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We study the dependence on the charm quark mass of the leading-order low-energy constants of the
ΔS ¼ 1 effective Hamiltonian, with the aim of elucidating the role of the charm mass scale in theΔI ¼ 1=2
rule for K → ππ decay. To that purpose, finite-volume chiral perturbation theory predictions are matched to
QCD simulations, performed in the quenched approximation with overlap fermions and mu ¼ md ¼ ms.
Light quark masses range between a few MeV up to around one third of the physical strange mass, while
charm masses range between mu and a few hundred MeV. Novel variance reduction techniques are used to
obtain a signal for penguin contractions in correlation functions involving four-fermion operators. The
important role played by the subtractions required to construct renormalized amplitudes for mc ≠ mu is
discussed in detail. We find evidence that the moderate enhancement of theΔI ¼ 1=2 amplitude previously
found in the GIM limit mc ¼ mu increases only slightly as mc abandons the light quark regime. Hints of a
stronger enhancement for even higher values of mc are also found, but their confirmation requires a better
understanding of the subtraction terms.
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I. INTRODUCTION

The quantitative understanding of nonleptonic kaon
decays, such as K → ππ, remains an elusive problem after
several decades of study. Thus, no fully solid Standard
Model computation of the value of ϵ0=ϵ, or of the
amplitudes involved in the famous ΔI ¼ 1=2 rule, is
available. In this paper we focus on the latter problem.
The decay of a neutral kaon into a pair of pions with total
isospin I has an associated transition amplitude

T½K → ðππÞI� ¼ iAIeiδI ; ð1:1Þ

where δI is the pion scattering phase shift. Experiment finds
that the amplitude in the I ¼ 0 channel is significantly
larger than the one in the I ¼ 2 channel,

jA0j
jA2j

≃ 22.1: ð1:2Þ

Early analysis of the ΔI ¼ 1=2 problem showed that, if its
explanation is to be found in the Standard Model, the bulk
of the enhancement must come from long-distance con-
tributions generated by the strong interaction [1,2]. Reliable
determinations of the latter inevitably require a nonpertur-
bative computation [3,4].1

The lattice regularization of QCD is the only known
approach capable of providing fully first-principles results
at the nonperturbative level. Yet, lattice studies of K → ππ
have to face significant difficulties:

(i) The computation of transition amplitudes for two-
body decays from the Euclidean correlation func-
tions provided by lattice QCD requires nontrivial
kinematical setups [7–9], which ultimately has a
significant impact on the computational cost.

(ii) The renormalization of the relevant weak effective
Hamiltonian Hw is complex. When the charm quark
is not kept as an active degree of freedom the four-
quark operators in Hw are power divergent, and
nonperturbative subtractions are needed to obtain
finite amplitudes. Furthermore, even when the
charm is not integrated out the same is true unless
the regularization preserves chiral symmetry. Thus,
lattice studies with Wilson fermions are poised to
deal with this problem.2 The use of lattice ermion
regularizations with Ginsparg-Wilson fermions
[12–21], that possess an exact chiral symmetry
and have been shown to preserve good renormali-
zation properties of the operators [22], is therefore
advantageous. This, however, has again an impact
on the computational cost, since Ginsparg-Wilson
fermions are numerically expensive.

1An up-to-date review of kaon decay, including a discussion of
the ΔI ¼ 1=2 rule, can be found in [5]. See also [6] for a
discussion of state-of-the-art attempts to address the phenomenon
in the context of large N methods.

2Twisted-mass regularizations with Wilson-like fermions have
however been devised that allow to alleviate or eliminate power
divergences [10,11].
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In recent years, computations that employ so-called domain
wall fermions have succeeded in making significant
progress in the study of nonleptonic kaon decays,
by computing amplitudes involving the effective
Hamiltonian without a charm quark [23–26].
There are several possible sources for the ΔI ¼ 1=2

enhancement within the context of strong interactions. This
is ultimately connected to the presence of various scales in
the problem: the charm quark mass scale mc ∼ 1.3 GeV;
the intrinsic QCD scale ΛQCD ∼ 250 MeV; and the scale
≲100 MeV of pion final state interactions. In particular, the
role of the charm quark and its associated mass scale as a
possible cause for the ΔI ¼ 1=2 enhancement was pointed
out long ago [27]. However, charm effects are not easily
apprehended when its contribution to Hw is integrated out.
This, together with the much simpler renormalization
properties resulting from the presence of a working GIM
mechanism, constitutes a strong case to keep the charm as
an active degree of freedom in the low-energy treatment of
electroweak effects.
In [28] a strategy was proposed to disentangle contri-

butions from the various scales, and quantify them using
numerical simulations. The starting point is the CP-
conserving ΔS ¼ 1 effective weak Hamiltonian with an
active charm quark. One then constructs its counterpart
within the low-energy effective description of QCD pro-
vided by chiral perturbation theory (ChiPT). This is done
for two different physical situations: the physical kinemat-
ics, where the charm is heavy and the relevant symmetry for
the chiral dynamics is SUð3ÞL × SUð3ÞR; and the unphys-
ical GIM limit mc ¼ mu, where the charm is light and the
relevant chiral symmetry is SUð4ÞL × SUð4ÞR. In either
case, the low-energy constants (LECs) of the chiral
effective Hamiltonian can be determined by matching
suitable correlation functions in ChiPT and QCD. The
use of the effective description, first proposed in [29],
implies dealing with K → π transitions only, which has a
double effect: it avoids the kinematical difficulties posed by
the two-body decay, allowing for smaller volumes (and
hence a reduced computational cost); and it neglects final-
state interaction effects, which isolates one of the possible
sources for enhancement. The calculation of the LECs
corresponding toΔI ¼ 1=2 andΔI ¼ 3=2 transitions in the
GIM limit will expose the effect from intrinsic QCD scales.
The effect of a heavier charm quark can then be studied by
monitoring the behavior of the amplitudes as mc increases
towards its physical value, exiting the domain of validity of
ChiPT for the charm sector in the process.
Results in the GIM limit were obtained in [30,31] from

quenched QCD simulations with overlap quarks. It was
found that in this case the I ¼ 2 amplitude is already very
close to its physical value, and that a significant enhance-
ment is already present. The I ¼ 0 amplitude is however
still smaller than its physical value by roughly a factor of 4.
The question is then left whether increasing mc towards

heavy values provides the bulk of the missing enhance-
ment. Extending the study to mc ≫ mu is however non-
trivial, because it requires the computation of new
correlation functions—in the form of so-called “penguin
contractions” or “eye diagrams”—notoriously affected by
severe signal-to-noise problems. The construction of renor-
malized amplitudes for mc ≠ mu also requires subtractions
that eliminate logarithmic divergences not present in the
GIM limit, which adds an extra layer of complication.
In this paper we present the first results of an exploration

of the effect of a heavier charm quark on the ΔI ¼ 1=2
amplitude, extending the study in [30]. We will focus on the
physics discussion and results; the variance reduction
techniques developed for the computation are described
in a companion paper [32]. Simulations will still be carried
out in the quenched approximation. This is not expected to
have a major impact on the qualitative results of the
analysis, and avoids the large increase of the computational
cost that dynamical overlap simulations would imply—or,
alternatively, the technical and conceptual complications
associated to a mixed-action strategy, in case one would
like to use dynamical configurations obtained with a
different fermion regularization.
The layout of the paper is as follows. In Sec. II we

summarize the strategy introduced in [28]. In Sec. III we
discuss the role of subtraction terms, and how they can
be treated. In Sec. IV we discuss our lattice results for the
relevant QCD correlation functions. In Sec. V these results
are matched to ChiPT to extract the values of the leading-
order LECs. Finally, Sec. VI presents our conclusions and
outlook. A number of technicalities are discussed in
appendices.

II. SETUP AND STRATEGY

The setup we follow to disentangle the role of the charm
quark in the ΔI ¼ 1=2 rule has been laid out in [28]. Here
we summarize it, and refer the reader to that paper for a
fully detailed discussion of the various aspects.

A. Effective weak Hamiltonian with an active
charm quark

When the charm quark is kept as an active degree of
freedom, and after neglecting the contribution from top
quark loops,3 the effective Hamiltonian that describes
K → ππ decays in the Standard Model at scales well below
MW has the form

HwðxÞ ¼
g2w

4M2
W
V�
usVud

X
n

knQnðxÞ; ð2:1Þ

3The top contribution is suppressed by three orders of
magnitude relative to the one from the up quark, so that the
relation V�

csVcd ≃ V�
usVud between CKM matrix elements holds

to a good approximation.
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where g2w ¼ 4
ffiffiffi
2

p
GFM2

W , the sum runs over all the
composite operators Qn with engineering dimension
d ≤ 6 and appropriate transformation properties under
the relevant symmetries, and kn are the corresponding
Wilson coefficients.
The relevant global symmetry group is SUð4ÞL×SUð4ÞR,

and the left-handed character of electroweak interactions
demands that operators are singlets under SUð4ÞR. Only
two four-quark operators with the correct flavor content and
transformation properties can be constructed, namely

Q�
1 ¼ Jsuμ Judμ � Jsdμ Juuμ − ½u ↔ c�; ð2:2Þ

where Jμ is the left-handed current

Jαβμ ¼ ðψ̄αγμP−ψβÞ; ð2:3Þ

P� ¼ 1
2
ð1� γ5Þ, and parentheses around quark bilinears

indicate that they are traced over spin and color. Qþ
1 , Q

−
1

transform in irreducible representations of SUð4ÞL of
dimensions 84 and 20, respectively. The only two other
possible operators are quark bilinears, multiplied by factors
involving the quark mass matrix M; when the latter is
diagonal,M ¼ diagðmu;md;ms;mcÞ, the two operators are
actually identical, and reduce to

Q�
2 ¼ ðm2

u −m2
cÞfmdðs̄PþdÞ þmsðs̄P−dÞg

¼ 1

2
ðm2

u −m2
cÞfðmd þmsÞðs̄dÞ − ðms −mdÞðs̄γ5dÞg:

ð2:4Þ

Wewill keep the� superscript in this operator nonetheless,
for the sake of notational consistency. Note that the
effective Hamiltonian in Eq. (2.1) is much simpler than
the one obtained when the charm quark is integrated out—
in that case, Hw will contain ten operators (of which some
are redundant). The two main advantages of keeping an
active charm are that the renormalization properties of
composite operators (see below) are much simpler due to
the presence of a working GIM mechanism; and it is
possible to study the dependence of QCD amplitudes onmc
directly.
For the latter purpose, it turns out to be convenient to

also have Eq. (2.1) rewritten in terms of operators that
transform in irreducible representations of the flavor group
SUð3ÞL × SUð3ÞR spanned by the light u; d; s quarks. The
outcome of this exercise is [33]

Hw ¼ g2w
4M2

W
V�
usVud

�
kþ1 Q

þ
u þ kþ1

5
Rþ þ k−1R

− − kþ1 Q
þ
c

− k−1Q
−
c þ kþ2 Q

þ
2 þ k−2Q

−
2

�
; ð2:5Þ

where

Qþ
u ¼ Jsuμ Judμ þJsdμ Juuμ −

1

5

X
q¼u;d;s

fJsqμ Jqdμ þJsdμ Jqqμ g; ð2:6Þ

R� ¼
X

q¼u;d;s

fJsqμ Jqdμ � Jsdμ Jqqμ g; ð2:7Þ

Q�
c ¼ Jscμ Jcdμ � Jsdμ Jccμ : ð2:8Þ

The operator Qþ
u transforms under the 27-plet of SUð3ÞL,

while all other operators transform under irreducible
representations of dimension 8. Note the trivial identities
Qþ

1 ¼ Qþ
u þ 1

5
Rþ −Qþ

c , Q−
1 ¼ R− −Q−

c .

