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We study QCD under the influence of background magnetic fields and isospin chemical potentials using
lattice simulations. This setup exhibits a sign problem which is circumvented using a Taylor expansion in
the magnetic field. The ground state of the system in the pion condensation phase is found to exhibit a
pronounced diamagnetic response. We elaborate on how this diamagnetism may contribute to the pressure
balance in the inner core of strongly magnetized neutron stars. In addition we show that the onset of pion
condensation shifts to larger chemical potentials due to the enhancement of the charged pion mass for
growing magnetic fields. Finally, we summarize the magnetic nature of QCD matter on the temperature-
isospin chemical potential phase diagram.
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I. INTRODUCTION

The elementary degrees of freedom of the high-energy
phase of quantum chromodynamics (QCD) are deconfined
quarks and gluons. One physical environment where this
deconfined phase may exist is the inner core of dense
neutron stars—compact stellar objects created during the
gravitational collapse of massive stars. A certain class of
neutron stars (magnetars) exhibits intense magnetic
fields of strengths up to 1014–15 G at the star surface.
These extreme magnetic fields are presumably generated
by a convective dynamo mechanism during the first few
seconds after the collapse [1], and are believed to be
responsible for the strong electromagnetic activity of the
star in the form of gamma-ray and x-ray bursts [2].
Magnetic fields can induce a strong deformation of the
star, leading to the radiation of gravitational waves [3].
During mergers of binary neutron star systems, magnetic
fields can even be amplified drastically [4] and have a
significant impact on the emitted gravitational signal [5].
Thus, an understanding of the behavior of neutron star
matter in magnetic fields is desired in many respects.
While the magnetic fields at the surface of the star are

typically determined using measurements of rotation peri-
ods and time derivatives thereof [6], the strength of the field
in the deep interior of the star is highly uncertain. On
general grounds the field B is expected to become enhanced
towards the star center, see, e.g., Ref. [7]. The maximal
possible strength is estimated to be B ≈ 1018 G based on
the equality of the gravitational and magnetic energies [6].
These extreme values for B are in the regime where a
competition between the electromagnetic and the strong
forces takes place and the magnetic properties of QCD
matter as a medium become important.
An additional characteristic aspect of neutron stars is the

isospin asymmetry that develops in their interior through

protons converting into neutrons and neutrinos via electron
capture. The core is thus described by a high baryonic
density accompanied by a considerable isospin density. In
the grand canonical approach to statistical physics, these
densities are controlled by the corresponding chemical
potentials. On the level of the (up and down) quark content,
they are written as

μB ¼ 3ðμu þ μdÞ=2; μI ¼ ðμu − μdÞ=2: ð1Þ
To understand the structure of the dense and strongly
magnetized inner core, an investigation of the combined
effect of μf (f ¼ u; d labels the quark flavors) and B on the
ground state of QCD matter is necessary. In the strongly
interacting regime this is only possible using nonperturba-
tive approaches like lattice simulations.
To leading order in B, the magnetic response of the

system is characterized by the magnetic susceptibility,

hχi ¼ −
1

V
∂2F

∂ðeBÞ2
����
B¼0

; ð2Þ

defined in terms of the free energy F ¼ −T logZ of the
system (V denotes the three-dimensional volume, T the
temperature, and Z the partition function). Here we
considered the magnetic field in units of the elementary
charge e > 0. Note that the first derivative of F at B ¼ 0
vanishes due to parity symmetry. The sign of χ distin-
guishes between paramagnetism (χ > 0) and diamagnet-
ism (χ < 0).
In this Letter we calculate the magnetic susceptibility at

nonzero isospin chemical potentials and discuss the struc-
ture of the μI-B-T phase diagram using numerical lattice
QCD simulations. Our results indicate a strong diamagnetic
response at high μI, where charged pions condense. This
response is related to the superconducting nature of the
pion condensate. We also present an argument suggesting
that χ is less affected by the baryonic chemical potential*gergely.endrodi@physik.uni‑r.de

PHYSICAL REVIEW D 90, 094501 (2014)

1550-7998=2014=90(9)=094501(9) 094501-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.094501
http://dx.doi.org/10.1103/PhysRevD.90.094501
http://dx.doi.org/10.1103/PhysRevD.90.094501
http://dx.doi.org/10.1103/PhysRevD.90.094501


and, thus, μI is the most relevant control parameter for the
magnetic response of QCD at nonzero densities. In addi-
tion, we discuss the impact of the diamagnetic nature of the
isospin-asymmetric state on magnetars. Assuming typical
magnetic field configurations, this diamagnetism results in
a considerable anisotropic force that can compete with the
gravitational pressure in the core. This may have implica-
tions on, e.g., the convective processes in the interior of
the star.

