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We develop a first-principle generalized density-of-states method for numerically studying quantum
field theories with a complex action. As a proof of concept, we show that with our approach we can
numerically solve the strong sign problem of the Z3 spin model at finite density. Our results are confirmed
by standard simulations of the theory dual to the considered model, which is free from a sign problem. Our
method opens new perspectives on ab initio simulations of cold dense quantum systems, and in particular
of Yang-Mills theories with matter at finite densities, for which Monte Carlo-based importance sampling is
unable to produce sufficiently accurate results.

DOI: 10.1103/PhysRevD.90.094502 PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

Monte Carlo simulations [1] of the theory regularized on
a lattice [2] are key for obtaining first-principle results in
QCD [3] and in other strongly interacting systems, like
for instance correlated electrons in solid state physics [4].
Monte Carlo simulations rely on importance sampling,
which exposes the configurations that dominate the parti-
tion function. Importance sampling requires a real positive
Gibbs factor. Because of this restriction, many crucial
problems in physics that could in principle have been
addressed by numerical simulations have remained unex-
plored. In particular, quantum systems with matter at finite
densities, including cold and dense baryon matter, are
described by a complex action. The corresponding
Monte Carlo simulations are hampered by the notorious
sign problem, which severely limits the applicability of this
method.
In recent years, there has been noticeable progress in

numerical studies of complex-action systems, both with
Monte Carlo methods and techniques that do not rely on
importance sampling. Among the most promising methods
are the complexification of the fields in a Langevin-based
approach [5,6], worm or flux algorithms [7,8] to simulate
thedual theorywhen thecorrespondingduality transformation
is known and exposes a real action [9–12] and the use of
techniques that explicitly exploit the cancellations of classes
of fields [13].
Among alternative approaches to conventional

Monte Carlo sampling, an efficient strategy relies on the
numerical computation of the density of states [14]. Once
this quantity has been determined, the partition function
and derived expectation values of observables can be
computed semianalytically, integrating numerically the
density of states with the appropriate Boltzmann weight.
The multicanonical algorithm [15] allows one to effectively
compute the density of states in gauge and spin systems
(see e.g. Ref. [16]). More recently, an alternative technique

has been discussed in Refs. [17,18]. Originally introduced
to obtain an efficient sampling of the density of states for
continuous systems using a Wang-Landau-inspired pro-
cedure, this algorithm has been proven to work effectively
for discrete systems as well [19].
It was observed long ago that density-of-states meth-

ods can be used to study complex-action problems in
numerical simulations [20]. A natural question is
whether an appropriate generalization of the method
proposed in Refs. [17,18], referred to as the LLR
algorithm, which does not rely on action-based impor-
tance samplings, could be effective at simulating sys-
tems with a sign problem. In this paper, we show that a
density-of-states approach in the LLR formulation
appropriately generalized to complex-action systems
can provide a viable solution to the sign problem. As
a test case to demonstrate the method, we study the Z3

spin model for finite chemical potentials μ, which serves
as a toy model for finite-density QCD [21]. This system,
which has also been studied with complex Langevin
techniques [5], provides an ideal benchmark test for our
approach, since it possesses a “strong” sign problem but
can be simulated with flux-type algorithms after dual-
ization [22]. We will show that our method (which does
not rely on the existence of a dual theory with a real
action, but rather is formulated using the original
degrees of freedom), can achieve reliable results for a
wide range of μ.
The rest of the paper is organized as follows. In Sec. II,

we introduce our proposal. Section III presents the system
we have chosen to test our method with, which can also be
simulated using the more conventional method described in
Sec. IV. The numerical results obtained with our method
(Sec. V) are then used to show that our proposal is effective
at dealing with the sign problem in this model (Sec. VI).
A critical discussion of our findings and an overview of
further studies (Sec. VII) conclude this work.
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II. GENERALIZED DENSITY OF STATES

Before discussing in detail the considered model and
our solution technique, we shall outline how the relevant
quantities (i.e. the generalized density of states and observ-
ables sensitive to strong cancellations) are identified in a
more general setup. We consider a quantum field theory
(QFT) with a complex action. In general terms, the partition
function of such a system is given in terms of a functional
integral over the degrees of freedom ϕðxÞ:

ZðμÞ ¼
Z

Dϕ expfiSI½ϕ�ðμÞgeSR½Φ�ðμÞ; ð1Þ

with SR; SI ∈ R and where μ is the chemical potential. In
finite-density QFTs, the imaginary part vanishes with
vanishing μ, i.e., SIðμÞ → 0 for μ → 0. The simplest way
to deal with the sign problem is to adopt a “quenched”
approximation and to ignore the phase factor. This is
undoubtedly a good approximation at small μ, but most
likely it will fail when density effects start to play a
significant role. To quantify the importance of the phase
factor, we introduce

