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Time-dependent CP asymmetry measurements inD → hþh− decays, where h ¼ π or ρ can, in principal,
be used to constrain the angle βc of the cu unitarity triangle up to theoretical uncertainties. Here we discuss
the theoretical uncertainty from penguin contributions that can be investigated through the use of isospin
analyses. We show that uncertainty from penguin pollution on a measurement of βc (or alternatively the
mixing phase) in D0 → πþπ− (ρþρ−) decays is 2.7° (4.6°). We also comment on the applicability of this
method to D0 → ρπ decays for which measurements of weak phases with a precision below the one degree
level may be possible.

DOI: 10.1103/PhysRevD.90.094028 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

I. INTRODUCTION

The Standard Model (SM) description of CP violation is
defined by a single phase in a 3 × 3 complex, unitary
transformation known as the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix [1,2]. Measurements of time-
dependent CP asymmetries (TDCPA) arising from mixing
and decay of neutral B0

d mesons have been used with great
effect to test SM expectations for weak phases observable
in the “bd” unitarity triangle illustrated in Fig. 1(a). In this,
the smallest angle, “β” is presently known to be 21.5° with
a precision of significantly less than 1°. It has been pointed
out [3] that a full check of the 3-generation unitary structure
of the CKM matrix should include similar tests of pre-
dictions for phases in the bs and cu triangles illustrated in
Figs. 1(b) and 1(c) governing B0

s and D0 decays, respec-
tively. The smallest angle (βs) in the former is computed to
be approximately 1° [4] and for the latter it is computed in
Ref. [5] to be 0.035°. Experimentally, βs has been measured
to a precision of ∼2∘ [6], and is compatible with the SM
expectation. The precision of this measurement should be
improved to a level that better tests the SM as Bs samples
from the LHC grow. A test of the cu triangle is of particular
interest since this is the only case involving up-type quarks,
but no experimental constraint yet exists. Clearly, even
though huge samples of D0 meson decays to a wide range
of decay modes will soon be available from the LHCb,
Belle II and BES III experiments, this will be challenging
if, indeed, βc really is so small. However, long range or
beyond SM effects might show it to be measurably larger.
In this paper, we explore how well βc might eventually be
constrained.
The possibility to measure weak phases in D0 decays to

CP eigenstates from TDCPAwas explored in Ref. [5]. The
CP asymmetry AðtÞ≃ xt sinϕW is approximately linear in
decay time t (in lifetime units) where x ¼ Δm=Γ is the
difference in the twoD0 mass eigenstates, Γ is the meanD0

decay time and ϕW is the weak phase measured. Estimates

for the precision that could be achieved were made
and appear to be close to 1° (modulo systematic and
theoretical uncertainties) for the channels D0 → πþπ−
and D0 → KþK−.1 With ϕW ∼ 1°, about thirty times the
expected SM value, the asymmetry would grow one part
per mil in ∼5 lifetimes. Such precision would not allow a
stringent CKM test, but could provide useful information
for elucidation of the effects that penguin amplitudes, other
long range effects, or even new physics might have.
TDCPA measurements determine the weak phase

ϕW ¼ ϕMIX − 2βc;eff where ϕMIX is the D0 mixing phase,
that should become known to about 1° in the next few
years, and βc;eff ¼ βc − δβc where δβc represents theoreti-
cal uncertainties. In the absence of such uncertainties, the
difference between ϕW measured for D0 → KþK− and for
D0 → πþπ− decays would cancel the effect of ϕMIX.
One of the sources of theoretical uncertainty that

could cause βc;eff to differ from βc comes from gluonic
loop (or penguin) amplitudes with large weak phase (close
to γ ≃ 62°) and unknown magnitude. It was noted in
Ref. [5] that “penguin pollution” in D → ππ decays could
be significant, by virtue of the large branching fraction of
D0 → π0π0. One can account for the effects of SM gluonic
penguins by performing an isospin (I-spin) analysis [7] of
the hh final states (h ¼ π, ρ) in analogy with the corre-
sponding situations found in B decays [8–11]. Here we
present a quantitative analysis of penguin pollution in D →
ππ and D → ρρ decays using existing experimental data,
and compare these results with expectations from the CP
self-conjugate decays D → πþπ−π0, which appear to have
small penguin contributions [12–16].
In general, this set of decays proceeds via tree (T),