II. LATTICE SETUP AND OBSERVABLES

We consider QCD with two quark flavors, described by a
two-component quark field ψ ¼ ðψu;ψdÞ and the fermion
matrix

M ¼
�
DðμI; quÞ þm λγ5

−λγ5 Dð−μI; qdÞ þm

�
ð3Þ

where qf is the electric charge of the quark of flavor f, and
we assumed a degenerate mass m. Here, D ¼ γνDν is the
Dirac operator with the SUð3Þ × Uð1Þ covariant derivative
Dν ¼ ∂ν þ iAν þ iqfAem

ν . The Abelian vector potential is
chosen such that it generates a magnetic field in the z
direction, Aem

4 ¼ 0, ∇ ×Aem ¼ B∥ẑ.
The term proportional to λ is inserted in Eq. (3) as a

small explicit breaking to allow the observation of pion
condensation, corresponding to the expectation value
hπi≡ hψ̄uγ5ψd − ψ̄dγ5ψui. This expectation value signals
the spontaneous breakdown of isospin symmetry [more
precisely: a Uð1Þ subgroup of the full isospin group that is
left intact at m ≠ 0 and μI ≠ 0]. In a finite volume this
spontaneous breaking cannot occur without a small explicit
breaking. The coefficient λ will be extrapolated to zero at
the end of the analysis. Incidentally, for μI ≳m the smallest
eigenvalue of the Hermitian operator M†M (which is used
in the simulation algorithm) equals λ2, such that the system
becomes ill-conditioned as λ → 0. Nevertheless, for the
values necessary to perform this extrapolation (see Sec. III)
this numerical problem still turned out to be feasible.
This theory is simulated on a symmetric N4 lattice with

N ¼ 8 such that the spatial volume equals V ¼ L3 ¼ ð8aÞ3
with a being the lattice spacing. To allow for a cross-check
of the algorithm and of the simulation code, we use the
same lattice discretization as Ref. [8]: the plaquette gauge
action SpðβÞ and rooted staggered quarks. The partition
function is obtained via the functional integral over the
gluonic links Uν ¼ expðiaAνÞ as

Z ¼
Z Y

ν

DUνe−SpðβÞ detM1=4: ð4Þ

The inverse gauge coupling is β≡ 6=g2 ¼ 5.2 and the
quark mass in lattice units equals ma ¼ 0.025. The lattice
spacing is determined using the Wilson flow [9] via the
w0 scale proposed in Ref. [10] to be a ¼ 0.299ð2Þ fm.

The linear size of the system is L ≈ 2.4 fm. Thus, L−1 ≈
80 MeV is well below the finite temperature deconfine-
ment transition and the system may be approximated as
being at zero temperature. Through fitting the pseudoscalar
propagator we get for the pion mass in lattice units
mπa ¼ 0.402ð5Þ, giving mπ ≈ 260 MeV.
Using the γ5 Hermiticity of the Dirac operator [for

staggered quarks the role of γ5 is played by
η5 ¼ ð−1Þnxþnyþnzþnt],

γ5DðμI; qÞγ5 ¼ Dð−μI; qÞ†; ð5Þ

one can prove that the fermionic action Sf ∝ − log detM is
real and positive if the electric charges of the two flavors
coincide. However, having qd ¼ −2qu ¼ −e=3 is essential
to capture the fact that the particles excited by the isospin
chemical potential are the charged pions. Therefore, in the
presence of the magnetic field, Sf becomes complex and
cannot be simulated using conventional lattice Monte Carlo
methods.
We tackle this complex action problem by simulating at