B. Renormalization and mixing

The full weak Hamiltonian is finite, and does not require
any renormalization. The operatorsQ�

1;2, on the other hand,
must be renormalized. Assuming that the regularization
preserves enough of the relevant symmetries (which will be
the case in what follows), the general relation between bare
and renormalized (denoted with a bar) operators is

Q̄�
1 ¼ Z�

11Q
�
1 þ Z�

12Q
�
2 ;

Q̄�
2 ¼ Z�

21Q
�
1 þ Z�

22Q
�
2 : ð2:9Þ

Since the operator Q�
2 only contains products of nonsinglet

chiral densities times linear combinations of quark masses,
it is multiplicatively renormalizable, which allows to
choose Z�

21 ¼ 0. Furthermore, as a consequence of the
GIM mechanism the contribution of Q�

2 to renormalized
operators vanishes when mu ¼ mc; this allows to fix Z�

11 at
vanishing quark masses. It is then enough to fix Z�

12

such that any remaining divergences are subtracted.
Equivalently, one can rewrite the effective Hamiltonian as

Hw ¼
X
σ¼�

kσ1ðμÞZσ
11ðμÞfQσ

1 þ cσQσ
2g; ð2:10Þ

where Q�
i are the bare operators, and impose two sub-

traction conditions that determine the coefficients c� in
such a way that the only remaining divergence in the
subtracted operators Q�

1 þ c�Q�
2 are eliminated by Z�

11.
(This is obviously equivalent to fixing Z�

12). This procedure
will be discussed in detail below. Note that the operator
mixing encoded in c� is a radiative effect, so one expects
c� to be naturally of OðαsÞ, leading to a suppression of the
contribution of Q�

2 to physical amplitudes.4 Note also that
the coefficients c� are expected to contain logarithmic
divergences, since the anomalous dimensions of the bare
operators Q�

1 and Q�
2 are different. In a mass independent

renormalization scheme, one should isolate the values of c�

4As we will discuss below, this suppression can be actually
argued to be even stronger.
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in the chiral limit and compute them at the same scale at
which the overall renormalization constants Z�

11 and the
Wilson coefficients k�1 are computed.
Once the operators are renormalized, they have to be

combined with Wilson coefficients into the weak
Hamiltonian. Wilson coefficients can be computed from
the perturbative anomalous dimensions, which are known at
next-to-leading order in various dimensional regularization-
based schemes, as well as in the regularization-independent
(RI) scheme [34–37]. Correlation functions involving the
operators will be computed on the lattice, and are best
nonperturbatively renormalized; the two schemes of choice
to this purpose are RI and Schrödinger Functional (SF)
schemes. The main difference between the two options is
that the RI procedure allows to renormalize the operators at
scales in the ballpark of few GeV, while the SF method
provides renormalization constants at any value of the scale
between μ ∼ ΛQCD and μ ∼MW . The use of RI thus allows
to compute the product knðμÞQ̄nðμÞ directly, with the
disadvantage that the value of μ is relatively low and the
uncertainty related to the perturbative truncation in kn has
to be assessed. With SF, on the other hand, a matching
between renormalization schemes is needed, but it can be
performed at high-energy scales, where the convergence of
perturbation theory is very good. This will thus be our
method of choice.
A convenient way to embody this procedure is to work in

a renormalization group invariant (RGI) formulation. To
that purpose one defines RGI operators and Wilson
coefficients as

QRGI ¼ Uðμ=ΛÞQðμÞ ¼ Uðμ=ΛÞZðμÞQ;

kRGI ¼ Uðμ=ΛÞ−1kðμÞ; ð2:11Þ

where the RG running factor Uðμ=ΛÞ that connects the
renormalized quantity at scale μ to its RGI counterpart is
given by

Uðμ=ΛÞ ¼ ½2b0ḡ2ðμÞ�
γ0
2b0 exp

�
−
Z

ḡðμÞ

0

dg

�
γðgÞ
βðgÞ þ

γ0
b0g

��
;

ð2:12Þ

where γ and β are the anomalous dimension of Q and the
RG β function in the scheme of choice, respectively, and γ0,
b0 are the leading-order coefficients of their perturbative
expansions. The use of the SF scheme allows to compute
both ZðμÞ and Uðμ=ΛÞ for small values of μ=Λ; in the case
of the running factor this is achieved by splitting it as

Uðμ=ΛÞ ¼ UðMW=ΛÞ
Uðμ=ΛÞ

UðMW=ΛÞ
; ð2:13Þ

where the second factor on the rhs is computed nonpertur-
batively, and the first one is computed at next-to-leading

order with a small perturbative truncation error of
order αsðMWÞ3 ∼Oð10−3Þ. The RGI Wilson coefficient
can instead be computed directly as kRGI ¼ UðMW=ΛÞ−1k
ðMWÞ, with the same degree of perturbative uncertainty. In
view of the construction of the weak Hamiltonian, it is
convenient to define the quantities

Z�
1 ≡ k�;RGI

1 U�
1 ðμ=ΛÞ

Z�
11ðμÞ
Z2
A

; ð2:14Þ

where ZA is the normalization factor of the left-handed
current (which will be nontrivial in the lattice regularization
of QCD that we will introduced later). Note that Z�

1

is independent by construction of the renormalization
scale μ.
The running factor Uðμ=ΛÞ has been computed non-

perturbatively in [38,39] with Nf ¼ 0 and Nf ¼ 2 dynami-
cal flavors, respectively. The renormalization factors
Z�
11ðμÞ=Z2

A for the overlap fermion regularization that we
will employ in this paper have been determined in
quenched QCD in [40].

C. Effective low-energy description in chiral
perturbation theory

As discussed in the introduction, a direct computation of
K → ππ amplitudes, requiring large physical volumes, is
beyond the current scope of our paper. We thus resort to
computing instead the LECs in the ChiPT counterpart of
the effective weak Hamiltonian, from which the amplitudes
can be computed at some given order in the chiral
expansion. Since our main emphasis is to understand their
dependence on mc, we will face two different physical
situations: the strict GIM limit, where all quark masses are
light and degenerate; and the “physical” kinematics, where
mu ¼ md ¼ ms are kept light and mc ≫ mu. In the former
case, all four quarks can be treated within ChiPT, while in
the latter only the light flavors enter the effective descrip-
tion; therefore, two different versions of the chiral effective
Hamiltonian will be needed, with SUð4Þ and SUð3Þ
symmetries, respectively.
The construction of the relevant chiral effective

weak Hamiltonians has been reviewed in [33]. Given a
leading-order chiral Lagrangian of the form (either for
U ∈ SUðNf ¼ 4Þ or U ∈ SUðNf ¼ 3Þ)5

L ¼ F2

4
Tr½ð∂μUÞ∂μU†�

−
Σ
2
Tr½UM†eiθ=Nf þMU†e−iθ=Nf �; ð2:15Þ

5Note that F and Σ will of course be different in general
depending on the value of Nf .
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where M is the mass matrix and θ the vacuum angle, the
leading-order SU(4) Hamiltonian reads6

Hð4Þ
w ¼ g2w

4M2
W
V�
usVud

X
σ¼�

fgσ1Qσ
1 þ gσ2Q

σ
2g; ð2:16Þ

where g�1;2 are LECs,

Q�
1 ¼ J su

μ J ud
μ � J sd

μ J uu
μ − ½u ↔ c�; ð2:17Þ

J μ is the left-handed chiral current

J μ ¼
F2ffiffiffi
2

p U∂μU†; ð2:18Þ

and superscripts indicate matrix components in flavor
space. The SU(3) Hamiltonian has instead the form

Hð3Þ
w ¼ g2w

4M2
W
V�
usVudfg27Q27 þ g8Q8 þ g08Q

0
8g; ð2:19Þ

where

Q27 ¼
2

5
J su

μ J ud
μ þ 3

5
J sd

μ J uu
μ ; ð2:20Þ

Q8 ¼
1

2

X
q¼u;d;s

J sq
μ J qd

μ ; ð2:21Þ

Q0
8 ¼ mlΣF2½Ueiθ=Nf þ U†e−iθ=Nf �sd; ð2:22Þ

where ml ≡mu ¼ md ¼ ms. Indeed, in order to avoid
unessential complications related to the soft breaking of
the SU(3) vector symmetry, we will always work in the
limit of degenerate up, down, and strange masses, which
will be assumed hereafter.
LECs will be determined by matching QCD correlation

functions containing the weak Hamiltonian with ChiPT
correlation functions containing its chiral counterpart.
Matching conditions can be imposed separately in different
symmetry sectors, by identifying sets of operators on both
sides that transform in the same way under the relevant
chiral symmetry. In the case of the matching to SU(4)
ChiPT this is straightforward: Q�

1;2 and Q�
1;2 have exactly

the same transformation properties under SUð4ÞL. In the
case of SU(3) ChiPT, on the other hand, one finds that Q27

transforms in the 27-plet of SUð3ÞL, while Q8 and Q0
8

transforms as octets; since on the QCD side there are one
27-plet and several octet operators, the matching will be
somewhat more involved. Furthermore, as is well known,

K → ππ amplitudes depend on g27 and g8 but not on g08
[29,41], rendering the latter essentially arbitrary; as a matter
of fact, the appearance of g08 reflects the need for sub-
tractions in QCD amplitudes, as will be discussed in greater
detail below.
Note that since the charm quark is always kept as an

active degree of freedom in QCD, this will imply that the
SU(3) LECs g27, g8 will be functions of mc. One can
actually consider the matching of the chiral Hamiltonians

Hð4Þ
w and Hð3Þ

w in a regime where mc > mu ¼ md ¼ ms but
such that the charm can still be treated within ChiPT, from
which point of view charmed mesons behave as decoupling
particles. This has been studied in [42], where explicit
expressions for g27ðmcÞ, g8ðmcÞ in terms of LO and
(unknown) next-to-leading order LECs in SU(4) ChiPT
are provided. The leading-order matching reads

g27ð0Þ ¼ gþ1 ; g8ð0Þ ¼ g−1 þ 1

5
gþ1 : ð2:23Þ

On the other hand, one can take the leading-order results for
jA0j and jA2j in SU(3) ChiPT and match them to the
experimental values of the amplitudes, interpreting the
result as a phenomenological determination of the LECs at
the physical value m̄c of the charm quark mass. The result
of this exercise is

jgexp27 ðm̄cÞj ∼ 0.50; jgexp8 ðm̄cÞj ∼ 10.5: ð2:24Þ

One important ingredient of our setup is thatwework both
in the standard, p regime of ChiPT, and in the so-called ϵ
regime [43,44] (see also [45,46]). Here “p regime” means
working in large volumes measured in terms of the pion
Compton wavelength, i.e., mπL ≫ 1 if a four-dimensional
box of dimensions L3 × T is considered; ϵ regime means
keeping a large volume (i.e., the implicit FπL ≫ 1 pre-
requisite for the chiral expansion to work is fulfilled) but
working at very small quark masses, such that the “pion”
Compton wavelength is of the order of L—or, more
precisely, mΣV ≲ 1, where m is the light quark mass, Σ
is the chiral condensate, and V is the four-dimensional
volume. Furthermore, one should keep T ∼ L, since at
T=L ≫ 1 a different kinematical region—the δ regime
[47]—arises. The main advantage of considering the ϵ
regime instead of the physical p regime is that mass effects
are suppressed in the former, and the chiral expansion is
rearranged such that fewer operators appear at any given
order in the expansion with respect to the p regime [48].
This allows for potentially cleaner determinations of the
leading-order LECs—especially so in the case of effective
Hamiltonians for nonleptonic meson decay, which display a
large number of new terms at NLO in the chiral expansion
[49]. On the other hand, finite-volume effects are obviously
large in the ϵ regime, being typically polynomial and not
exponentially suppressed as in the p regime. Finally, out of

6In what follows the operators Q�
2 , which are the chiral

counterparts of Q�
2 , will play no role, since SU(4) ChiPT will

only be used in the limit mu ¼ mc, where they drop from Hð4Þ
w .

Their explicit form can be found in [28].
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technical convenience correlation functions in the ϵ regime
are computed at a fixed value of the topological charge.
It can be shown [43] that LECs are universal, in the sense

that the same values are obtained when ChiPT is matched to
QCD in either kinematical regime. Since the systematic
uncertainties induced by the truncation of the chiral
expansion are however different in each case, being able
to perform consistent matching in both regimes implies a
much higher degree of control on the final results. In
particular, the ChiPT correlation functions involved in the
matching for leading-order LECs in the chiral effective
Hamiltonian will not depend on extra LECs up to NNLO
corrections—NLO contributions are purely finite-volume
effects, which are exactly calculable. Note that on the QCD
side, the need of having nonperturbative results at very low
quark masses and for a well-defined value of the topologi-
cal charge in order to work in the ϵ regime implies that
lattice regularizations with exact chiral symmetry are
strongly preferred.
One final comment concerns the use of quenched chiral

perturbation theory (qChiPT) to describe quenched QCD
data. As is well known, qChiPT displays unphysical
artifacts; in particular, in the context of K → ππ transitions
Golterman-Pallante ambiguities make the matching of
QCD to SU(3) qChiPT ill-defined [50,51]. This is however
not the case for SU(4), where the ratios of correlation
functions we will deal with (see below) present no
ambiguities in the quenched approximation, as discussed
in [28,33]. Quenched results are not worked out explicitly
in [33] for SU(3) ChiPT. As can be seen in the formulas
gathered in Appendix A, while the ϵ-regime formulas are
essentially insensitive to quenching, the NLO prediction
p-regime predictions for the relevant correlation functions
in the octet channel displays 1=Nf factors, that signal the
need to take into account nondecoupled singlet contribu-
tions to repeat the computation in the quenched case. Here
we will take the unquenched formulas as an operational
description, and perform fits with various values of Nf (and
hence different coefficients in the chiral logs) to check the
dependence of the LECs on the value of Nf , and adscribe a
systematic uncertainty to fit results (see Sec. V for details).