W-exchange (E), and three penguin amplitudes (Pd; Ps and
Pb). The naive SM expectation is that direct CPV will be
very small. In this model, the b-penguin phase relative to

1Charge conjugation is implied throughout.
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that of the tree is large (∼γ ¼ 68°) but its magnitude
OðjVcbVub=VcdVudαs=πjÞ ∼ 10−4 is tiny. E and Pd ampli-
tudes have the same weak phase as T for these modes while
the s-penguin phase differs by only βc ≃ 0.035°. The CKM
couplings for Pd and Ps are large but their sum is equal to
the negative of that for Pb (cu triangle unitarity condition).
The resulting penguin amplitude is, therefore, ∼jVubj with
magnitude dictated by (U-spin) symmetry breaking
∼ðm2

s −m2
dÞ=m2

c, and is expected to be small.
Prompted by evidence, earlier reported by the LHCb

Collaboration [17] for an unexpectedly large direct CP
asymmetry difference (−0.82� 0.24%) between D0 →
KþK− andD0 → πþπ− decays, theoretical interest recently
centered on the perturbative QCD properties of the light
quark amplitudes Ps and Pd and on the possibility for
enhancement by such U-spin symmetry breaking [18].
Estimates for these effects from D0 → hþh− (h ¼ π or K)
decay rates [19–21] could be tuned to allow CP violating
asymmetries up to a few parts per mille in these decays.
With larger available data samples of both promptD0 ’s and
D0 ’s from B decays, however, the LHCb estimate for this
asymmetry has shrunk to 0.49� 0.30ðstatÞ � 0.14ðsystÞ%
[22], which is now consistent with zero. Experimentally,
measurement of the relative influence of P and T

amplitudes in D decays can be useful in understanding
this confusing picture. We will refer to “P” to encompass
Pb, Pd, and Ps amplitudes with their QCD enhancements,
weak phase ∼γ relative to T and the property of allowing
only ΔI ¼ 1=2 transitions (conversion of a c to a u
quark). In contrast, we consider “T” to include tree and
W-exchange amplitudes, which have the same weak phase
and allow both ΔI ¼ 1=2 and 3=2 transitions.
We examine the use of methods originally developed for

the corresponding B physics problem to constrain the
penguin pollution corrections to unitarity triangle phase
measurements in c → d transitions. Using currently avail-
able D decay measurements, we then attempt to estimate
the precision with which such measurements of P and T
could be made.

II. ISOSPIN ANALYSIS OF D → ππ DECAYS

The prescription given here parallels the one presented in
Ref. [7] which outlines how to measure the bd unitarity
triangle angle α from B → ππ decays by constraining the
penguin pollution. In this strategy, the T and P amplitudes
are distinguished on the basis of their I-spin structures.
Bose symmetry dictates that, for either B or D decays, the
two-pion (or two-ρ) final states can be in an I ¼ 0 or I ¼ 2
final state, calling for specific fractions of both ΔI ¼ 1=2
and ΔI ¼ 3=2 components. I-spin symmetry, ignoring any
small (∼1%) electromagnetic contributions, calls for a
triangular relationship between amplitudes AijðĀijÞ for
DðD̄Þ → hihj decays (h ¼ π or h ¼ ρ):

1
ffiffiffi

2
p Aþ− ¼ Aþ0 − A00;

