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We present results for the equation of state in (2þ 1)-flavor QCD using the highly improved staggered
quark action and lattices with temporal extent Nτ ¼ 6, 8, 10, and 12. We show that these data can be
reliably extrapolated to the continuum limit and obtain a number of thermodynamic quantities and the
speed of sound in the temperature range 130–400 MeV. We compare our results with previous calculations
and provide an analytic parameterization of the pressure, from which other thermodynamic quantities can
be calculated, for use in phenomenology. We show that the energy density in the crossover region,
145 MeV ≤ T ≤ 163 MeV, defined by the chiral transition, is ϵc ¼ ð0.18–0.5Þ GeV=fm3, i.e.,
ð1.2–3.1Þ ϵnuclear. At high temperatures, we compare our results with resummed and dimensionally
reduced perturbation theory calculations. As a byproduct of our analyses, we obtain the values of the scale
parameters r0 from the static quark potential and w0 from the gradient flow.
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I. INTRODUCTION

At high temperatures, matter governed by strong inter-
actions (strong interaction matter) undergoes a deconfining
transition to a new state, in which the thermodynamics can
be described in terms of quark and gluon degrees of
freedom. The equation of state (EoS) of such matter, just
as for many other thermodynamic systems, is of funda-
mental importance for understanding its composition as
well as its static and dynamical properties. Studying the
properties of this matter using QCD was made possible by
the formulation of lattice-regularized QCD [1] and the
development of numerical algorithms for its analysis [2].
Lattice calculations of the QCD EoS were first performed
in 1980 [3], and driven by the steady growth in computing
resources and the development of new simulation algo-
rithms, there now exist precise results for the transition
temperature [4,5], fluctuations of conserved charges [6–8]
as well as the EoS. For recent reviews, see for instance
Refs. [9–11].
The EoS contains information on the relevant degrees of

freedom in the thermal medium in different temperature

regimes and reflects the transition between different states
of matter. A quantitative description of the QCD EoS over a
wide temperature range is needed to understand the
expansion and cooling of matter in the early universe, as
well as of the hot dense nuclear matter created in heavy ion
collisions.
To study the QCD EoS across a transition between

different states of matter, at which the internal degrees of
freedom are highly correlated, requires nonperturbative
techniques. However, in the case of strong interaction
matter, the need for nonperturbative methods is not
restricted to the strongly interacting region close to the
QCD transition temperature, but is also needed far above
this deconfining transition where well-known infrared
problems [12] prohibit a straightforward perturbative
analysis of QCD thermodynamics. Also, at low temper-
atures, where the hadron resonance gas models (HRGs) for
the description of the hadronic EoS are quite successful
[13], lattice QCD calculations are important as they provide
the benchmark estimates of thermal properties of in-
medium hadrons and the EoS of hadronic matter. In
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summary, simulations of lattice QCD provide the best
approach over the full phenomenologically interesting
temperature range in which all sources of errors can be
quantified and systematically improved.
The deconfining transition in QCD, with small but

nonzero values of the light quark masses, is a rapid
crossover that coincides with the restoration of chiral
symmetry [4,5]. In fact, it is the latter that characterizes
the second-order phase transition that occurs in the chiral
limit of QCD at finite temperature. At this phase transition
the spontaneously broken chiral symmetry is restored. The
universal scaling properties of this chiral transition are used
to determine the pseudocritical temperature Tc at which the
rapid crossover with the physical light and strange quark
masses takes place [5]. Extensive simulations of lattice
QCD at zero net baryon number density have established
that this crossover transition occurs at Tc ∼ 155 MeV for
the physical spectrum of two light and a heavier strange
quark [4,5]. Even though there is no well-defined separa-
tion of phases because of the crossover nature of the
transition, it is well established that many thermodynamic
properties change rapidly in the vicinity of Tc. Along with
the analysis of fluctuations in the chiral condensate that are
used to probe the restoration of chiral symmetry and to
determine Tc, the study of fluctuations in conserved
charges provides clear evidence for deconfinement of light
and strange quark degrees of freedom, i.e., a transition from
hadronic to quark-gluon degrees of freedom around
Tc [14].
In this paper, we present a detailed analysis of the EoS

that captures the crossover transition and the temperature
range that is relevant to the hydrodynamic evolution of
heavy ion collisions at the Relativistic Heavy Ion Collider
and the Large Hadron Collider (LHC). We performed high
statistics simulations of lattice QCD on lattices of size
N3

σNτ for four values of Nτ ≡ ðaTÞ−1 ¼ 6, 8, 10, and 12
and a large spatial size Nσ ¼ 4Nτ. We use these data to
show that a controlled extrapolation to the continuum can
be performed in the temperature range 130 MeV ≤ T ≤
400 MeV.We also show that the rapid change in the energy
density signaling the liberation of quark-gluon degrees of
freedom leads to an estimate of the pseudocritical temper-
ature that is consistent with that obtained from the analysis
of chiral symmetry restoration. Finally, we provide an
accurate parametrization of this EoS that can be used for
hydrodynamic modeling of heavy ion collisions (see
Ref. [15] for a recent review) and other phenomenological
studies of the thermodynamics of strong interaction matter.
Most of the lattice QCD calculations of the thermody-

namics of strong interaction matter use the staggered
fermion discretization scheme. The main reason for this
is that staggered fermions preserve an essential remnant of
the continuum SUð2ÞL × SUð2ÞR chiral symmetry of the
light quark sector and are, at the same time, the least
demanding computationally. For an overview of EoS

calculations using other fermion discretization schemes
see Refs. [10,16]. Furthermore, simulations of QCD
thermodynamics using staggered fermions have been
systematically improved by eliminating Oða2Þ cutoff
effects [17] and reducing the effects of the so-called taste
symmetry breaking, specific to the staggered fermion
formulation, by using smeared gauge links [18,19].
A number of improved staggered formulations have been

developed and used to study QCD at finite temperature.
In the past, we have simulated the p4 and asqtad actions
[20–24]. These actions eliminate tree-level Oða2Þ cutoff
effects on lattices with moderate sizes, Nτ > 8, but have
large taste symmetry violations at low temperatures. The
Wuppertal-Budapest collaboration has used the stout-
smeared staggered action [25] that very effectively reduces
taste symmetry violation effects but still shows largeOða2Þ
cutoff effects at high temperatures. The first reliable
continuum extrapolated results for the QCD EoS have
recently been obtained with this action [26].
The calculations presented in this paper are carried out

using the highly improved staggered quark (HISQ) action
introduced by the HPQCD Collaboration [27]. It was
designed to improve both the taste symmetry and the
quark dispersion relation by including smeared one-link
terms as well as straight three-link terms that completely
eliminate Oða2Þ discretization errors at tree level. The
HISQ action has turned out to yield the smallest violations
of taste symmetry among the currently used staggered
fermion actions [5,28,29]. We have used it extensively to
carry out high-precision studies of the chiral and deconfine-
ment aspects of the QCD transition which lead to the
estimate Tc ¼ 154ð9Þ MeV for the QCD transition temper-
ature. It has also been used to study the fluctuations of
conserved charges [7,30–32] and various spatial and
temporal correlation functions [33,34]. The study of
fluctuations of conserved charges at high temperatures
demonstrates, in particular, that the HISQ action is indeed
very effective in reducing cutoff effects [32].
In this paper, we show that continuum extrapolated

results for the EoS of (2þ 1)-flavor QCD obtained with
the HISQ action are in good agreement with those obtained
with the stout action [25,26].1 There are, however, sys-
tematic differences which may start to become of relevance
in the analysis of the approach to the perturbative limit at
high temperatures. We discuss these features in more detail
in Secs. IV and V.
The rest of the paper is organized as follows. In Sec. II

we discuss the lattice setup and the simulation parameters.

1There was an error in the preliminary analyses of the EoS with
the HISQ/tree action presented in conference proceedings before
2014 [35–37] due to an incorrect normalization of the fermion
contribution to the trace anomaly. This error gave a larger value of
the trace anomaly for T < 300 MeV. Preliminary results for the
EoS with the HISQ/tree action prior to 2014 are, therefore,
superseded.
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Section III contains the results for the trace anomaly, which
is the basic thermodynamic quantity obtained from lattice
calculations, and from which the EoS is obtained.
Section IV discusses the extraction of thermodynamic
quantities in the continuum limit. This section ends with
an analytical parameterization of the EoS that matches the
HRG estimates below T ¼ 130 MeV and the lattice data
between 130 and 400 MeV. In Sec. V, we present results on
observables that depend on second-order derivatives of
the pressure with respect to temperature, i.e., the specific
heat and the speed of sound. We discuss their phenom-
enological importance. Also in Sec. V, we discuss how our
results for the EoS connect to high-temperature perturbative
calculations. Finally, Sec. VI contains our conclusions.
Technical details of the calculations are given in the
appendixes.

II. LATTICE SETUP

We performed simulations of (2þ 1)-flavor QCD using
the HISQ action and the tree-level improved gauge action.
This combination is referred to as the HISQ/tree action. The
(2þ 1)-flavor simulations are defined by three bare param-
eters, the gauge coupling β ¼ 10=g2, the light-quark mass
ml ¼ mu ¼ md, and the heavier strange quark massms. For
a given value of the gauge coupling, we tune the strange
quark mass to its physical value by matching the mass of
the fictitious unmixed pseudoscalar ηss̄ meson to 695 MeV.
The light quark mass is fixed as a fraction of the strange
quark mass, ml ¼ ms=20. This is slightly above the
physical ratio ml ¼ ms=27.3 and corresponds to a pion
mass of about 160 MeV in the continuum limit. This
difference should, however, give rise to negligible effects in
the calculation of the EoS [24,25]. Having fixedms andml,
the continuum limit is taken along a line of constant
physics (LCP) controlled by a single parameter, the gauge
coupling β.
The LCP for the HISQ/tree action and ml ¼ ms=20 has

been established and reported in Ref. [5], based on a set of
zero-temperature ensembles that span the range of gauge
couplings β ¼ 5.9–7.28. In that study, the associated sets of
finite temperature ensembles were generated on lattices
with temporal extent Nτ ¼ 6, 8, and 12, and a fixed aspect
ratio Nσ=Nτ ¼ 4 for the spatial extent. In Appendix A, we
list all the zero- and finite-temperature gauge field ensem-
bles used in this study along with the final statistics. Here
we briefly summarize the additional simulations carried
out, and the improvements made, compared to those
presented in Ref. [5].

(i) Additional zero- and finite-temperature ensembles
were generated at β ¼ 7.373, 7.596, and 7.825.

(ii) A new set of finite temperature lattices withNτ ¼ 10
was generated.

(iii) The statistics are substantially increased for all
existing ensembles, in some cases by more than
an order of magnitude compared to Ref. [5].

(iv) The determination of the LCP on finer lattices is
improved by measurements of the static quark
potential and the hadron spectrum on new zero-
temperature ensembles.

The lattice spacing a, corresponding to the coupling β,
was determined by calculating the scales r0 [38] and r1
[39], defined in terms of the static potential as

r2
dV
dr

����
ri

¼ Ci; i ¼ 0; 1; ð1Þ

where C0 ¼ 1.65 and C1 ¼ 1.0. At each β, these scales are
determined by first extracting the potential VðrÞ by fitting
the lattice data to

VðrÞ ¼ Cþ B
r
þ σr; ð2Þ

and then calculating its derivative in intervals around the
values of r1 and r0, as described in Ref. [5]. The details of
the determination of r0=a and r1=a and the extrapolation
of the ratio, r0=r1, to the continuum limit are given in
Appendix B. The extrapolated result is r0=r1 ¼
1.5092ð39Þ, which gives r0 ¼ 0.4688ð41Þ fm using the
physical value r1 ¼ 0.3106ð14Þð8Þð4Þ fm [40]. This esti-
mate of r0 is in agreement with r0 ¼ 0.48ð1Þð1Þ fm given
in Ref. [4].
To cross-check the precision of the determination of

the lattice spacing, we also calculated the scale w0 first
proposed in Ref. [41]. The details of this calculation are
also given in Appendix B, and we obtain w0=r1 ¼
0.5619ð21Þ in the continuum limit. This translates to w0 ¼
0.1749ð14Þ fm, in agreement with w0 ¼ 0.1755ð18Þð4Þ fm
given in Ref. [41].
We have also measured the masses and decay constants

of several light hadrons. These allow us to improve the
determination of the LCP at weaker coupling and provide
further cross-checks on the scale setting in the continuum
limit. We find that the different ways to set the lattice scale
using hadronic observables agree with each other and the
scale determined using r1 within the estimated errors. The
details of these analyses are presented in Appendix C.

