γ4Þe−aμU†

4ðx − 4̂Þδx;yþ4̂�: ð4Þ

We carry out simulations at θ ¼ π. As it is pointed out,
the system is invariant under the charge conjugation at
θ ¼ 0; π, when θ is fixed [16]. But the θ-odd quantityOðθÞ
is not invariant at θ ¼ π under charge conjugation. When
T < TRW , OðθÞ is a smooth function of θ, so it is zero at
θ ¼ π. Whereas when T > TRW , the two charge violating

solutions cross each other at θ ¼ π. Thus, the charge
symmetry is spontaneously broken there and the θ-odd
quantity OðθÞ can be taken as an order parameter. In this
paper, we take the imaginary part of the Polyakov loop as
the order parameter.
The Polyakov loop L is defined as the following:

hLi ¼
�
1

V

X
x

Tr

�YNt

t¼1

U4ðx; tÞ
��

; ð5Þ

here and in the following, V is the spatial lattice volume.
To simplify the notations, we use X to represent the
imaginary part of the Polyakov loop L, X ¼ ImðLÞ.
The susceptibility of the imaginary part of the Polyakov

loop χ is defined as

χ ¼ VhðX − hXiÞ2i; ð6Þ

which is expected to scale as [6,7]

χ ¼ Lγ=ν
s ϕðτL1=ν

s Þ; ð7Þ

where τ is the reduced temperature τ ¼ ðT − TRWÞ=TRW ,
V ¼ L3

s . This means that the curves χ=Lγ=ν
s at different

lattice volume should collapse with the same curve when
plotted against τL1=ν

s . In the following, we employ β − βRW
in place of τ ¼ ðT − TRWÞ=TRW . The critical exponents
relevant to our study are collected in Table I [7,27].
We also consider the Binder cumulant of the imaginary

part of the Polyakov loop which is defined as the following:

B4 ¼ hðX − hXiÞ4i=hðX − hXiÞ2i2; ð8Þ

TABLE I. Critical exponents relevant to our study.

ν γ γ=ν

3D ising 0.6301(4) 1.2372(5) 1.963
Tricritical 1/2 1 2
First order 1/3 1 3

TABLE II. Results of critical couplings βRW on different spatial
volumes at different κ.

κ 8 12 16 20

0.020 5.695(20) 5.697(14) 5.691(7) 5.684(10)
0.040 5.706(19) 5.694(12) 5.688(9) 5.693(6)
0.060 5.725(25) 5.691(8) 5.687(7) 5.689(6)
0.070 5.712(21) 5.690(9) 5.695(5) 5.693(6)
0.080 5.713(25) 5.687(13) 5.683(7) 5.684(5)
0.100 5.672(14) 5.659(6) 5.687(4) 5.688(3)
0.120 5.618(12) 5.650(7) 5.619(3) 5.609(5)
0.140 5.639(21) 5.636(21) � � � � � �
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with hXi ¼ 0. In the vicinity of the RW transition line
endpoints, B4 with the finite size correction is a function
of x ¼ ðβ − βRWÞL1=ν

s and can be expanded as a series
[5,17,18].

B4 ¼ B4ðβc;∞Þ þ a1xþ a2x2 þ � � � : ð9Þ

In the thermodynamic limit, the critical index ν takes on the
corresponding value summarized in Table I. B4ðβc;∞Þ
takes on the values 3, 1.5, 1.604, 2 for crossover, first order
triple point, 3D Ising, and tricritical transitions, respec-
tively. However, on finite spatial volumes, the steps of
B4ðβc;∞Þ are smeared out to continuous functions.

III. MC SIMULATION RESULTS

In this section, we first present the MC simulation
parameters. The ϕ algorithm with a Metropolis accept/
reject step is used [28]. The simulations are performed at

FIG. 1 (color online). Scaling behavior of the susceptibility of the imaginary part of the Polyakov loop according to the first order
critical index (left panel), and to the 3D Ising critical index (right panel) at κ ¼ 0.040.

FIG. 2 (color online). Reweighted distribution of the imaginary
part of the Polyakov loop at κ ¼ 0.040 at the corresponding
endpoint βRW .