1
ffiffiffi

2
p Ā−þ ¼ Ā−0 − Ā00; ð1Þ

where the charges are i; j ¼ þ1;−1; 0. These two triangles
(shown in Fig. 2) can be aligned, by a rotation 2βc of one of
the triangles, with a common base given by Aþ0 ¼ Ā−0

where jAþ0j ¼ jĀ−0j. By convention the rotated amplitudes
are usually referred to as ~Aij. Penguin operators only allow
ΔI ¼ 1=2 transitions so, in the limit of I-spin symmetry,
the amplitudes Aþ0 and Ā−0 are pure tree (I ¼ 2), whereas
the other amplitudes are a combination of tree (I ¼ 0; 2)

FIG. 1 (color online). Unitarity triangles relating CKM ampli-
tudes for (a) Bd, (b) Bs and (c) D decays (not to scale). We label
angles with appropriate suffix as β (smallest), α (closest to 90°)
and γ. Note that γc ¼ γ ≃ 68°.

2 / +-A

-0, A+0A

00A
2 / -+A 00A

FIG. 2. The I-spin triangle relations given in Eq. (1).
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and penguin (I ¼ 0) contributions. In this case the angle
between Aþ− and ~A−þ, the shift in the measured phase
resulting from penguin contributions, is 2δβc. Neglecting
other sources of theoretical uncertainty one has
2δβc ¼ 2ðβc − βc;effÞ. A similar relation exists for time-
dependent asymmetry measurements in the h0h0 mode
between A00 and ~A00.
One must measure the rates and CP asymmetries for

D0 → hþh−, D� → h�h0, and D0 → h0h0 in order to
extract the weak phase of interest, βc. The amplitude of
sinusoidal oscillation in the time dependence ofD → πþπ−

decays is related to sinðϕMIX − 2βc;effÞ as discussed in
Ref. [5], where ϕMIX is theD0 mixing phase. The proposed
I-spin analysis would enable one to translate a measure-
ment of βc;eff to a constraint on βc, given a precise
determination of the mixing phase and the aforementioned
D → hh amplitudes. Also, with a measurement of the time-
dependent CP asymmetry in D0 → πþπ− decays, using the
method outlined in [23] (used by Belle for their B → πþπ−

constraint on the unitarity triangle angle α [24]) one could
also constrain the jP=Tj ratio. The penguin constraint from
either of these methods could also be used, under the
assumption of SU(3) to constrain the penguin content of
D → KK decays. Alternatively one can study the I-spin
decomposition for D → KK decays as presented in [25].
In D meson decays the magnitude of CP asymmetries

are expected to be smaller by a factor ∼10−2 than for B’s, so
electroweak penguin (EWP) processes, that violate I-spin
conservation, can play a more important role. EWPs are,
however, suppressed by a factor α=αs and they do preserve
CP symmetry. Since the I-spin relations used work
mostly with differences between D and D̄ amplitudes,
such effects are largely removed, at least to first order [26].
An estimate of the uncertainties in δβc can, therefore, be
made ignoring EWPs.
Current experimental constraints (i.e. branching frac-

tions) on the inputs necessary to perform an I-spin analysis
of D → ππ decays can be found in Ref. [27]. At this time
there are no experimentally measured CP asymmetries,
however it is safe to assume in the SM that direct CP
asymmetries in these modes are small so that, in effect, the
triangle relations of Eq. (1) are equivalent up to a possible
reflection in Aþ0. Hence there is an ambiguity in the value
of 2δβc. With the large samples of data in these modes that
will soon be available at BES III, Belle II and possibly also
at LHCb, one would be able to refine our knowledge of the
inputs to this I-spin analysis, and eventually relax the
assumptions on CP asymmetries.
We create ensembles of Monte Carlo simulated experi-

ments, based on the results given in Ref. [27], in order to
compute 2δβc, noting the ambiguity in the orientation of
the two relations given in Eq. (1). As a cross-check we also
use the same method as in Ref. [28] to verify the numerical
estimates obtained. On performing the I-spin analysis using
existing data one extracts the constraint shown in Fig. 3,

where the uncertainty on each of the solutions is 5.4°.
Hence the uncertainty from penguin contributions on a
measurement of βc fromD → ππ decays is found to be 2.7°
using current data. The π0π0 final state is required in the
I-spin analysis, so it may not be possible to improve this
estimate using data collected solely from hadron collider
experiments. These results rely on measurements of decay
rates limited by systematic uncertainty in π0 efficiency.
Measurement of the CP asymmetries of these rates are less
limited, however. We estimate, assuming a similar detection
performance is achievable to that found at BABAR and
Belle, that results from high statistics eþe− based experi-
ments could be able to measure δβc at the level of Oð1.3°Þ
in D → ππ decays. Possible improvements in tracking and
calorimetry should also be investigated to understand if a
sub-1° level could be achievable.