III. THE TRACE ANOMALY

The QCD partition function on a hypercubic lattice of
size N3

σNτ, after integration over the fermion degrees of
freedom, is given by

Zðβ; Nσ; NτÞ ¼
Z Y

x;μ

dUx;μe−SðUÞ; ð3Þ

where Ux;μ ∈ SUð3Þ are the gauge field variables, labeled
by x and μ, defined on the links between lattice points
and the Euclidean action SðUÞ is the sum of the gauge and
fermionic parts:
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SðUÞ ¼ βSGðUÞ − SFðUÞ: ð4Þ
The temperature in physical units is set by the temporal
extent Nτ of the lattice and related to the lattice spacing a
as T ¼ 1=ðaNτÞ.
The trace of the energy-momentum tensor, also called

trace anomaly or the interaction measure, is related to the
pressure p as (see Ref. [22])

ΘμμðTÞ
T4

¼ ϵ − 3p
T4

¼ T
d
dT

�
p
T4

�
; ð5Þ

with ϵ denoting the energy density. ΘμμðTÞ can be defined
on the lattice as the total derivative of lnZ with respect to
the lattice spacing a:

Θμμ ¼ ϵ − 3p ¼ −
T
V
d lnZ
d ln a

: ð6Þ

The right-hand side of Eq. (6) is straightforward to evaluate
on the lattice and gives

ϵ − 3p
T4

≡ Θμμ
G ðTÞ
T4

þ Θμμ
F ðTÞ
T4

; ð7Þ

Θμμ
G ðTÞ
T4

¼ Rβ½hsGi0 − hsGiτ�N4
τ ; ð8Þ

Θμμ
F ðTÞ
T4

¼ −RβRm½2mlðhψ̄ψil;0 − hψ̄ψil;τÞ
þmsðhψ̄ψis;0 − hψ̄ψis;τÞ�N4

τ : ð9Þ

Here hsGiτð0Þ is the expectation value of the action density
for the gauge fields evaluated at finite (zero) temperature
and hψ̄ψilðsÞ;τð0Þ stands for the expectation values of light (l)
and strange (s) quark chiral condensates evaluated at finite
(zero) temperature. Subtracting the zero-temperature values
in the above expressions ensures that all thermodynamic
quantities are finite in the continuum limit. In Eq. (9), we
have used the single-flavor normalization for both the light
and strange quark condensates as in previous works
[5,22,23]. The nonperturbative beta function and mass
renormalization function are defined as [22,23]

RβðβÞ ¼
r1
a

�
dðr1=aÞ

dβ

�
−1
; ð10Þ

RmðβÞ ¼
1

msðβÞ
dmsðβÞ
dβ

: ð11Þ

The determination of these functions is discussed in
Appendixes B–D. In the above equations, we explicitly
separated the contributions to the trace anomaly that come
from purely gluonic operators Θμμ

G ðTÞ and fermionic
operators Θμμ

F ðTÞ. Even though we refer to them as the
gluonic and fermionic parts, it would be misleading to

consider Θμμ
F ðTÞ as the quark contribution to the trace

anomaly. For example, for massless quarks Θμμ
F ðTÞ=T4 is

zero, while massless quarks certainly contribute to the trace
anomaly. At high temperatures, where the effect of nonzero
quark masses is expected to be small, the quark contribu-
tion almost exclusively comes from Θμμ

G ðTÞ. As we see
below, this expectation is confirmed by our numerical data.
The above separation of the trace anomaly into Θμμ

G ðTÞ and
Θμμ

F ðTÞ is, however, useful in the analysis of lattice data as
they are expected to be affected differently by the taste
symmetry breaking inherent in staggered fermions and
because the statistical errors are also different.
The pressure can be calculated using the integral method,

i.e., by inverting Eq. (5):

pðTÞ
T4

¼ p0

T4
0

þ
Z

T

T0

dT 0Θ
μμ

T 05 : ð12Þ

The choice of the reference temperature T0 and pressure
p0 is discussed in Sec. IV. All other thermodynamic
quantities, defined as appropriate derivatives of the parti-
tion function with respect to the temperature, can be
calculated from Eqs. (5) and (12) by using standard
thermodynamic identities.
Since the trace anomaly is the central quantity in the

lattice calculations of the EoS, we discuss its properties in
some detail. In Fig. 1, we compare results for the trace
anomaly obtained with the HISQ/tree action on lattices
with temporal extent Nτ ¼ 6, 8, 10, and 12 with our
previous findings using the p4 and asqtad actions
[22,23,42]. The cutoff effects are much smaller in the
HISQ/tree action and the height of the peak is significantly
reduced. Below the peak, the HISQ/tree data are larger than
the p4 and asqtad results but significantly smaller at
temperatures around and higher than the peak. These large
deviations reflect the fact that the asqtad and the p4 actions

1

2

3

4

5

6

7

 200  300  400  500  600

T [MeV]

(ε-3p)/T4 Nτ=6
Nτ=8

Nτ=10
Nτ=12
asqtad

p4

FIG. 1 (color online). The trace anomaly calculated with the
HISQ/tree action at different Nτ and compared with results from
previous calculations with the p4 and asqtad actions on Nτ ¼ 8
lattices [23], except for the two highest temperatures, where we
show the Nτ ¼ 6 p4 data from Refs. [42] and [22], respectively.
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have much larger cutoff effects at low temperatures and in
the crossover region (see discussions in Ref. [5]). The
smaller taste violations of the HISQ action lead to a smaller
root-mean-square (RMS) mass in the pseudoscalar sector
[5], i.e., to a smaller average pion mass, which leads to a
larger trace anomaly as well as larger pressure and energy
density in the low temperature, hadronic region. For T >
350 MeV, we find reasonably good agreement between
the results obtained with different actions. This is, to some
extent, expected as at such high temperatures, i.e., at small
a, all the above actions should have small cutoff effects.
This expectation has been demonstrated in the calculations
of quark-number susceptibilities [32]. In Sec. IV, we show
that having small cutoff effects in the data with the HISQ/
tree action allows us to make robust continuum extrapo-
lations and obtain a precise EoS in the temperature range
130–400 MeV.
A closer look at the HISQ/tree action data shown in

Figs. 1–3 reveals some cutoff effects at low temperatures
and in the peak region. It is instructive to discuss these
cutoff effects separately in terms of the gluonic, Θμμ

G , and
the fermionic, Θμμ

F , contributions defined in Eqs. (8) and
(9), respectively, and shown in Fig. 2. We find that the trace

anomaly is dominated by the gluonic part. The fermionic
contribution is about 20%–25% of the gluonic contribution
in the peak region, rises to ∼35% below it, and becomes
much smaller at high temperatures. At T ¼ 400 MeV, it is
only about 10%. Around the peak, Θμμ

G , and consequently
the trace anomaly, shows a decrease with increasing Nτ,
i.e., the continuum limit is approached from above.
The statistical errors and the lattice discretization effects

in the HISQ/tree data are smaller in the fermionic part
compared to the gluonic part. In ΘF=T4, we observe
significant cutoff effects only at the lowest temperature
T ∼ 133 MeV, where the Nτ ¼ 6 and 8 data differ by about
30%. This small size of cutoff effects inΘμμ

F with the HISQ/
tree action in the low temperature region is in contrast to
results obtained using the asqtad and the p4 actions, where
the fermionic part showed significantly larger cutoff effects.
We also note that cutoff effects arising from taste symmetry
violations have opposite effects in Θμμ

F and Θμμ
G . While a

larger RMS mass for the pions leads to smaller values of
Θμμ

G at low temperatures, it leads to larger values in Θμμ
F as

the chiral condensates are larger for larger pion masses.
In the total trace anomaly, significant discretization

effects are observed only in the peak and low-temperature
regions. Within errors, we find no cutoff effects on
comparing Nτ ¼ 6, 8, and 10 data for T < 145 MeV. In
the interval 145 MeV < T < 170 MeV, we observe some
cutoff dependence, with the largest difference between the
Nτ ¼ 6 and 8 data.
At low temperatures, all thermodynamic quantities are

expected to be well described by the HRG model, in which
all the hadrons and hadron resonances are assumed to
contribute to the thermodynamics as noninteracting par-
ticles. Many previous studies have confirmed this expect-
ation [6,7,31,43–46]. The trace anomaly in the HRG model
is given by

�
ϵ−3p
T4

�
HRG

¼
X

mi≤mmax

di
2π2

X∞
k¼1

ð−ηiÞkþ1

k

�
mi

T

�
3

K1

�
kmi

T

�
;

ð13Þ

0.5
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1.5
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3.5

 4

4.5

 5

 150  200  250  300  350  400

T [MeV]

ΘG/T4 Nτ=6
Nτ=8

Nτ=10
Nτ=12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 150  200  250  300  350  400

T [MeV]

ΘF/T4 Nτ=6
Nτ=8

Nτ=10
Nτ=12

FIG. 2 (color online). The gluonic (left) and fermionic (right) parts of the trace anomaly for different Nτ. See text for details.

0.5

 1

1.5

 2

2.5

 3

3.5

 4

4.5

 110  120  130  140  150  160  170  180  190

T [MeV]

(ε-3p)/T4
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Nτ=12

FIG. 3 (color online). The trace anomaly in the low temperature
region compared with the HRG model (solid line).
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where different particle species of massmi have degeneracy
factors di and ηi ¼ −1ðþ1Þ for bosons (fermions). The
particle masses are taken from the Particle Data Book [47],
including all known states up to the resonance mass of
mmax ¼ 2.5 GeV. We compare the predictions of the HRG
model with our data for the trace anomaly in the low
temperature region in Fig. 3. For T < 145 MeV the lattice
data do not show any significant Nτ dependence and are in
good agreement with estimates from the HRG model. This
agreement will be used in an important way for the
continuum extrapolation and for the calculation of the
pressure described in the next section. For temperatures in
the interval 145 MeV < T < 170 MeV, the Nτ ¼ 8, 10
and 12 lattice data lie above the HRG curve, while the
Nτ ¼ 6 data lie systematically below. In Sec. IV, we show
that the cutoff effects in the Nτ ¼ 6 data are large in this
temperature interval.

IV. THERMODYNAMICS IN THE
CONTINUUM LIMIT

In this section, we describe the calculation of the pressure
and the energy and entropy densities in the continuum limit.
The main step in this calculation is the extrapolation of the
lattice data for the trace anomaly Θμμ from Nτ ¼ 6, 8, 10,
and 12 lattices to the continuum limit. Noting that the
leading lattice discretization effects (Nτ dependence) for
staggered fermions are expected to be proportional to
ðaTÞ2 ∼ 1=N2

τ , we use the fit ansatz

ΘμμðTÞ
T4

¼ Aþ
Xnkþ3

i¼1

Bi × SiðTÞ þ
CþPnkþ3

i¼1 Di × SiðTÞ
N2

τ
;

ð14Þ
where nk denotes the number of knots in the interior of the fit
interval and the Si are a set of basis cubic splines with
discontinuities only in the third derivative at the specified
knots as described below.2 The positions of the knots and the
constants A,Bi,C, andDi are parameters that are determined
by the fit. To test whether it is sufficient to keep just the
leading 1=N2

τ term, we also considered the next, Oð1=N4
τÞ,

correction,

EþPnkþ3
i¼1 Fi × SiðTÞ
N4

τ
: ð15Þ

Adding these terms to the quadratic fit, given in Eq. (14),
defines the quartic fit also discussed below.
The basic assumption underlying the proposed fit ansatz

is that the data and the variation with Nτ can be described

by a set of piecewise continuous splines of cubic order. The
temperature interval to be fitted is divided into subregions
by a finite number of internal knots nk, which we further
assume are independent of Nτ. The number and position of
these knots specify a set of basis splines that forms a
complete set over the full interval, i.e., any piecewise
continuous cubic function can be fitted by them. The
number of knots needed depends, in general, on the
complexity of the data, and the total number of basis
splines invoked by the fit depends on the number of knots
specified. The positions of the knots are outputs of the
least-square minimization procedure we use.
A number of choices need to be specified before we can

discuss the fits.
(i) The errors in each data point for ΘμμðTÞ=T4 are

assumed to be normally distributed and independent,
since these come from independent simulations.

(ii) The entire analysis is done within a bootstrap
procedure using 20,001 samples. This number
was chosen to make the sampling error in the
bootstrap estimate of the standard error 1%. The
bootstrap samples were generated by selecting each
data point from a normal distribution with its width
given by the quoted error. The final error band for
ΘμμðTÞ=T4 is given by the 1σ spread of the bootstrap
values at each temperature. The statistical package R
[48–50] was used to implement this analysis.

(iii) The values of temperature at which simulations
have been done are not uniform, in particular
we do not have much data on Nτ ¼ 10 and 12
lattices for T < 130 MeV and T > 400 MeV. Our
results will, therefore, be restricted to the range
130 MeV ≤ T ≤ 400 MeV.

(iv) Our goal is to use the minimum number of knots and
thus the minimum number of parameters. We
studied the χ2 resulting from the least-square min-
imization procedure to settle on the number of knots.

(v) We analyze the data using both the quadratic and
quartic ansatz and with and without the Nτ ¼ 6 data.
Our final results are obtained using the quadratic fit
without the Nτ ¼ 6 data.

(vi) The data on Nτ ¼ 8 lattices for T ≤ 130 MeV are
insufficient to constrain the fits at the lower end. We,
therefore, use the estimate ΘμμðTÞ=T4 ¼ 1.007 with
slope 0.032 at T ¼ 130 MeV, obtained from the
HRG model, for the continuum extrapolated value.
To justify this choice we note that the HRG model is
a good approximation at this temperature and
insensitive to possible higher resonances missed
in the hadron spectrum [8]. Indeed, we find that
the lattice data and the HRG estimates agree for
T < 145 MeV. To take into account the uncertainty
in the HRG estimates, both the estimate and the
slope were picked using a Gaussian distribution
about their central values with a conservatively

2Note that when knots are coincident, successively lower
derivatives are discontinuous. All the splines are defined to go
to zero at the lower end of the fit interval as we explicitly include
the constants A and C in our fit ansatz.
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chosen width, 10% of their respective values. We
implemented this constrain by replacing the spline
B1 by a term proportional to T − 130 MeV with its
coefficient given by the HRG value. This constraint,
therefore, reduces the number of free parameters in
Eq. (14) by two.

(vii) The data on Nτ ¼ 8 lattices in the temperature range
(400–610)/MeV were used to stabilize the quadratic
fits up to 400 MeV. For the quartic fits, both the
Nτ ¼ 6 and 8 data at T > 400 MeV were used.

To decide on the number of knots to use, we fit the
Nτ ¼ 8, 10, and 12 data with the quadratic ansatz with two
to four internal knots. The fit with two knots was the most
stable and the χ2 did not improve significantly with
additional knots. The choice of two knots is consistent
with the observation that the data show three main regions:
the low temperature region T ≲ 175 MeV, the peak region
(175–225 MeV) and the high-temperature region
T ≳ 225 MeV. The fit parameters and the location of the
knots are outputs of the χ2 minimization procedure. This fit
has 53 data points, 5 basis splines and 12 free parameters,
i.e., the 10 parameters remaining in Eq. (14) after imposing
the HRG value and slope at T ¼ 130 MeV and the
locations of the two knots. This ansatz fits all the data,
and the χ2=degrees of freedom ðdofÞ ¼ 0.9 for dof ¼ 41

was well distributed—i.e., it was not dominated by a few
points nor by any one of the three regions. The distribution
of the positions of the knots over the 20,001 samples had
central values of 170 MeV and 229 MeV with a standard
deviation of 8 MeV. This fit, called the final fit, is used for
our continuum results as the tests itemized below did not
improve upon it:

(i) Adding more knots to the final fit did not improve
the fit. The additional parameters were poorly
determined, and in most bootstrap samples two or
more knots were coincident.

(ii) We added theNτ ¼ 6 data to the final fit. The χ2=dof
increased and the fit became skewed. It adjusted to
preferentially fit the low error Nτ ¼ 6 points and the
χ2 became dominated by the Nτ ¼ 12 data below the
peak. We concluded that the quadratic ansatz is
insufficient to fit the data at all four Nτ values.

(iii) We explored the quartic ansatz to fit the data at all
fourNτ values. In this case, the best fit required three
knots. The resulting error band overlaps with that of
the final fit except in the peak region, where it is
about 1σ lower. The position of the knots are not as
stable as in the final fit, and in many bootstrap
samples, two knots were coincident. To summarize,
the final quadratic fit was preferred over the quartic
fit as it is based on data closer to the continuum limit,
has the least number of parameters and fits the data
well as shown in Fig. 4.