μI ≠ 0 and B ¼ 0—where Sf is real and positive—and
performing a (leading-order) Taylor expansion in the
magnetic field. This expansion involves the derivatives
of the free energy with respect to eB—starting with χ of
Eq. (2). One technical complication is that on a finite lattice
with periodic boundary conditions, the magnetic flux Φ ¼
eB · L2 is quantized [11], making the derivative with
respect to eB ill defined. An advantageous strategy is to
consider a modified magnetic field, for example one that is
positive in one half and negative in the other half of the
lattice [12], B ¼ BsignðL=2 − xÞ · ẑ. To implement this
magnetic field configuration, the Abelian links ufν ¼
expðiaqfAem

ν Þ for the flavor f are chosen as [12]

ufyðnxÞ ¼ eia
2qfB·ðnx−N=4Þ; nx ≤ N=2;

ufyðnxÞ ¼ eia
2qfB·ð3N=4−nxÞ; nx > N=2;

ufν ¼ 1; ðν ≠ yÞ; ð6Þ

where nx ¼ x=a denotes the x coordinate of the sites. The
links (and, thus, also the magnetic field) satisfy periodic
boundary conditions. This setup was tested to give reliable
results at μI ¼ 0, where a direct simulation at B ≠ 0 is also
possible [13]. Nevertheless, we mention that finite volume
effects may become enhanced due to the presence of the
boundaries where the magnetic field changes sign, and for
precision results our measurements should be repeated on
larger volumes.
Since the total magnetic flux is zero, the derivative

with respect to eB—being a continuous variable—can now
be taken. Differentiating Eq. (4) twice, the susceptibility
Eq. (2) reads
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hχi ¼ hC2i
N4

; C2 ¼ C21 þ C01; C1 ¼
1

4
TrðM−1M0Þ;

ð7Þ
where h:i denotes the expectation value with respect to Z
and the prime the derivative with respect to eB. Besides the
magnetic susceptibility, we also consider other observables
like the chiral condensate, the pion condensate, and the
isospin density

hψ̄ψi ¼ −
1

V
∂F
∂m ; hπi ¼ −

1

V
∂F
∂λ ; hnIi ¼ −

1

V
∂F
∂μI :
ð8Þ

The second derivative of the expectation value of either of
these observables O ¼ ψ̄ψ ; π or nI can be found as

∂2hOi
∂ðeBÞ2

����
B¼0

¼ hO00 þ 2O0C1 þOC2i − hOihC2i: ð9Þ

In addition we will also discuss the Polyakov loop as a
measure for deconfinement,

P ¼ 1

V

X
x

Tr exp

�Z
dtA4ðx; tÞ

�
: ð10Þ

We remark that the magnetic susceptibility contains an
additive divergence at zero temperature and zero density,
such that its renormalization reads

hχir ¼ hχi − hχiμI¼T¼0: ð11Þ

This renormalization is related to the electric charge
and wave function renormalization in QED [14]. The
B-dependent divergence cancels from the observables of
Eqs. (8) and (10). For more details on this renormalization
see, e.g., Ref. [13]. In the following, the expectation value
h:i is suppressed for the sake of brevity.

III. RESULTS

We begin by considering the observables of Eq. (8) at
vanishing magnetic field. Figure 1 shows the results at
various values of the explicit symmetry breaking parameter
λ and a linear extrapolation to λ ¼ 0 for each μI . The
difference to a quadratic extrapolation is used to define the
systematic uncertainty, and is included in the errors shown
in the plot. We observe that the λ ¼ 0 limit of π vanishes in
the low-μI region, whereas it increases drastically for high
chemical potentials, signaling the condensation of pions.
The onset of this condensation is predicted by chiral
perturbation theory (χPT) to occur at μI ¼ mπ=2 [15], in
good agreement with the lattice data. All other observables
are also insensitive to μI (in the λ → 0 limit) up to this onset
value. This is in general referred to as the silver blaze

phenomenon. The chiral condensate drops sharply above
μI ¼ mπ=2, while the isospin density starts to grow at the
condensation threshold. We note that our results are within
statistical errors consistent with those of Ref. [8], up to the
fact that in Ref. [8] a different normalization convention
was used. Our normalization is chosen such that the results
at μI ¼ 0 correspond to two degenerate flavors. We note
moreover that lattice discretization effects start to dominate
for aμI ≳ 1 (not visible in the plot): here all lattice sites
become occupied and the isospin density saturates
at a3nsatI ¼ 3=2.
To perform the λ extrapolation in a more effective

manner, we consider χPT to describe the behavior of the
observables for small λ and for small μI [16]. This
dependence involves two parameters: the pion mass and
the chiral condensate at μI ¼ λ ¼ 0, denoted by G,