III. ISOSPIN ANALYSIS OF D → ρρ DECAYS

The I-spin analysis for D → ρρ decays parallels the
procedure described for D → ππ, with the exception that
there may be an I ¼ 1 contribution to the (4-pion) final
states as discussed in Ref. [29] for the corresponding B →
ρρ case. It is possible to test for an I ¼ 1 component by
measuring βc;eff as a function of the ππ invariant mass in the
ρ region. Any observed variation as a function of the
difference in these masses would be an indication of such a
contribution.
Experimentally the situation is not quite as straightfor-

ward as the D → ππ case. The presence of two broad ρ
resonances in the final state will result in larger back-
grounds than in the ππ case. Furthermore the four-pion ρρ
final state has to be distinguished from other possible
resonant and nonresonant contributions, taking into
account any interference that may occur. In particular there
could be visible interference effects between ρ0 and ω
apparent in the ρ0 line shape for the ρþρ0 and ρ0ρ0 modes.
As noted in Ref. [5], we expect the fraction of longitudi-
nally polarized events fL to be nontrivial (fL ∼ 0.83), so
one has to perform a transversity analysis in order to extract
CP-even and CP-odd components of the final state. We
note that experimental constraints on fL for ρ0ρ0 are
consistent with naive expectations discussed in Ref. [5].
Having done this, one can then perform an I-spin analysis
for each of the three signal components (i.e. the three
transversity amplitudes), where in principle one could have
a different level of penguin pollution for each component.
Current experimental constraints on the inputs necessary to
perform an I-spin analysis of D → ρρ decays can be found
in Ref. [27], where we interpret the four-pion final state as
being dominated by ρρ decays. As before it is safe to
assume that direct CP asymmetries in the ρρ modes are
small. In the following we assume that only the longitu-
dinally polarized events are used in order to constrain βc;eff .
On performing the I-spin analysis one extracts the con-
straint on 2δβc shown as the dashed line in Fig. 3. The
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penguin uncertainty is broader than obtained for the ππ
case, and for ρρ the two different solutions have an
uncertainty of 9.2° and overlap slightly. Hence there is
an uncertainty of 4.6° on a future measurement of βc from
this source. The fraction of resonant ρρ events required to
minimize the level of unphysical results is one, highlighting
the need for improved experimental input in this area. As
with the ππ case one needs to reconstruct final states with
neutral particles in order to perform this I-spin analysis.
Thus it is important that experiments such as BES III and
Belle II study the D → ρρ final states in detail in order to
provide the appropriate inputs for the I-spin analysis.
However, we expect that LHCb should be able to contribute
significantly via measurement of D0 → ρ0ρ0 decays.

IV. ROLE OF PENGUINS IN D0 → πþπ−π0 DECAYS

Time-dependent CP asymmetry measurements of D0

decays to the CP-even state ρ0π0 also provide information
on βc;eff [5]. These decays have contributions from Cabibbo
suppressed exchange (C) and color suppressed tree dia-
grams (T), each with the weak phase of V�

cdVud (following
the usual convention) that could contribute to a CP
asymmetry. Again, the penguin diagram can play a role
in the weak phase, so some estimate of it needs to be made.
The ρ0π0 mode represents almost 30% of the 3-body

decays D0 → πþπ−π0 whose branching fraction is
ð1.43� 0.06Þ%, over ten times larger than that for
D0 → πþπ−. The advantage arising from this additional
source of data, despite an increase in experimental com-
plexity of the I-spin makeup of the ρπ states, is even further
enhanced by additional information from the other ρπ
charge modes. It can be used to place interesting constraints
on the value for βc directly, using the method outlined in
[30] for the extraction of α from the corresponding
B0 decay.
Amplitude analyses have been made by the CLEO-c [12]

and BABAR [13] Collaborations. The BABAR analysis,
which used a sample almost 20 times larger than