FIG. 3 (color online). Scaling behavior of the susceptibility of the imaginary part of the Polyakov loop according to the first order
critical index (left panel), and to the 3D Ising critical index (right panel) at κ ¼ 0.080.
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κ ¼ 0.020, 0.040, 0.060, 0.070, 0.080, 0.100, 0.120, 0.140
on Lt ¼ 4 lattice. For each κ value, lattices with spatial size
Ls ¼ 8; 12; 16; 20 are employed except at κ ¼ 0.140 where
simulations are carried out on lattice size Ls ¼ 8; 12.
The acceptance rates range within 53%–95%. 20–50

molecular steps are taken for each trajectory. 20,000–
100,000 trajectories are generated after 10,000–50,000
trajectories as warmup.
The conjugate gradient method is used to evaluate the

fermion matrix inversion. For each lattice size, we make
simulations at 4–11 different β values. In order to fill in
observables at additional β values, we employ the
Ferrenberg-Swendsen reweighting method [29].
The critical coupling βRW’s on various spatial volume at

different κ are summarized in Table II. These βRW’s are
determined from the locations of peak susceptibility of the
imaginary part of the Polyakov loop.
We present the rescaling susceptibility of the imaginary

part of the Polyakov loop χ=Ls
γ=ν as a function of

ðβ − βRWÞL1=ν
s in Fig. 1. At κ ¼ 0.020; 0.040, the fermion

mass is very large; the deconfinement transition behavior is
expected to be mainly governed by the first order transition
of the pure gauge system. However, from Fig. 1, we can
find that χ=Ls

γ=ν according to the first order transition index
or the 3D Ising transition index at κ ¼ 0.040 does not
collapse with the same curve. The reweighted distribution
of the imaginary part of the Polyakov loop presented in

Fig. 2 which exhibits the one-state signal other than a weak
two-state signal is not in favor of a first order transition.
We cannot determine the nature of transition decisively
based on the simulation results at κ ¼ 0.040. At κ ¼ 0.020,
similar behavior is observed.
The rescaling behavior of χ=Ls

γ=ν at κ ¼ 0.080 and
κ ¼ 0.120 is presented in Figs. 3 and 4, respectively. From
the two panels of Fig. 3, we can find that neither the first
order transition index nor the 3D Ising transition index is
suitable to describe the system at the RW transition
endpoint. At κ ¼ 0.060, 0.070, 0.100, 0.120 the rescaling
observable χ=Ls

γ=ν exhibits the similar behavior as that
at κ ¼ 0.080. For clarity, we only present the results at
κ ¼ 0.120 in Fig. 4.
In order to discern the scaling behavior at κ ¼ 0.060,

0.070, 0.080, 0.100, 0.120, 0.140, we turn to investigate the
Binder cumulant B4 as defined in Eq. (8) whose scaling
behavior is described in Eq. (9). B4 decreases with the
increase of β, and at one fixed κ value, B4, as a function of β
on various spatial volumes, is expected to intersect at one
point. The intersection gives an estimate of an accurate
location of βRW . By fitting to Eq. (9), we can extract critical
index ν; βRW and B4ðβc;∞Þ. The results are collected in
Table III. We present B4 as a function of β at κ ¼ 0.080,
0.120 in the left panels of Fig. 5, and B4 as a function of
ðβ − βRWÞL1=ν

s in the right panels of Fig. 5 with ν taken to
be the extracted value through the fitting procedure. From

FIG. 4 (color online). Scaling behavior of the susceptibility of imaginary part of the Polyakov loop according to first order critical
index (left panel), and to 3D Ising critical index (right panel) at κ ¼ 0.120.

TABLE III. Results of critical couplings βRW and the critical index ν by fitting Eq. (9) to data on different spatial
volumes. The errors of βRW are very small, so we take them to be zero.

κ Ls βRW ν B4ðβc;∞Þ a1 a2 r-square

0.060 8,12,16 5.6838(0) 0.3374(3) 2.3189(4) −0.0793ð5Þ 0.00127(1) 0.990
0.070 8,12,16 5.6812(0) 0.4187(2) 2.0745(3) −0.289ð8Þ 0.0244(2) 0.963
0.080 8,16,20 5.6753(0) 0.5872(4) 1.9747(3) −1.272ð4Þ 0.427(3) 0.977
0.100 8,12,16 5.6524(0) 0.5218(8) 1.8405(6) −0.6956ð56Þ 0.185(3) 0.995
0.120 8,12,16 5.6072(0) 0.6791(4) 1.7964(8) −1.880ð25Þ 1.364(36) 0.980
0.140 8,12 5.5428(21) 0.2222(2) 1.1853(4) −0.0005ð3Þ 0(0) 0.893
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Table III, we find that the critical index ν at κ ¼ 0.080,
0.100, 0.120 is larger than the value at the tricritical
point.
From the values of ν in Table III, we conclude that

the nature of the transition at κ ¼ 0.060, 0.070 is of first

order. The values of B4ðβc;∞Þ at κ ¼ 0.060; 0.070 are
larger than the expected value. This is because logarithmic
scaling corrections will be present near the tricritical point
[5,30], and our simulations are carried out on the finite size
volume on which large finite size corrections are observed