The quality of the final fit using Eq. (14) is demonstrated
in Fig. 4 where we show that the bootstrap error bands of

the final fit describe the Nτ ¼ 8, 10, and 12 data very well.
On the other hand, as stated previously, we find that the
Nτ ¼ 6 data lie outside the range of applicability of the
quadratic ansatz. The same error bands are compared with
the final continuum extrapolated result (black band)
in Fig. 5.
Having determined the final fit, we obtained the

pressure p=T4 by numerically integrating the bootstrap
samples for ΘμμðTÞ between 130 and 400 MeV using
Eq. (12). For the integration constant p0, the pressure at
T ¼ 130 MeV, we picked a value from a normal dis-
tribution with the mean value p0=T4

0 ¼ 0.4391, again
taken from the HRG model, and width 0.0439, a
conservative 10% error estimate on this HRG value.
Since the estimate of p0=T4

0 is independent of the
calculation of ΘμμðTÞ, this choice effectively adds a
δp0 in quadrature to the errors from integrating
ΘμμðTÞ=T4. Knowing ΘμμðTÞ=T4 ≡ ðϵ − 3pÞ=T4 and
p=T4, it is straightforward to derive the energy density,
ϵ, and the entropy density s ¼ ðϵþ pÞ=T.
The final systematic error that is folded into the

estimates of all the thermodynamic quantities is the
uncertainty in the determination of the lattice scale a,

FIG. 4 (color online). The data for the trace anomaly and the
result (thick lines showing the 1σ bootstrap error bands) of
applying Eq. (14) with Nτ ¼ 8, 10, and 12. The parameters in
Eq. (14) and their errors, defining this final fit, were determined
from these data as discussed in the text. The error bands shown
are generated by the same bootstrap process used to estimate the
fit parameters and their errors. The additional 2% error that is
added to the final continuum result to account for the uncertainty
in the determination of the temperature scale as discussed in the
text is not included in these plots.
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and thus the values of the temperature T used in the fits.
Based on the uncertainty analyses in the determination of
the lattice scale a (∼1.3%) and tuning of the ms to stay on
the LCP presented in Appendixes B and C, we assigned an
overall conservative 2% uncertainty in T, which we add
linearly to the error estimates already assigned by the
bootstrap process. In practice, at each T and for each
observable, we picked the minimum and maximum values
of the 1σ bootstrap envelope in the region T � 2%. This
new envelope is then used as the final uncertainty band for
all the continuum results shown in the figures and
discussed below.
Our continuum extrapolated results for the trace anomaly

and other thermodynamic observables are shown in Fig. 5
and the data are given in Table I. For T < 150 MeV, the
trace anomaly is well approximated by the HRG estimate
shown by the solid line in Fig. 5 (left). For T > 150 MeV,
the Nτ ≥ 8 lattice results are systematically higher than the
HRG estimate as shown in Fig. 3, and the slopes of the
HRG and continuum extrapolated curves start to differ as
shown in Fig. 5. In the peak region, ðϵ − 3pÞ=T4 has a
maximum of about 4.05(15) at T ∼ 204 MeV. This maxi-
mal value from simulations with the HISQ/tree action is
significantly smaller than our previous results with the p4
and asqtad actions which were incorporated in the HotQCD
parametrization [23] of the EoS, as well as in the s95p
parametrization of the EoS that is frequently used in
hydrodynamic models [45].
The final continuum extrapolated estimates of the

pressure, energy density and entropy density are shown
in Fig. 5 (right) and compared with HRG predictions for
T < 170 MeV. Again, there is reasonable agreement for
T < 150 MeV. Above T ¼ 150 MeV, HRG estimates
lie along the lower edge of the error-band of the lattice
estimates.

We can now compare our results with the results
obtained by the Wuppertal-Budapest Collaboration using
the stout action [26]. This comparison is shown in Fig. 6 for
the trace anomaly, the pressure and the entropy density. We
find good agreement in the trace anomaly with the stout
results over the full temperature range (130–400) MeV.
Note, however, that above the peak the central values
with the stout action lie systematically below ours. As a
result, our estimates of the pressure become systematically
larger for T > 200 MeV. By T ¼ 400 MeV, the difference
between the central values in the two calculations increases
to about 6%. The two results, however, still agree within
errors. The difference in the entropy density reaches about
7% by T ¼ 400 MeV, and in this case the two estimates
differ by about 2σ. These differences suggest that more
detailed calculations of the trace anomaly at higher temper-
atures are needed. In particular, it would be important to see
if the differences persist at higher temperatures where a
comparison with resummed perturbative calculations
should be possible (see Sec. V C).

A. Parametrization of the EoS

We close this section by providing an analytical para-
metrization of the pressure of (2þ 1)-flavor QCD, sum-
marized in Table I, that can be used in phenomenological
applications and hydrodynamic modeling of strong inter-
action matter. We choose an ansatz that incorporates basic
features of the low and high temperature limits, i.e., it
ensures that the pressure becomes exponentially small at
low temperatures and approaches the ideal gas limit at high
temperatures. We find that the following parametrization
provides an excellent description of all bulk thermody-
namic observables discussed in the previous sections,
including the specific heat and speed of sound that require

FIG. 5 (color online). Spline fits to the trace anomaly for several values of the lattice spacing aT ¼ 1=Nτ and the result of our
continuum extrapolation (left). Note that the error bands shown here do not include the 2% scale error. The right-hand panel shows
suitably normalized pressure, energy density, and entropy density as a function of the temperature. In this case the 2% scale error is
included in the error bands. The dark lines show the prediction of the HRG model. The horizontal line at 95π2=60 in the right panel
corresponds to the ideal gas limit for the energy density and the vertical band marks the crossover region, Tc ¼ ð154� 9Þ MeV.
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TABLE I. Continuum extrapolated results for the trace anomaly Θμμ, pressure p, energy density ϵ, entropy density s, specific heat CV ,
and the square of the speed of sound c2s in appropriate units of the temperature T. The asymmetry in the errors, given in the two brackets,
arises from the 2% systematic error assigned to the temperature scale.

T½MeV� Θμμ=T4 p=T4 ϵ=T4 s=T3 CV=T3 c2s

130 1.01ð–10Þðþ19Þ 0.439ð–44Þðþ65Þ 2.33ð–16Þðþ33Þ 2.77ð–20Þðþ39Þ 16.5ð–0.9Þðþ3.0Þ 0.168ð–15Þðþ6Þ
135 1.21ð–21Þðþ23Þ 0.481ð–67Þðþ69Þ 2.65ð–35Þðþ38Þ 3.13ð–41Þðþ44Þ 20.4ð−3.0Þðþ3.1Þ 0.153ð–10Þðþ12Þ
140 1.46ð–24Þðþ25Þ 0.529ð–72Þðþ75Þ 3.05ð–41Þðþ43Þ 3.58ð–47Þðþ50Þ 24.5ð−3.2Þðþ3.4Þ 0.146ð–8Þðþ9Þ
145 1.76ð–27Þðþ28Þ 0.586ð–78Þðþ82Þ 3.52ð–46Þðþ48Þ 4.11ð–52Þðþ55Þ 28.6ð−3.4Þðþ3.6Þ 0.144ð–6Þðþ7Þ
150 2.09ð–29Þðþ30Þ 0.651ð–85Þðþ89Þ 4.05ð–50Þðþ52Þ 4.70ð–58Þðþ60Þ 32.6ð−3.6Þðþ3.6Þ 0.144ð–6Þðþ7Þ
155 2.43ð–31Þðþ32Þ 0.726ð–93Þðþ97Þ 4.61ð–54Þðþ56Þ 5.34ð–62Þðþ65Þ 36.2ð−3.6Þðþ3.5Þ 0.148ð–7Þðþ7Þ
160 2.76ð–32Þðþ32Þ 0.808ð–100Þðþ105Þ 5.19ð–57Þðþ59Þ 6.00ð–66Þðþ68Þ 39.3ð−3.4Þðþ3.3Þ 0.153ð–8Þðþ9Þ
165 3.07ð–32Þðþ31Þ 0.898ð–108Þðþ112Þ 5.76ð–59Þðþ60Þ 6.66ð–69Þðþ70Þ 41.8ð−3.2Þðþ3.0Þ 0.159ð–9Þðþ10Þ
170 3.34ð–31Þðþ30Þ 0.994ð–115Þðþ118Þ 6.32ð–60Þðþ60Þ 7.32ð–70Þðþ71Þ 43.8ð−2.9Þðþ2.7Þ 0.167ð–10Þðþ10Þ
175 3.56ð–29Þðþ28Þ 1.094ð–121Þðþ124Þ 6.85ð–60Þðþ60Þ 7.94ð–71Þðþ71Þ 45.2ð−2.6Þðþ2.4Þ 0.176ð–11Þðþ10Þ
180 3.74ð–27Þðþ25Þ 1.197ð–126Þðþ129Þ 7.33ð–59Þðþ59Þ 8.53ð–71Þðþ70Þ 46.2ð−2.4Þðþ2.1Þ 0.185ð–11Þðþ10Þ
185 3.88ð–25Þðþ23Þ 1.302ð–130Þðþ133Þ 7.78ð–58Þðþ57Þ 9.08ð–71Þðþ71Þ 47.0ð−2.2Þðþ1.9Þ 0.194ð–11Þðþ10Þ
190 3.97ð–22Þðþ19Þ 1.406ð–134Þðþ136Þ 8.19ð–57Þðþ56Þ 9.60ð–69Þðþ68Þ 47.5ð−1.9Þðþ1.7Þ 0.202ð–10Þðþ10Þ
195 4.03ð–19Þðþ16Þ 1.510ð–137Þðþ139Þ 8.56ð–56Þðþ54Þ 10.07ð−68Þðþ67Þ 47.9ð−1.7Þðþ1.6Þ 0.210ð–10Þðþ10Þ
200 4.05ð–16Þðþ14Þ 1.613ð–140Þðþ141Þ 8.89ð–54Þðþ52Þ 10.50ð–67Þðþ65Þ 48.1ð−1.6Þðþ1.5Þ 0.218ð–10Þðþ10Þ
205 4.05ð–14Þðþ14Þ 1.713ð–142Þðþ143Þ 9.19ð–52Þðþ50Þ 10.90ð–65Þðþ63Þ 48.4ð−1.5Þðþ1.6Þ 0.225ð–10Þðþ10Þ
210 4.03ð–15Þðþ15Þ 1.810ð–143Þðþ143Þ 9.46ð–50Þðþ48Þ 11.27ð–64Þðþ62Þ 48.6ð−1.6Þðþ1.6Þ 0.232ð–10Þðþ10Þ
215 3.99ð–16Þðþ16Þ 1.904ð–144Þðþ144Þ 9.70ð–48Þðþ47Þ 11.61ð–62Þðþ60Þ 48.8ð−1.6Þðþ1.7Þ 0.238ð–10Þðþ9Þ
220 3.94ð–17Þðþ17Þ 1.995ð–144Þðþ144Þ 9.93ð–47Þðþ46Þ 11.92ð–61Þðþ59Þ 49.1ð−1.7Þðþ1.8Þ 0.243ð–9Þðþ9Þ
225 3.88ð–18Þðþ17Þ 2.083ð–145Þðþ144Þ 10.13ð–46Þðþ45Þ 12.21ð–59Þðþ58Þ 49.4ð−1.8Þðþ1.8Þ 0.247ð–9Þðþ8Þ
230 3.82ð–18Þðþ18Þ 2.168ð–145Þðþ144Þ 10.32ð–45Þðþ44Þ 12.49ð–59Þðþ58Þ 49.8ð−1.8Þðþ1.9Þ 0.251ð–8Þðþ8Þ
235 3.76ð–19Þðþ18Þ 2.249ð–144Þðþ143Þ 10.50ð–45Þðþ44Þ 12.75ð–59Þðþ58Þ 50.3ð−1.9Þðþ1.9Þ 0.254ð–8Þðþ7Þ
240 3.69ð–19Þðþ19Þ 2.328ð–144Þðþ143Þ 10.68ð–44Þðþ44Þ 13.00ð–58Þðþ58Þ 50.7ð−1.9Þðþ1.9Þ 0.256ð–8Þðþ7Þ
245 3.63ð–20Þðþ19Þ 2.403ð–144Þðþ143Þ 10.84ð–44Þðþ44Þ 13.24ð–58Þðþ57Þ 51.1ð−1.9Þðþ1.9Þ 0.259ð–7Þðþ7Þ
250 3.57ð–20Þðþ20Þ 2.476ð–143Þðþ142Þ 10.99ð–44Þðþ44Þ 13.47ð–57Þðþ57Þ 51.5ð−1.9Þðþ1.9Þ 0.261ð–7Þðþ6Þ
255 3.50ð–21Þðþ20Þ 2.546ð–143Þðþ142Þ 11.14ð–44Þðþ44Þ 13.68ð–57Þðþ57Þ 51.9ð−1.9Þðþ1.9Þ 0.264ð–7Þðþ6Þ
260 3.44ð–21Þðþ21Þ 2.613ð–143Þðþ142Þ 11.28ð–44Þðþ44Þ 13.89ð–58Þðþ57Þ 52.2ð−1.9Þðþ1.9Þ 0.266ð–7Þðþ6Þ
265 3.38ð–21Þðþ21Þ 2.678ð–142Þðþ141Þ 11.41ð–44Þðþ44Þ 14.09ð–58Þðþ57Þ 52.5ð−1.9Þðþ1.8Þ 0.268ð–6Þðþ6Þ
270 3.32ð–21Þðþ21Þ 2.741ð–142Þðþ141Þ 11.54ð–44Þðþ44Þ 14.28ð–57Þðþ57Þ 52.8ð−1.8Þðþ1.8Þ 0.270ð–6Þðþ6Þ
275 3.26ð–21Þðþ21Þ 2.801ð–141Þðþ141Þ 11.66ð–44Þðþ44Þ 14.46ð–57Þðþ57Þ 53.1ð−1.8Þðþ1.8Þ 0.272ð–6Þðþ5Þ
280 3.20ð–21Þðþ21Þ 2.859ð–141Þðþ140Þ 11.77ð–44Þðþ43Þ 14.63ð–57Þðþ57Þ 53.3ð−1.8Þðþ1.7Þ 0.274ð–6Þðþ5Þ
285 3.14ð–21Þðþ21Þ 2.915ð–141Þðþ140Þ 11.88ð–43Þðþ43Þ 14.80ð–57Þðþ57Þ 53.6ð−1.8Þðþ1.7Þ 0.276ð–5Þðþ5Þ
290 3.08ð–21Þðþ21Þ 2.969ð–140Þðþ140Þ 11.99ð–43Þðþ43Þ 14.95ð–57Þðþ56Þ 53.8ð−1.7Þðþ1.7Þ 0.278ð–5Þðþ5Þ
295 3.02ð–20Þðþ21Þ 3.021ð–140Þðþ140Þ 12.08ð–43Þðþ43Þ 15.11ð–56Þðþ56Þ 54.0ð−1.7Þðþ1.7Þ 0.280ð–5Þðþ5Þ
300 2.96ð–20Þðþ21Þ 3.072ð–140Þðþ139Þ 12.18ð–43Þðþ43Þ 15.25ð–56Þðþ56Þ 54.2ð−1.7Þðþ1.7Þ 0.282ð–5Þðþ6Þ
305 2.91ð–20Þðþ21Þ 3.120ð–139Þðþ139Þ 12.27ð–43Þðþ42Þ 15.39ð–56Þðþ55Þ 54.3ð−1.7Þðþ1.7Þ 0.283ð–5Þðþ6Þ
310 2.85ð–20Þðþ20Þ 3.167ð–139Þðþ139Þ 12.35ð–42Þðþ42Þ 15.52ð–56Þðþ55Þ 54.5ð−1.7Þðþ1.7Þ 0.285ð–6Þðþ6Þ
315 2.79ð–19Þðþ20Þ 3.212ð–139Þðþ138Þ 12.43ð–42Þðþ42Þ 15.64ð–56Þðþ55Þ 54.6ð−1.7Þðþ1.7Þ 0.286ð–6Þðþ6Þ
320 2.74ð–19Þðþ20Þ 3.256ð–139Þðþ138Þ 12.51ð–42Þðþ41Þ 15.76ð–55Þðþ55Þ 54.8ð−1.7Þðþ1.7Þ 0.288ð–6Þðþ6Þ
325 2.69ð–19Þðþ20Þ 3.298ð–138Þðþ138Þ 12.58ð–42Þðþ41Þ 15.88ð–55Þðþ54Þ 54.9ð−1.7Þðþ1.7Þ 0.289ð–6Þðþ7Þ
330 2.63ð–19Þðþ19Þ 3.338ð–138Þðþ137Þ 12.65ð–41Þðþ41Þ 15.99ð–54Þðþ54Þ 55.0ð−1.7Þðþ1.7Þ 0.291ð–6Þðþ7Þ
335 2.58ð–19Þðþ19Þ 3.377ð–138Þðþ137Þ 12.71ð–41Þðþ41Þ 16.09ð–54Þðþ54Þ 55.1ð−1.7Þðþ1.8Þ 0.292ð–6Þðþ7Þ
340 2.53ð–19Þðþ19Þ 3.415ð–137Þðþ137Þ 12.78ð–41Þðþ40Þ 16.19ð–54Þðþ53Þ 55.2ð−1.7Þðþ1.8Þ 0.293ð–7Þðþ7Þ
345 2.48ð–20Þðþ19Þ 3.452ð–137Þðþ136Þ 12.83ð–41Þðþ40Þ 16.29ð–54Þðþ53Þ 55.3ð−1.7Þðþ1.8Þ 0.294ð–7Þðþ7Þ
350 2.43ð–20Þðþ19Þ 3.487ð–136Þðþ136Þ 12.89ð–40Þðþ40Þ 16.38ð–53Þðþ53Þ 55.4ð−1.8Þðþ1.9Þ 0.296ð–7Þðþ7Þ
355 2.38ð–20Þðþ19Þ 3.521ð–136Þðþ135Þ 12.94ð–40Þðþ40Þ 16.47ð–53Þðþ53Þ 55.5ð−1.8Þðþ1.9Þ 0.297ð–7Þðþ7Þ
360 2.33ð–20Þðþ20Þ 3.554ð–136Þðþ135Þ 13.00ð–40Þðþ40Þ 16.55ð–53Þðþ53Þ 55.6ð−1.8Þðþ1.9Þ 0.298ð–7Þðþ7Þ
365 2.29ð–21Þðþ20Þ 3.586ð–135Þðþ134Þ 13.04ð−40Þðþ40Þ 16.63ð–53Þðþ53Þ 55.7ð−1.9Þðþ1.9Þ 0.299ð–7Þðþ7Þ
370 2.24ð–21Þðþ20Þ 3.617ð–135Þðþ134Þ 13.09ð−40Þðþ40Þ 16.71ð–53Þðþ53Þ 55.8ð−1.9Þðþ2.0Þ 0.300ð–7Þðþ7Þ
375 2.20ð–21Þðþ20Þ 3.647ð–134Þðþ134Þ 13.14ð−40Þðþ40Þ 16.78ð–53Þðþ53Þ 55.8ð−1.9Þðþ2.0Þ 0.301ð–7Þðþ7Þ
380 2.15ð–22Þðþ21Þ 3.675ð–134Þðþ133Þ 13.18ð−40Þðþ40Þ 16.85ð–53Þðþ53Þ 55.9ð−2.0Þðþ2.0Þ 0.302ð–7Þðþ7Þ
385 2.11ð–22Þðþ21Þ 3.703ð–134Þðþ133Þ 13.22ð−40Þðþ41Þ 16.92ð–53Þðþ53Þ 56.0ð−2.0Þðþ2.0Þ 0.302ð–7Þðþ7Þ
390 2.07ð–22Þðþ21Þ 3.730ð–133Þðþ132Þ 13.26ð−40Þðþ41Þ 16.99ð–53Þðþ53Þ 56.1ð−2.0Þðþ2.1Þ 0.303ð–7Þðþ7Þ
395 2.03ð–22Þðþ22Þ 3.756ð–133Þðþ132Þ 13.30ð–40Þðþ41Þ 17.05ð–53Þðþ53Þ 56.2ð−2.0Þðþ2.1Þ 0.304ð–7Þðþ7Þ
400 1.99ð–22Þðþ22Þ 3.782ð–132Þðþ132Þ 13.34ð−40Þðþ41Þ 17.12ð−53Þðþ53Þ 56.2ð−2.1Þðþ2.1Þ 0.304ð–7Þðþ7Þ
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second derivatives of p=T4 with respect to the temperature
to be discussed in the next section,