CLEO’s, revealed, in addition to the 3 ρπ modes, the
presence of radial excitations of the ρ as well as other
CP-odd eigenstates (f0π0 and f2π0 with I ¼ 1Þ. An I-spin
study [14,15] of the BABAR amplitudes has also shown that
I ¼ 0 is dominant in the three D0 → ρπ modes. This
somewhat surprising observation has been interpreted as
being consistent with SUð3Þflav relationships [16] with
only C and T amplitudes from other D0 → Pþ V
(pseudoscalar þ vector) decays. The effect of penguin
contributions was not required in this interpretation.
Larger event samples are yet to come from all these channels
that may be able to clarify the role of penguins further.
The I-spin structure of the ρπ final states differs from that

of either ππ or ρρ states [31] that each consist primarily of
pairs of identical bosons with even I. The ρπ states allow
for I ¼ 0; 1 or 2, and all but I ¼ 2 are accessible to penguin
transitions. The decay amplitudes can be written [26] in
terms of I-spin amplitudes A1 and B1, ΔI ¼ 1=2 transi-
tions, respectively, to I ¼ 1 and I ¼ 0 three pion states, and
A3 and B3, ðΔI ¼ 3=2Þ transitions to I ¼ 2 and I ¼ 1
states. SM penguins cannot contribute to ΔI ¼ 3=2 proc-
esses and we ignore ΔI ¼ 5=2 transitions that are not
expected in the SM. Then

Aþ− ¼ A3 þ B3 þ
1
ffiffiffi

2
p A1 þ B1

¼ Tþ− þ P1 þ P0

A−þ ¼ A3 − B3 −
1
ffiffiffi

2
p A1 þ B1

¼ T−þ − P1 þ P0

A00 ¼ 2A3 − B1

¼ ½Tþ− þ T−þ − Tþ0 − T0þ�=2 − P0

Aþ0 ¼ 3
ffiffiffi

2
p A3 −

1
ffiffiffi

2
p B1 þA1

¼ ½Tþ0 þ 2P1�=
ffiffiffi

2
p

A0þ ¼ 3
ffiffiffi

2
p A3 þ

1
ffiffiffi

2
p B1 −A1

¼ ½T0þ − 2P1�=
ffiffiffi

2
p

where the first superscript in the decay A and tree T
amplitudes is the charge state for the ρ, and the second is
that for the π. P0 and P1 are, respectively, penguin
amplitudes leading to I ¼ 0 and I ¼ 1 states. A sum rule
involving all five decay amplitudes

Aþ− þ A−þ þ 2A00 ¼
ffiffiffi

2
p

ðAþ0 þ A0þÞ ð2Þ

can be inferred, and is represented graphically in Fig. 4.
The corresponding antiparticle amplitudes ~A are similarly
related though they each can differ from the D0 ones. Each
side of Eq. (2) corresponds to a sum of amplitudes with

)β-c,effβ = 2(cβδ2
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FIG. 3. The constraint on 2δβc obtained from (solid) D → ππ
and (dashed) D → ρρ decays using existing data. Mirror sol-
utions arising from ambiguities in the orientation of the I-spin
triangles also exist for −180° ≤ 2δβc < 0.
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ΔI ¼ 3=2 (tree only). The asymmetry between these sums
for D0 and D̄0 should therefore be negligible in the SM.
Even if I-spin symmetry is broken, the difference between
theD0 and D̄0 sums should be very small [26]. These sums,
therefore, play a similar role to the πþπ0 and ρþρ0 modes
discussed earlier, and a similar rotation of the charged D̄
amplitudes through 2βc;eff , illustrated in Fig. 4, aligns them.
Penguin contributions lead to a difference in phase 2δβc to
~A00 (the rotated D̄0 → ρ0π0 amplitude) relative to A00.
Charged D → ρπ decays are observed in two different