ψ̄ψ ¼ G cos α; π ¼ G sin α; nI ¼
4mGμI
m2

π
sin2α;

ð12Þ

where α is the vacuum angle, determined at the extremum
of F by

sinðα − ϕÞ ¼ 4μ2I
m2

π
sin α cos α; ϕ ¼ arctan λ=m: ð13Þ

We carry out a simultaneous fit of all three observables,
using data points for all values of λ, up to aμI ¼ 0.2.
Considering the pion mass as a free parameter of the fit, we

FIG. 1 (color online). Quark condensate (upper panel), pion
condensate (middle panel), and isospin density (lower panel) as
functions of the isospin chemical potential for various λ values
(red, blue, and green points), a linear fit λ → 0 (yellow points),
and a combined fit using χPT [16] (solid lines). The onset of pion
condensation at mπ=2 is indicated by the gray vertical line.
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obtain amπ ¼ 0.4053ð1Þ, consistent with our previous
determination using the pseudoscalar propagator. The latter
is indicated by the gray line in the figure. For the
condensate the fit gives G ¼ 0.4657ð2Þ. In fact, χPT
predicts pion condensation and chiral symmetry restoration
to proceed simultaneously such that π2 þ ψ̄ψ2 remains
constant. The lattice data do not support this prediction for
μI ≳mπ=2, as π turns out to be underestimated by χPT (this
was also realized in Ref. [8]). However, below mπ=2—
where the λ dependence is most pronounced and, thus, the
extrapolation cumbersome—the χPT prediction is in excel-
lent agreement with the lattice data. This comparison also
reveals that the linear λ → 0 extrapolations of the lattice
data using the available three λ values—with the exception
of the points just at the condensation threshold—are
reliable. Note that a true phase transition only appears in
the thermodynamic limit, and in a finite volume the
observables slightly deviate from the behavior dictated
by χPT around the onset chemical potential. As a side
remark, we also mention that the structure of the chiral
Lagrangian is the same for two-color QCD and for QCD
with adjoint quarks. Thus, Eqs. (12) and (13) are also valid
in these settings [17].
We proceed by performing a similar, linear λ → 0

extrapolation for the renormalized magnetic susceptibility
Eq. (11). Subtracting the μI ¼ 0 contribution at each λ
turned out to be advantageous here as it makes the λ → 0

extrapolation flatter. The results again show a silver blaze-
type behavior up tomπ=2 and a rapid drop towards negative
values beyond the onset of pion condensation (see upper
panel of Fig. 2). This implies that the QCD medium at low
temperatures is diamagnetic for μI > mπ=2. The diamag-
netic response may be understood qualitatively from the
fact that just above mπ=2, the system can be approximated
as a dilute gas of pions. Pions are spinless and couple to the
magnetic field only via their angular momentum. This
coupling gives rise to a Landau-type diamagnetism,
i.e. χr < 0.
In fact, the condensate of noninteracting pointlike pions

is expected to be superconducting and, as a result, a perfect
diamagnet, which expels the magnetic field completely.
This is demonstrated by explicit calculation in the
Appendix. In full QCD, pions are not pointlike free
particles but interacting composite objects. This interaction
poses an upper limit both on the density and on the
conductivity. As a result, the magnetic susceptibility
remains below its free-case value. In addition, unlike the
chemical potential for free pions, the isospin chemical
potential in QCD is not bounded by the pion mass. For
μI > mπ=2, the density and the susceptibility are again
influenced predominantly by QCD interactions. In particu-
lar, the rise of the Polyakov loop, Eq. (10)—as shown in the
lower panel of Fig. 2—reveals that deconfinement and the
enhancement of nI occur roughly simultaneously. This also
implies that the pionic description breaks down. On the

same figure, the susceptibility is also plotted as function of
the isospin density, showing a linear section at low nI and a
saturation to about χr ¼ −0.1 as the density increases.
For even higher chemical potentials, QCD asymptotic

freedom allows one to neglect the strong interactions
completely. Then, the magnetic susceptibility can be
calculated for free quarks, giving [18]