D. Matching ChiPT to QCD

1. mc ¼ ml

When all quarks are light and degenerate the effective
low-energy description of ΔS ¼ 1 processes is given by
Eq. (2.16). Contributions from Q�

2 (in QCD) and Q�
2 (in

ChiPT) drop because they are proportional tomu −mc; one
is thus left with the problem of determining the LECs g�1 .
As explained above, the correspondence between QCD
and ChiPT operators in this case is straightforward. The
matching can be easily performed using three-point func-
tions of the operators in the effective Hamiltonian with
quark bilinears such that flavor indices are saturated.

A technically convenient choice for the latter is to employ
left-handed currents, leading to the correlation functions

C�
i ðx0; y0Þ ¼

Z
d3x

Z
d3yhJdu0 ðxÞQ�

i ð0ÞJus0 ðyÞi; ð2:25Þ

Cðx0Þ ¼
Z

d3xhJαβ0 ðxÞJβα0 ð0Þi; ð2:26Þ

where α; β are distinct light flavor indices (not summed
over). The ratios

R�
i ðx0; y0Þ ¼

C�
i ðx0; y0Þ

Cðx0ÞCðy0Þ
; ð2:27Þ

will then be proportional to the matrix elements hπjQ�
1 jKi

(with mass-degenerate kaon and pion) when x0 → þ∞,
y0 → −∞. The equivalent ChiPT quantities are

Cðx0Þ ¼
Z

d3xhJ ud
0 ðxÞJ du

0 ð0ÞiSUð4Þ; ð2:28Þ

C�i ðx0; y0Þ ¼
Z

d3x
Z

d3yhJ du
0 ðxÞQ�

i ð0ÞJ us
0 ðyÞiSUð4Þ;

ð2:29Þ

R�
i ðx0; y0Þ ¼

C�i ðx0; y0Þ
Cðx0ÞCðy0Þ

; ð2:30Þ

where the notation hiSUð4Þ emphasises the use of the
appropriate effective theory. The LECs in the chiral weak
Hamiltonian can then be readily extracted from the match-
ing condition

Z�
1 R

�
1 ðx0; y0Þ ¼ g�1 R

�
1 ðx0; y0Þ: ð2:31Þ

Formulas for ChiPT quantities are given in Appendix A.

2. mc ≫ ml

A similar strategy to the one just described can be
pursued to match QCD withmc ≫ ml to SU(3) ChiPT. One
first defines new three-point functions in both QCD

Cþ
u ðx0; y0Þ ¼

Z
d3x

Z
d3yhJdu0 ðxÞQþ

u ð0ÞJus0 ðyÞi; ð2:32Þ

and ChiPT

C27ðx0; y0Þ ¼
Z

d3x
Z

d3yhJ du
0 ðxÞQ27ð0ÞJ us

0 ðyÞiSUð3Þ;

ð2:33Þ

C8ðx0; y0Þ ¼
Z

d3x
Z

d3yhJ du
0 ðxÞQ8ð0ÞJ us

0 ðyÞiSUð3Þ;

ð2:34Þ
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C08ðx0; y0Þ ¼
Z

d3x
Z

d3yhJ du
0 ðxÞQ0

8ð0ÞJ us
0 ðyÞiSUð3Þ;

ð2:35Þ

and the corresponding ratios Rþ
u ;R27;R8;R0

8 by dividing
them with products of current two-point functions. Next
one can impose matching conditions in both the 27-plet and
octet channels,

R27ðx0; y0Þ ¼ g27R27ðx0; y0Þ; ð2:36Þ

R8ðx0; y0Þ ¼ g8R8ðx0; y0Þ þ g08R
0
8ðx0; y0Þ; ð2:37Þ

where

R27 ¼ Zþ
1 R

þ
u ; ð2:38Þ

R8 ¼ Zþ
1 ½Rþ

1 − Rþ
u þ cþRþ

2 � þ Z−
1 ½R−

1 þ c−R−
2 �: ð2:39Þ

Note that there is no contribution from the pure-octet
correlator Rþ

2 in the 27-plet channel.
It has to be stressed that the matching conditions in

Eqs. (2.36), (2.37) immediately imply that the LECs
acquire a dependence on mc. Furthermore, the matching
condition Eq. (2.37) provides, in principle, only a linear
combination of the two octet LECs; in particular, it does not
directly allow to disentangle the physical ChiPT octet
contribution with g8 from the unphysical one with g08.
As will shown below, however, typical conditions to
determine the subtraction coefficients c� required to
construct renormalized QCD amplitudes simultaneously
fix the value of g08, which is then no longer an unknown.
Eq. (2.37) does then allow to determine g8 unambiguously.
Formulas for ChiPT quantities are again provided in
Appendix A.

E. Results in the GIM limit and scope
of the present work

The SU(4) LECs g�1 were determined in [30] by
computing the renormalized ratios of correlation functions
Z�

1 R
�
1 in lattice QCD in the quenched approximation at

fixed volume and lattice spacing and keeping mc ¼ ml.
Computations were performed at four p-regime and one
ϵ-regime values of ml; renormalization factors were sep-
arately determined in [40]. The results were found to be

gþ1 ¼ 0.51ð9Þ; g−1 ¼ 2.6ð5Þ; ð2:40Þ

leading via Eq. (2.23) to

g27ð0Þ ¼ 0.51ð9Þ; g8ð0Þ ¼ 2.7ð5Þ; ð2:41Þ

that can be compared with the phenomenological expect-
ation in Eq. (2.24). It can then be concluded that

(i) The approximations involved in the above compu-
tation provide the correct value for the ΔI ¼ 3=2
amplitudes parametrized by g27 (which are indeed
expected to have little sensitivity to the value ofmc).

(ii) Pure low-energy QCD effects, combined with the
well-known short-distance contribution given by the
ratio of Wilson coefficients k−1 =k

þ
1 , are responsible

for a significant enhancement of the decay amplitude
in theΔI ¼ 1=2 channel. The latter is however still a
factor ∼4 smaller than the phenomenological value.

Therefore, barring (unlikely) large cutoff effects in the
mc ¼ ml lattice QCD computation, as well as the possibil-
ity of large quenching artifacts, an explanation of the ΔI ¼
1=2 rule that is purely based on Standard Model physics
requires either a significant increase in g8ðmcÞ when
mc ≫ ml; a strong effect due to pion rescattering in
physical K → ππ decays; or a combination of the two.
The aim of the present paper is to explore the dependence
of g8 on mc, by extending the study of [40] to the case
mc ≠ ml. As we will discuss, a major technical challenge
for this is the computation of the new contributions to
amplitudes involving the four-fermion operators Q�

1 that
arise outside the mc ¼ mu limit.7

III. THE ROLE OF THE SUBTRACTION TERM

As discussed above, outside the GIM limitmu ¼ mc, and
for our kinematics mu ¼ md ¼ ms ¼ ml, the renormalized
matrix elements hπðp ¼ 0ÞjQ̄�

1 jKðp ¼ 0Þi are a linear
combination of the bare hπjQ�

1 jKi matrix elements and
the subtraction term hπjQ�

2 jKi, cf. Eq. (2.10). In this
section we will discuss the contribution of the subtraction
term, as well as two possible procedures to determine the
subtraction coefficients c�: fixing c� by prescribing
arbitrary values for the unphysical renormalized amplitudes
h0jQ̄�

1 jKi; and a variant of this method that involves two-
point functions of Q̄�

1 in the ϵ regime. We will also discuss
the behavior of the subtraction coefficients in perturbation
theory.

A. Matrix elements of Q�
2

It is first of all interesting to note that the properties of
amplitudes involving Q�

2 are considerably simplified if, as
will be the case in what follows, one is only interested in
matrix elements of the effective weak Hamiltonian with no
momentum transfer between the initial and final state.
Using chiral Ward-Takahashi identities, the contribution

7The effect of taking mc > mu, for values of mc that are still
light enough to fit within the effective low-energy description
provided by ChiPT, has been studied in [33], by analysing how
charm decoupling effects are reabsorbed in SU(3) LECs. This
yields a logarithmic enhancement of the ΔI ¼ 1=2 amplitude,
although lack of knowledge about the corrections coming
from NLO terms in the chiral expansion prevents quantitative
statements.
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from the operators (s̄P�d) contained in Q�
2 to any

amplitude can be rewritten as8

hfjðs̄P�dÞjii ¼
hfj∂μðs̄γμdÞjii

ms −md
� hfj∂μðs̄γμγ5dÞjii

ms þmd
:

ð3:1Þ

When ms ≠ md, this immediately implies that the matrix
element is proportional to the four-momentum transfer, and
vanishes if the latter is zero.9 When ms ¼ md, on the other
hand, the first term on the rhs has vanishing numerator and
denominator, and the quark mass dependence of
hfj∂μðs̄γμdÞjii has to be studied in order to find the value
of the ratio in the limit ms → md.
In physical, p-regime kinematics, and for large

Euclidean time separations between the operators, the
QCD three-point functions involved in the matching to
ChiPT are proportional to the transition amplitude
hπþjHwjKþi. Taking jii ¼ jKþðpÞi, jfi ¼ jπþðkÞi in
Eq. (3.1), the contribution from the axial current term
vanishes due to parity conservation, and the standard
parametrization of meson-meson matrix elements of the
vector current in terms of vector (fþ) and scalar (f0) form
factors leads to

hπþðkÞjðs̄dÞjKþðpÞi¼hπþðkÞj∂μðs̄γμdÞjKþðpÞi
ms−md

¼qμ½ðpþk−ΔÞμfþðq2ÞþΔμf0ðq2Þ�
ms−md

;

ð3:2Þ

where q ¼ p − k,Δμ ¼ ðm2
K −m2

πÞqμ=q2, and the normali-
zation convention fþð0Þ ¼ f0ð0Þ applies. If the external
states are on-shell, the above expression reduces to

hπþðkÞjðs̄dÞjKþðpÞi ¼ m2
K −m2

π

ms −md
f0ðq2Þ; ð3:3Þ

which does not vanish for ms ≠ md (in which case the
momentum transfer is indeed nonzero). If now we take our
preferred kinematics mu ¼ md ¼ ms we will have
mK ¼ mπ , and the momentum transfer vanishes; but
the matrix element is still nonzero, since the ratio
ðm2

K −m2
πÞ=ðms −mdÞ is finite (and proportional to the

chiral condensate), and f0ð0Þ ¼ fþð0Þ ¼ 1 by the
Ademollo-Gatto theorem [52]. Thus, the renormalization

of K → π amplitudes still requires a subtraction for mass-
degenerate kaon and pion at rest.
Since the relevant matrix elements are entirely deter-

mined by the ratio ðm2
K −m2

πÞ=ðms −mdÞ, one can actually
use ChiPT to obtain a precise prediction for the value of the
subtracted matrix element,

hπþjQ�
2 jKþi ¼ 1

2
ðm2

u −m2
cÞðms þmdÞhπþjðs̄dÞjKþi:

ð3:4Þ

In particular, at leading order and with mu¼md ¼ms¼ml
one has

hπþjQ�
2 jKþi ≈ 1

2
ðm2

l −m2
cÞm2

PS; ð3:5Þ

where mPS is the mass of the pseudoscalar light octet
mesons. A discussion of the NLO ChiPT corrections to
Eq. (3.5) is provided in Appendix A.
A final comment concerning renormalization is in order.