Dalitz plots, Dþ → πþπ0π0 (ρþπ0) and Dþ → πþπ−π0
(ρ0πþ). It is, therefore, impossible to determine their phases
relative to each other, or to any of the three neutral ρπ
modes. For a similar reason, it is difficult to relate their
magnitudes in light of uncertainties in the normalization of
amplitudes from these Dalitz plots. The charged modes,
therefore, can only add a somewhat weak I-spin constraint.
Fortunately, as pointed out by Quinn and Snyder [30], a
time-dependent amplitude analysis of the πþπ−π0 Dalitz
plot alone (just the upper part of Fig. 4) is sufficient to
extract the weak decay phase βc;eff , as well as the P=T ratio
from the time dependence of all threeD0 → ρπ modes. The
relative phase of the amplitudes A00 and ~A00 is 2δβc, βc;eff
can also be determined, and is obtained from the time
dependence of theD0ðD̄0Þ → ρ0π0 amplitude and δβc from
the ρ� modes.
The phase βc can also be obtained directly. A further

advantage of analyzing just the three B0 → ðρπÞ0 channels
is that only their amplitude ratios and relative phases are
required, and information on these reside entirely within
the same Dalitz plot. The precision of their measurements,
therefore, should all be reduced with larger sample sizes,
with no limiting systematic uncertainty from π0 detection
efficiency.
To estimate the precision in βc, we take as a model the

results from the BABAR time-integrated amplitude analysis

of D0 → πþπ−π0 decays [13]. At this statistical level,
interferences in the Dalitz plot allow measurement preci-
sion of relative phases of A−þ, Aþ− and A00 of ∼1° and of
relative magnitudes at the level of ∼1%. The BABAR
analysis combined both D0 and D̄0 samples in a single
fit, so in our study, we take random fluctuations about the
same model (i.e. no direct CPV). Our expectation, then is
that the central value we find for βc is zero and that any
penguin will be much smaller than the corresponding tree
amplitude. In a time-dependent analysis, mixing brings the
D0 and D̄0 into interference, allowing measurement of their
relative decay phases. The time-integrated BABAR analysis
did not, therefore, provide any information from mixing-
induced CPV on the central value for βc;eff, so we set this to
be zero.
To estimate the precision in both βc and in the ratio jP=Tj

for the ρπ modes, we follow the Quinn and Snyder [30]
procedure, as used for B0 decays by the B factories (e.g.,
Ref. [32]). Using the BABARmodel as input, we construct a
sample ofD0 → πþπ−π0 decays and scan a set of values for
βc around 0°. At each value, we obtain the p-value from the
minimum χ2 fit and the ratio of jP=Tj (for the neutral ρ).
The p-values are plotted in Figs. 5(a) and 5(b). As
expected, a peak centered at βc ¼ 0° is seen in the p-value
and that this has a width of close to 1°. At this value for βc
the jP=Tj ratio is zero, with an uncertainty of �0.01. It is
seen that βc can be measured with a sample comparable to
that of BABAR with a precision of ∼1° and jP=Tj with
precision ∼� 0.01.

FIG. 4 (color online). The I-spin pentagon relation for the D →
ρπ modes given in Eq. (2). Amplitudes for D0 (solid) and D̄0

(dotted) are shown. The D̄0 pentagon is rotated so that the sums
on each side of Eq. (2) coincide with those for D0 decays. These
rotated amplitudes are labeled with a tilde. The effect of penguins
that can contribute a change, δβc, in the phase of the ρ0π0

amplitude is illustrated.