FIG. 5 (color online). Binder cumulants as a function of β on various spatial volumes intersect at one point (left panels), and as a
function of ðβ − βcÞL1=ν

s with values of βc, ν from Table III collapse (right panels).

FIG. 6 (color online). Reweighted distribution of the imaginary part of the Polyakov loop at κ ¼ 0.080; 0.120 at the corresponding
endpoints βc which are extracted by fitting.
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in simpler spin model [31]. However, the critical exponent
ν is not sensitive to finite size corrections [5].
We also present the reweighted distribution of the

imaginary part of the Polyakov loop at κ ¼ 0.080, 0.120
in Fig. 6, from which we can find that the behaviors of the
reweighted distribution of ImðLÞ are in favor of second
order transition. The behavior of the reweighted distribu-
tion of ImðLÞ at κ ¼ 0.100 is also checked.
Put our results with those in Ref. [26] together, we can

estimate that the two tricritical points are between 0.070 <
κ < 0.080 and 0.120 < κ < 0.140, and when κ < 0.060,
our simulation results cannot enable us to determine the
nature of transition decisively.

IV. DISCUSSIONS

We have studied the nature of critical endpoints of
Roberge-Weiss transition of two flavor lattice QCD with
Wilson fermions. When iμI ¼ iπT, the imaginary part of
the Polayakov loop is the order parameter for studying the
transition from the low temperature phase to the high
temperature one.
In Ref. [25], Wilson fermions are employed to study the

nature of RW transition endpoints. In Refs. [6,7] and
Ref. [5], the simulations with staggered fermions show
that the phase diagram of two flavor and three flavor QCD
at imaginary chemical potential iμI ¼ iπT is characterized
by two tricritical points, respectively.
Our simulations are carried out at 8 values of κ on Lt ¼ 4

lattice on different 4 spatial volumes. At each κ value, we
take the β values in the reweighting procedure by monitor-
ing the behavior of susceptibility of the imaginary part of
the Polyakov loop. As an example, we present in Fig. 7 the
behavior of χ and Binder cumulant B4 with a different
selection of β values on lattice Ls ¼ 8 at κ ¼ 0.120.
From Fig. 7, we can find that the selection of β ¼ 5.58,
5.60, 5.62, 5.64, 5.66, 5.68 may be the best. As a

comparison, we present the results in the upper panels
with β ¼ 5.62, 5.64, 5.66, 5.68, and in the lower panels
with β ¼ 5.58, 5.60, 5.62, 5.64.
At κ ¼ 0.020, 0.040, our simulations are not decisive for

the determination of transition nature.
At κ ¼ 0.060, 0.070, 0.080, 0.100, 0.120, 0.140, when

the behavior of χ=Lγ=ν
s is examined, it is difficult to decide

the transition nature at the RW transition endpoint. We turn
to investigate the Binder cumulant. By fitting Eq. (9) to our
data, we can extract the values of critical index ν which are
collected in Table III; the ν value at 0.060, 0.070, 0.140
supports that transition at the endpoints is of first order,
whereas the ν value at 0.080, 0.100, 0.120 favors that the
nature of transition is of second order.
By monitoring the change of ν at different κ values and

comparing these values with those in the thermodynamic
limit, we conclude that the tricritical points are between
0.070 < κ < 0.080 and 0.120 < κ < 0.140. However, this
result is not in accord with the conclusion in Ref. [25]
where Philipsen and Pinke believed that the two tricritical
κ’s are 0.100(9) and 0.155(5).
Considering the lattice volume in our simulations at