As mentioned above, the argument employed to arrive at
Eq. (3.5) assumes that renormalized quantities are used
throughout. In order to make contact with bare lattice
quantities, it will be necessary to take into account relative
(re)normalization factors. For instance, the result in
Eq. (3.5) will hold for either the bare or renormalized
Kþ → πþ amplitude mediated by Q�

2 , depending on
whether the quark masses in the factor ðm2

l −m2
cÞ are bare

or renormalized. In practice, rather than in the amplitude
itself we will be interested in the ratio (to which the quantity
R�
2 introduced in Eq. (2.27) will tend for large Euclidean

time separations)

hπþjQ�
2 jKþi

F2
PSm

2
PS

≈
m2

l −m2
c

2F2
; ð3:6Þ

where FPS is the decay constant of octet pseudoscalar
mesons, and LO ChiPT has again been employed to get to
the rhs of the expression. The factor required to renormalize
this ratio is ðZSZAÞ2, where ZS, ZA are the (re)normali-
zation factors of the nonsinglet scalar density and axial
currents, respectively.10 If the ratio on the lhs is the bare
one, and the quark masses on the rhs are also bare, then the
relative factor is given by Z2

A.
Natural prescriptions to fix the subtraction coefficients

c� will result in the latter being mass-independent (pos-
sibly up to small corrections, which will depend on the
precise procedure to fix them). Since, on the other hand, we
have seen that matrix elements of Q�

2 are proportional to
(m2

l −m2
c), it then follows that for mc ≫ ml and fixed ml

8For the purpose of this argument, we will assume for the
moment that all quantities are renormalized. Comments on the
role of renormalization will be provided later.

9As a matter of fact, a trivial extension of this argument implies
that the subtraction term does not contribute to physical K → ππ
decay amplitudes, since in that case one has the physicalms ≠ md
kinematics and momentum is conserved.

10Recall that even if chiral symmetry is exactly preserved on
the lattice by using Neuberger-Dirac fermions, local currents still
require a nontrivial normalization.
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the contribution of Q�
2 to any amplitude will be, to good

approximation, proportional to c�m2
c. Thus, an interesting

question, directly related to understanding the role of the
charm quark in theΔI ¼ 1=2 enhancement, is whether bare
amplitudes involving Q�

1 exhibit a similar behavior and, if
that is the case, whether some measure of cancellation of
this strong mc dependence occurs.11

B. Determination of subtraction coefficients

1. Kaon-to-vacuum amplitudes

A simple way of fixing subtraction coefficients, first
proposed in [29], is to exploit the fact that meson-to-
vacuum amplitudes mediated by the effective weak
Hamiltonian do not contribute to any physical process;
one can therefore set them to arbitrary values. The simplest
possibility is to impose that renormalized kaon-to-vacuum
amplitudes for Q�

1 þ c�Q�
2 vanish,

h0jQ�
1 þ c�Q�

2 jK0i ¼ 0: ð3:7Þ

The bare amplitudes can be extracted from the QCD two-
point functions

D�
1;2ðx0Þ ¼

Z
d3xhQ�

1;2ð0ÞJds0 ðxÞi; ð3:8Þ

which for large values of jx0j become proportional to
h0jQ�

1;2jK0ie−mK jx0j (up to finite-volume effects). On the
other hand, when the kaon-to-vacuum amplitude is
computed in ChiPT one has [41]

h0jHwjK0i ∝ g08½ðm2
s −m2

dÞ þ higher orders�; ð3:9Þ

which means that fixing the value of the amplitude is
equivalent to setting the value of the unphysical LEC g08. In
particular, Eq. (3.7) implies g08 ¼ 0.
When the explicit form of Q�

2 is substituted in Eq. (3.9),
it becomes a linear equation in c� that has the solutions

c� ¼ 2

ðm2
u −m2

cÞðms −mdÞ
h0jQ�

1 jK0i
h0js̄γ5djK0i ; ð3:10Þ

where we have used that parity conservation ensures that
only the pseudoscalar density part of Q�

2 contributes to the
transition. Since c� do not depend on quark masses by
construction, one should ideally compute the ratio of
correlation functions at various values of the quark

masses and extrapolate to the chiral limit; in practice, if
computations are carried out at finite quark mass one
expects some residual mass dependence. Eq. (3.10), how-
ever, makes a crucial practical shortcoming of this pro-
cedure in our context apparent: when ms ¼ md both the
numerator and the denominator vanish, while leaving a
finite limit—cf. Eq. (3.9), which also (and consistently)
implies that g08 is not fixed in this case.
One variant of the method that can be applied at

ms ¼ md involves matrix elements with external scalar
states, that become the dominant contributions toD�

1 in that
limit; denoting by jSi the lightest scalar state with one unit
of strangeness, one could impose the condition

h0jQ�
1 þ c�Q�

2 jSi ¼ 0; ð3:11Þ

or, equivalently,

c� ¼ 2

ðm2
u −m2

cÞðms þmdÞ
h0jQ�

1 jSi
h0js̄djSi : ð3:12Þ

Note that these matrix elements are contained in the two-
point functions of Eq. (3.8), since the left-handed current
contains a parity-even component. In our simulations, the
most likely candidate for jSi will be a state containing
two pseudoscalar mesons—a jKπi state, given the flavor
assignments. Again, at leading order in the effective
description the jKπi → j0i amplitudes receive contribu-
tions from Q0

8 only, and setting the subtraction condition
Eq. (3.11) is equivalent to setting g08 ¼ 0, as before. On the
other hand, it can be expected that the determination of
these matrix elements from lattice QCD will be signifi-
cantly more difficult than in the case where only single
meson states are involved.

2. Two-point functions in the ϵ regime

A variant of the above procedure consists of computing
the correlation functions D�

1;2 with ϵ-regime kinematics for
the light quarks, as proposed in [33]. In that case the
computation is carried out at fixed value of the topological
charge ν, and parity is not preserved; as a result, for a given
value of ν the contribution to D�

1;ν from the pseudoscalar
channel does not vanish at ms ¼ md as in the p regime,
avoiding the shortcomings of the method based on
K0 → vacuum matrix elements.
The two-point functionsD�

1;2 can then be split into SU(3)
27-plet and octet contributions in the same way as was
done above for three-point functions, and matched to the
corresponding NLO ChiPT prediction for

D27;νðx0Þ ¼
Z

d3xhQ27ð0ÞJ ds
0 ðxÞiSUð3Þ;ν; ð3:13Þ

D8;νðx0Þ ¼
Z

d3xhQ8ð0ÞJ ds
0 ðxÞiSUð3Þ;ν; ð3:14Þ

11Recall that if the charm had not been kept as an active degree
of freedom in the effective Hamiltonian, the mixing with
dimension-three operators would involve power divergences that
make up for the missing GIM factors; in that case bare matrix
elements of four-fermion operators contain UV divergences
∝ a−2, that are canceled against the subtractions in physical
amplitudes.
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D0
8;νðx0Þ ¼

Z
d3xhQ0

8ð0ÞJ ds
0 ðxÞiSUð3Þ;ν: ð3:15Þ

In particular, D8;ν vanishes up to NNLO corrections,
while D0

8;ν does not. (The 27-plet contribution vanishes
identically in both QCD and ChiPT for chiral symmetry
reasons.) The octet contribution is thus given by D0

8;ν only,
and one has the matching condition

D8;νðx0Þ ¼ Zþ
1 ½Dþ

1;ν þ cþDþ
2;ν� þ Z−

1 ½D−
1;ν þ c−D−

2;ν�
¼ 2g08ðmcÞD0

8;νðx0Þ: ð3:16Þ

The condition for different values of ν is not independent,
since the only dependence of D0

8;ν on topology is a trivial
overall factor [33]. As before, the value of g08 can be set
arbitrarily (e.g., to zero); since, furthermore, this has to hold
for all values of the renormalization scale, and either
operator has different anomalous dimension, the consis-
tency of the condition then requires that each term vanishes
separately, viz.

c� ¼ −
D�

1;ν

D�
2;ν

; ð3:17Þ

which results in a similar subtraction condition to
Eq. (3.10). In the overlap lattice computation, this expres-
sion will be expected to hold sufficiently far away from
operator insertions.

3. One-loop analysis

Alternative to the hadronic conditions to determine
subtraction coefficients discussed above, it is also possible
to conduct a perturbative study of the subtraction terms.
Note that having kept the charm quark as an active degree
of freedom implies that only logarithmic divergences
appear in renormalization; as mentioned earlier, this is
one of the main advantages with respect to the setup where
the charm is integrated out, which leads to power diver-
gences whose study is outside the realm of perturbation
theory. While a full determination of the perturbative value
of subtraction coefficients in a lattice regularization with
Neuberger-Dirac fermions is beyond the scope of this
paper, it is already interesting to conduct a one-loop
analysis in the continuum. To our knowledge, such an
analysis is not available in the literature.
In order to study the subtraction of the operators Q�

2

involved in the construction of renormalized operators Q̄�
1

in the continuum, we will impose subtraction conditions of
the form

trhsðpÞQ̄�
1 d̄ðpÞiamp ¼ 0; ð3:18Þ

where the trace is taken over color and spin indices, the
notation hiamp stands for the amputated correlation function

obtained by multiplying times the inverse quark propaga-
tors running on external legs, and the connection between
spacetime and momentum-space correlation functions is
given by

Z
d4xd4y eip·ðx−yÞhsðxÞQ̄�

1 ð0Þd̄ðyÞi: ð3:19Þ

The RI-like condition in Eq. (3.18) is similar to e.g., the one
introduced in [24] to determine subtraction coefficients of
bilinear operators in the ΔS ¼ 1 Hamiltonian with the
charm quark integrated out. Furthermore, it is an obvious
perturbative equivalent to hadronic subtraction conditions
such as h0jQ̄�

1 jK0i ¼ 0.
A one-loop analysis of Eq. (3.18) in continuum pertur-

bation theory is provided in Appendix C. The perturbative
computation finds the correct ðm2

u −m2
cÞðms þmdÞ

dependence of the subtraction term,12 and provides loga-
rithmically divergent values of c�. This is consistent with
the misaligned logarithmic divergences in the bare oper-
ators Q�

1 and Q�
2 that the subtraction coefficients have to

account for. Loop integrals are found to provide factors of
ð4πÞ such that the one-loop coefficients are of the form

c� ¼ αs
4π

1

ð4πÞ2 ×Oð1Þ: ð3:20Þ

(Note that the coefficients can in principle have either sign.)
It is also found that in natural kinematical setups there are
no large logs. Taking this as input, a conservative estimate
of the size of subtraction coefficients is that they are
approximately zero, with a systematic uncertainty set to
αs=ð4πÞ; this is good enough for the level of precision we
will attain in the determination of physical amplitudes
within our explored range in charm masses.

IV. COMPUTATION OF CORRELATION
FUNCTIONS IN LATTICE QCD

A. Regularization and simulation details

We simulate lattice QCD using the Wilson plaquette
action for the gauge fields, while quark fields are regular-
ized using a Neuberger-Dirac operator [19,53]. The latter
satisfies a Ginsparg-Wilson relation of the form

γ5DN þDNγ5 ¼ āDNγ5DN; ð4:1Þ

where ā ¼ a=ð1þ sÞ and s is a parameter that can be tuned
to optimize the locality properties of the operator. The
techniques we use for the construction, inversion, and
spectral studies of DN are discussed in [54]; in our
simulations we will always employ s ¼ 0.4 [21].

12Note that the correlation function in Eq. (3.18) receives
contributions from the parity-even channel only.
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The fermion lattice action

SF ¼ a4
X
x

fψ̄DNψ þmψ̄ ~ψgðxÞ; ~ψ ¼
�
1 −

ā
2
D

�
ψ ;

ð4:2Þ

is invariant under infinitesimal axial chiral transformations
of the form [20]

δψ̄ðxÞ ¼ iψ̄ðxÞγ5; δψðxÞ ¼ −iγ5 ~ψðxÞ: ð4:3Þ

Furthermore, all composite operators transform under
Eq. (4.3) as their continuum counterparts do under standard
chiral transformations, provided all quark fields ψ are
replaced by the rotated field ~ψ . All the properties discussed
above that make use of exact chiral symmetry thus carry
over to the regularized theory. One important technical
issue is that local conserved currents such as ψ̄γμ ~ψ and
ψ̄γμγ5 ~ψ still require a nontrivial finite normalization with a
constant ZV ¼ ZA, such that the correct chiral Ward-
Takahashi identities hold.
Finally, one last crucial property of the Neuberger-Dirac

operator is that its index ν in a given gauge field provides a
solid definition of the topological charge associated to the
latter [20,55]. Thus, by computing zero modes of DN one
can split gauge ensembles into topological sectors in a
well-defined way. In Fig. 1 we show the distribution of
topological charges for the ensemble used in our ϵ-regime
computations, where correlation functions will be com-
puted at fixed ν.