χr ⟶
μI→∞ 1

4π2
X
f

ðqf=eÞ2 · logðμ2I =Λ2Þ > 0; ð14Þ

where the prefactor is related to the QED β function and Λ
is a dimensionful scale (in the on-shell renormalization
scheme of the free theory, Λ ¼ m) [13]. Thus, the suscep-
tibility must eventually turn positive as μI increases. To
explore the region where χr crosses zero, further simu-
lations on finer lattices are necessary.

IV. INTERPRETATION

Let us discuss the strong diamagnetic response above
μI ¼ mπ=2 from a different point of view and consider how
the charged pion mass responds to the magnetic field.
Taking the pion as a pointlike (relativistic) particle, the
leading-order dependence reads

FIG. 2 (color online). Renormalized magnetic susceptibility as
function of μI (upper panel) and of nI (lower panel) for various
values of λ (red, blue, and green points), and the λ → 0
extrapolations (yellow points), connected by the dotted line to
guide the eye. The gray vertical line in the upper panel marks the
onset of pion condensation. On the lower panel, the Polyakov
loop for aλ ¼ 0.0075 is also included.
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mπðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πð0Þ þ eB
q

; ð15Þ

as a consequence of the lowest-Landau-level structure for a
scalar particle. Note that Eq. (15) is subject to corrections
due to the B dependence of the pion self-energy. These
corrections are, however, small compared to the leading
behavior [19]. Indeed, recent lattice QCD results [20] have
confirmed Eq. (15) up to eB ≈ 0.4 GeV2. At T ¼ 0, the
renormalized free energy can be calculated as the integral
of the isospin density,

−
F ðB; μIÞ

V
¼

Z
μI

0

dμ0InIðB; μ0IÞ: ð16Þ

For B ¼ 0, taking into account the dependence nIðμIÞ from
Fig. 1 (for λ → 0), this implies that −F is zero up to mπ=2
and becomes positive above the threshold. Let us now
switch on a weak magnetic field and consider the free
energy up to OðB2Þ. To this order, F ðB; μIÞ still vanishes
for chemical potentials up to the corresponding pion mass.
However, due to Eq. (15), the silver blaze region expands as
B grows. This can only be maintained if the surface −F has
a large negative curvature in the B direction, i.e., through a
large negative susceptibility (for an illustration see Fig. 3).
Thus, the pion condensation phase must exhibit strong
diamagnetism—in line with our results presented in
Sec. III.
Note that the key component in the above argumentation

was the scalar nature of the pion, which allowed for a phase
with Bose-Einstein condensation and, at the same time,
implied an increase in the mass as B grows, Eq. (15). For
the baryonic chemical potential μB, the excited particles are
protons and neutrons. In this case the baryon density grows
much slower nB ∝ ðμ2B −m2

BÞ3=2, and condensation can
only occur via Cooper pairing if the ground state is in the
superfluid phase. Moreover, in the spin-half channel, the
mass (to leading order) is independent of the magnetic field
(both for neutrons and for protons), implying that the silver
blaze region is also insensitive to B. Thus, χr is expected to
be suppressed for μB just above mB. Note that in Nature

nucleons have anomalous magnetic moments that induce a
dependence of the mass on B, and through that a nonzero
value for χr, but due to the absence of direct condensation
and due to the larger mass, these effects are not expected to
produce a pronounced behavior like the one seen in Fig. 2.
To back up the picture described above, we also

determined the lowest-order expansion coefficients of the
observables in Eq. (8). In Fig. 4 we show the second
derivative of the pion condensate with respect to eB and the
reconstructed observable πðBÞ for a few values of the
magnetic field. As λ → 0, the derivative is found to exhibit
a pronounced dip around μI ¼ mπ=2 and, as a conse-
quence, the rise in π is shifted to higher isospin chemical
potentials as B is increased. The lattice data for the scalar
condensate and for the isospin density show similar trends.
Therefore, the results are in qualitative agreement with the
discussion above, namely that the magnetic field shifts the
onset of pion condensation to higher isospin chemical
potentials. On the quantitative level, the results in the lower
panel of Fig. 4 suggest that this shift is less pronounced
than that expectation based on Eq. (15). [Note that the
Taylor expansion in B breaks down at the phase transition,
where F is nonanalytic. Still, the reconstruction of πðBÞ is
expected to converge outside of the close vicinity of the
onset isospin chemical potential.]

