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We calculate differential cross sections for the Higgs boson and/or two-photon production from the
intermediate (virtual) Higgs boson within the formalism of kt factorization. The off-shell g�g� → H matrix
elements are used. We compare results obtained with infinite top fermion (quark) mass and with finite mass
taken into account. The latter effect is rather small. We compare the results with different unintegrated
gluon distributions from the literature. Two methods are used. In the first method first Higgs boson is
produced in the 2 → 1 gg → H kt-factorization approach and then isotropic decay with the Standard Model
branching fraction is performed. In the second method we calculate directly two photons coupled to the
virtual Higgs boson. The results of the two methods are compared and differences are discussed. The results
for the two photons from the Higgs boson are compared with recent ATLAS Collaboration data. The
leading-order gg → H contribution is rather small compared to the ATLAS experimental data (γγ transverse
momentum and rapidity distributions) for all unintegrated gluon distributions from the literature. We
include also the higher-order contribution gg → Hð→ γγÞg, gg → gHg and the contribution of the WþW−

and Z0Z0. The gg → Hgmechanism gives a similar cross section as the gg → H mechanism. We argue that
there is almost no double counting when adding gg → H and gg → Hg contributions due to the different
topology of Feynman diagrams. The final sum is comparable with the ATLAS two-photon data. We discuss
uncertainties related to both the theoretical approach and existing unintegrated gluon distribution functions.
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I. INTRODUCTION

The Higgs-like boson has been discovered recently at the
LHC [1]. It has been observed in a few decay channels.
The γγ and Z0Z0;� are particularly spectacular [2–5]. Before
the discovery many of the Higgs properties were strongly
dependent on its mass. Now knowing the Higgs boson mass
MH ≈ 126 GeV we can fix the parameters for production
and decay of the Higgs boson, at least within the Standard
Model. We slowly enter an era of more detailed studies.
In particular, it is very important to know what is the Higgs
boson spin and parity and if it is a Standard Model object.
Also understanding the rapidity and transverse momentum
distributions is particularly interesting. While the total cross
section is well under control and was calculated in leading-
order (LO), next-to-leading-order (NLO) and even next-
to-next-to-leading-order (NNLO) approximation [6] the
distribution in the Higgs boson transverse momentum is
more challenging. This can be addressed e.g. in the trans-
verse momentum resummation approach (see e.g. Refs. [7,8]
and references therein).
It was advocated recently that precise differential data for

the Higgs boson in the two-photon final channel could be
very useful to test and explore unintegrated gluon distribution

functions (UGDFs) [9]. It was shown very recently [10] that
the kt-factorization formalism with commonly used UGDFs
[Kimber-Martin-Ryskin (KMR) [11] and Jung Catani-
Ciafaloni-Fiorani-Marchesini (CCFM) [12]] gives a reason-
able description of recent ATLAS data obtained at

ffiffiffi
s

p ¼
8 TeV [14]. We perform a similar calculation and, as will be
seen in the following, draw slightly different conclusions.
In the present study we present several differential

distributions for the Higgs boson and photons from the
Higgs boson decay at

ffiffiffi
s

p ¼ 8 TeV for various UGDFs from
the literature [11–13], also the ones used in the context of
low-x physics (Kutak-Staśto [15] and Kutak-Sapeta [16]).
We include both leading-order and next-to-leading-order
contributions. We shall critically discuss uncertainties and
open problems in view of the recent ATLAS data.

II. FORMALISM

A. Higgs boson production

In the kt-factorization approach [17,18] the cross section
for the Higgs boson production can be written somewhat
formally as

σpp→H ¼
Z

dx1
x1

dx2
x2

d2q1t
π

d2q2t
π

δððq1 þ q2Þ2 −M2
HÞσgg→H

× ðx1; x2; q1; q2Þ
× F gðx1; q21t; μ2FÞF gðx2; q22t; μ2FÞ; ð2:1Þ
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where F g are so-called unintegrated (or transverse-
momentum-dependent) gluon distributions and σgg→H is
the gg → H (off-shell) cross section. The situation is
illustrated diagramatically in Fig. 1.
It is easy to show in the collinear approximation (see e.g.