κ ¼ 0.140 is 83, 123, our result of the light tricritical point
position is less reliable than that in Ref. [25]. Moreover, it is
interesting that the position of the heavy tricritical point and
some ν, βRW values from our simulations are different from
those in Ref. [25], in spite of the same regularization we
employed as that used by Philipsen and Pinke.
We have no certain explanation for this disagreement; we

speculate that it may be because of the different distribution
around βRW of those β values at which simulations are
carried out. In Ref. [25], the β values are more concentrated
around βRW with Δβ ¼ 0.001, whereas, in our simulation,
the β values are more scattered around βRW with
Δβ ¼ 0.02. Consequently, the β values we used cover a
wider range. However, the less concentration of β values
may lead us to lose much important information around

FIG. 7. Behavior of the susceptibility of the imaginary part of the Polyakov loop (left panels) and Binder cumulant (right panels) with a
different selection of β values on Ls ¼ 8 at κ ¼ 0.120.
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transition points, especially, when transition is under
consideration. With limited calculation resources, it may
be better that a more concentrated distribution of β values
around transition points are used.

ACKNOWLEDGMENTS

We thank Philippe de Forcrand for valuable help.
We modify the MILC Collaboration’s public code [32]

to simulate the theory at imaginary chemical potential.
In some of our calculations, we use the fortran-90 based
multi-precision software [33]. This work is supported
by the National Science Foundation of China (NSFC)
under Grants (No. 11105033, No. 11347029). The work
was carried out at the National Supercomputer Center
in Tianjin, and the calculations were performed on
TianHe-1(A).

[1] K. Fukushima and T. Hatsuda, Rep. Prog. Phys. 74, 014001
(2011).

[2] K. Fukushima, J. Phys. G 39, 013101 (2012).
[3] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 77, 114503

(2008).
[4] C. Schmidt, Proc. Sci., LAT2006 (2006) 021 [arXiv:hep-lat/

0610116].
[5] P. de Forcrand and O. Philipsen, Phys. Rev. Lett. 105,

152001 (2010).
[6] M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 111501

(2009).
[7] C. Bonati, G. Cossu, M. D’Elia, and F. Sanfilippo, Phys.

Rev. D 83, 054505 (2011).
[8] M. D’Elia, F. Di Renzo, and M. P. Lombardo, Phys. Rev. D

76, 114509 (2007).
[9] K. Nagata and A. Nakamura, Phys. Rev. D 83, 114507

(2011).
[10] M. D’Elia and F. Sanfilippo, Phys. Rev. D 80, 014502

(2009).
[11] P. de Forcrand and O. Philipsen, J. High Energy Phys. 01

(2007) 077.
[12] P. de Forcrand and O. Philipsen, J. High Energy Phys. 11

(2008) 012.
[13] L.-K. Wu, X.-Q. Luo, and H.-S. Chen, Phys. Rev. D 76,

034505 (2007).
[14] Y. Sakai, H. Kouno, and M. Yahiro, J. Phys. G 37, 105007

(2010).
[15] G. Aarts, S. P. Kumar, and J. Rafferty, J. High Energy Phys.

07 (2010) 056.
[16] H. Kouno, Y. Sakai, K. Kashiwa, and M. Yahiro, J. Phys. G

36, 115010 (2009).

[17] O. Philipsen and P. de Forcrand, Proc. Sci., LATTICE2010
(2010) 211 [arXiv:1011.0291].

[18] C. Bonati, P. de Forcrand, M. D’Elia, O. Philipsen, and
F. Sanfilippo, Proc. Sci., LATTICE2011 (2011) 189 [arXiv:
1201.2769].

[19] A. Roberge and N. Weiss, Nucl. Phys. B275, 734 (1986).
[20] P. de Forcrand and O. Philipsen, Nucl. Phys. B642, 290

(2002).
[21] M. D’Elia and M.-P. Lombardo, Phys. Rev. D 67, 014505

(2003).
[22] U. M. Heller, Proc. Sci., LAT2006 (2006) 011 [arXiv:hep-

lat/0610114].
[23] B. Bunk, M. Della Morte, K. Jansen, and F. Knechtli, Nucl.

Phys. B697, 343 (2004).
[24] M. Golterman, Y. Shamir, and B. Svetitsky, Phys. Rev. D 74,

071501(R) (2006).
[25] O. Philipsen and C. Pinke, Phys. Rev. D 89, 094504

(2014).
[26] L.-K. Wu and X.-F. Meng, Phys. Rev. D 87, 094508 (2013).
[27] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
[28] S. Gottlieb, W. Liu, D. Toussaint, R. L. Renken, and R. L.