Our simulations are carried out in the quenched approxi-
mation, on a single lattice of size 32 × 163 at β ¼ 5.8485.
This corresponds to a lattice spacing given, in terms of the
Sommer parameter r0 ≈ 0.5 fm, by a=r0 ≃ 0.247 [57]. We
always consider degenerate values of the light quark
masses, mu ¼ md ¼ ms ≡ml. Our simulation points are
given in the first two columns of Table I. For the light
masses we consider one ϵ-regime point (aml ¼ 0.002) and
two p-regime points (aml ¼ 0.020, 0, 030); the pseudo-
scalar octet meson masses for the latter, measured from the
two-point function of the nonsinglet left-handed current,
are quoted in the third column of Table I. For each light
point then we consider a value mc ¼ ml, corresponding to
the GIM limit, and two heavier charm masses amc ¼ 0.040
and amc ¼ 0.200; for aml ¼ 0.020 we also consider an
even heavier mass amc ¼ 0.400.13 The value amc ¼ 0.040
is still expected to be within the reach of ChiPT, thus lying
in the validity range of the study in [33]. Taking r0 ¼
0.5 fm and the value of a=r0 quoted before, our p-regime
light pseudoscalar meson masses correspond to mPS ≈
317 MeV and mPS ≈ 371 MeV. Using also the value ẐS ≃
1.28 for the RGI scalar renormalization constant from [58],
our three RGI charm masses for simulations at mc ≠ ml
correspond, respectively, to Mc ≈ 50, 249, and 498 MeV.
Note that, while the scaling properties of computations with
overlap fermions are generally expected to be good, at the
heaviest charm mass amc ¼ 0.400 cutoff effects can be
expected to be sizeable.
For each of the three values of ml we have an indepen-

dent ensemble of around 400 independent gauge configu-
rations. Only about half the statistics is used for the
computation at amc ¼ 0.4, as well as in the computation
of three-point functions involving Q�

2 .

B. Variance reduction techniques

Our main aim is to compute the two- and three-point
functions involved in the matching of QCD to ChiPT, as
discussed in Sec. II. After integrating over fermion vari-
ables in the path integral, fermionic correlation functions
can be written as usual in terms of gauge expectation values
of traces of products of quark propagators and spin
matrices; explicit expressions are provided in
Appendix B. The reason to consider left-handed currents
as interpolating operators becomes apparent in that the
traces only contain left-handed propagators P−Sðx; yÞPþ,
that can always be computed in the chirality sector that does
not contain zero modes, thus avoiding their contribution in
correlators [54]. The three-point functions involving Q�

1

require the computation of the quark-propagator diagrams
depicted in Fig. 2, to which we will refer as “eight” and
“eye” diagrams, respectively. Each of them appears in a

FIG. 1 (color online). (Normalized) distribution of the index ν
of the Neuberger-Dirac operator in the gauge ensemble used for
our ϵ-regime computations (blue histogram), compared to the
gaussian shape expected in infinite volume (in red). The width of
the gaussian has been computed with the value of the topological
susceptibility r40χ ¼ 0.00715ð22Þ from [56]. Note that the com-
parison does thus not involve any free parameter.

13Note that our simulation points in the GIM limit coincide
with some of the ones considered in [30], which allows for a
crosscheck of our (independent) simulations.
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color-spin connected and a color-spin disconnected
version.
The computation of these correlation functions poses

severe problems in terms of noise-to-signal ratio. When the
light quark mass is sufficiently low (and especially so in the
ϵ regime), Dirac modes with very small eigenvalues have
large contributions to correlation functions. Their wave
functions have been shown to develop localized structures
[59], which makes good sampling of the whole lattice
volume mandatory in order to avoid large statistical
fluctuations. It is thus important to integrate over space
at all operator insertion points (or at least at as many
insertions as possible), which obviously cannot be achieved
with propagators computed with point sources. The use of
all-to-all propagators for variance reduction thus becomes
mandatory.
One first step in this direction was the development of

low-mode averaging (LMA) in [60,61]. In this particular
brand of LMA the Dirac propagator S is split into the
contribution Sl from the lowest-lying Nlow modes, which
are treated exactly, and its orthogonal complement Sh,
which is computed with a point source. This in turn implies
a split of correlation functions into 2L different contribu-
tions, where L is the number of propagators involved.
Contributions to correlation functions where two low
propagators meet at an operator insertion point can be
integrated over space, since Sl is effectively an all-to-all
propagator. On top of that, extra inversions performed
using low modes as sources allow to integrate also at
insertions where one Sl and one Sh meet. This was

exploited in [61] to determine chiral LECs in the ϵ regime,
and in [30,62] to determine the weak LECs g�1 in the GIM
mc ¼ mu limit, implying that the noise-to-signal problem
for eight diagrams is tamed via LMA.
The same techniques are however insufficient when

applied to eye contractions; in particular, the LMA tech-
nique does not allow to integrate over space at the insertion
of the four-fermion operator when Sh circulates in the
closed loop. One thus needs to combine LMA with other
variance reduction techniques, such as stochastic volume
sources (SVS) [63,64], and the novel probing algorithm
proposed in [65]; the latter can be used specifically for the
precise computation of closed propagators. A thorough
study of these techniques applied to our problem has been
conducted in a companion paper [32], where the very large
impact on variance reduction, at an affordable computa-
tional cost, has been demonstrated. In the present paper, we
have employed the optimized combination of LMA with
SVS developed in [32], to which we refer for full details,
with the specific aim of obtaining a well-behaved signal for
the eye diagram. The specific setup employed here treats
the 20 lowest modes of the Dirac operator exactly, and
estimates Sh with SVS using time and spin-color dilution
and two stochastic hits.
In the case of the three-point function involving Q�

2 , a
contribution from the spin-diagonal part of the operator is
unavoidable, since the presence of (pseudo)scalar densities
implies that not all propagators are left-handed. LMA has
not been implemented for these diagrams, and the only
variance reduction techniques we employ for them is the

FIG. 2. Eight and eye diagrams appearing in the computation of three-point functions of Q�
1 .

TABLE I. Bare quark masses, light pseudoscalar meson masses, and results for the ratios of QCD correlation functions involved in the
matching to ChiPT.

ðaml; amcÞ amPS Rþ
1 R−

1 Rþ
u R�

2 R�;ChiPT
2

0.002, 0.002 � � � 0.629(77) 2.09(25) 0.503(62) 0 0
0.002, 0.040 � � � 0.686(78) 2.46(16) 0.503(62) n=a −0.51ð19Þ
0.002, 0.200 � � � 0.73(12) 2.68(13) 0.503(62) n=a −13ð4Þ
0.020, 0.020 0.1986(20) 0.692(25) 1.972(63) 0.554(20) 0 0
0.020, 0.040 0.1986(20) 0.717(25) 2.028(64) 0.554(20) −0.36ð12Þ −0.38ð7Þ
0.020, 0.200 0.1986(20) 0.766(32) 2.220(82) 0.554(20) −12ð4Þ −13ð3Þ
0.020, 0.400 0.1986(20) 0.767(51) 2.42(12) 0.554(20) −48ð16Þ −51ð9Þ
0.030, 0.030 0.2322(19) 0.731(22) 1.829(64) 0.585(18) 0 0
0.030, 0.040 0.2322(19) 0.746(22) 1.852(64) 0.585(18) n=a −0.22ð4Þ
0.030, 0.200 0.2322(19) 0.835(31) 1.953(82) 0.585(18) n=a −13ð3Þ
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used of extended propagators, which allows to integrate
over space at two of the three operator insertions. On the
other hand, for this correlation function the prediction in
Eq. (3.5) is expected to be accurate up to small NLO ChiPT
corrections for light quark masses in the p regime; we can
thus use the latter, together with the numerical results, to
provide a solid estimation.

C. Results for ratios of correlation functions

Sufficiently far away from operator insertions, the ratios
involved in the matching to ChiPT can be fitted to a plateau
ansatz so that correlation functions are dominated by the
contribution from the lightest state. Details about the fits are
provided in Appendix D; our final results are quoted in
Table I. Ratios in the ϵ regime are first computed in a fixed
topological sector jνj, and then a weighted average of the
results for various values of jνj is taken. This procedure is
based on the ChiPT prediction that the ratios are insensitive
to the value of jνj up to NNLO corrections. The results in
Table I include the topological sectors 3 ≤ jνj ≤ 7. This
choice takes into account that no signal for eye diagrams is
found for jνj < 3, and considering jνj > 7 can be expected
to introduce large finite volume effects.14 Fig. 3 illustrates
the jνj dependence of our results. The number of gauge
configurations in the averages for each value of jνj is
f42; 57; 36; 29; 25g, respectively.
In the case of the ratio R�

2 , numerical results are provided
in Table I for aml ¼ 0.020 only. We also provide the LO
ChiPT prediction for all kinematical points in the p regime,
using Eq. (3.6) with the bare values of quark masses. The
central value is set using Fr0 ¼ 0.275ð6Þ from [66], and a
systematic uncertainty that mimics the impact of NLO
corrections, obtained by varying Fr0 in the range
0.250≲ Fr0 ≲ 0.300, is assigned. This is a fairly
conservative error estimate, as shown by the discussion
in Appendix A. The current normalization factor Z2

A needed
to make connection with the ChiPT prediction (cf. Sec. III)
is ZA ¼ 1.706ð5Þ, taken from [66]. Finally, by assuming
that Eq. (3.6) remains valid in the ϵ regime, we also provide
estimates of R�

2 for the point aml ¼ 0.002. This
assumption can be argued to hold on the basis of the
smoothml → 0 limit of the relevant ChiPT formula forR8,
that provides the ϵ-regime value. In order to allow for
possible larger NLO (finite volume) corrections in this case,
we have doubled the size of the error estimate.
For the simulation points where a direct comparison is

possible, the ChiPT prediction is remarkably consistent
with lattice data, within the relatively large errors displayed
by both quantities. Decreasing these errors would

require a dedicated variance reduction study, similar to
the one conducted for correlators involving four-fermion
operators. Since, on the other hand, the contribution of R�

2

to physical amplitudes is suppressed by the small
subtraction coefficients c�, as discussed above, the level
of precision displayed by our results for R�

2 in Table I is
good enough for the purpose of the present paper.
We will henceforth take as input the values in the last
column of Table I in the construction of the subtracted
amplitudes.
In Table II we provide results for the ratios of the

correlation functions D�
1 =D

�
2 introduced in Eq. (3.8),

which are expected to exhibit plateaux that can be fitted
for the subtraction coefficients c�. As explained in Sec. III,
the dominant contribution in the p regime comes from
scalar-to-vacuum amplitudes, which makes this quantity
very noisy—indeed no signal is found from our data. The
same applies to the ratios computed in the ϵ regime, where
the correlation functions do receive contributions from the
pseudoscalar channel but the intrinsic statistical fluctua-
tions are also larger. We are thus unable to provide a solid
nonperturbative estimate of subtraction coefficients. On the

FIG. 3 (color online). Values of the ratios R�
1 in the ϵ regime

as a function of jνj. “Light” and “heavy” refer to results for
amc ¼ 0.040 and amc ¼ 0.200, respectively.

TABLE II. Numerical results for the subtraction coefficients
c�, obtained from the ratios of correlation functions in Eq. (3.8).