Ref. [19]) that

σgg→H ¼ π

ŝ
δðŝ −m2

HÞ: ð2:2Þ

After some manipulation the formula (2.1) can be written
conveniently as (see Ref. [20])

σpp→H ¼
Z

dyd2ptd2qt
1

sx1x2

1

m2
t;H

jMg�g�→Hj2

× F gðx1; q21t; μ2FÞF gðx2; q22t; μ2FÞ=4; ð2:3Þ
which can be also used to calculate the rapidity and
transverse momentum distribution of the Higgs boson.
In the last equation, ~pt ¼ ~q1t þ ~q2t is the transverse

momentum of the Higgs boson and ~qt ¼ ~q1t − ~q2t is the
auxiliary variable which is used in the integration.
Furthermore, mt;H is the so-called Higgs transverse mass
and x1 ¼ mt;Hffiffi

s
p expðyÞ, x2 ¼ mt;Hffiffi

s
p expð−yÞ. The factor 1

4
is

the Jacobian of transformation from ð~q1t; ~q2tÞ to ð~pt; ~qtÞ
variables.
Similar formalism was used in the past for the production

of gauge bosons [22]. There gluon distributions have to be
replaced by unintegrated quark and antiquark distributions.
Let us concentrate for a while on the matrix element for

the g�g� → H. In Ref. [20] the on-shell matrix element was
used. In Ref. [23] the off-shell matrix element was used
instead, however in the approximation of an infinitely
heavy top in the triangle coupling of gluons to the Higgs
boson (see also [21] where the off-shell matrix element
was discussed). Then the effective g�g� → H coupling is
relatively simple. The matrix element under discussion (for
the on-shell Higgs boson) takes the simple form:

Mab
g�g�→H ¼ −iδab

αs
4π

1

v
ðm2

H þ p2
t ÞcosðϕÞ

2

3
; ð2:4Þ

where v2 ¼ ðGF

ffiffiffi
2

p Þ−1. The effect of finite-mass correc-
tions was studied in Ref. [24] in the context of kt
factorization and in [25] in the context of higher-order
collinear approximation corrections. Then the correspond-
ing matrix element is more complicated and can be written
with the help of two form factors:

Mab
g�g�→H ¼ −iδab

αs
4π

1

v

�
ðm2

H þ p2
t ÞcosðϕÞG1ðq1; q2; qÞ

−
2ðm2

H þ p2
t Þ2jq1tjjq2tj

ðm2
H þ q21t þ q22tÞ

G2ðq1; q2; qÞ
�
: ð2:5Þ

The form factorsG1 andG2 have an integral representation.
However, at not too big virtualities of gluons and the Higgs
boson the following approximate formula for theG1 andG2

form factors can be used [24]:

G1 ¼
2

3

�
1þ 7

30
χ þ 2

21
χ2 þ 11

30
ðξ1 þ ξ2Þ þ � � �

�
; ð2:6Þ

G2 ¼ −
1

45
ðχ − ξ1 − ξ2Þ −

4

315
χ2 þ � � � ; ð2:7Þ

where the expansion variables χ, ξ1, ξ2 above are defined as

χ ¼ q2

4m2
f

; ð2:8Þ

ξ1 ¼
q21
4m2

f

< 0; ð2:9Þ

ξ2 ¼
q22
4m2

f

< 0: ð2:10Þ

B. H → γγ

The matrix element for the Higgs boson decay into
photons with helicity λ1 and λ2 can be written as

MH→γγðλ1; λ2Þ ¼ Tμν
H→γγϵ

�
μðλ1Þϵ�νðλ2Þ: ð2:11Þ

The LO vertex function can be decomposed as the sum

Tμν
H→γγ ¼ Tμν;W

H→γγ þ Tμν;t
H→γγ þ � � � ; ð2:12Þ

where the first term includes loops with intermediate W�
and the second term triangle(s) with top quarks. The dots
represent the contribution of triangles with bottom and
charm quarks and with τ leptons, etc. The vertex function
can be written as

p
2

p
1

X
2

X
1

H

FIG. 1 (color online). Dominant leading-order diagram for
inclusive Higgs boson production in the two-photon channel.
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Tμν
H→γγðp1; p2Þ ¼ i

αem
2π

AðGF

ffiffiffi
2

p
Þ1=2ðpμ

2p
ν
1 − ðp1 · p2ÞgμνÞ:

ð2:13Þ
In the Standard Model the A constant is

A ¼ AWðτWÞ þ Nce2fAtðτtÞ þ � � � ; ð2:14Þ
where the arguments are

τW ¼ m2
H

4m2
W
; τt ¼

m2
H

4m2
t
: ð2:15Þ

The functions AW and At have the simple form:

AWðτÞ ¼ −ð2τ2 þ 3τ þ 3ð2τ − 1ÞfðτÞÞ=τ2; ð2:16Þ

AtðτÞ ¼ 2ðτ þ ðτ − 1ÞfðτÞÞ=τ2; ð2:17Þ
where the function fðτÞ reads

fðτÞ ¼ arcsin2ð ffiffi
t

p Þ: ð2:18Þ
For light fermions the function fðτÞ is slightly different [26].
The two-photon decay width can be calculated as

ΓH→γγ ¼
1

32π2
Σλ1λ2 jMH→γγðλ1; λ2Þj2

p
m2

H

1

2
: ð2:19Þ

The factor 1
2
is due to the identity of the final state photons.

Using Eq. (2.19) with the matrix element given by
Eq. (2.11) we get ΓH→γγ ¼ 0.91 × 10−5 which, when
combined with the total decay width ΓH ≈ 4 MeV [27],
gives the branching fraction BFH→γγ ¼ 2.27 × 10−5, con-
sistent with what is known from the literature (see e.g.
Ref. [28]). Two-loop corrections are rather very small [29].

C. g�g� → H� → γγ

Let us combine now all elements defined above and write
the matrix element for the g�g� → H� → γγ process,

Mg�g�→H�→γγðλ1;λ2Þ¼Mg�g�→H�ð~q1t; ~q2t; ŝÞ

×
1

ŝ−M2
Hþ iΓHMH

MH�→γγðλ1;λ2Þ:

ð2:20Þ
In the infinitely heavy quark approximation the matrix
element squared averaged over colors can be written in the
quite compact way (see Ref. [10]):

jMj2¼ 1

1152π4
α2emα

2
sG2

FjAj2 ŝ2ðŝþp2
t Þ2

ðŝ−m2
HÞ2þm2

HΓ2
H
cos2ðϕÞ:

ð2:21Þ

The differential (in photon rapidities y1, y2 and transverse
momenta p1t, p2t) cross section for the production of a pair
of photons from the g�g� → H� → γγ subprocess with an
intermediate virtual Higgs boson can be written as

dσðpp → HX → γγXÞ
dy1dy2d2p1td2p2t

¼ 1

16π2ŝ2
·
1

2
·
Z

d2k1t
π

d2k2t
π

jMoff
g�g�→H�→γγj2

× δ2ð~k1t þ ~k2t − ~p1t − ~p2tÞ
× F gðx1; k21t; μ2ÞF gðx2; k22t; μ2Þ: ð2:22Þ

Please note that in this case the m2
H þ p2

t term in Eq. (2.4)
for the on-shell Higgs boson is replaced by ŝþ p2

t for the
virtual Higgs boson. This has consequences some distance
from the resonance position where the cross section is
however small. In principle, alsoM2

H in the definition of the
A functions should be replaced by ŝ here.
Since we integrate over full phase space in y1, y2, p1t and

p2t we have to include in addition an identity factor
1
2
, in full

analogy to the calculation of the decay width into two
photons.
How to remove the δ function in Eq. (2.22) in a

convenient way for calculation is described in Ref. [30].
The calculation of the cross section according to formula
(2.22) with matrix element (2.21) is not easy as the light
Higgs boson discovered recently is a very narrow reso-
nance. This calculation is performed within a Monte Carlo
method using a well-known package VEGAS [31]. We
have carefully tested both numerics and convergence.

D. gg → Hg

In the collinear approximation the cross section for
fixed-order processes of the type p1p2 → Hp3 (parton1þ
parton2 → Higgsþ parton3) (see Fig. 2) of the order of αs
has been well known for a long time [32].
The corresponding cross section differential in Higgs

boson rapidity (yH), associated parton rapidity (yp) and
transverse momentum of each of them can be written as

dσ
dyHdypd2pt

ðyH;yp;ptÞ¼
1

16π2ŝ2
×

�
x1g1ðx1;μ2Þx2g2ðx2;μ2ÞjMgg→Hgj2þ

� X
f1¼−3;3

x1q1;f1ðx1;μ2Þ
�
x2g2ðx2;μ2ÞjMqg→Hqj2

þx1g1ðx1;μ2Þ
� X
f2¼−3;3

x2q2;f2ðx2;μ2Þ
�
jMgq→Hqj2þ

X
f¼−3;3

x1q1;fðx1;μ2Þx2q2;−fðx2;μ2ÞjMqq→Hgj2
�
:

ð2:23Þ
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The indices f in the formula above number both quarks
(f > 0) and antiquarks (f < 0). Only three light flavors are
included in actual calculations here. The explicit formulas
for jMj2 can be found in Ref. [32]. We have checked that
the gg → Hg contribution dominates over the two other
types of contributions. This can be understood as due to the
presence of the box contributions for gg → Hg but is absent
in the other cases.
In the following we shall calculate the dominant

gg → Hg contribution also taking into account the trans-
verse momenta of the initial gluons. In the kt factorization
the NLO differential cross section can be written as

dσðpp → HgXÞ
dyHdygd2pH;td2pg;t

¼ 1

16π2ŝ2

Z
d2q1t
π

d2q2t
π

jMoff-shell
g�g�→Hgj2

× δ2ð~q1t þ ~q2t − ~pH;t − ~pg;tÞ
× F ðx1; q21t; μ2ÞF ðx2; q22t; μ2Þ:

ð2:24Þ

This can be further simplified as discussed e.g. in
Ref. [30].
Calculation of the off-shell matrix element for the

process under consideration is rather complicated in the
most general case as it involves loops (triangles and boxes).
Since the box diagrams with very heavy top quarks/
antiquarks dominate at high energies we expect that the
off-shell effects should be relatively small. In the present
approach we make the following replacement to simplify
the calculation:

jMoff-shell
g�g�→Hgj2 → jMon-shell

gg→Hgðs; t; uÞj2; ð2:25Þ

where the latter is an analytical continuation of the on-shell
matrix element off mass shell. The larger q1t or q2t the
worse the approximation could be. This cannot be quanti-
fied, however, before the exact off-shell matrix element is
calculated. This goes beyond the scope of the present study.

E. Higgs boson and dijets in the context
of the kt-factorization approach

It is well known that in contrast to gauge boson (W�

and Z0) production for calculating the inclusive cross
section for the Higgs boson production not only LO
but also NLO and even NNLO corrections are pretty
large. Collinear NNLO contributions to the Higgs boson
production associated with dijet production was dis-
cussed e.g. in Ref. [38]. A somewhat simplified but
pedagogical high-energy approach was discussed in
Ref. [39].
In the present analysis we wish to make a reference to

the gg → H kt-factorization calculations so a simplified
approach may be useful. In the following we shall
evaluate the cross section and differential distributions
in the collinear approximation for the subprocesses
shown in Fig. 3. At large q1t and q2t [transverse
momenta of the exchanged (red online) gluons] the
contribution of the first subprocess (gg → gHg) can be
directly compared to the kt-factorization result with
the KMR UGDF. This may be useful in order to
understand higher-order contributions contained in the
kt-factorization approach.
The matrix element for the gg → gHg which can

(should) be used to compare the collinear-factorization
result with the kt-factorization approach result reads

H

H

H

H
H

FIG. 2 (color online). Typical diagrams for QCD NLO contributions to the Higgs boson production.
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Mgg→gHg
λ1λ2→λ3λ4

ðace; bde0Þ
¼ gsðμ2r;1Þfaceϵμ1ðλ1ÞCμ1ν1τ1ð−p1; p3; q1Þϵ�ν1ðλ3Þ

×
ð−igτ1τ1 0 Þ

t1
Tτ1

0τ2 0
gg→Hðq1; q2; pHÞ

ð−igτ2τ2 0 Þ
t2

× gsðμ2r;2Þfbde0ϵμ2ðλ2ÞCμ2ν2τ2ð−p2; p4; q2Þϵ�ν2ðλ4Þ;
ð2:26Þ

where dependence on the renormalization scale was made

explicit.
Here the matrix element is evaluated as in Ref. [39] using

high-energy approximations. It can be written somewhat
schematically as

jMgg→gHgj2 ¼ 4
C2
A

N2
c − 1

g2sðμ2r;1Þg2sðμ2r;2Þ

×
ŝ

t21t
2
2

jCgg→Hðq1; pH; q2Þj2: ð2:27Þ

The matrix element is particularly simple in the limit:

sij ≫ siH; sjH ≫ m2
H: ð2:28Þ

We have made explicit running of a strong coupling
constant in (2.27). In practical calculation it is reasonable
to take μ2r;1 ¼ p2