V. IMPLICATION FOR MAGNETARS

Next, we consider a possible implication of the dia-
magnetic pion condensed phase on the physics of strongly
magnetized neutron stars. Charged pion condensation in
neutron star cores has been the subject of discussion for a
long time [21], as it is expected to have significant
implications for, e.g., the equation of state [22] as well

FIG. 3 (color online). Illustration of the negative of the free
energy as a function of B and μI for small magnetic fields. The
silver blaze region F ¼ 0 expands as B grows, implying a large
negative magnetic susceptibility in the pion condensation phase.

FIG. 4 (color online). Second derivative of the pion condensate
(upper panel; the symbols are the same as in Fig. 2) and the λ → 0
limit of the pion condensate at nonzero magnetic fields using the
leading Taylor expansion (lower panel). The gray vertical lines
indicate the pion mass for each magnetic field (increasing from
left to right).
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as neutron star cooling rates [23]. Assuming charge
neutrality, together with equilibrium for neutron β-decay
and for the process n → pþ π−, the threshold density for
pion condensation was found to be at a few times nuclear
matter density (see, e.g., Refs. [22,23]). The possibility of
charged pion condensation and its consequences for neu-
tron star physics have also been discussed more recently in,
e.g., Refs. [24–26].
The most probable constituents of the pion condensed

core are neutrons, protons, negatively charged pions,
electrons, and muons [27]. As we argued in Sec. IV, pions
are strongly diamagnetic, whereas the contribution of
protons and neutrons to χr is expected to be much smaller
in magnitude. We remark that for the electron—in contrast
to the other particles—the typical neutron star core mag-
netic fields exceed the rest mass squared (in fact, by several
orders of magnitude). Thus, for the effect considered below,
the electron contribution to the susceptibility is to be
calculated in the strong field regime and not at B ¼ 0.
Another comment about the electron contribution is in
order here. The free energy in the presence of magnetic
fields contains a thermal/dense contribution at nonzero T
and/or μ, as well as a vacuum term that stems from virtual
particles at T ¼ μ ¼ 0 and that dominates in the strong
field regime eB ≫ T2; μ2; m2 [18]. However, as we will
see, the vacuum term has no effect on the mechanism
discussed below. The thermal/dense contribution to χr has
been calculated several times in the literature [18,28–30]
and was always found to be below a few percents for the
magnetic field strengths considered here B ≈ 1018 G.
Similarly small estimates for the muon, proton, and neutron
contributions were also given in Ref. [30]. Altogether we
can thus estimate the total magnetic susceptibility in the
magnetar core by the pionic contribution and take χr ≈
−0.1 as a typical value that we obtained.
The proposed mechanism involves a gradient force that

emerges in inhomogeneous magnetic fields. Namely, the
minimization of the free energy induces the force density,

fd ¼ −
1

V
∇F ¼ χrjeBj∇jeBj: ð17Þ

Note that this force is only sensitive to the magnetic
properties of the medium, and neither the energy B2=2
of the magnetic field, nor the above mentioned vacuum
contribution in F contributes to fd (assuming that B is
constant in time, i.e. there is no feedback from matter to the
magnetic field configuration). Note moreover that since
the free energy is a Lorentz scalar, fd only depends on the
magnitude of B. We adopt the poloidal magnetic field
profile Bðr; θÞ of Ref. [7] for a rotating magnetar with
radius R ¼ 10 km and central field strength 1.5 × 1018 G.
The rotation axis is given by θ ¼ 0. Inserting χr ≈ −0.1 for
the susceptibility we obtain fdðrÞ; see the curves in Fig. 5
for three fixed values of the polar angle θ.