p
T4

¼ 1

2
ð1þ tanhðctðt̄ − t0ÞÞÞ

·
pid þ an=t̄þ bn=t̄2 þ cn=t̄3 þ dn=t̄4

1þ ad=t̄þ bd=t̄2 þ cd=t̄3 þ dd=t̄4
; ð16Þ

where t̄ ¼ T=Tc and the QCD transition temperature Tc ¼
154 MeV is a conveniently chosen normalization. In this
parametrization, pid ¼ 95π2=180 is the ideal gas value of
p=T4 for massless three-flavor QCD. It is also the appro-
priate infinite temperature limiting value for QCD with
light and strange quarks that could be refined to include
additional perturbative corrections. However, at present we
do not see any need for this. We also note that fixing cn ¼
cd ¼ 0 gives an excellent parametrization of all our
numerical data and is in good agreement with the HRG
estimate, at least down to T ¼ 100 MeV. Furthermore,
this parametrization agrees with the Nτ ¼ 8 data well
beyond T ¼ 400 MeV.
The values of the parameters in our ansatz for the

pressure, Eq. (16), are summarized in Table II. The results
of this ansatz for the speed of sound, energy density, and
specific heat are compared with our continuum extrapo-
lated error bands in Figs. 7 and 8.

V. SPECIFIC HEAT, THE SPEED OF SOUND
AND DECONFINEMENT

All thermodynamic quantities, for fixed light and strange
quark masses, depend on a single parameter—the temper-
ature. In Section IV, we derived the basic thermodynamic
observables ðϵ; p; sÞ from the continuum extrapolated trace
anomaly ΘμμðTÞ. We now discuss two closely related
observables that involve second order derivatives of the
QCD partition function with respect to the temperature, i.e.,
the specific heat,

CV ¼ ∂ϵ
∂T

����
V
≡

�
4
ϵ

T4
þ T

∂ðϵ=T4Þ
∂T

����
V

�
T3; ð17Þ

and the speed of sound,

TABLE II. Parameters used in the ansatz given in Eq. (16) for
the pressure of (2þ 1)-flavor QCD in the temperature interval
T ∈ ½100 MeV; 400 MeV�.
ct an bn cn dn

3.8706 −8.7704 3.9200 0 0.3419
t0 ad bd cd dd
0.9761 −1.2600 0.8425 0 −0.0475

FIG. 7 (color online). The speed of sound squared from lattice
QCD and the HRG model versus temperature (top) and energy
density (bottom). In the upper figure, our results (HISQ) are
compared with those obtained with the stout action [26]. The
vertical band marks the location of the crossover region Tc ¼
ð154� 9Þ MeV in the upper figure and the corresponding range
in energy density, ϵc ¼ ð0.18–0.5Þ GeV=fm3, in the lower figure.
The dark line within each error band is the prediction of the
analytical parameterization given in Eq. (16).

FIG. 6 (color online). The comparison of the HISQ/tree and
stout results for the trace anomaly, the pressure, and the entropy
density.
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c2s ¼
∂p
∂ϵ ¼ ∂p=∂T

∂ϵ=∂T ¼ s
CV

: ð18Þ

The quantity Tdðϵ=T4Þ=dT can be calculated directly
from the trace anomaly and its derivative with respect to
temperature,

T
dϵ=T4

dT
¼ 3

Θμμ

T4
þ T

dΘμμ=T4

dT
: ð19Þ

These identities show that the estimates for the specific heat
and the speed of sound should be of a quality similar to
ϵ=T4 or p=T4. In Figs. 7 and 8, we show the agreement
between the bootstrap error bands for these quantities and
the estimates obtained by taking second order derivatives of
the analytic parameterization for p=T4 given in Eq. (16).
The latter are shown as dark lines inside the bootstrap
error bands.

A. Speed of Sound, the Softest Point of the EoS
and the Critical Energy Density

In Fig. 7 (top), we show the speed of sound as a function
of the temperature and compare our results with those
obtained by using the stout action [26]. We find that
the HISQ/tree and the stout results agree within the
estimated errors. The softest point of the EoS [51] at
T ≃ ð145–150Þ MeV, i.e., at the minimum of the speed of
sound, lies on the low temperature side of the crossover
region. At this point, the speed of sound is only slightly
below the corresponding HRG value. This follows from the
good agreement between HRG estimates and our lattice
QCD results for the energy density and the pressure.
Furthermore, the value c2s ≃ 0.15 is roughly half way
between zero, the value expected at a second-order phase

transition with diverging specific heat,3 and the value for
an ideal massless gas, c2s ¼ 1=3. At the high temperature
end, T ∼ 350 MeV, it reaches within 10% of the ideal
gas value.
The softest point of the EoS is of interest in the

phenomenology of heavy ion collisions as it characterizes
the temperature and energy density range in which the
expansion and cooling of matter slows down. The system
spends a longer time in this temperature range, and one
expects to observe characteristic signatures from this
regime. To facilitate a more direct comparison with
experiments, we show c2s as a function of the energy
density in physical units in Fig. 7 (bottom) using the
parametrization given in Eq. (16) to convert temperature
to energy density. At the softest point, the energy density
is only slightly above that of normal nuclear matter,
ϵnuclear ¼ 150 MeV=fm3. In the crossover region, Tc ¼
ð154� 9Þ MeV [5], the energy density varies from
180 MeV=fm3 at the lower edge to 500 MeV=fm3 at the
upper edge, slightly above the energy density inside the
proton ϵproton ¼ 450 MeV=fm3.
The QCD crossover region, thus, starts at or close to the

softest point of the EoS and the entire crossover region
corresponds to relatively small values of the energy density,
ð1.2–3.1Þϵnuclear. This value is about a factor of four smaller
than that of an ideal quark-gluon gas in this temperature
range. In the next subsection, we discuss to what extent this
has consequences for the size of fluctuations in the energy
density, i.e., the specific heat.

B. Specific Heat and Deconfinement

The intuitive characterization of deconfinement at the
QCD phase transition is that the liberation of many new
degrees of freedom give rise to a rapid increase in the
energy density, ideally with an infinite slope at Tc as in a
conventional second-order phase transition. This rapid rise
would then show up as a peak (or even a divergence) in
the specific heat, which could serve as an indicator for
the pseudo-critical (or critical) temperature. However, the
specific heat of (2þ 1)-flavor QCD, shown in Fig. 8,
exhibits a rapid increase but no peak. In the crossover
region, CV=ϵ≃ 8=T is a factor of two larger than for an
ideal quark-gluon gas; the specific heat reaches about half
of its ideal gas value, ðCV=T3Þideal ¼ 4ðϵ=T4Þideal ¼
95π2=15, and the energy density reaches only about one
quarter of its limiting high-temperature, ideal gas value.
The analysis of the quark-mass dependence of the QCD

transition temperature, the chiral condensate, and in par-
ticular, the peak in the chiral susceptibility suggest that for
physical values of the quark masses QCD is sufficiently
close to the chiral limit to be sensitive to the chiral phase

FIG. 8 (color online). Error bands showing the continuum
extrapolation of the specific heat and energy density and solid
lines obtained from the parametrization given in Eq. (16). Also
shown are the HRG estimates at low temperatures and the ideal
gas limit at high temperatures.

3In the case of QCD the specific heat and therefore also the
speed of sound stays finite even at a second-order phase transition
in the chiral limit.