Sugar, Phys. Rev. D 35, 3972 (1987).
[29] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63,

1195 (1989).
[30] I. D. Lawrie and S. Sarbach, in Phase Transitions and

Critical Phenomena, edited by C. Domb and J. L. Lebowitz
(Academic Press, New York, 1984), Vol. 9.

[31] A. Billoire, T. Neuhaus, and B. Berg, Nucl. Phys. B396, 779
(1993).

[32] http://physics.utah.edu/~detar/milc/.
[33] http://crd‑legacy.lbl.gov/~dhbailey/mpdist/.

NATURE OF ROBERGE-WEISS TRANSITION ENDPOINTS … PHYSICAL REVIEW D 90, 094506 (2014)

094506-7

http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1088/0034-4885/74/1/014001
http://dx.doi.org/10.1088/0954-3899/39/1/013101
http://dx.doi.org/10.1103/PhysRevD.77.114503
http://dx.doi.org/10.1103/PhysRevD.77.114503
http://arXiv.org/abs/hep-lat/0610116
http://arXiv.org/abs/hep-lat/0610116
http://dx.doi.org/10.1103/PhysRevLett.105.152001
http://dx.doi.org/10.1103/PhysRevLett.105.152001
http://dx.doi.org/10.1103/PhysRevD.80.111501
http://dx.doi.org/10.1103/PhysRevD.80.111501
http://dx.doi.org/10.1103/PhysRevD.83.054505
http://dx.doi.org/10.1103/PhysRevD.83.054505
http://dx.doi.org/10.1103/PhysRevD.76.114509
http://dx.doi.org/10.1103/PhysRevD.76.114509
http://dx.doi.org/10.1103/PhysRevD.83.114507
http://dx.doi.org/10.1103/PhysRevD.83.114507
http://dx.doi.org/10.1103/PhysRevD.80.014502
http://dx.doi.org/10.1103/PhysRevD.80.014502
http://dx.doi.org/10.1088/1126-6708/2007/01/077
http://dx.doi.org/10.1088/1126-6708/2007/01/077
http://dx.doi.org/10.1088/1126-6708/2008/11/012
http://dx.doi.org/10.1088/1126-6708/2008/11/012
http://dx.doi.org/10.1103/PhysRevD.76.034505
http://dx.doi.org/10.1103/PhysRevD.76.034505
http://dx.doi.org/10.1088/0954-3899/37/10/105007
http://dx.doi.org/10.1088/0954-3899/37/10/105007
http://dx.doi.org/10.1007/JHEP07(2010)056
http://dx.doi.org/10.1007/JHEP07(2010)056
http://dx.doi.org/10.1088/0954-3899/36/11/115010
http://dx.doi.org/10.1088/0954-3899/36/11/115010
http://arXiv.org/abs/1011.0291
http://arXiv.org/abs/1201.2769
http://arXiv.org/abs/1201.2769
http://dx.doi.org/10.1016/0550-3213(86)90582-1
http://dx.doi.org/10.1016/S0550-3213(02)00626-0
http://dx.doi.org/10.1016/S0550-3213(02)00626-0
http://dx.doi.org/10.1103/PhysRevD.67.014505
http://dx.doi.org/10.1103/PhysRevD.67.014505
http://arXiv.org/abs/hep-lat/0610114
http://arXiv.org/abs/hep-lat/0610114
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.023
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.023
http://dx.doi.org/10.1103/PhysRevD.74.071501
http://dx.doi.org/10.1103/PhysRevD.74.071501
http://dx.doi.org/10.1103/PhysRevD.89.094504
http://dx.doi.org/10.1103/PhysRevD.89.094504
http://dx.doi.org/10.1103/PhysRevD.87.094508
http://dx.doi.org/10.1016/S0370-1573(02)00219-3
http://dx.doi.org/10.1103/PhysRevD.35.3972
http://dx.doi.org/10.1103/PhysRevLett.63.1195
http://dx.doi.org/10.1103/PhysRevLett.63.1195
http://dx.doi.org/10.1016/0550-3213(93)90671-B
http://dx.doi.org/10.1016/0550-3213(93)90671-B
http://physics.utah.edu/~detar/milc/
http://physics.utah.edu/~detar/milc/
http://physics.utah.edu/~detar/milc/
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://crd-legacy.lbl.gov/~dhbailey/mpdist/