ðaml; amcÞ amPS cþ c−

0.002, 0.040 � � � 0.05(4) −0.14ð48Þ
0.002, 0.200 � � � 0.00(3) −0.01ð3Þ
0.020, 0.040 0.1986(20) −0.01ð12Þ −0.08ð10Þ
0.020, 0.200 0.1986(20) 0.00(1) 0.00(9)
0.030, 0.040 0.2322(19) 0.04(10) 0.14(48)
0.030, 0.200 0.2322(19) 0.01(21) 0.02(8)

14The improvement of the signal-to-noise ratio for this
observable as jνj increases had already been observed in
[30,31], and is likely related to the fact that localized Dirac
modes with small eigenvalues become less frequent as the
topological charge increases.
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other hand, the error intervals we find are compatible with
the expectation c� ∼Oðαs=ð4πÞÞ.
In order to treat the contribution from the subtraction

safely, we thus proceed as follows. Subtraction coefficients
are treated as suggested by the one-loop analysis of Sec. III
—i.e., set to zero, with a systematic uncertainty given by
αM̄S
s ð1=aÞ=ð4πÞ ∼ 0.028. When used together with the

estimate of the subtraction term coming from ChiPT, this
leads to a systematic uncertainty on renormalized K → π
amplitudes, that should safely cover the effect of subtrac-
tions. As the charm mass increases, the total error becomes
increasingly dominated by this uncertainty. However,
the relative error on the final result is still around or below
20% for amc ≤ 0.2, and becomes very large only for
amc ¼ 0.4. Using the values of the renormalization factors
from [40] quoted in Table III, this leads to the renormalized
ratios in Table IV, that can then be used for the matching
to ChiPT.

V. MATCHING TO CHIRAL
PERTURBATION THEORY

In order to determine the values of g8ðmcÞ and g27ðmcÞ,
the renormalized QCD quantities R27; R8 in Table IV and
the ChiPT ratios R27;R8 in Appendix A have to be
introduced into Eqs. (2.36), (2.37), for each of the values
of mc available, apart from amc ¼ 0.4—for which we
have results only at one value of the light mass, and
errors are large. As already noted, our results in the GIM
limit are well consistent with those in [30] for the same

simulations points—differences are always below the 2σ
level.15

A straightforward procedure follows by rewriting
Eqs. (2.36), (2.37) as

R27ðml;mcÞ ¼ g27ðmcÞf1 − Δ27½ml;Λ27ðmcÞ�g;
R8ðml;mcÞ ¼ g8ðmcÞf1 − Δ8½ml;Λ8ðmcÞ�g; ð5:1Þ

where for greater clarity we have made quark mass
dependences explicit. Here ΔkðmlÞ is either the NLO
(finite-volume) correction in the ϵ regime (for which
effectively ml ¼ 0),

Δϵ
27 ¼ 0.182ð8Þ; Δϵ

8 ¼ −0.273ð12Þ: ð5:2Þ

or the p-regime correction involving chiral logs plus finite-
volume terms.16 The scales Λk parametrize contributions
from NLO terms in the p-regime chiral effective
Hamiltonian. By setting Fr0 ¼ 0.275ð6Þ, one can then
fit our three ml data points, separately in the 27-plet and
octet channels and for each value of mc, to determine the
two parameters gkðmcÞ and ΛkðmcÞ. Note that all the data
points come from different gauge ensembles, which makes
their correlation negligible.
As discussed in Sec. II, the matching to SU(3) ChiPT of

quenched results is problematic in the octet case. In
particular, singlet contributions to the formulas in
Appendix A should be taken into account. Since, on the
other hand, the errors on R8 are large, and we only have
results at two p-regime quark masses, the sensitivity to
these NLO effects is very poor. We have fit our numbers to
the Nf ¼ 2, Nf ¼ 3, and Nf ¼ 4 formulas, and find that the
value of g8 is completely insensitive to Nf ; only Λ8

changes, as shown in Table V. The result we thus quote
for the LO LECs is

amc ¼ 0.00∶ g27 ¼ 0.50ð8Þ; g8 ¼ 1.9ð3Þ;
amc ¼ 0.04∶ g27 ¼ 0.50ð8Þ; g8 ¼ 2.3ð3Þ;
amc ¼ 0.20∶ g27 ¼ 0.50ð8Þ; g8 ¼ 2.5ð5Þ; ð5:3Þ

TABLE III. Values of Wilson coefficients and renormalization
factors for quenched QCD at β ¼ 5.8485 (from [40]).

σ kσ;RGI1 Uσ
1ðμ=ΛÞ Z

σ
11
ðμÞ

Z2
A

Zσ
1

þ 0.7080 1.15(12) 0.81(8)
− 1.9775 0.561(61) 1.11(12)

TABLE IV. Renormalized QCD ratios that enter the matching
to ChiPT.

ðaml; amcÞ amPS R27 R8

0.002, 0.002 � � � 0.407(69) 2.42(38)
0.002, 0.040 � � � 0.407(69) 2.88(35)
0.002, 0.200 � � � 0.407(69) 3.16(62)
0.020, 0.020 0.1986(20) 0.449(48) 2.30(25)
0.020, 0.040 0.1986(20) 0.449(48) 2.38(26)
0.020, 0.200 0.1986(20) 0.449(48) 2.64(58)
0.020, 0.400 0.1986(20) 0.449(48) 2.9(2.0)
0.030, 0.030 0.2322(19) 0.474(50) 2.15(23)
0.030, 0.040 0.2322(19) 0.474(50) 2.19(23)
0.030, 0.200 0.2322(19) 0.474(50) 2.36(56)

15Ideally, one would like to perform independent fits in the ϵ
and p regime; consistent results would then indicate that higher-
orders ChiPT corrections are well under control, and a simulta-
neous fit of both regimes can be used to obtain definitive results
for the LO LECs. This was indeed the strategy successfully
pursued in [30]. In this paper, however, having only two p-regime
masses does not allow for meaningful fits involving p-regime
points only, and therefore we will only quote results coming from
combined fits. The study in [30] supports the underlying
assumption that higher-order effects are adequately covered by
our errors.

16The latter are anyway expected to be small in our case—in
our simulations the parameter that controls finite-volume
corrections is ∼ expð−mPSLÞ≲ 0.04.
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where we have also included (labeling it as mc ¼ 0) the
result of a reanalysis of the GIM limit based on our
simulations. The latter is again consistent within ∼1σ with
the conclusions in [30]. Recall that, since we are working in
the quenched approximation, the LEC g27 is strictly
independent ofmc. These fit results are illustrated in Fig. 4.
Alternatively, as discussed in [30], fits can be performed

to the product R27R8, which is less sensitive to chiral
corrections, and take the value of g27ð0Þ as input from the
more solid determination in that work (which has better
ϵ-regime statistics and additional p-regime masses). The fit
ansatz for the product of ratios is

R27R8 ¼ g27g8½1 − ~Δ�; ð5:4Þ

where ~Δ ¼ Δ27 þ Δ8—explicitly

~Δϵ ¼ −0.091ð4Þ;
~Δp ¼ −

M2

ð4πFÞ2
��

8þ 10

Nf

�
log

�
M2

~Λ2

�
− ðV27 þ V8Þ

�
;

ð5:5Þ

where ~Λ is a single scale that combines the effect of NLO
terms in the 27-plet and octet channel (cf. Appendix A for
unexplained notation). We follow the same procedure to
check the dependence on Nf as before, finding similar
results. The outcome of this latter fit strategy is

amc ¼ 0.00∶ g27g8 ¼ 0.94ð2Þ;
amc ¼ 0.04∶ g27g8 ¼ 1.10ð2Þ;
amc ¼ 0.20∶ g27g8 ¼ 1.20ð4Þ; ð5:6Þ

which exhibits good consistency with the results in
Eq. (5.3), and checks that they are robust.

VI. CONCLUSIONS

In this paper we have explored the behavior of the
K → ππ decay amplitudes involved in theΔI ¼ 1=2 rule as
a function of the charm quark mass, following the strategy
laid out in [28]. The aim is to understand the role of the
charm quark in the ΔI ¼ 1=2 enhancement. Our work
extends the results for the GIM limit mc ¼ mu in [30,31].
The numerical techniques developed in [32] have been
instrumental in the lattice QCD computation of amplitudes
involving eye diagrams.
Our main finding is that unsubtracted matrix elements of

the four-fermion operators Q�
1 , computed in quenched

QCD, have a mild dependence on the charm-up quark mass
difference across the regime where the charm quark
becomes heavy. Indeed, while our simulations do not reach
the physical value of the charm mass, they cover values of
mc about 100 times larger than the physical value of
ðmu þmdÞ=2. At that point, the dominant contribution to
the enhancement fromQ−

1 increases by no more than ∼30%
with respect to the value found with light and mass-
degenerate up and charm quarks.
We have also discussed how the subtraction term needed

to obtain the physical amplitudes for mc ≠ mu is propor-
tional to m2

c for a heavy charm. Combined with the above
result, this would imply that the ratio of low-energy
couplings g8=g27 is bound to become large as the charm
mass increases, since the contribution from the subtraction
term will eventually dominate. Alternatively, bare matrix
elements of Q�

1 may start showing a larger mc dependence
closer to the physical charm mass value, allowing for
potential cancellations. This however seems unnatural,
since, as pointed above, our mc values are already well
above the light quark regime. In that sense, our results point
in the direction of supporting that a strong enhancement is
natural for large enough values of mc=mu.

TABLE V. Results of fits to ChiPT formulas for g8 and Λ8. (See
text for an explanation of the Nf dependence of the fit function;
the ϵ-regime point is labeled amc ¼ 0.00; the (correlated)
χ2=d:o:f: of the fits is always ≲10−2.)

Nf amc g8 Λ8

2 0.00 1.92(28) 0.28(9)
3 0.00 1.94(28) 0.32(16)
4 0.00 1.94(29) 0.37(26)

2 0.04 2.26(26) 0.22(5)
3 0.04 2.28(26) 0.22(8)
4 0.04 2.59(11) 0.26(11)

2 0.20 2.49(47) 0.22(9)
3 0.20 2.50(48) 0.21(14)
4 0.20 2.50(48) 0.21(20)

0 0.1 0.2
am

c

0

1

2

3 g
27

g
8

FIG. 4 (color online). LO LECs g27 and g8 as a function of amc.
Recall the “experimental” values g27 ∼ 0.50 and g8 ∼ 10.5
(cf. Sec. II).
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On the other hand, our results are insufficient to
determine the contribution from the subtraction term
precisely. While the value of the matrix elements of the
operator Q�

2 involved in the subtraction are well controlled
(within sizeable uncertainties), further work is needed for a
reliable nonperturbative determination of the subtraction
coefficients c�. In the interpretation that themc dependence
at largemc is driven by the subtraction term, the value of c�
is crucial to fix the precise value of jA0j=jA2j at the physical
point. Assuming the suppression in c� hinted at by
perturbation theory, we have found that the enhancement
already observed in the GIM limit does not increase
significantly within the range of values of mc covered
by our simulations. The ultimate question whether Standard
Model physics alone can quantitatively explain the exper-
imental value of jA0j=jA2j is thus left open—answering it
within our framework still requires a more detailed study of
the subtraction terms, as well as reaching out to values of
the charm mass in the physical region.
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APPENDIX A: CHIRAL PERTURBATION
THEORY FORMULAS

In this appendix we collect the essential next-to-leading
order quenched ChiPT formulas from [28,33] relevant for
the determination of the LECs in the SU(4) and SU(3)
chiral effective weak Hamiltonians. We also discuss NLO
ChiPT corrections to the ratio ðm2

K −m2
πÞ=ðms −mdÞ that

determines matrix elements of Q�
2 in our kinematics.