EQUATION OF STATE IN (2þ 1)-FLAVOR QCD PHYSICAL REVIEW D 90, 094503 (2014)

094503-11



transition [5] and exhibit an almost universal, pseudocrit-
ical behavior controlled by it. The peak observed in the
chiral susceptibility is dominated by the second derivative
of the singular part of the free energy with respect to the
quark mass [5]. Extending that generic scaling analysis,
one may have expected that, for physical quark masses, the
pseudocritical behavior would also lead to large fluctua-
tions in the energy density and that the specific heat would
exhibit a peak in the crossover region controlled by the
second derivative with respect to temperature of the same
singular part of the free energy.
There may be at least two reasons for the difference in

behavior between the chiral susceptibility and the specific
heat, which are second derivatives of the partition function
with respect to the quark mass and the temperature,
respectively. First, thermal fluctuations are controlled by
the thermal critical exponent α, i.e., CV=T3 ∼ jT − Tcj−α.
In the three-dimensional Oð4Þ universality class, which is
relevant for the chiral phase transition, the exponent α≃
−0.21 is negative [52]. Consequently, unlike the chiral
susceptibility, the specific heat stays finite at Tc even in the
chiral limit. The singular part of the free energy [52], which
gives the leading temperature dependence in the vicinity of
Tc, contributes only a cusp in CV . This can be seen by
examining the energy density near Tc,

ϵ

T4
¼ e0 þ e1

�
T − Tc

Tc

�
þOðjT − Tcj1−αÞ; ð20Þ

where the dominant contribution, e0, comes from the
regular part and the singular contributions, ∼jT − Tcj1−α,
are subdominant. From Eq. (17), we get

CV

T3
¼ c0 þ

A�

α

����T − Tc

Tc

����
−α

þOðT − TcÞ; ð21Þ

with c0 ¼ 4e0 þ e1 and Aþ (A−) are the amplitudes above
(below) Tc. The ratio of these amplitudes is universal and
positive; Aþ=A− ¼ 1.842ð43Þ in the three-dimensional O
(4) universality class [52]. Since α is negative, the singular
part gives only a cusp, which should persist in the chiral
limit but may not be easy to detect if the regular con-
tributions are large.
The second reason for the lack of a peak in CV=T3 is that

the contributions from the regular part of the free energy are
large in the high temperature phase [52] and are Oðg0Þ at
infinite temperature. Furthermore, as discussed above, the
regular terms dominate even in the crossover region. To
make this observation more explicit, we note from Eq. (17)
that CV=T3 can be written in terms of the energy density,
ϵ=T4, and its derivative,

T
dϵ=T4

dT
≡ C̄V

T3
: ð22Þ

The dominant singular terms are contained in the second
term (C̄V=T3) or, more specifically, in the temperature
derivative of the trace anomaly, i.e., the second term in
Eq. (19). The contribution of the regular terms to C̄V=T3 is
strongly suppressed at high temperatures; it is zero in the
infinite temperature ideal gas limit and receives contri-
butions starting at Oðg4Þ in perturbation theory. Thus,
while CV and C̄V have identical leading contributions
from the singular part near Tc, the contribution from the
regular part is much smaller in C̄V . Consequently, the
singular behavior is not masked and C̄V has a pronounced
peak close to the chiral crossover region as shown in
Fig. 9. To summarize, the location of the peak in the
temperature derivative of ϵ=T4 is a good indicator of
deconfinement, i.e., the liberation of quark-gluon degrees
of freedom, and occurs close to the chiral transition in
QCD as shown in Fig. 9.

C. Approach to the Perturbative Limit

In this subsection, we discuss how our results for the
(2þ 1)-flavor EoS connect to analytic calculations at high
temperatures.
At sufficiently high temperatures, thermodynamics

should be describable in terms of a weakly interacting
quark-gluon gas, and at infinite temperature all thermody-
namic quantities will converge to the ideal gas limit. Plots
in Fig. 5 show that at our highest temperature value,
T ¼ 400 MeV, the entropy and energy density and pres-
sure are still 13%, 18% and 27%, respectively, below the
ideal gas limit. In contrast to other quantities, e.g.,
susceptibilities of conserved charge fluctuations, these
deviations from the ideal gas limit are still quite large.
This is probably due to large nonperturbative contribu-
tions in the gluonic sector of QCD which are present in
bulk thermodynamic observables but are suppressed in

FIG. 9 (color online). Derivative of ϵ=T4 with respect to
temperature. The vertical band gives the chiral crossover temper-
ature determined from the location of the peak in the discon-
nected chiral susceptibility.
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observables that, at tree level, only depend on the quark
sector of QCD.
Although, for some observables, resummation [53] or

dimensional reduction [54] based perturbative calculations
show good agreement with lattice QCD calculations
already at temperatures T ∼ 400 MeV, for others this is
not the case. In particular, their functional dependence on
temperature is still significantly different in this temper-
ature range, which can lead to larger differences in higher
order derivatives between perturbative and lattice QCD
calculations. As our current continuum-extrapolated EoS is
limited to T < 400 MeV, we cannot perform a detailed
comparison with perturbation theory but point out a few
qualitative features.
We have shown in Fig. 6 that continuum-extrapolated

results for the trace anomaly obtained with the stout and the
HISQ discretization schemes agree within errors. At high
temperatures, however, the HISQ results are systematically
above the stout results. This propagates into other thermo-
dynamic observables, e.g., the pressure. The systematic
differences, however, cancel to a large extent in ratios. For
example, the ratio of the trace anomaly and the pressure,

Θμμ

p
¼ ϵ

p
− 3; ð23Þ

are in excellent agreement between the two calculations
and thus provide a good starting point for a comparison
with high-temperature perturbative calculations. In Fig. 10,
we show results for the ratio Θμμ=p and compare with
perturbative calculations performed in the Hard Thermal
Loop (HTL) [53] and Electrostatic QCD (EQCD) [54]
schemes. The broad band for the three-loop HTL calcu-
lation corresponds to varying the renormalization scale in

the interval μ ¼ ð1–4ÞπT and the black line in this band
corresponds to μ ¼ 2πT. The EQCD and HTL results for
μ ¼ 2πT are in good agreement, and the lattice QCD results
approach these estimates for T ≳ 500 MeV.
In Fig. 11, we compare the three-loop HTL estimates

with lattice QCD calculations of the trace anomaly (top)
and the pressure (bottom). Also shown, with a dashed line
in Figs. 10 and 11, is the result of an Oðg6Þ calculation
performed in the dimensional reduction scheme (EQCD).
The lattice QCD results are in qualitative agreement with
these perturbative calculations, with the Oðg6Þ EQCD
estimate lying below the lattice QCD results for the trace
anomaly and above for the pressure at T ¼ 400 MeV.
One could try fixing the scale uncertainty in the HTL

calculation by matching one of the observables to the lattice
QCD result, e.g., the pressure. Results for other observ-
ables, e.g., the trace anomaly would then be parameter
free predictions. It is clear from Fig. 11 that such a

FIG. 10 (color online). The ratio of the trace anomaly and the
pressure from (2þ 1)-flavor QCD calculations with the HISQ
and stout actions, respectively. These results are compared to
HTL and EQCD (dashed line) calculations. The black line
corresponds to the HTL calculation with renormalization
scale μ ¼ 2πT.

FIG. 11 (color online). Comparison of the (2þ 1)-flavor
calculation of the trace anomaly (top) and pressure (bottom)
with HTL and EQCD (dashed line) calculations. The black line
corresponds to the HTL calculation with renormalization scale
μ ¼ 2πT. Note that this solid line would move up for the trace
anomaly and move down for the pressure if the scale μ in HTL is
reduced.
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simultaneously agreement between HTL and lattice QCD
calculations of p=T4 and ðϵ − 3pÞ=T4 is not forthcoming.
Making the HTL and the lattice QCD estimates agree for
the trace anomaly by reducing the value for the renorm-
alization scale μ would decrease the HTL results for p=T4

even further and thereby increase the deviation from the
lattice QCD results.
Finally, the EQCD result for the pressure in the temper-

ature range (400–1,000) MeV is about 10% larger than the
HTL result with μ ¼ 2πT. To resolve the open question
whether at these high temperatures the pressure obtained
from lattice QCD calculations is better described by the
HTL or the EQCD calculations requires lattice simulations
at higher temperatures.

VI. CONCLUSIONS

We have calculated the trace anomaly and the EoS in
(2þ 1)-flavor QCD with almost physical quark masses
using the HISQ/tree action on lattices with temporal extent
Nτ ¼ 6, 8, 10, and 12. We find that the lattice discretization
errors in the HISQ/tree action are small, and we obtain
reliable continuum extrapolated results for a number of
thermodynamic quantities for 130 MeV < T < 400 MeV.
In fact, the trace anomaly calculated on theNτ ¼ 12 lattices
agrees with the continuum-extrapolated results within
errors. Our main results are summarized in Figs. 1, 5,
and 6. Based on these results, we propose in Eq. (16) an
analytical parameterization of the pressure for use in
phenomenological studies that matches the HRG estimates
below T ¼ 130 MeV and the lattice data between 130 and
400 MeV.
We have compared our new results obtained using

the HISQ/tree action with our previous calculations per-
formed using the asqtad and the p4 actions [23], and with
the recent continuum extrapolated stout results [26]. For
T < 300 MeV, the HISQ/tree results are very different
from the results obtained using the p4 and the asqtad
actions on Nτ ¼ 8 lattices, i.e., without an extrapolation to
the continuum limit. At higher temperatures, the results
show reasonable agreement as expected since all three
actions have small lattice artifacts.
Results for our continuum extrapolated trace anomaly

presented in Sec. IV agree well with those from the stout
action [26]. The discrepancy between the HotQCD results
and the stout results discussed in [23,26] was due to the
large cutoff effects in the previous estimates with the p4 and
the asqtad actions and because our earlier results had not
been extrapolated to the continuum limit.
We find reasonably good agreement for the pressure

obtained using the stout and the HISQ/tree actions for T <
300 MeV as shown in Fig. 6. At higher temperatures, there
is some tension between the two estimates because the
results for the trace anomaly, ΘμμðTÞ=T4, obtained with
the HISQ/tree action lie systematically above those from
the stout action. Consequently, the pressure, which is the

integral of ΘμμðTÞ=T5, will start to differ significantly at
high temperatures if the observed trends persist. In this
paper, we focused on the temperature region 130 MeV <
T < 400 MeV, which is the most relevant for phenomeno-
logical applications. Over this temperature range, the differ-
ence is unlikely to have a significant effect on the modeling
of the hydrodynamic evolution of the system produced in
heavy ion collisions (see the discussion in Ref. [45]). It is
important to check, however, if this tension persists at higher
temperatures, especially if one wants to determine to what
extent the quark-gluon plasma is strongly or weakly coupled
by comparing lattice and resummed perturbation theory
results for the pressure or for the entropy density. Such
calculations are left for future studies.
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APPENDIX A: HISQ ENSEMBLES AND
TOPOLOGICAL CHARGE HISTORY

1. HISQ Ensembles

To simulate the HISQ/tree action, we use the same
Rational Hybrid Monte Carlo algorithm [55] with mass
preconditioning [56] as in the previous study Ref. [5].
Details of these simulations are given in Ref. [57] and in
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Table III we present the key lattice parameters of our
simulation, namely the gauge coupling β ¼ 10=g2, the
quark masses, the lattice dimensions, the accumulated
statistics in terms of molecular dynamics time units
(TU), and the length of the trajectories. The zero temper-
ature lattices were saved every five TUs (or six TUs for the
fine lattices), and the finite temperature lattices were saved
every 10 TUs.

2. Topological Charge History

The topological charge history gives an indication of the
ergodicity of the molecular dynamics evolution. Ideally, we

want a reasonably good coverage of the most probable
topological charge sectors. This occurs when tunneling
between the topological charge sectors is reasonably
frequent. It is expected that the tunneling rate decreases
as the lattice spacing is decreased. Therefore, to test
ergodicity in our molecular dynamics evolution, we look
at the least favorable case, namely our finest lattices.
In our previous study we checked the evolution of the

topological charge in our simulations down to lattice
spacings a ¼ 0.066 fm, and found that it fluctuated quite
rapidly [5]. In the present study the lattice spacing for
our two finest lattices corresponding to β ¼ 7.596 and

TABLE III. Parameters used in simulations with the HISQ/tree action on Nτ ¼ 6, 8 10, and 12 lattices and the LCP defined by
ml=ms ¼ 0.05. The quark masses are given in units of the lattice spacing a. The statistics in molecular dynamics time units TUs are
given for both the zero and finite temperature runs. The column “length” lists the length of the trajectory in TUs before the Metropolis
accept-reject step for zero-temperature runs. All the finite temperature lattices have trajectories of unit length except for β ¼ 5.90 and
5.95, where it was 0.5 TU. The lattice sizes used for the finite temperature simulations were 243 × 6, 323 × 8, 403 × 10, and 483 × 12.
Measurements were performed after one TU on all ensembles, except for the large zero-temperature lattices with length ¼ two TUs,
where they were performed every 2 TUs.

T ¼ 0 Nτ ¼ 6 Nτ ¼ 8 Nτ ¼ 10 Nτ ¼ 12

β ml ms N3
s × Nτ TU Length TU TU TU TU

5.900 0.00660 0.1320 243 × 32 3700 1=4 30290 � � � � � � � � �
5.950 0.00615 0.1230 243 × 32 4715 1=4 30990 � � � � � � � � �
6.000 0.00569 0.1138 243 × 32 4890 1=3 31730 � � � � � � � � �
6.025 0.00550 0.1100 243 × 32 5250 1=3 33990 � � � � � � � � �
6.050 0.00532 0.1064 243 × 32 4655 1=3 32100 74210 � � � � � �
6.075 0.00518 0.1036 243 × 32 4085 1=3 32990 � � � � � � � � �
6.100 0.00499 0.0998 283 × 32 4190 1=3 39900 � � � � � � � � �
6.125 0.00483 0.0966 324 8645 1=3 32990 67720 � � � � � �
6.150 0.00468 0.0936 243 × 32 7795 1=3 31130 � � � � � � � � �
6.175 0.00453 0.0906 324 9080 1=3 30990 60480 � � � � � �
6.195 0.00440 0.0880 324 8445 1=2 33150 25790 � � � � � �
6.245 0.00415 0.0830 324 8505 1=2 30990 28070 � � � � � �
6.285 0.00395 0.0790 324 7350 1=2 30990 40250 � � � � � �
6.341 0.00370 0.0740 324 6705 1 30990 33310 � � � � � �
6.354 0.00364 0.0728 324 8000 1 30990 220312 � � � � � �
6.390 0.00347 0.0694 324 4602 1 � � � 269636 � � � � � �
6.423 0.00335 0.0670 324 7970 1 30990 113315 � � � � � �
6.460 0.00320 0.0640 323 × 64 2900 1 � � � 84841 � � � � � �
6.488 0.00310 0.0620 324 19465 1 30990 65281 103060 � � �
6.515 0.00302 0.0604 324 17385 1 30990 140212 108530 � � �
6.550 0.00291 0.0582 324 8805 1 30990 136781 � � � � � �
6.575 0.00282 0.0564 324 21455 1 30990 144241 106750 � � �
6.608 0.00271 0.0542 324 21195 1 30990 171977 113920 � � �
6.664 0.00257 0.0514 324 21200 1 30990 94440 175500 � � �
6.740 0.00238 0.0476 484 8005 1 � � � 88520 217740 48230
6.800 0.00224 0.0448 324 39077 1 30990 110200 299550 57136
6.880 0.00206 0.0412 484 8095 1 � � � 110020 360690 65678
6.950 0.00193 0.0386 324 39670 1 30990 117780 318700 76080
7.030 0.00178 0.0356 484 16390 1 � � � 96991 152330 97801
7.150 0.00160 0.0320 483 × 64 8094 2 29620 96342 163900 106150
7.280 0.00142 0.0284 483 × 64 7956 2 37340 103748 118460 110330
7.373 0.00125 0.0250 483 × 64 9246 2 20780 116390 108100 164450
7.596 0.00101 0.0202 644 9514 2 36650 120000 113510 171020
7.825 0.00082 0.0164 644 9536 2 44390 119200 116070 105970
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β ¼ 7.825 is smaller still; namely, a ¼ 0.049 fm and
0.041 fm, respectively. In Fig. 12 we show the evolution
of the topological charge for those two ensembles. The
figures show a slower tunneling rate than in our previous
study, but we still see a reasonable coverage of the
topological charge sectors.