ZmodðμÞ ¼
Z

DϕeSR½Φ�ðμÞ: ð2Þ

We point out that observables of the modified theory can
be easily estimated by standard importance sampling
methods. If we succeed in calculating the phase-factor
expectation value

QðμÞ ¼ ZðμÞ
ZmodðμÞ

¼ hexpfiSI½ϕ�ðμÞgimod; ð3Þ

observables such as the density σ would be accessible as
well:

σðμÞ ¼ d lnZ
dμ

¼ d lnQðμÞ
dμ

þ d lnZmod

dμ
: ð4Þ

Our strategy to calculateQðμÞ is based upon the density-of-
states method originally proposed by Wang and Landau
[14] in its LLR version [17]. At the heart of our approach is
the generalized density of states ρðsÞ:

ρðsÞ ¼ N
Z

Dϕδðs − SI½ϕ�ðμÞÞeSR½Φ�ðμÞ: ð5Þ

Later, we will choose the normalization N such that
ρð0Þ ¼ 1. Such a generalized density of states was first
introduced by Gocksch [20] to address the phase factor
of the quark determinant of finite-density QCD. Using a
binning method without the Wang-Landau-type refine-
ments, it has been argued that a solution of the overlap
problem might only come with polynomial costs in the

volume. The generalized density of states (5) was also
introduced in Refs. [23–27] to study the θ-angle depend-
ence in spin systems using a saddle-point approximation,
which becomes exact in the thermodynamic limit.
The phase factor QðμÞ [Eq. (3)] can be obtained by

calculating two integrals:

QðμÞ ¼
R
dsρðsÞ expfisgR

dsρðsÞ : ð6Þ

Note that the normalization N drops out. The challenge is
that for sizable and phenomenologically interesting values
of μ the phase factor can be very small (Q ≈ 10−16 in the
example below) and exponentially depends on the system
volume. The smallness ofQ arises from cancellations in the
numerator of Eq. (6). On the other hand, ρðsÞ is at times of
order one and only known numerically. Thus, any algo-
rithm which addresses ρðsÞ must feature an exponential
error suppression in order to muster enough precision to
obtain a sensible result upon the integration in Eq. (6). As
we detail below, the LLR algorithm delivers just that.

III. THE Z3 SPIN SYSTEM

As a showcase of our approach, we are going study the
Z3 spin model at finite chemical potential μ: the degrees of
freedom ϕðxÞ ∈ Z3 are associated with the sites of the N3

three-dimensional lattice. The partition function and the
action of the system are given by

ZðμÞ ¼
X
fϕg

expfS½ϕ� þ Sh½ϕ�g; ð7Þ

S½ϕ� ¼ τ
X
x;ν

ϕxϕ
�
xþν; Sh½ϕ� ¼

X
x

ðηϕx þ η̄ϕ�
xÞ; ð8Þ

with η ¼ κeμ and η̄ ¼ κe−μ. The model can be derived from
QCD in the heavy-quark and strong-coupling limit [28,29].
Therefore, κ is related to the quark hopping constant, and
μ is the chemical potential. For μ ¼ Oð1Þ, this theory
possesses a strong sign problem in the above formulation.
However, the reformulation of this model with dual
variables is real (even at finite μ) and can be effectively
simulated using flux-type algorithms [22]. This makes this
theory an ideal benchmark test for the LLR approach.

IV. THE FLUX ALGORITHM

Before showing our numerical findings, we briefly detail
the calculation of the phase factor using the flux algorithm
developed by Gattringer et al. [22]. The partition function
can be expressed in terms of dual variables ϕD:

ZðμÞ ¼
X
fϕDg

Mðμ;ϕDÞPðϕDÞ: ð9Þ

KURT LANGFELD AND BIAGIO LUCINI PHYSICAL REVIEW D 90, 094502 (2014)

094502-2



ZðμÞ can be computed in terms of Zð0Þ. However, a
simplistic approach to this calculation will be affected
by the so-called overlap problem, whereby a partition
function is sampled using configurations derived from a
statistical sampling that are in principle related, but in
practice have different dominant contributions. To resolve
the overlap problem, we adopt a variant of the snake
algorithm [30]. We firstly observe that

Zðμþ ΔμÞ
ZðμÞ ¼ 1

ZðμÞ
X
fϕDg

Mðμþ Δμ;ϕDÞ
Mðμ;ϕDÞ

×Mðμ;ϕDÞPðϕDÞ

¼
�
Mðμþ Δμ;ϕDÞ

Mðμ;ϕDÞ
�

μ

: ð10Þ

The latter expectation value can be efficiently evaluated
with the flux algorithm. The partition function is then
obtained from