3t and μ2r;2 ¼ p2
4t. At high energies t1 ≈

−q21t ¼ −p2
3t and t2 ≈ −q22t ¼ −p2

4t.
The phase space integration is performed then with the

gg → gHg matrix element squared and collinear gluon
distribution functions (GDFs), see for example the next
subsection. Both integrated and differential cross sections
can be then compared with those obtained within the
kt-factorization approach. Especially inspiring is to under-
stand the interrelation between the two approaches for
larger jet/Higgs transverse momenta p3t; p4t, ptH.
In the high-energy approach quark and antiquarks

contributions can be easily included by replacing gluon
distributions gðx1; μ2f;1Þ and gðx2; μ2f;2Þ by so-called effec-
tive parton distributions (see e.g. Ref. [40]):

feffðxk; μ2kÞ ¼ gðxk; μ2Þ þ
CF

CA
ðuðxk; μ2kÞ þ dðxk; μ2kÞ

þ sðxk; μ2kÞ þ ūðxk; μ2kÞ þ d̄ðxk; μ2kÞ
þ s̄ðxk; μ2kÞÞ: ð2:29Þ

A similar procedure is often done in the context of Mueller-
Navelet jets. We shall evaluate and show the quark/
antiquark components separately as they are not taken into
account explicitly in the kt-factorization approach.

F. WW fusion

Now we wish to consider purely electroweak corrections
that are known to give a sizeable contribution to the Higgs
boson production.
The second most important mechanism for the Higgs

boson production is the fusion of off-shell gauge bosons:
WW or ZZ. It is known that at the LHC energy the WW
fusion constitutes about 10%–15% of the integrated inclu-
sive cross section. If the weak boson fusion contribution
was separated, the measurement of the WWH (or ZZH)
coupling would be a very interesting test of the
Standard Model.
In the present paper we are interested in the differential

distributions of the Higgs boson rather than in the inte-
grated cross section.
For the gauge boson fusion the partonic subprocess is

of the 2 → 3 type: qðp1Þ þ qðp2Þ → qðp3Þ þ qðp4Þ þ
HðpHÞ (see Fig. 4).
The corresponding proton-proton cross section can be

written as

dσ ¼ FVV
12 ðx1; x2Þ

1

2ŝ
jMqq→qqHj2

×
d3p3

ð2πÞ32E3

d3p4

ð2πÞ32E4

d3pH

ð2πÞ32EH

× ð2πÞ4δ4ðp1 þ p2 − p3 − p4 − pHÞdx1dx2: ð2:30Þ

H H H H

FIG. 3 (color online). The 2 → 3 diagrams which are used in order to make reference to the 2 → 1 kt-factorization calculation.

p
2

p
1

X
2

X
1

W

W

+

−

H

p
2

p
1

X
2

X
1

W

W +

−

H

FIG. 4. Diagrams for the WW fusion.
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The next-to-leading-order corrections to the matrix element
of the WW fusion are rather small [33]. The leading-order
subprocess matrix element was calculated first in Ref. [34].
The spin-averaged matrix element squared reads

jMj2 ¼ 128
ffiffiffi
2

p
G3

F
M8

Wðp1 · p2Þðp3 · p4Þ
ð2p3 · p1 þM2

WÞ2ð2p4 · p2 þM2
WÞ2

:

ð2:31Þ
For the WW fusion, limiting to light flavors, the partonic
function is

FWW
12 ðx1; x2Þ ¼ ðu1ðx1; μ21Þ þ d̄1ðx1; μ21Þ þ s̄1ðx1; μ21ÞÞ

× ðū2ðx2; μ22Þ þ d2ðx2; μ22Þ þ s2ðx2; μ22ÞÞ
þ ðū1ðx1; μ21Þ þ d1ðx1; μ21Þ þ s1ðx1; μ21ÞÞ
× ðu2ðx2; μ22Þ þ d̄2ðx2; μ22Þ þ s̄2ðx2; μ22ÞÞ:

ð2:32Þ
In the following we take μ21 ¼ μ22 ¼ M2

H. It is convenient to
introduce the following new variables:

~pþ ¼ ~p3 þ ~p4; ~p− ¼ ~p3 − ~p4; ð2:33Þ
which allow us to eliminate the momentum-dependent
δ3ð…Þ in Eq. (2.30). Instead of integrating over x1 and
x2 we shall integrate over y1 ≡ lnð1=x1Þ and y2 ≡ lnð1=x2Þ.