APPENDIX B: LATTICE SCALE

To translate lattice observables to physical dimension-
full quantities, we need to measure the lattice spacing.
We consider three methods for determining the scale: the
static quark potential parameters r1 or r0, the gradient flow
parameter w0 [41], and the kaon decay constant fK . Our
preferred method uses the static quark potential. The other
methods are used as a cross-check. We discuss here the
former three ways to set the scale and defer the discussion
of fK to Appendix C.

1. Static Quark Potential

The static quark potential is used indirectly to set the
scale. In brief, a standard radius r0 [38] or r1 [39] is
calculated from the measured heavy quark potential using
Eqs. (1) and (2). On any ensemble, the standard radii are
first determined in lattice units: r0=a and r1=a. The values
of r0 and r1 in the continuum limit are known in physical
units from other lattice studies based on, for example, the
experimental value of fπ . From them and r0=a one can
infer the value of a.
The static potential for the HISQ/tree action has been

studied in Ref. [5] for a large range of gauge couplings β.
We extended these studies in the following ways. We
improved significantly the statistical accuracy of the
calculation of the static potential at the highest beta values
considered in Ref. [5], namely for β ¼ 6.88, 6.95, 7.03,
7.15 and 7.28. To them we added calculations of the
potential at β ¼ 6.740, 7.373, 7.596, and 7.825. As in our
previous study, we used Coulomb gauge fixing and

calculated the potential from the correlation of two
Wilson lines of length τ at distance R. The potential is
then obtained from the logarithm of the ratio of two such
correlators at neighboring τ values. We fit this ratio to a
constant plus a term that decays exponentially in Euclidean
time τ in the interval ½τmin∶τmax�. We also studied the
variation of the potential due to different choices
½τmin∶τmax� to estimate possible systematic errors. To be
specific, we used finally [2:4], [3:7], [4:9], [3:9], [4:9],
[4:10], [4:10], [5:8], and [6:11] for β ¼ 6.740, 6.88, 6.95,
7.03, 7.15, 7.28, 7.373, 7.596, and 7.825, respectively.
The scales r0=a or r1=a are then determined by

separately fitting the resulting potential to a Coulomb-
plus-linear-plus-constant form in the r intervals around the
values of r1 and r0, respectively. We vary the fit intervals,
and the variations in the extracted values of r1=a and r0=a
are used as estimates of systematic errors. In most cases, the
systematic errors are larger than the statistical ones. The
statistical and systematic errors are added in quadrature to
estimate the total error for r0 and r1. The values r0=a, r1=a
and their ratios r0=r1 determined in this study as well as
from Ref. [5] are given in Table IV. As in our previous
study, the ratio r0=r1 appears to be independent of β (lattice
spacing) within the estimated errors [5]. Accordingly, as
before, we fit the values of r0=r1 given in Table IV to a
constant for β ≥ 6.423 and obtain

ðr0=r1Þcont ¼ 1.5092� 0.0039; χ2=dof ¼ 0.22:

ðB1Þ

This value agrees well with our previous estimate r0=r1 ¼
1.508ð5Þ [5]. We also fit the ratio r0=r1 using only the data
for β ≥ 6.664 and β ≥ 6.608, obtaining r0=r1 ¼
1.5083ð44Þ and r0=r1 ¼ 1.5075ð43Þ with similar χ2=dof.
These values agree well with the one given in Eq. (B1).
Therefore we use Eq. (B1) as our final estimate for r0=r1.
To determine the lattice spacing as function of β, we fit

a=r1 to the Allton-type ansatz [58],
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FIG. 12 (color online). The evolution of topological charge in Monte Carlo time for β ¼ 7.596 (left) and β ¼ 7.825 (right). The top
and bottom panels correspond to two different streams for hybrid Monte Carlo evolution.
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a
r1

¼ c0fðβÞ þ c2ð10=βÞf3ðβÞ
1þ d2ð10=βÞf2ðβÞ

; ðB2Þ

fðβÞ ¼
�
10b0
β

�
−b1=ð2b20Þ

expð−β=ð20b0ÞÞ: ðB3Þ

Here b0 and b1 are the well-known coefficients of the two-
loop beta function, which for the three-flavor case are
b0 ¼ 9=ð16π2Þ, b1 ¼ 1=ð4π4Þ. At small β, the parameter r1
is small in lattice units. Therefore, to avoid possibly large
discretization effects, for β < 6.423, where r0=a is more
reliably determined, we use r1=a ¼ r0=a=ðr0=r1Þcont with
ðr0=r1Þcont from Eq. (B1) (see discussions in Ref. [5]). The
fit gives χ2=dof ¼ 0.25 and

c0 ¼ 43.1� 0.3; ðB4Þ

c2 ¼ 343236� 41191; ðB5Þ

d2 ¼ 5514� 755: ðB6Þ

The errors on the above fit parameters have also been
estimated using the bootstrap method which gives very
similar results. The differences between the above para-
metrization of r1=a and the previous one from Ref. [5] are
less than 0.2% for β < 6.8. For larger beta values the
differences are larger but do not exceed 1.3%. To convert all

quantities to physical units, as in Ref. [5], we use the value
r1 ¼ 0.3106 fm from [40].
To test the uncertainty in the scale parametrization, we

also fit the data for a=r1 to the asymptotic form fðβÞ times
a smoothing spline. The smoothing spline is determined by
minimizing the χ2 plus the integral of the square of the
second derivative of the fit function in the considered
interval times a real parameter sm. We chose the largest
possible value of the smoothing parameter sm ¼ 0.7 that
still gives an acceptable χ2=dof ¼ 1.13. To estimate the
uncertainties of the spline, we performed a bootstrap
analysis. In Fig. 13, we show the r1 scale as a function
of β, normalized by the asymptotic two-loop beta function
fðβÞ. The errors are bootstrap errors. The Allton-type fit
and the smoothing spline fits give very similar results as
well as uncertainties.
To calculate the EoS, we also need the nonperturbative

beta function

Rβ ¼ −a
dβ
da

¼ r1
a

�
dðr1=aÞ

dβ

�
−1
: ðB7Þ

Figure 13 shows Rβ obtained from both the Allton-type and
smoothing-spline fits, together with bootstrap errors. The

TABLE IV. Values of r1 and r0 in lattice units for different β.

β r0=a r1=a r0=r1

5.900 1.909(11) 1.230(133) 1.552(168)
6.000 2.094(21) 1.386(80) 1.511(89)
6.050 2.194(22) 1.440(31) 1.524(36)
6.100 2.289(21) 1.522(30) 1.504(33)
6.195 2.531(24) 1.670(30) 1.516(31)
6.285 2.750(30) 1.822(30) 1.509(30)
6.341 2.939(11) 1.935(30) 1.519(24)
6.354 2.986(41) 1.959(30) 1.524(31)
6.423 3.189(22) 2.096(21) 1.522(18)
6.460 3.282(32) 2.165(20) 1.516(20)
6.488 3.395(31) 2.235(21) 1.519(20)
6.550 3.585(14) 2.369(21) 1.513(15)
6.608 3.774(20) 2.518(21) 1.499(15)
6.664 3.994(14) 2.644(23) 1.511(14)
6.740 4.293(32) 2.856(11) 1.503(13)
6.800 4.541(30) 3.025(22) 1.501(15)
6.880 4.959(28) 3.265(23) 1.519(14)
6.950 5.249(20) 3.485(22) 1.506(11)
7.030 5.691(32) 3.763(13) 1.512(10)
7.150 6.299(59) 4.212(42) 1.495(20)
7.280 7.140(53) 4.720(33) 1.513(15)
7.373 7.801(79) 5.172(34) 1.508(18)
7.596 9.443(237) 6.336(56) 1.490(40)
7.825 11.51(378) 7.690(58) 1.497(50)
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FIG. 13 (color online). The scale a=r1 normalized by the
asymptotic two-loop beta function (top) and the nonperturbative
beta function, Rβ (bottom), as a function of β, which has been
derived from this using Eq. (B7); the fit and the spline
interpolations are also shown.
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fit and the splines agree within the errors. The largest error
in Rβ is about 3%. At sufficiently large β, i.e., close to
the continuum limit, Rβ is expected to be given by its
asymptotic two-loop form

R2-loop
β ¼ 20b0 þ 200b1=β: ðB8Þ

The asymptotic limit is approached from below [22], as
with the p4 action. However, for the HISQ action, we see
that the deviations are at most 20% over the range
considered, compared with a factor of two deviation in
the case of the p4 action [22]. In our calculations of the
EoS we use Rβ obtained from the fit with the Allton-type
ansatz.
Finally, we compare the potential calculated at different

β. To do so, we normalize it with an additive constant. We
do this by requiring that the potential Vðr1Þ ¼ 0.2060=r1.
This normalization condition is equivalent to the one used
in Ref. [5]. Here we choose r1 because it has smaller errors
on fine lattices. The normalized potential in units of r1 is
plotted in Fig. 14 against the tree-level improvement
radius r → rI, where rI is the improved distance defined
from the free lattice gluon propagator [5]. Down to
distances r ¼ 0.2r1 or r ¼ 0.062 fm, we find no signifi-
cant dependence on the lattice spacing within the esti-
mated errors.
To cross-check our determination of the lattice spacing,

we also calculated the scale w0, defined from the gradient
flow [41]. Our results for the w0 scale are shown in Fig. 15
in units of r1. As above, for β < 6.423 the value of r1 was
estimated as r0=ðr0=r1Þcont. As one can see from the figure,
this ratio appears to scale as a2 for ða=r1Þ2 < 0.4, i.e., for
β ≥ 6.195. We perform a continuum extrapolation of the
ratio w0=r1 using a simple form ðw0=r1Þcont þ hwða=r1Þ2.
In the continuum limit, we obtain ðw0=r1Þcont ¼
0.5619ð21Þ or w0 ¼ 0.1749ð14Þ fm. This value agrees with
the value quoted in Ref. [41], w0 ¼ 0.1755ð18Þð4Þ fm,
within the estimated errors. Our value of w0 is higher

than the preliminary value reported by MILC w0 ¼
0.1711ð2Þð8Þð2Þð3Þ fm for 2þ 1þ 1 flavor QCD [59].
For the slope parameter we get hw ¼ −0.1076ð149Þ with
χ2=dof ¼ 0.38. If we use the w0 scale instead of the r1
scale, the temperature values for Nτ ¼ 8 lattices for T <
150 MeV would be lower by 6%, and for Nτ ¼ 10 and 12
calculations the differences in the temperature scale would
be only 4% or less.

APPENDIX C: HADRIONIC OBSERVABLES

1. LCP

It is standard practice to present results for thermody-
namic quantities as a function of temperature at fixed,
renormalized quark masses. We start by setting a constant
value of the strange quark mass ms, preferably, its physical
value, and then set the mass of the light quarks to ms=20.
We determine the strange quark mass by requiring that the
mass of the unmixed pseudoscalar ss̄ meson, ηss̄ is equal to
a prescribed value expressed in units of r1. We aim at the
value suggested by leading-order chiral perturbation theory,
where the mass of ηss̄ meson in terms of the kaon and pion
masses is Mηss̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

K −m2
π

p
¼ 686 MeV. In practice,

this requires some tuning and, as discussed later, it
turns out that our LCP is best described by the value
Mηss̄ ¼ 695 MeV. Setting the LCP in this way requires a
combination of determining the lattice spacing in physical
units (see Appendix B) and the hadron spectrum at zero
temperature, including, at least, the mass of the ηss̄, a
calculation with costs that mount as the lattice spacing
decreases. Thus, some retuning is usually needed to correct
for an imprecise determination.
For the present study, we extend the LCP of our previous

work [5] to weaker coupling in order to cover the range
needed for Nτ ¼ 12. In our previous work, the hadron
spectrum was measured along the LCP up to β ¼ 6.8. The
masses of the pseudoscalar mesons were also measured at
β ¼ 7.28 with the relatively low statistics of about 1,400
equilibrated time units. Here, we added or extended nine
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FIG. 14 (color online). The static potential versus distance in
units of r1 for different β. Here we use the improved estimator rI
to define the distance r.
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T ¼ 0 ensembles with 6.8 < β ≤ 7.825 as described in
Appendix B. On the extended ensembles, in addition to
measuring thermodynamic quantities needed for the zero-
temperature subtraction, we measured the masses and
decay constants of the pseudoscalar mesons and the masses
of the vector mesons. These quantities allow us to quantify
the lattice artifacts due to taste breaking and can be used as
an alternative means to set the lattice spacing, thus
providing additional validation of our calculations.
The masses of the three pseudoscalar mesons are given in

lattice units in Table V. The mass of the ηss̄ normalized by

the value Mηss̄ ¼ 695 MeV used to define the LCP is
plotted in Fig. 16 as a function of β. As one can see, the
central values are systematically above the nominal value
of 685.8 MeV quoted in Ref. [60]. The average value from
ensembles with β < 7.03 is about 695 MeV. Therefore, we
define our LCP using this value. That is, we choose a
strange quark mass that gives Mηss̄ ¼ 695 MeV. The
resulting strange quark mass is then about 2.6% larger
than its physical value. For β ≤ 7.03we find thatMηss̄ (and,
in turn, the strange quark mass) along the LCP agrees with
the physical values within ð1–2Þσ. For the finest ensembles,

TABLE V. The pseudoscalar meson masses for the HISQ/tree
action along the ml ¼ 0.05ms LCP.

β aMπ aMK aMηss̄

5.900 0.20162(09) 0.63407(17) 0.86972(11)
6.000 0.18381(37) 0.57532(51) 0.79046(27)
6.195 0.15143(14) 0.47596(16) 0.65506(11)
6.285 0.13823(50) 0.43501(47) 0.59951(28)
6.354 0.12923(15) 0.40628(20) 0.55982(17)
6.423 0.12022(12) 0.37829(19) 0.52161(17)
6.460 0.11528(21) 0.36272(34) 0.50137(32)
6.488 0.11245(15) 0.35313(27) 0.48716(17)
6.515 0.10975(12) 0.34453(29) 0.47516(29)
6.550 0.10629(16) 0.33322(38) 0.45989(24)
6.575 0.10469(68) 0.32521(55) 0.44869(50)
6.608 0.10001(17) 0.31333(28) 0.43286(29)
6.664 0.09572(18) 0.29837(37) 0.41178(32)
6.740 0.087991(64) 0.27735(12) 0.38342(10)
6.800 0.0849(18) 0.26387(99) 0.36257(68)
6.880 0.07714(16) 0.24314(16) 0.33630(11)
7.030 0.06744(15) 0.21202(19) 0.29381(20)
7.150 0.06126(18) 0.19231(20) 0.26631(16)
7.280 0.05516(17) 0.17209(19) 0.23824(18)
7.373 0.04990(22) 0.15530(16) 0.21531(12)
7.596 0.04106(44) 0.12896(30) 0.17810(12)
7.825 0.03425(23) 0.10695(46) 0.14731(15)
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FIG. 16 (color online). The calculated masses of the ηss̄ meson
normalized by the chosen LCP value Mηss̄ ¼ 695 MeV as a
function of β.
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TABLE VI. Results for decay constants of the pseudoscalar
mesons in lattice units for the HISQ/tree action along the ml ¼
0.05ms LCP.We use the normalization in which fπ ∼ 90 MeV. In
the last column, we list the number of source points used on each
configuration to increase the statistics.