The so-obtained force density is to be compared to the
gradient of the isotropic pressure profile pðrÞ in the star.
For a first approximation, we take the simplified case of a
star with constant density [see Eq. (3.157) of Ref. [27]],
and consider typical values for the central pressure
pc ≈ 1034 Pa. The resulting gradient is also included in
Fig. 5, indicating that in this case the diamagnetic effect
amounts to up to 10% of the gravitational pressure gradient
in the inner core r≲ 3 km. The curves for fdðr; θÞ also
reveal that the diamagnetic force is anisotropic and tends to
push material from the center towards the equator. Thus, we
expect that the diamagnetism of isospin-asymmetric QCD
matter plays a relevant role for the description of convective
processes in the inner core. We mention that a similar
mechanism in the case of heavy-ion collisions was dis-
cussed in Ref. [31].

VI. CONCLUSIONS

We have discussed the QCD phase diagram in the μI-B
plane for the first time using lattice simulations. This setup
has a complex action problem, which was circumvented
through a Taylor expansion in B at nonzero isospin
chemical potentials. We measured thermodynamic observ-
ables for a wide range of μI values, in the silver blaze
region, through the onset of pion condensation at
μI ¼ mπ=2, up to lattice saturation. The results indicate
that the condensation threshold is shifted to higher values
of μI as B grows, in qualitative agreement with the
dependence mπðBÞ of the pion mass on the magnetic field.
We demonstrated how this tendency explains the observed
strong diamagnetic behavior of the system in the pion
condensation phase. The diamagnetic nature of the pion
condensate is also predicted by free-case arguments; see the
analytic calculation of the pionic susceptibility in the
Appendix.
In addition, we also presented an argument suggesting

that the magnetic response of the QCD ground state is most
sensitive to isospin chemical potentials, and the baryon
chemical potential is not expected to play a dominant role

FIG. 5 (color online). The force generated by QCD diamag-
netism (along various directions specified by the polar angle θ)
and 10% of the pressure gradient as functions of the radial
coordinate.
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in this respect. Our results were obtained on coarse lattices
with a larger-than-physical pion mass, and thus should be
considered exploratory. However, since the findings are
understood in terms of general arguments like the existence
of a pion condensation phase and the diamagnetic nature of
pions, the results are not expected to change qualitatively if
the physical point and the continuum limit are approached.
We conclude by sketching the magnetic nature of QCD

matter on the T-μI phase diagram. At μI ¼ 0, lattice
simulations have shown that the susceptibility is positive
for T ≳ 120 MeV [12,13,31–33], whereas it becomes
slightly negative for lower temperatures [13]. The latter
diamagnetic region is predicted by χPT and by the hadron
resonance gas model [13,33], and also stems from the
presence of charged pions. However, while at T ¼ 0 and
μI > mπ=2, pions are created in abundance, at T > 0 they
are induced merely by thermal fluctuations. Accordingly,
the diamagnetic response at 0 < T ≲ 120 MeV is much
weaker (χr ≈ −0.002 [13]) than the one in the pion
condensation phase (χr ≈ −0.1). Note also that around
the deconfinement temperature (Tc ≈ 150 MeV) at
μI ¼ 0, the susceptibility was found to be significantly
smaller (χr ≈ 0.01 [13]) than the magnitude of our results in
the pion condensed phase. Well above the deconfinement
transition temperature at μI ¼ 0, the dominant degrees of
freedom are quarks, giving rise to strong paramagnetism,
with χr ∝ logðTÞ, similarly as in Eq. (14), just with μI
replaced by T [13]. Thus, asymptotic freedom in QCD
ensures that QCD matter is paramagnetic for very high
values of T and/or μI.
Based on this picture, our conjecture of the magnetic

phase diagram—summarizing the diamagnetic and

paramagnetic regions of QCD matter—is shown in
Fig. 6. The phase transition at μI ¼ mπ=2 is expected to
bend to the right [15] and either persist towards higher
temperatures or end at the deconfinement phase transition
line if the latter exists. Which scenario is the case and
whether there are additional phase transition lines in the
diagram is presently unclear. The isospin density has been
shown to change the nature of the chiral transition in
8-flavor QCD [34]. The structure of the T-μI phase diagram
has been studied in various model frameworks as well
[35–38]. A possible critical endpoint at nonzero isospin
densities and magnetic fields was also discussed in
Refs. [39,40] in model setups. To determine the detailed
structure of the interior of the phase diagram on the lattice
for the interesting case of 2 or 2þ 1 flavors, further
simulations are necessary.
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APPENDIX: SUSCEPTIBILITY OF FREE PIONS