ZðkΔμÞ ¼ Zð0Þ
Yk
i¼1

ZðiΔμÞ
Zðði − 1ÞΔμÞ ; ð11Þ

with each factor ZðiΔμÞ=Zðði − 1ÞΔμÞ evaluated with the
snake algorithm. The same approach is repeated for the
“quenched” partition function Zmod, and the phase factor is
finally obtained from

QðkΔμÞ ¼ ZðkΔμÞ=ZmodðkΔμÞ: ð12Þ

V. MEASURING THE GENERALIZED
DENSITY OF STATES

To proceed with our method, we introduce the center
elements

ϕ ∈ f1; z; z†g; z ≔
1

2
þ

ffiffiffi
3

p

2
i: ð13Þ

The linear term of the action can then be written as

Sh½ϕ� ¼ κ
X
x

½eμϕðxÞ þ e−μϕ†ðxÞ�

¼ κ½ð2N0 − Nz − Nz� Þ coshðμÞ
þ i

ffiffiffi
3

p
ðNz − Nz�Þ sinhðμÞ�; ð14Þ

where N0, Nz and Nz� are the numbers of time-like links
equalling a particular center element, i.e.

N0 ¼
X
x

δðϕðxÞ; 1Þ; Nz ¼
X
x

δðϕðxÞ; zÞ;

Nz� ¼
X
x

δðϕðxÞ; z�Þ: ð15Þ

The probability distribution for the variable ΔN≔Nz−Nz�

is symmetric around zero. Thus, the partition function is
real and given by

ZðμÞ ¼
X
fϕg

expfS½ϕ� þ κð3N0 − VÞ coshðμÞg

× cos
� ffiffiffi

3
p

κΔN × sinhðμÞ
�
; ð16Þ

where we have used the constraint

N0 þ Nz þ Nz� ¼ N3 ≔ V: ð17Þ
For a fixed lattice volume V, we now define the density of
states ρ by

ρðnÞ ≔
X
fϕg

δðn;ΔN½ϕ�Þ expfS½ϕ�

þ κð3N0½ϕ� − VÞ coshðμÞg: ð18Þ

With this definition, the partition function can be written as
a simple sum:

ZðμÞ ¼
X
n

ρðnÞ cosð
ffiffiffi
3

p
κ × sinhðμÞnÞ: ð19Þ

Using a standard Monte Carlo simulation and casting the
observed values ΔN into a histogram would only provide
enough precision to calculate the partition function for very
small values of μ. Nevertheless, this histogram provides
first insights into ρðnÞ and later will serve as an important
cross-check for more elaborate methods. Our results for a
243 lattice using τ ¼ 0.17 and κ ¼ 0.05 are shown in Fig. 1.
Our aim will be to calculate ρðnÞ with a precision

of many of orders of magnitude such that a direct
evaluation of Eq. (19) does yield a statistically significant
result despite cancellations. For this purpose, we follow
Ref. [17] and write

ρðnÞ ¼
Yn
i¼0

expf−aig: ð20Þ

We then define the “double-bracket” expectation values by

⟪F⟫ðanÞ ¼
1

N

X
fϕg

FðΔN½ϕ�ÞθðΔN; nÞ expfanΔNg

× expfS½ϕ� þ κð3N0½ϕ� − VÞ coshðμÞg; ð21Þ

N ¼
X
fϕg

θðΔN; nÞ expfanΔNg

× expfS½ϕ� þ κð3N0½ϕ� − VÞ coshðμÞg; ð22Þ

where θðΔN;nÞ¼1 for jΔN½ϕ� − nj ≤ 1 and θðΔN; nÞ ¼ 0
otherwise. Note that these expectation values can be
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calculated using standard Monte Carlo methods. If an is
chosen correctly, configurations with ΔN¼n−1, ΔN ¼ n
and ΔN ¼ nþ 1 possess the same probability. This yields
a nonlinear equation to determine an:

⟪ΔN⟫ðanÞ ¼ 0: ð23Þ

We solve the latter equations using a Newton-Raphson
iteration:

akþ1
n ¼ akn −

⟪ΔN⟫ðaknÞ
⟪ΔN2⟫ðaknÞ

: ð24Þ

Details of the algorithm will be presented elsewhere. Once
we have obtained the coefficients an, we can reconstruct the
density of states ρ with the help of Eq. (20). In practice, we
have obtained 200 independent values for each of the an
with n up to 5000. Our result for ρn is also shown in Fig. 1.
Error bars are obtained using the bootstrap method. We find
an excellent agreement with the histogram method, but
can extend the observed range of ρ to over 60 orders of
magnitude.