1. NLO corrections to chiral weak Hamiltonians

Here we provide NLO results for the various ratios of
correlation functions in ChiPT discussed in the text, taken

from [33]. Note that ϵ-regime results are given for a specific
topological sector with topological charge ν. In particular,
the ratiosR�

1 ;R27;R8 happen to be independent of ν up to
NNLO corrections, while the expressions involving the
unphysical operator O0

8 do exhibit topology dependence,
but they are not included here since their explicit form is not
needed in the matching. In p-regime expressions, the
contributions from unknown NLO LECs are included in
the scales appearing in chiral logarithms. For SU(3) ChiPT
in the octet channel we quote the unquenched formulas;
comments about the matching to quenched QCD results are
provided in Sec. II and Sec. V.
All equations hold in a box with four-volume V ¼

L3 × T and aspect ratio ρ ¼ T=L. The dependence on the
light quark mass ml is given either in terms of the leading-
order Goldstone boson mass M2 ¼ 2Σml=F2 (p regime),
or in terms of the dimensionless parameter μ ¼ mlΣV
(ϵ regime).
SU(4) ChiPT, ϵ regime:

R�
1;νðx0; y0Þ ¼ 1� 2

F2T2
ðβ1ρ3=2 − k00ρ3Þ: ðA1Þ

SU(3) ChiPT, ϵ regime:

R27;νðx0; y0Þ ¼ 1þ 2

F2T2
ðβ1ρ3=2 − k00ρ3Þ; ðA2Þ

R8;νðx0; y0Þ ¼ 1 −
3

F2T2
ðβ1ρ3=2 − k00ρ3Þ: ðA3Þ

SU(4) ChiPT, p regime:

R�
1 ðx0; y0Þ ¼ 1� M2

ð4πFÞ2
�
3 log

�
M2

Λ2
�

�
∓ V1ðx0; y0Þ

�
:

ðA4Þ

SU(3) ChiPT, p regime:

R27ðx0; y0Þ ¼ 1þ M2

ð4πFÞ2
�
3 log

�
M2

Λ2
27

�
− V27ðx0; y0Þ

�
;

ðA5Þ

R8ðx0;y0Þ¼1þ M2

ð4πFÞ2
��

1

2
−
10

Nf

�
log

�
M2

Λ2
8

�
−V8ðx0;y0Þ

�
:

ðA6Þ
Finite volume effects:
NLO corrections in the ϵ regime are pure finite-volume

effects, parametrized by the geometrical coefficients
[48,67,68]

β1 ¼
1

4π
½2 − α̂−1ðρ3=4; ρ−1=4Þ − α̂−1ðρ−3=4; ρ1=4Þ�; ðA7Þ
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k00 ¼
1

12
−
1

4

X
n≠0

1

sinh2ðπρjnjÞ ; ðA8Þ

where n are integer vectors, and α̂p is given in terms of
the elliptic theta function SðxÞ ¼ P∞

n¼−∞ expð−πxn2Þ ¼
ϑ3ð0; expð−πxÞÞ by

α̂pðl0; liÞ ¼
Z

1

0

dt tp−1½Sðl20=tÞS3ðl2i =tÞ − 1�: ðA9Þ

A table with sample values of β1, k00 is provided in
Table IV of [28]. In our lattice,

β1 ¼ 0.08360; k00 ¼ 0.08331: ðA10Þ

This implies, in particular, that the parameter that controls
ϵ-regime NLO corrections is ðβ1ρ3=2 − k00ρ3Þ=ðF2T2Þ ≈
−0.13, taking F ≈ 90 MeV and T ≈ 4 fm. That implies
large corrections ranging between ∼25% and ∼40% in the ϵ
regime matching for LECs.
Finite-volume effects in p-regime ratios involving three-

point functions are given, in sufficiently large volumes, by

V1ðx0; y0Þ ¼ V27ðx0; y0Þ
¼ e−2Mjx0jϕ1ð2Mjx0jÞ þ e−2Mjy0jϕ1ð2Mjy0jÞ;

ðA11Þ

V8ðx0; y0Þ ¼ e−2Mjx0jϕ2ð2Mjx0jÞ þ e−2Mjy0jϕ2ð2Mjy0jÞ;
ðA12Þ

with

ϕ1ðxÞ ¼
Z

∞

0

dz e−xz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð2þ zÞp
1þ z

�
1

2þ z
þ 1

1þ z
− 2

�
;

ðA13Þ

ϕ2ðxÞ ¼
Z

∞

0

dz e−xz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð2þ zÞp
1þ z

�−4þ 5
Nf

2þ z
þ
1 − 5

Nf

1þ z
− 2

þ 10

Nf
−
�
10 −

20

Nf

�
z

�
: ðA14Þ

Note that the dependence of these quantities on ðx0; y0Þ is
actually very mild; in fits we will take their values
at x0 ¼ −y0 ¼ T=3.

2. NLO corrections to ðm2
K −m2

πÞ=ðms −mdÞ
The full NLO expression for the ratio ðm2

K −m2
πÞ=

ðms −mdÞ is given by [69] (we take mu ¼ md throughout;
general expressions can be obtained by replacing occur-
rences of md by mud ¼ 1

2
ðmu þmdÞ)

m2
K −m2

π

ms −md
¼ Σ0

F2
0

�
1þ Σ0

8π2F4
0

½ðms þmdÞl1 þmdl2�

þ 8Σ0

F4
0

½ðms þ 3mdÞð2L8 − L5Þ

þ 2ðms þ 2mdÞð2L6 − L4Þ�
�
; ðA15Þ

where F0;Σ0; Li are the standard SU(3) LECs, and the
logarithm terms l1;2 read

l1 ¼
2

9
log

�
2Σ0ð2ms þmdÞ

3μ2F2
0

�
; ðA16Þ

l2 ¼
�

ms

ms −md

�
log

�
2Σ0ð2ms þmdÞ

3μ2F2
0

�

−
�

md

ms −md

�
log

�
2Σ0md

μ2F2
0

�
: ðA17Þ

Following standard practice, we assume μ ¼ 770 MeV as
the scale at which the logarithms, quark masses, and NLO
LECs Li are evaluated. The term l2 does not transparently
have a well-behaved ms ¼ md limit, but it is easy to show
that taking ms ¼ mdð1þ ϵÞ one can write it as

l2 ¼
2

3
þ log

�
2Σ0md

μ2F2
0

�
þOðϵÞ: ðA18Þ

The result for ms ¼ md ¼ mu ≡ml simplifies to

m2
K −m2

π

ms −md
→

Σ0

F2
0

�
1þ Σ0ml

8π2F4
0

�
2

3
þ 13

9
log

�
2Σ0ml

μ2F2
0

��

þ 16Σ0ml

F4
0

½2ð2L8 − L5Þ þ 3ð2L6 − L4Þ�
�
:

ðA19Þ

In the quenched case there will be additional contributions
from the nondecoupled singlet terms, which can be
reabsorbed in a renormalized chiral condensate Σ̄0, that
will diverge in the chiral limit.
Current reference values for the relevant LECs, obtained

from Nf ¼ 2þ 1 lattice simulations, are [70–73]

F0 ¼ 80ð6Þ MeV;

Σ1=3
0 ¼ 245ð8Þ MeV;

ð2L6 − L4Þ ¼ 0.03þ40
−36 × 10−3;

ð2L8 − L5Þ ¼ −0.15þ46
−22 × 10−3: ðA20Þ

This implies Σ0=F4
0 ≃ 0.36ð11Þ MeV−1, and therefore a

conservative upper bound for the size of NLO corrections
for values of ml ≲mphys

s =4, as is our case, can be taken to
be ∼5%, which we increase to ∼10% to account for
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deviations from this scenario in the quenched case (which can be expected to be small, as shown by the values for LO
quenched LECs derived from a similar lattice setup to the one used in this work [66]).

APPENDIX B: WICK CONTRACTIONS FOR QCD CORRELATION FUNCTIONS

1. Three-point functions of Q�
1

In the limit mu ¼ md ¼ ms ¼ ml, the QCD three-point functions involving Q�
1 needed in our setup can be computed in

terms of a few independent fermionic traces. Without loss of generality, we will write the expressions for a four-fermion
operator inserted at z ¼ 0. Let Slðx; yÞ and Scðx; yÞ be the propagators of a light quark and a charm quark, respectively, and
let us define

EDðx0; y0Þ ¼
Z
x;y
hTr½Slðx; 0ÞγμP−Slð0; xÞγ0P−�Tr½Slðy; 0ÞγμP−Slð0; yÞγ0P−�iG; ðB1Þ

ECðx0; y0Þ ¼
Z
x;y
hTr½Slðx; 0ÞγμP−Slð0; yÞγ0P−Slðy; 0ÞγμP−Slð0; xÞγ0P−�iG; ðB2Þ

PD
l ðx0; y0Þ ¼

Z
x;y
hTr½Slð0; 0ÞγμP−�Tr½Slð0; xÞγ0P−Slðx; yÞγ0P−Slðy; 0ÞγμP−�iG; ðB3Þ

PC
l ðx0; y0Þ ¼

Z
x;y
hTr½Slð0; 0ÞγμP−Slð0; xÞγ0P−Slðx; yÞγ0P−Slðy; 0ÞγμP−�iG; ðB4Þ

PD
c ðx0; y0Þ ¼

Z
x;y
hTr½Scð0; 0ÞγμP−�Tr½Slð0; xÞγ0P−Slðx; yÞγ0P−Slðy; 0ÞγμP−�iG; ðB5Þ

PC
c ðx0; y0Þ ¼

Z
x;y
hTr½Scð0; 0ÞγμP−Slð0; xÞγ0P−Slðx; yÞγ0P−Slðy; 0ÞγμP−�iG; ðB6Þ

where traces are taken over spin and color indices, and hiG
means that the expectation value is taken in the pure Yang-
Mills theory with the effective action resulting from
integration over quark fields in the path integral. Some
straightforward algebra then shows that all the three-point
functions of the four-fermion operators considered in the
text with two left-handed currents can be written as

Cþ
1 ¼ ½ED − EC� þ ½PD

l − PD
c � − ½PC

l − PC
c �; ðB7Þ

C−
1 ¼ ½ED þ EC� − ½PD

l − PD
c � − ½PC

l − PC
c �; ðB8Þ

Cþ
u ¼ 4

5
½ED − EC�; ðB9Þ

1
5
Cþ
R − Cþ

c ¼ 1
5
½ED − EC� þ ½PD

l − PD
c � − ½PC

l − PC
c �; ðB10Þ

C−
R − C−

c ¼ ½ED þ EC� − ½PD
l − PD

c � − ½PC
l − PC

c �: ðB11Þ

2. Three-point functions of Q�
2

The three-point functions C�
2 for the insertion of Q�

2 at
z ¼ 0 can be written as

C�
2 ðx0; y0Þ ¼

1

2
ðm2

u −m2
cÞfðms þmdÞCSðx0; y0Þ

− ðms −mdÞCPðx0; y0Þg; ðB12Þ

with

CSðx0;y0Þ¼−
Z
x;y
hTr½Slð0;xÞγ0P−Slðx;yÞγ0P−Slðy;0Þ�iG;

ðB13Þ

CPðx0; y0Þ

¼ −
Z
x;y
hTr½Slð0; xÞγ0P−Slðx; yÞγ0P−Slðy; 0Þγ5�iG:

ðB14Þ

3. Two-point functions

We consider two-point functions of a left-handed current
(let us say at y ¼ 0) with either another left-handed current,
a scalar density, or a pseudoscalar density, always in the
light sector and in a nonsinglet flavor channel. The relevant
Wick contractions are of the form
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−
Z
x
hTr½Slðx; 0Þγ0P−Slð0; xÞΓ�iG; ðB15Þ

where Γ ¼ γ0P−; 1; γ5 for each of the three possibilities
mentioned above.

APPENDIX C: ONE-LOOP STUDY OF
SUBTRACTION COEFFICIENTS

Our starting point is the subtraction condition in
Eq. (3.18). Substituting Eq. (2.10) into that expression
one has

Z�
11fF�

1 þ 1
2
c�ðm2

u −m2
cÞ½ðms þmdÞFS − ðms −mdÞFP�g;

ðC1Þ

where

F�
1 ¼ trhsðpÞQ�

1 d̄ðpÞiamp;

FS ¼ trhsðpÞðs̄dÞd̄ðpÞiamp;

FP ¼ trhsðpÞðs̄γ5dÞd̄ðpÞiamp: ðC2Þ

Each of these amputated correlation functions depends on
the external momentum p and on the quark masses
mi; i ¼ u; d; s; c. After performing Wick contractions,
these correlators can be written as

F�
1 ¼

Z
d4q
ð2πÞ4 ftrh

~SsðpÞγLμ ~Su−cðqÞγLμ ~SdðpÞiamp

∓ trh ~SsðpÞγLμ ~SdðpÞtr½γLμ ~Su−cðqÞ�iampg;
FS ¼ trh ~SsðpÞ ~SdðpÞiamp; FP ¼ trh ~SsðpÞγ5 ~SdðpÞiamp;

ðC3Þ

where ~S is the momentum-space quark propagator, and
Su−c is a shorthand for Su − Sc. The appearance of the
integral over all momenta q in the (u − c) quark loop,
appearing in the correlator of Q�

1 , ensures that the propa-
gator closes over itself. We will refer to the two terms
contributing to F�

1 as “connected” and “disconnected,”
respectively.
Now we expand Eq. (C1) to order g2s in perturbation

theory, with the notation

χ ¼ χð0Þ þ g2sχð1Þ þ � � � ðC4Þ

for any quantity χ. For convenience, the perturbative
analysis will be performed in Minkowski spacetime, and
we will adopt the conventions and QCD Feynman rules
employed in [74] from now on. All computations will be
performed in Feynman gauge. Using the fact that all
renormalization constants are equal to unity at tree level,
the order g0s term reads