β afπ afK afη
Number

of Sources

6.000 0.11243(21) 0.13224(31) 0.15290(22) 1
6.195 0.09179(21) 0.10835(13) 0.12525(13) 1
6.285 0.08366(22) 0.09826(13) 0.11390(13) 1
6.354 0.07825(40) 0.09146(19) 0.10598(11) 1
6.423 0.07241(18) 0.08515(11) 0.09854(07) 2
6.460 0.06885(11) 0.08185(09) 0.09454(08) 4
6.515 0.06534(18) 0.07707(15) 0.08946(09) 4
6.575 0.06104(49) 0.07265(19) 0.08405(14) 2
6.740 0.052190(50) 0.061731(41) 0.071354(27) 2
6.800 0.04883(83) 0.05774(18) 0.06717(14) 1
6.880 0.045544(67) 0.053749(42) 0.062236(28) 2
7.030 0.03951(12) 0.046566(68) 0.054148(43) 2
7.150 0.03486(10) 0.041636(68) 0.048654(42) 2
7.280 0.03067(13) 0.036894(64) 0.043237(38) 2
7.373 0.02787(20) 0.033825(82) 0.039609(43) 2
7.596 0.02224(20) 0.02741(21) 0.032344(59) 2
7.825 0.01756(32) 0.022526(85) 0.026808(51) 2
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β > 7.03, we see a systematic deviation of Mηss̄ toward
higher values—by as much as about 3.5%.
For the calculation of the trace anomaly, we need the

strange quark mass ms and its derivative as a function of β
along the LCP. As we have seen, the strange-quark mass
input into the simulation drifts slightly above the LCP.
We correct for this drift using lowest order chiral pertur-
bation theory; i.e., we assume that M2

ηss̄ is proportional to
ms and calculate the strange quark mass that gives
Mηss̄ ¼ 695 MeV. This corrected value is compared with
the value used in the simulations in Fig. 17. For the worst
case, β ¼ 7.825, this amounts to lowering ms used by
about 7% from the simulated value. The pion and kaon
masses follow a pattern similar to that of the ηss̄ meson; i.e.,
they are roughly constant for β < 7.03 and increase for
larger beta values by approximately the same fractional
amount.

We then fit the product r1mLCP
s using a renormalization

group-inspired form

r1mLCP
s ≡ ~ms

¼ r1mRGI

�
20b0
β

�
4=9

×
1þm1

10
β f

2ðβÞ þm2ð10β Þ2f2ðβÞ þm3
10
β f

4ðβÞ
1þ dm1

10
β f

2ðβÞ ;

ðC1Þ

where fðβÞ is the two-loop beta function given by Eq. (B3).
For the fit parameters we get

mRGI ¼ 0.2609� 0.0030; ðC2Þ

m1 ¼ 35600� 6097; ðC3Þ

m2 ¼ −21760� 3202; ðC4Þ
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FIG. 18 (color online). The decay constants of ηss̄ meson (left) and kaon (right) together with the continuum extrapolations. The data
are corrected for deviations from the LCP as described in the text. The bands show the value of these decay constants from Ref. [60] and
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TABLE VII. Masses of the vector mesons in lattice units.

β aMρ aMK� aMϕ

6.195 0.7562(36) 0.8842(18) 1.0050(93)
6.354 0.6375(35) 0.7499(26) 0.8523(08)
6.423 0.6047(43) 0.6950(22) 0.7925(08)
6.460 0.5784251) 0.6709(43) 0.7644(22)
6.488 0.5647(24) 0.6478(22) 0.7363(07)
6.550 0.5324(24) 0.6118(20) 0.6929(14)
6.608 0.5072(39) 0.5757(08) 0.6523(10)
6.664 0.4732(43) 0.5501(26) 0.6180(10)
6.740 0.4286(31) 0.4996(22) 0.5732(05)
6.880 0.2828(489) 0.4359(17) 0.5000(04)
7.030 0.2937(326) 0.3750(126) 0.4333(09)
7.150 0.2866(108) 0.3387(107) 0.3901(15)
7.280 0.2535(96) 0.3026(20) 0.3467(25)
7.373 0.2363(119) 0.2774(33) 0.3165(06)
7.596 0.1923(61) 0.2272(25) 0.2593(15)
7.825 0.1543(120) 0.1884(57) 0.2140(19)
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FIG. 19 (color online). The ϕ meson mass as function of
the lattice spacing together with the continuum extrapolation. The
data are corrected for deviations from the LCP as described in the
text. The band shows the experimental value.
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m3 ¼ ð2.67� 0.50Þ × 107; ðC5Þ

dm1 ¼ 2420� 1346 ðC6Þ

χ2=dof ¼ 0.51: ðC7Þ

The resulting fit is shown in Fig. 17 together with a
smoothing spline fit to the input strange-quark masses.

2. Pseudoscalar Decay Constants

The decay constants of pseudoscalar mesons can be used
to check the lattice scale and to estimate the cutoff effects in
the T ¼ 0 calculations. Results for the decay constants are
shown in Table VI.
Since they are quite sensitive to the values of the quark

masses, we need to take into account the deviations from the
LCP, as well as the fact that even on the LCP our quark

masses are slightly heavier than the physical ones. Thus, we
need to interpolate/extrapolate in the quark masses. To do
this, we assume that the pseudoscalar decay constants
depend linearly on the sum of the quark masses and use
the numerical results given in Table VI to determine the
slope for each value of β. The values of the ηss̄ meson decay
constant fη and the kaon decay constant fK have been
interpolated to the physical quark masses using this slope.
The results are shown in Fig. 18 in units of r1. The kaon
decay constant has large finite size errors at the two smallest
lattices spacings. Therefore, we do not include the corre-
sponding data in the fit. We extrapolate the values of r1fη
and r1fK to zero lattice spacing assuming a simple form

fir1 ¼ ðfir1Þcont þ eiða=r1Þ2; i ¼ K; η: ðC8Þ

For the kaon decay constant we get ðr1fKÞcont ¼
0.17186ð24Þ and eK ¼ 0.0230ð11Þ with χ2=dof ¼ 1.20.

TABLE VIII. The gauge action density, light and strange quark condensates at zero temperatures. Also shown are the values of r1=a,
~ms, Rβ and RβRm used in the calculation of the trace anomaly along the LCP.

β hsGi hψ̄ψil hψ̄ψis r1=a Rβ ~ms RβRm

5.900 2.632783(101) 0.049104(40) 0.105812(26) 1.264(5) 1.048(17) 0.16563(166) −1.6999ð114Þ
5.950 2.597143(81) 0.043881(54) 0.098036(32) 1.325(5) 1.043(17) 0.16060(161) −1.5925ð97Þ
6.000 2.561602(72) 0.038908(37) 0.090108(26) 1.390(4) 1.038(16) 0.15646(156) −1.4972ð77Þ
6.025 2.544156(82) 0.036579(45) 0.086515(29) 1.424(4) 1.036(15) 0.15468(155) −1.4545ð66Þ
6.050 2.526767(19) 0.034355(45) 0.083052(30) 1.459(4) 1.034(15) 0.15306(153) −1.4149ð60Þ
6.075 2.509536(128) 0.032248(36) 0.079962(31) 1.494(4) 1.032(14) 0.15160(152) −1.3783ð51Þ
6.100 2.492425(78) 0.030236(36) 0.076478(23) 1.531(4) 1.030(14) 0.15028(150) −1.3448ð47Þ
6.125 2.475464(21) 0.028340(18) 0.073315(10) 1.568(4) 1.028(13) 0.14908(149) −1.3141ð40Þ
6.150 2.458696(42) 0.026433(38) 0.070257(16) 1.607(4) 1.027(13) 0.14799(148) −1.2866ð36Þ
6.175 2.442094(39) 0.024793(20) 0.067305(13) 1.646(4) 1.025(12) 0.14701(147) −1.2614ð31Þ
6.195 2.429035(30) 0.023470(19) 0.064892(12) 1.679(4) 1.025(12) 0.14629(146) −1.2435ð29Þ
6.245 2.396804(11) 0.020449(14) 0.059664(10) 1.762(4) 1.023(10) 0.14470(145) −1.2049ð20Þ
6.285 2.3716826(153) 0.0183176(150) 0.0557043(69) 1.833(4) 1.022(9) 0.14362(144) −1.1803ð16Þ
6.341 2.3374387(197) 0.0156426(187) 0.0506613(102) 1.936(4) 1.021(8) 0.14231(142) −1.1538ð12Þ
6.354 2.3297339(226) 0.0151142(157) 0.0495513(82) 1.961(4) 1.021(8) 0.14204(142) −1.1489ð12Þ
6.390 2.3084526(343) 0.0135987(151) 0.0464432(90) 2.031(4) 1.021(8) 0.14133(141) −1.1373ð11Þ
6.423 2.2894362(269) 0.0124345(110) 0.0440691(80) 2.098(5) 1.022(8) 0.14072(141) −1.1292ð10Þ
6.460 2.2685484(184) 0.0111926(157) 0.0413543(72) 2.175(5) 1.022(8) 0.14008(140) −1.1223ð10Þ
6.488 2.2530949(69) 0.0103368(80) 0.0395263(45) 2.235(5) 1.023(9) 0.13962(140) −1.1186ð10Þ
6.515 2.2384913(119) 0.0096409(162) 0.0379912(95) 2.295(5) 1.024(9) 0.13919(139) −1.1160ð10Þ
6.550 2.2198533(261) 0.0087186(96) 0.0359905(69) 2.375(5) 1.026(10) 0.13864(139) −1.1141ð11Þ
6.575 2.2068224(107) 0.0081675(80) 0.0345257(68) 2.434(5) 1.027(10) 0.13826(138) −1.1134ð11Þ
6.608 2.1899477(85) 0.0074639(60) 0.0327412(57) 2.513(5) 1.029(10) 0.13776(138) −1.1134ð11Þ
6.664 2.1620782(110) 0.0064352(101) 0.0302931(50) 2.654(5) 1.033(10) 0.13691(137) −1.1150ð11Þ
6.740 2.1257817(133) 0.0053945(96) 0.0272312(48) 2.856(5) 1.039(10) 0.13574(136) −1.1196ð12Þ
6.800 2.0982834(130) 0.0045273(53) 0.0250900(34) 3.026(6) 1.045(10) 0.13479(135) −1.1244ð12Þ
6.880 2.0630924(76) 0.0038178(57) 0.0224907(35) 3.266(7) 1.053(10) 0.13348(133) −1.1313ð12Þ
6.950 2.0336080(100) 0.0030671(68) 0.0206297(36) 3.491(7) 1.061(10) 0.13230(132) −1.1373ð13Þ
7.030 2.0012582(67) 0.0027057(50) 0.0186364(23) 3.764(8) 1.071(10) 0.13091(1309) −1.1435ð13Þ
7.150 1.9552310(112) 0.0021015(39) 0.0162827(22) 4.209(11) 1.085(11) 0.12878(1288) −1.1507ð15Þ
7.280 1.9083452(117) 0.0015991(68) 0.0140717(28) 4.743(13) 1.101(11) 0.12646(1265) −1.1552ð16Þ
7.373 1.8765238(46) 0.0012932(102) 0.0122227(24) 5.160(15) 1.112(12) 0.12481(1248) −1.1562ð17Þ
7.596 1.8053831(35) 0.0008701(71) 0.0095488(14) 6.297(24) 1.135(21) 0.12103(1210) −1.1524ð28Þ
7.825 1.7388070(42) 0.0005625(54) 0.0075428(23) 7.696(51) 1.154(27) 0.11751(1175) −1.1420ð33Þ
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For the ηss̄ decay constant we get ðr1fηÞcont ¼ 0.19930ð24Þ
and eη ¼ 0.024ð12Þ with χ2=dof ¼ 0.77. The continuum
extrapolation is also shown in Fig. 18, where we compare it
with the value of r1fη quoted in Ref. [60] and find
reasonable agreement. The “PDG” value plotted there is
based on the PDG value of fπ and the value of fK=fπ ¼
1.194ð5Þ from the recent FLAG review [61], which gives
fK ¼ 155.7ð9Þ= ffiffiffi

2
p

MeV. We find agreement within esti-
mated errors.

3. Vector Meson Masses

The masses of the three vector mesons ρ, K�, and ϕ are
listed in Table VII. All three masses are adjusted to the LCP
in a manner similar to the decay constants. For ρ and K� the
contribution of an excited state of the same parity is
significant in the available temporal range; however, fits
with an excited state typically yield low confidence levels.
Therefore, in reporting masses on our finest lattices we take,
as a systematic error, the difference in the fitted masses with
and without an excited state of the same parity. This error is
combined linearly with the statistical error in the table.
In Fig. 19, we show the ϕmeson massmϕ in r1 units as a

function of the lattice spacing together with the continuum

extrapolation. Again, we use the simple form ðr1mϕÞcont þ
gϕða=r1Þ2 to do the continuum extrapolations and get
ðr1mϕÞ ¼ 1.5961ð30Þ and gϕ ¼ 0.236ð18Þ with χ2=dof ¼
0.42. Our continuum extrapolation agrees with the exper-
imental result (shown as the band).
In summary, as one can see from Figs. 18 and 19, the

hadronic observables provide additional valuable cross-
checks for the determination of the lattice spacing. The
cutoff dependence of fK andmϕ is very similar to the cutoff
dependence of w0. Therefore, the change in the lattice
spacing and the temperature scale will be similar to the case
when w0 is used to set the lattice spacing.