In this appendix we calculate the magnetic susceptibility
of free nonrelativistic pions. Since we aim to describe the
condensation phase at low temperatures, where only one
species—say, the π−—contributes, we consider a pion with
charge q ¼ −e and exclude its positively charged anti-
particle for simplicity. The energy levels read

En ¼ mπ þ
jqBj
2mπ

ð2nþ 1Þ þ p2
z

2mπ
; ðA1Þ

where pz is the momentum parallel to B, and we included
the rest mass mπ of the pion in the energy. The matter
contribution to the free energy of the pion gas at temper-
ature T and chemical potential μπ in a finite volume V is
written as

Fm ¼ jqBj · V
4π2

Z
dpz

X
n

T log ½1 − e−ðEn−μπÞ=T �: ðA2Þ

This expression does not contain the vacuum contribution,
which stems from virtual pions at μπ ¼ T ¼ 0 in the
presence of the magnetic field (see, e.g., Refs. [18,41]).
However, the vacuum part does not contribute to the
renormalized susceptibility at B ¼ 0, nor does it have an
effect on the mechanism discussed in Sec. V. It is therefore
neglected in the following.
The renormalized susceptibility is obtained as the second

derivative of Fm with respect to eB. Since the sum and the

FIG. 6 (color online). Conjecture of the magnetic structure of
the phase diagram in the T-μI plane. Regions with positive
(negative) susceptibilities are represented by red (blue) and darker
colors mark larger magnitudes. At μI ¼ 0 the transition from
diamagnetism to paramagnetism occurs slightly below the chiral
crossover temperature Tc ≈ 150 MeV [13]. The solid line at high
μI represents a true phase transition separating the vacuum and
the pion condensation phase. There may be additional phase
transition lines in the interior of the diagram, indicated by the
question mark.
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integral in Fm are ultraviolet finite, these can be inter-
changed with the derivative,

χr ¼ 1

4π2

Z
dpz

X
n

ð2nþ 1Þ=mπ

1 − expð p2
z

2mπT
− μπ−mπ

T Þ
: ðA3Þ

The sum over n is calculated using ζ-function regulariza-
tion, while the integral gives a polylogarithm function,

χr ¼ −1
12π2

ffiffiffiffiffiffiffiffiffi
2πT

p
ffiffiffiffiffiffi
mπ

p · Li1=2½eðμπ−mπÞ=T �: ðA4Þ

Note that for our bosonic system, the chemical potential
cannot exceed mπ . In the silver blaze region μπ < mπ , the
zero-temperature limit of the polylogarithm function
vanishes, resulting in χr ¼ 0. However, for μπ → mπ

the susceptibility diverges for any infinitesimally small
temperature,

lim
T→0

χrðμπ < mπÞ ¼ 0; lim
μπ→mπ

χrðT > 0Þ ¼ −∞: ðA5Þ

We remark that if the condensation phase is approached by
gradually lowering the temperature at fixed density n, pions
start to condense at the critical temperature [42]

Tc ¼
2π

mπ

�
n

ζð3=2Þ
�

2=3
; ðA6Þ

which is always nonvanishing.
A remark about χr approaching −∞ is in order. Notice

that B equals the magnetic field acting in the medium,
which is to be distinguished from the external magnetic
field H that would be present in the absence of pions. The
two fields are connected by the magnetization,

B ¼ H þMe; M ¼ −
1

V
∂Fm

∂ðeBÞ : ðA7Þ

For weak fields, M ¼ χr · ðeBÞ, which allows one to
express the magnetic permeability pm of the medium as

pm ≡ B
H

¼ 1

1 − e2χr
: ðA8Þ

Clearly, for χr ≪ 1 the difference between B and H is
negligible and pm is very close to unity. However, for
χr → −∞, the permeability vanishes, signaling that the
magnetic field is expelled from the system completely. This
perfect diamagnetism is characteristic for superconductors.
Indeed, at μπ ¼ mπ the system becomes superconducting
due to the condensation of charged pions.
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