F�;ð0Þ
1 þ 1

2
c�;ð0Þðm2

u −m2
cÞ½ðms þmdÞFð0Þ

S

− ðms −mdÞFð0Þ
P � ¼ 0: ðC5Þ

It is trivial to check that17

F�;ð0Þ
1 ¼ 0; Fð0Þ

S ¼ 4; Fð0Þ
P ¼ 0; ðC6Þ

implying the (otherwise trivial) result c�;ð0Þ ¼ 0. Using the
vanishing of the mixing coefficient at tree level the g2s term
simplifies considerably, and one is left with

F�;ð1Þ
1 þ 1

2
c�;ð1Þðm2

u −m2
cÞðms þmdÞFð0Þ

S ¼ 0: ðC7Þ

One thus only has to determine the one-loop contributions
to F�

1 . Note that the form of the one-loop term is
independent of whether the quark masses in Q�

2 are taken
bare or renormalized; i.e., the difference between the two
prescriptions is a two-loop effect. Recall also that sub-
traction coefficients are expected to contain logarithmic
divergences, and therefore c�;ð1Þ should contain log terms
that adjust the leading-order anomalous dimensions of the
subtracted four-fermion operators.18

The one-loop diagrams needed for the computation of

F�;ð1Þ
1 are depicted in Fig. 5. By writing the expression for

each diagram one immediately finds that diagrams 3d and
4d vanish because color generators at vertices lie in
different color traces; diagrams 1d and 1c vanish because
their spin traces are obviously zero; and diagrams 2d, 5d,
6d, 2c, 5c, and 6c vanish because the expressions obtained
are odd under q → −q, and an integral over q is taken. One
thus finds that the only contributions come from diagrams
3c and 4c; denoting by k the momentum carried by the
gluon, they read

½3c�¼−trc½TaTa�
Z

d4q
ð2πÞ4

Z
d4k
ð2πÞ4

×
trs½γνðp−kþmsÞγμLðq−kþmu=cÞγνðqþmu=cÞγLμ �

Dðk;0ÞDðp−k;msÞDðq−k;mu=cÞDðq;mu=cÞ
;

ðC8Þ

½4c�¼−trc½TaTa�
Z

d4q
ð2πÞ4

Z
d4k
ð2πÞ4

×
trs½γμLðqþmu=cÞγνðq−kþmu=cÞγLμðp−kþmdÞγν�

Dðk;0ÞDðp−k;mdÞDðq−k;mu=cÞDðq;mu=cÞ
;

ðC9Þ

17Note in passing that the correlator FP is identically zero due to
parity conservation.

18It is important to stress that the vertex function in Eq. (3.18)
does not have to be finite; only physical amplitudes involving
renormalized subtracted operators need to.
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where Ta are the color group generators normalized such that, for fundamental quarks, trc½TaTa� ¼ ðN2 − 1Þ=2;
Dðl; mÞ ¼ l2 −m2 þ iη; and the result holds for either the u or the c quark circulating in the loop. After performing
the Dirac traces and taking the difference (u − c), one ends up with

F�;ð1Þ
1 ¼ 8 trc½TaTa�

Z
d4q
ð2πÞ4

Z
d4k
ð2πÞ4

1

Dðk; 0Þ
�

ms

Dðp − k;msÞ
þ md

Dðp − k;mdÞ
�

×

�
m2

u − q · ðq − kÞ
Dðq;muÞDðq − k;muÞ

−
m2

c − q · ðq − kÞ
Dðq;mcÞDðq − k;mcÞ

�
: ðC10Þ

Note that, due to the vanishing of all disconnected contributions, the result is the same for both operatorsQ�
1 . Note also that

both the u and c contributions separately lead to a quadratic divergence, characteristic of the quark condensate, that
explicitly cancels after the difference (u − c) is taken. Furthermore, some trivial algebra allows to rewrite the two
combinations containing the ðs; dÞ and ðu; cÞ contributions as

ms

Dðp − k;msÞ
þ md

Dðp − k;mdÞ
¼ ms þmd

2

�
1

Dðp − k;msÞ
þ 1

Dðp − k;mdÞ
þ ðms −mdÞ2
Dðp − k;msÞDðp − k;mdÞ

�
; ðC11Þ

and

m2
u − q · ðq − kÞ

Dðq;muÞDðq − k;muÞ
−

m2
c − q · ðq − kÞ

Dðq;mcÞDðq − k;mcÞ

¼ −
m2

u −m2
c

2

�
1

Dðq;muÞDðq;mcÞ
þ 1

Dðq − k;muÞDðq − k;mcÞ
þ k2½m2

u þm2
c − k2 − 2q2 þ 2ðq · kÞ�

Dðq;muÞDðq;mcÞDðq − k;muÞDðq − k;mcÞ
�
;

ðC12Þ

respectively. The expected mass dependence of the subtraction term thus arises explicitly from the one-loop computation,
and the final result for the Oðg2s Þ contribution to c� can be written as

c�;ð1Þ ¼ trc½TaTa�f2Ið2ÞL ½Ið1ÞL þ Ið1ÞF � þ Ið2ÞF þ Ið3ÞF g; ðC13Þ

with

Ið1ÞL ¼
Z

d4k
ð2πÞ4

1

Dðk; 0Þ
�

1

Dðp − k;mdÞ
þ 1

Dðp − k;msÞ
�
; ðC14Þ

Ið2ÞL ¼
Z

d4q
ð2πÞ4

1

Dðq;muÞDðq;mcÞ
; ðC15Þ

Ið1ÞF ¼
Z

d4k
ð2πÞ4

ðms −mdÞ2
Dðk; 0ÞDðp − k;mdÞDðp − k;msÞ

; ðC16Þ

Ið2ÞF ¼
Z

d4k
ð2πÞ4

Z
d4q
ð2πÞ4

−k2 þm2
u þm2

c − 2q2 þ 2ðq · kÞ
Dðq;muÞDðq;mcÞDðq − k;muÞDðq − k;mcÞ

�
1

Dðp − k;mdÞ
þ 1

Dðp − k;msÞ
�
; ðC17Þ

Ið3ÞF ¼
Z

d4k
ð2πÞ4

Z
d4q
ð2πÞ4

ðms −mdÞ2
Dðp − k;mdÞDðp − k;msÞ

½m2
u þm2

c − 2q2 þ 2ðq · kÞ − k2�
Dðq;muÞDðq;mcÞDðq − k;muÞDðq − k;mcÞ

: ðC18Þ
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The integrals IðiÞF are finite, while IðiÞL are logarithmically divergent.19 The latter can be worked out easily in dimensional
regularization; for instance, taking the dimension over which the integral is performed as D ¼ 4þ 2ϵ, and denoting the
subtraction point by μ, one finds

Ið1ÞL ¼ iμ2ϵ

ð4πÞ2
�
−
1

ϵ
− γ þ logð4πÞ þ 2 − log

�
p2 þm2

μ2

�
−
m2

p2
log

�
1þ p2

m2

��
; ðC19Þ

Ið2ÞL ¼ iμ2ϵ

ð4πÞ2
�
−
1

ϵ
− γ þ logð4πÞ þ 1 −

1

m2
u −m2

c

�
m2

c log

�
m2

c

μ2

�
−m2

u log

�
m2

u

μ2

���
; ðC20Þ

where γ ≃ 0.5772… is the usual Euler-Mascheroni constant.
After reabsorbing the divergences consistently, one is

thus left with logarithm terms plus finite contributions. By

fixing μ2 ¼ p2, it is easy to check that the log terms in Ið1ÞL

vanish in the chiral limit, while those in Ið2ÞL contain an
infrared divergence. This reflects the need of preserving the
flavor structure in the closed loop to avoid extra divergen-
ces from the quark condensate. On the other hand, it is easy
to check that there are no large logarithms. Note also that
finite contributions are suppressed by an overall factor p−2,
and will become small for high enough values of the
external momentum. Finally, one crucial point is that there
are two loop integrals—one from the gluon exchange and
the other one over the closed quark loop induced by the
structure of the four-fermion operator. Since each loop
integral yields a factor ð4πÞ−2, this will make the total one-
loop correction ∝ g2s=ð4πÞ4—or, equivalently

c�;ð1Þ ∼
αs
4π

×
Oð1Þ
ð4πÞ2 ðC21Þ

(no sign specified). The extra factor of ð4πÞ−2 can be
interpreted as a suppression of the one-loop result with
respect to its “natural” value αs=ð4πÞ. This then supports
the rough estimate that the subtraction coefficients in the
overlap regularization, computed at hadronic scales, vanish
up to an αs=ð4πÞ systematic uncertainty.

APPENDIX D: FITS TO RATIOS OF
CORRELATION FUNCTIONS

IN THE p REGIME

In this appendix we provide some details of our fits to the
ratios of correlation functions R�

1 involving four-quark
operators, results for which are quoted in Table I, for
p-regime kinematics.20 Sufficiently far away from the

s(p)

d(p)
u/c(q) u/c(q) d(p)

s(p)

1c1d

s(p)

d(p)
u/c(q) u/c(q) d(p)

s(p)

2c2d

s(p)

d(p)
u/c(q) u/c(q) d(p)

s(p)

3c3d

s(p)

d(p)
u/c(q) u/c(q) d(p)

s(p)

4d 4c

s(p)

d(p)
u/c(q) u/c(q) d(p)

s(p)

5d 5c

s(p)

d(p)
u/c(q) u/c(q) d(p)

s(p)

6d 6c

FIG. 5. One-loop diagrams contributing to F�;ð1Þ
1 (discon-

nected: left; connected: right; black dots signal insertions of γLμ ).

19The integral Ið2ÞF seems to contain a divergent term by power-
counting in k, but it is easy to check that it is actually UV finite.

20ϵ-regime points are discussed in detail in the main text.
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insertions of kaon and pion interpolating operators, such
that all correlators are dominated by the lowest-lying
state in the corresponding channel, these ratios are expected
to become constant. To extract a value for the ratio of
matrix elements, we take an average over an interval
in Euclidean time, using a jackknife procedure to
estimate errors that take statistical correlations into account
properly.
Note that, since the contribution to R�

1 from the eight
diagram provides a ratio of physical amplitudes (it is
proportional to the bag parameter for neutral meson
oscillation), it will display a plateau even if it is not
combined with the contribution from the eye diagram.

The latter will also display a plateau, and it is possible to fit
either contribution to a constant independently. This allows
us to better reconstruct the contributions to the final noise-
to-signal ratio in the quantities of interest.
Figure 6 illustrates typical fits for both a numerically

well-behaved quantity (eight diagrams for a not-too-light
p-regime mass), and a numerically challenging quantity
(eye diagrams with a large charm mass). Note the sizeable
errors, especially in the case of contributions from the eye
contraction. Figure 7 shows the dependence of the result
on the choice of plateau, parametrized by the minimal
separation tmin (in lattice units) allowed between operator
insertions. Note that our LMA decomposition of

FIG. 7 (color online). Left: result for the fit to the contribution to R�
1 (amu ¼ 0.03) coming from the eight diagram as a function of the

plateau choice, parametrized by the minimal separation (in lattice units) tmin allowed between operator insertions. The combination
Rþ
1 þ R−

1 is also displayed. Right: idem for the eye diagram (amu ¼ 0.03, amc ¼ 0.2).

FIG. 6 (color online). Left: contribution to the ratios R�
1 coming from the eight diagram for amu ¼ 0.03, together with the fit to a

plateau in some interval of Euclidean times. (The value of Euclidean times is shifted by 10 lattice units with respect to the conventions in
the main text.) The yellow points, corresponding to the computation that does not use low-mode averaging, illustrate the impact of the
latter on the signal. Right: contribution to the ratios R�

1 coming from the eye diagram for amu ¼ 0.02, amc ¼ 0.2.
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correlation functions leads to some contributions being
known for all possible locations of the operator insertions;
in those cases, translational invariance has been exploited
to improve the signal (although strong correlations make
the effect small). Given the very mild dependence of the
results on the choice of tmin, provided the latter is large

enough, we have chosen the fit results for tsep ∈ ½6a; 10a�
(in the notation used for correlation functions in the main
text) as representative, and quoted them in Table I. This is
conservative, since taking a shorter interval leads to the
largest error and covers the systematic related to the
plateau choice.
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