APPENDIX D: OBSERVABLES FOR EOS

In this appendix, we summarize the quantities we used to
evaluate the trace anomaly. They include the expectation
values of local observables such as the gauge action density
sG and the light and strange quark condensates. At nonzero
temperature, we also report results for the disconnected
light and strange chiral susceptibilities (χdiscl and χdiscs ), i.e.,
the fluctuations of the light and strange quark condensates,
as well as the bare Polyakov loop Lbare. We use the same
definitions of these quantities as in Ref. [5]. In particular,

TABLE IX. Expectation value of local observables calculated on Nτ ¼ 6 lattices.

β T ½MeV� hsGi hψ̄ψil hψ̄ψis χdiscl χdiscs Lbare

5.900 133.8 2.632253(64) 0.044948(25) 0.105106(15) 0.577(10) 0.0644(17) 0.002599(20)
5.950 140.3 2.596445(58) 0.038962(28) 0.097108(17) 0.655(12) 0.0681(19) 0.003157(22)
6.000 147.2 2.560827(68) 0.032932(30) 0.088920(16) 0.741(11) 0.0704(14) 0.004077(20)
6.025 150.8 2.543240(18) 0.029995(27) 0.085152(10) 0.810(16) 0.0711(15) 0.004600(32)
6.050 154.5 2.525666(19) 0.027029(32) 0.081458(18) 0.946(26) 0.0754(27) 0.005294(33)
6.075 158.2 2.508305(33) 0.024144(50) 0.078122(26) 1.061(19) 0.0777(21) 0.006013(28)
6.100 162.1 2.490962(34) 0.020983(31) 0.074290(16) 1.148(23) 0.0798(18) 0.007027(18)
6.125 166.0 2.473804(31) 0.017975(47) 0.070757(17) 1.223(24) 0.0816(29) 0.008156(31)
6.150 170.1 2.456840(33) 0.014837(53) 0.067264(24) 1.313(28) 0.0889(19) 0.009463(53)
6.175 174.3 2.439980(29) 0.012008(39) 0.063819(18) 1.148(26) 0.0906(31) 0.010942(55)
6.195 177.8 2.426644(30) 0.009958(46) 0.061004(18) 1.009(22) 0.0932(15) 0.012192(42)
6.245 186.5 2.394214(29) 0.006302(37) 0.054910(31) 0.440(12) 0.0866(23) 0.015619(71)
6.285 194.1 2.368816(49) 0.004572(23) 0.050296(23) 0.1963(71) 0.0753(28) 0.018535(49)
6.341 205.0 2.334602(54) 0.003229(14) 0.044690(24) 0.0686(34) 0.0724(20) 0.022822(75)
6.354 207.6 2.326948(71) 0.0030128(68) 0.043460(18) 0.05033(157) 0.06293(215) 0.023805(68)
6.423 222.1 2.286667(62) 0.0022268(37) 0.037597(16) 0.01467(44) 0.04245(122) 0.029564(72)
6.488 236.6 2.250583(43) 0.0018235(37) 0.033135(14) 0.00656(46) 0.02796(45) 0.034892(104)
6.515 243.0 2.236043(44) 0.0017067(23) 0.031671(12) 0.00394(25) 0.02268(48) 0.037358(81)
6.550 251.4 2.217540(36) 0.0015783(23) 0.029853(10) 0.00289(28) 0.01663(45) 0.040428(102)
6.575 257.7 2.204590(57) 0.0014903(19) 0.028517(10) 0.00186(20) 0.01368(46) 0.042698(84)
6.608 266.1 2.187842(66) 0.0013966(12) 0.026962(8) 0.00166(13) 0.01048(32) 0.045373(81)
6.664 281.0 2.160154(56) 0.00127253(92) 0.0249128(67) 0.000646(55) 0.006665(202) 0.050566(88)
6.800 320.4 2.096708(55) 0.00104636(41) 0.0207485(33) 0.000170(48) 0.002140(77) 0.062640(66)
6.950 369.6 2.032442(34) 0.00086791(28) 0.0172826(20) 0.000055(14) 0.000795(36) 0.076417(96)
7.150 445.6 1.954433(30) 0.000696540(50) 0.01390563(83) 0.00000214(44) 0.0002043(52) 0.094300(69)
7.280 502.1 1.907706(57) 0.000609280(48) 0.01216886(50) 0.00000388(166) 0.0001201(108) 0.105861(91)
7.373 546.3 1.875942(38) 0.000531641(23) 0.01062292(55) 0.000001297(43) 0.0002442(32) 0.113932(98)
7.596 666.7 1.805019(28) 0.000422615(31) 0.00844724(40) 0.000001080(397) 0.0001474(113) 0.132910(111)
7.825 814.8 1.738571(16) 0.000338793(10) 0.00677357(19) 0.0000003877(22) 0.00007679(64) 0.151621(112)

A. BAZAVOV et al. PHYSICAL REVIEW D 90, 094503 (2014)

094503-22



the quark condensates are normalized per single flavor. The
disconnected chiral susceptibility for light quarks is nor-
malized for two flavors, and the disconnected chiral
susceptibility for strange quarks is normalized for a single
flavor.
The gauge action density and the quark condensates for

zero temperature are given in Table VIII. The observables at

nonzero temperature are summarized in Tables IX, X, XI,
and XII for Nτ ¼ 6, 6, 8, and 12 lattices.
For the calculation of the trace anomaly, one also needs

the lattice spacing in units of r1, the nonperturbative beta
function Rβ, the strange quark mass as function of β along
the LCP and the mass renormalization function Rm calcu-
lated along the LCP. The parametrization of r1=a and Rβ

TABLE X. Expectation value of local observables calculated on Nτ ¼ 8 lattices.

β T [MeV] hsGi hψ̄ψil hψ̄ψis χdiscl χdiscs Lbare

6.050 115.8 2.5266237(348) 0.0327762(186) 0.0828810(115) 0.4139(69) 0.05669(150) 0.0004353(134)
6.125 124.5 2.4753158(262) 0.0264181(110) 0.0730705(82) 0.4706(75) 0.06081(109) 0.0006204(47)
6.175 130.7 2.4419268(287) 0.0225733(227) 0.0669802(122) 0.4779(81) 0.05382(134) 0.0008371(116)
6.195 133.3 2.4288377(376) 0.0211403(154) 0.0645320(91) 0.4973(132) 0.05412(245) 0.0009414(166)
6.245 139.9 2.3965418(294) 0.0177511(150) 0.0591829(61) 0.5346(109) 0.05172(93) 0.0012420(117)
6.285 145.5 2.3713746(283) 0.0151984(242) 0.0550896(84) 0.5607(334) 0.04938(161) 0.0016083(177)
6.341 153.7 2.3370256(418) 0.0118052(185) 0.0498389(77) 0.7507(139) 0.05228(141) 0.0022252(131)
6.354 155.7 2.3292352(137) 0.0109211(513) 0.0485851(197) 0.8123(357) 0.05624(304) 0.0024708(325)
6.390 161.3 2.3079034(111) 0.0088051(453) 0.0452635(142) 0.8915(238) 0.05593(184) 0.0031329(387)
6.423 166.6 2.2887805(179) 0.0069624(573) 0.0426307(216) 0.9083(238) 0.05822(342) 0.0038408(355)
6.460 172.7 2.2678076(214) 0.0050971(363) 0.0395899(152) 0.6520(254) 0.05707(351) 0.0048401(370)
6.488 177.5 2.2523061(146) 0.0040973(324) 0.0375676(211) 0.4791(204) 0.05586(308) 0.0055937(523)
6.515 182.2 2.2376344(146) 0.0033605(111) 0.0358104(81) 0.3208(65) 0.05421(204) 0.0064548(245)
6.550 188.6 2.2189982(111) 0.0026714(70) 0.0335964(50) 0.1676(32) 0.04600(150) 0.0076062(174)
6.575 193.3 2.2059639(144) 0.0023153(61) 0.0319944(50) 0.1061(20) 0.04065(91) 0.0084632(181)
6.608 199.5 2.1890447(95) 0.0019665(55) 0.0300405(69) 0.0554(18) 0.03770(106) 0.0096959(240)
6.664 210.7 2.1612301(160) 0.00161467(242) 0.0274505(65) 0.02910(72) 0.028704(850) 0.0118668(196)
6.740 226.8 2.1249421(157) 0.00132194(152) 0.0243573(47) 0.01123(37) 0.017709(487) 0.0150425(309)
6.800 240.3 2.0975154(118) 0.00117166(80) 0.0223027(32) 0.00606(20) 0.010758(192) 0.0176361(287)
6.880 259.3 2.0624169(93) 0.00102161(56) 0.0199079(30) 0.00282(16) 0.005774(105) 0.0213349(344)
6.950 277.2 2.0329709(115) 0.00092680(48) 0.0182584(25) 0.00138(13) 0.003370(64) 0.0246964(418)
7.030 298.9 2.0006938(123) 0.00083316(37) 0.0165135(12) 0.00080(21) 0.001763(20) 0.0286964(278)
7.150 334.2 1.9547446(127) 0.00072858(127) 0.014507068(795) 0.0001447(228) 0.0007811(177) 0.0349571(493)
7.280 376.6 1.9079588(118) 0.00063333(87) 0.012635689(523) 0.0000317(121) 0.0003433(117) 0.0419502(385)
7.373 409.7 1.8762085(84) 0.00055109(22) 0.011005082(305) 0.0000075(24) 0.0004985(47) 0.0470148(330)
7.596 500.0 1.8051472(106) 0.00043608(17) 0.008714430(192) 0.0000040(28) 0.0002289(36) 0.0595132(289)
7.825 611.1 1.73864086(834) 0.0003485897(29) 0.006968632(67) 0.000000600(3) 0.00011855(51) 0.0725663(201)

TABLE XI. Expectation value of local observables calculated on Nτ ¼ 10 lattices.

β T [MeV] hsGi hψ̄ψil hψ̄ψis χdiscl χdiscs Lbare

6.488 142.0 2.2529939(94) 0.008717(66) 0.0392107(30) 0.4696(80) 0.03671(59) 0.0006332(54)
6.515 145.8 2.2383351(92) 0.007845(53) 0.0376092(21) 0.4983(48) 0.03601(67) 0.0007530(46)
6.575 154.6 2.2066486(87) 0.005916(112) 0.0339874(45) 0.6199(111) 0.03566(87) 0.0011236(72)
6.608 159.6 2.1897092(97) 0.004863(141) 0.0320595(57) 0.6914(140) 0.03790(54) 0.0014074(111)
6.664 168.6 2.1618075(67) 0.003366(119) 0.0293881(48) 0.5971(104) 0.03805(76) 0.0020061(99)
6.740 181.4 2.1254552(49) 0.002058(44) 0.0260341(30) 0.2350(27) 0.03178(63) 0.0030709(50)
6.800 192.2 2.0979463(46) 0.001551(21) 0.0237258(22) 0.10175(85) 0.02664(27) 0.0040471(52)
6.880 207.5 2.0627661(47) 0.001196(11) 0.0210031(13) 0.03805(50) 0.01794(15) 0.0055452(50)
6.950 221.8 2.0332765(52) 0.0010256(87) 0.0191246(19) 0.01785(44) 0.01182(21) 0.0069963(116)
7.030 239.1 2.0009567(52) 0.0008889(70) 0.0171719(16) 0.00732(49) 0.00655(12) 0.0088725(130)
7.150 267.4 1.9549570(41) 0.0007594(33) 0.01496641(85) 0.002826(227) 0.002693(65) 0.0118853(116)
7.280 301.3 1.9081112(43) 0.0006518(22) 0.01296143(67) 0.000578(120) 0.001005(28) 0.0155783(205)
7.373 327.8 1.8763272(51) 0.0005648(11) 0.01125795(32) 0.000239(83) 0.000522(29) 0.0183751(154)
7.596 400.0 1.8052323(39) 0.00044450(86) 0.008876950(228) 0.0000210(201) 0.0001413(88) 0.0256495(265)
7.825 488.9 1.7387004(82) 0.00035425(5) 0.007080600(105) 0.00000040(14) 0.0000461(10) 0.0337466(261)
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and the calculation of their errors have been discussed in
Appendix B. In Table VIII, we give these quantities with
their errors. The value of ms along the LCP has been
discussed in Appendix C, where an explicit parametrization
of ~ms ¼ r1mLCP

s has been given. The mass renormalization
function Rm can be written as

Rm ¼ −R−1
β ð1 − ~RmRβÞ; ~Rm ¼ 1

~ms

d ~ms

dβ
: ðD1Þ

The values of ~ms and ~RmRβ are also given in Table VIII. As
one can see from Figs. 16 and 17, the deviations of the input
strange quark masses from the LCP for β ≥ 7.03 are at most
7% and are below 1% for β < 7.03. To include the errors

arising from the deviations from the LCP, we assign a 1%
error to ms for β < 7.03 and 10% errors to ms for β ≥ 7.03
in Eq. (9). All the errors discussed above are added in
quadratures to get the total error estimate of the trace
anomaly presented in Sec. III. Our estimate of the system-
atic errors on the trace anomaly due to the deviations from
LCP includes only the difference between the input ms and
the value of ms along the LCP. Since ml=ms is kept
constant, there is no additional uncertainty due to ml. The
value of ms, however, will affect the expectation value of
the gluon action and the quark condensates shown in
Eqs. (8) and (9). We did not estimate these effects, but
based on the past experience [21,24] we expect that these
will be small.
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TABLE XII. Expectation value of local observables calculated on Nτ ¼ 12 lattices.

β T [MeV] hsGi hψ̄ψil hψ̄ψis χdiscl χdiscs Lbare
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6.800 160.2 2.0981866(76) 0.003016(120) 0.0246617(30) 0.5714(211) 0.02569(175) 0.0007167(44)
6.880 172.9 2.0629734(44) 0.001882(75) 0.0218834(45) 0.3838(75) 0.02479(102) 0.0011690(73)
6.950 184.8 2.0334633(59) 0.001339(52) 0.0198904(40) 0.1644(30) 0.02098(123) 0.0016813(86)
7.030 199.2 2.0011122(72) 0.001025(22) 0.0177901(23) 0.0617(15) 0.01489(61) 0.0024077(75)
7.150 222.8 1.9550761(46) 0.000808(10) 0.0153880(17) 0.0183(10) 0.00823(55) 0.0037030(71)
7.280 251.1 1.9082143(37) 0.000675(13) 0.0132415(21) 0.0061(12) 0.00312(13) 0.0054060(154)
7.373 273.1 1.8764082(49) 0.0005792(88) 0.01146391(89) 0.0042(12) 0.002445(51) 0.0068171(125)
7.596 333.3 1.8052889(42) 0.00045065(76) 0.00899511(28) 0.000093(58) 0.000682(11) 0.0106861(146)
7.825 407.4 1.7387435(49) 0.000358140(90) 0.00715650(16) 0.000000601(50) 0.0001120(91) 0.0153196(362)
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