FIG. 5. (a) p-values for minimum χ2 fits to BABAR data for
−3° < βc < 3° about zero, the value expected as outlined in the
text. A second, identical peak centered at 180° is also observed in
the full βc scan, but is not shown here. (b) The corresponding
values for jPj=jTj, the ratio of magnitudes for the penguin and
tree amplitudes for the ρ0π0 decays. As expected, this ratio is zero
at βc ¼ 0 in the absence of CPV, with an uncertainty of �0.01.
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We implicitly assume that the D0 mixing parameters are
well known, as we anticipate they will be when the analyses
outlined here are made. Perhaps the mixing phase
(ϕMIX ¼ arg½q=p�) is one of these parameters that most
directly affects any conclusions on possible constraints on
the cu unitarity triangle. This phase is not well understood
theoretically, and the time-dependent CP asymmetry mea-
surements discussed here determine the combination
ϕMIX − 2βc. It is estimated [33] that ϕMIX can be measured
in a super flavor factory or LHCb with precision of order 1°.
Since then, more recent measurements from LHCb indicate
that this remains so [34]. So constraints on the cu unitarity
triangle will probably lie in the 1° level, permitting
observation of deviations from the SM expectations at this
level.

V. SUMMARY

The analysis of penguin pollution discussed here is the
first step toward resolving the theoretical uncertainties
associated with a measurement of the mixing phase in
the near term, and constraining the cu unitarity triangle
phase βc. Additional theoretical uncertainties should be
investigated, including those related to long distance
amplitudes contributing to the direct decay of a D0 or
D̄0 meson into the final state, as well as possible I-spin
breaking terms arising from electroweak penguin contri-
butions. As noted in Ref. [5], the penguin contribution in
D → ππ decays is potentially large, however current
experimental inputs are precise enough to enable one to
constrain the uncertainty from penguins on βc to a few
degrees. Super flavor factories should be able to further
reduce this uncertainty with improved measurements of the
ππ final states. Assuming that the four-pion final states
measured in charged and neutral decays of D mesons are
dominated by resonant ρρ contributions, we find that the
maximum value of the penguin pollution contributions in
D → ρρ decays is smaller than that for ππ, however current
experimental data are of limited value and we obtain a
worse precision for the penguin pollution uncertainty.
A detailed experimental analysis of all of the ρρ final
states is needed in order to improve on the estimate we
obtain here. While BES III will not be able to contribute
to the time-dependent asymmetry inputs required to
extract an estimate of βc, this experiment should be
able to make significant contributions to the knowledge

of time-integrated rates and asymmetries used as inputs to
the I-spin analysis. Time-dependent analyses are likely to
provide measurements of βc;eff from D0 → ρ0π0 decays
with precision in the 1° range using the large samples
expected from the super favor factories. In the meantime,
BES III should be able to provide large samples of such
decays allowing for more precise studies to be made of
time-integrated Dalitz plots. It is also possible that CP
asymmetries and I-spin analyses of the various charge
states of the ρπ systems can be used to estimate penguin
contributions.
The D0 → ρπ modes are especially encouraging. In

particular, full time-dependent amplitude analyses of the
neutral D0 → 3π Dalitz plots should allow internally
compatible measurements for magnitudes and phases for
each of the three charge modes for both D0 and D̄0 decays.
These measurements should not be limited by systematic
uncertainties in π0 detection efficiency, so resolution in δβc
could shrink considerably below the 1° level as larger
samples are used.
The different constraints on penguin pollution evident in

Figs. 3 and 5 are a clear indication that some of the
ambiguities involved in a measurement of βc from D → hh
decays can be resolved when results from different final
states are combined. A recent result from Lattice QCD by
the RBC-UKQCD Collaboration [35] states that penguins
should be small in this system. This prediction can be tested
using time-dependent asymmetry measurements of
D → hh decays combined with the isospin analysis dis-
cussed here. We conclude that with sufficient data it is
feasible to perform a measurement of the cu unitarity
triangle phase βc to a precision less than 1°, comparable to
that achievable by the B factories and LHCb for the bd (bs)
unitarity triangles, thus limiting the contribution of any new
physics to this phase.
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