VI. TAMING THE SIGN PROBLEM WITH THE
GENERALIZED DENSITY OF STATES

The phase factorQðμÞ can now obtained from Eq. (6) or,
in the case of the Z3 spin model, from

QðμÞ ¼
P

nρðnÞ cos
� ffiffiffi

3
p

κ sinhðμÞn
�

P
nρðnÞ

: ð25Þ

Error margins could once again be computed using the
bootstrap method. However, we found it advantageous to

exploit the smoothness of ln ρðnÞ and fit this function to an
even polynomial of degree 2p:

ln ρðnÞ ¼
Xp
k¼0

ckn2k: ð26Þ

In practice, we fitted polynomials of degree 2p ¼ 2; 4; 6; 8
and found very stable results with only the coefficients c0
and c2 significantly (within bootstrap error bars) different
from zero. After the extraction of the Taylor coefficients,
the phase factor (25) can be obtained “semianalytically” to
a high precision.
Our numerical findings for ρ are shown in Fig. 1, while

our results for QðμÞ are summarized in Fig. 2. Our density
of states agrees with the density of states extracted from the
flux algorithm for all values for which the latter method is
effective (see Fig. 1, left panel, for an example). The right
panel of Fig. 1 demonstrates the ability of our method to
determine the density of states over more than 60 orders of
magnitude. The correctness of this determination can be
checked by comparing our results for QðμÞ with results
obtained with the flux algorithm. Figure 2 shows agreement
for various lattice sizes at μ ¼ 1.8, where the sign problem
is severe. Note that there is no sign of the method breaking
at large volume, up to volumes that are known from other
methods to be large enough for the asymptotic behavior to
be manifest in the relevant observables. For the largest size,
the same figure shows an agreement over a wide range of μ,
which determines a variation of QðμÞ over 16 orders of
magnitude. A more detailed inspection shows that numeri-
cal results (obtained using quadruple precision) found with
the two methods are always within errors.
We finally present a rough estimate of the computational

costs. The density ρn rapidly decreases with n such that the
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FIG. 1 (color online). Left: The probability distribution ρ for n ¼ ΔN ¼ Nþ − N− from a direct simulation using a histogram
(black steps) and from our LLR method. Right: Same probability distribution on a logarithmic scale, for a wider range of n. 243 lattice,
τ ¼ 0.17, and κ ¼ 0.05.
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sum in Eq. (25) can be truncated at some value nmax.
Empirically, we find that this upper limit needs to scale with
volume,

nmax ≈ 0.3V:

When calculating the coefficients akn, the number of steps
needed for the Newton-Raphson iteration (24) to achieve
an acceptable precision is independent of the system size.
However, the numerical costs to evaluate the estimators for
the double-expectation values ⟪…⟫ are scaling with the
volume. This leaves us with the observation that estimating
the phase factor QðμÞ requires computational costs that
increase polynomiall increase with the volume, Vp, p ≈ 2.
A detailed analysis of the volume dependence of the cost
will be presented elsewhere. We here emphasize that costs
follow a power law of the volume rather than increasing
exponentially as it would be with standard Monte Carlo
methods.

VII. DISCUSSION AND CONCLUSIONS

In conclusion, we have proposed an efficient ab initio
approach that allows us to numerically compute observ-
ables affected by strong cancellations in systems afflicted
by a sign problem. The methods consists of (a) a gener-
alization of the density of states, (b) a numerical determi-
nation of the generalized density of states using the
LLR algorithm, (c) a polynomial interpolation of the
density of states, and (d) a semianalytical determination

of observables. This strategy has been successfully probed
for the Z3 spin system, for which numerical results are
available since its dual formulation is real and accessible by
Monte Carlo methods. We have found that our method
reproduces results of the dual formulation over a wide
range of chemical potentials. In this first exploratory study,
we explored a region of space that is deep in the symmetric
phase. We found that a Gaussian approximation does work
very well, which might be due to the fact that for our
parameter choice the system is far from the phase tran-
sition. The validity of the Gaussian approximation in this
regime has been argued in Ref. [31]. We are currently
extending our studies to the phase diagram near the phase
transition. We expect to find significant corrections to the
Gaussian behavior [32].
Note that the method we have used in this work could

in principle suffer from ergodicity problems if topological
sectors with large energy barriers are present that would
implicate long energy detours for tunnelings. While the
agreement with the exact algorithm shows that this does not
happen for the system studied here, for the general case an
ergodic algorithm can be easily obtained following the
technique exposed in Ref. [33].
The final goal of our program would be tackling the sign

problem in QCD and in other real-world systems. In order
to verify the effectiveness of our method, studies of more
complicated toy models such as the O(2) system and the
Bose gas at final temperature are currently in progress.
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agrees with the worm algorithm even in regions where
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FIG. 2 (color online). The phase factor calculated using the flux
algorithm in the dual formulation and the LLR algorithm applied
to the original theory with a strong sign problem for various sizes
and μ values, at τ ¼ 0.1 and κ ¼ 0.01.
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