Then using Eq. (2.30) we can write the inclusive spectrum
of the Higgs boson as

dσ
dyd2pt

¼
Z

dy1dy2x1x2F ðx1; x2; μ21; μ22Þ

×
1

2ŝ
d3p−

16
jMqq→qqHj2

1

2E3

1

2E4

×
1

ð2πÞ5 δðE1 þ E2 − E3 − E4 − EHÞ: ð2:34Þ

This is effectively a four-dimensional integral which can be
calculated numerically.
Strong and electroweak corrections to the Higgs boson

production via vector-boson fusion at the LHC were calcu-
lated e.g. in Refs. [35,36]. The corrections are relatively small
and in the following analysis we shall show only leading-
order results as a reference to the kt-factorization result.

G. ZZ fusion

The ZZ fusion (see Fig. 5) can be calculated in an
analogous way.
The corresponding matrix element depends on the

subprocess type (set of quark, antiquark flavors). It can
be written as [34]

jMj2f1f2 ¼ 128
ffiffiffi
2

p
G3

FM
8
Z
CZ
1 ðf1f2Þðp1 · p2Þðp3 · p4Þ þ CZ

2 ðf1f2Þðp1 · p4Þðp2 · p3Þ
ð2p3 · p1 þM2

ZÞ2ð2p4 · p2 þM2
ZÞ2

: ð2:35Þ

The flavor-dependent coefficients read

CZ
1 ðf1f2Þ ¼

1

4
ððVf1 − Af1Þ2ðVf2 − Af2Þ2

þ ðVf1 þ Af1Þ2ðVf2 þ Af2Þ2Þ;

CZ
2 ðf1f2Þ ¼

1

4
ððVf1 − Af1Þ2ðVf2 þ Af2Þ2

þ ðVf1 þ Af2Þ2ðVf2 − Af2Þ2Þ: ð2:36Þ

The Vf and Af are well-known vector and axial-vector
couplings of the Z0 boson to quarks/antiquarks. They can
be expressed in terms of a third component of the weak
isospin, charge of quark/antiquark and sinus of the
Weinberg angle.
The differential cross section is calculated in exactly the

same way as for the WW fusion.

H. Associated production with W and Z bosons

For completeness one could include also production of
the Higgs boson associated with gauge bosonsWþ,W− and
Z0. These are formally lower-order (2 → 2) processes than

the WW and ZZ fusion (2 → 3) processes considered
above. They were first considered in Ref. [37].
The matrix elements are very simple:

jMf1f2→WHj2 ¼
ðGFM2

WÞ2
72π2

jVf1f2 j2
3M2

W þ p2
W

ðŝ −M2
WÞ2

;

jMff→ZHj2 ¼
ðGFM2

ZÞ2
72π2

ðV2
f þ A2

fÞ
3M2

Z þ p2
Z

ðŝ −M2
ZÞ2

: ð2:37Þ

p
2

p
1

X
2

X
1

H

Z0

0Z

FIG. 5 (color online). Typical diagram for the ZZ fusion.
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In the equation above pV is the momentum of the gauge
boson in the HV center-of-mass frame:

p2
W ¼ 1

4ŝ
ðŝ2 þM4

V þM4
H − 2ŝM2

V − 2ŝM2
H − 2M2

VM
2
HÞ;

ð2:38Þ
where V ¼ W;Z.
The fully differential cross section can be written as

dσ
dyHdyWd2pt

¼ 1

16πŝ2
jMf1f2→WHj2

×
X
f1f2

ðx1qf1ðx1; μ2Þx2q̄f2ðx2; μ2Þ

þ x1q̄f1ðx1; μ2Þx2qf2ðx2; μ2ÞÞ;
dσ

dyHdyZd2pt
¼ 1

16πŝ2
jMff→ZHj2

×
X
f

ðx1qfðx1; μ2Þx2q̄fðx2; μ2Þ

þ x1q̄fðx1; μ2Þx2qfðx2; μ2ÞÞ: ð2:39Þ

The Higgs boson distributions can be obtained from those
above by integrating over yW and yZ, respectively.

III. RESULTS

A. gg → H and subsequent H → γγ decay

In Table I we present the total (integrated over full
phase space) cross section for the 2 → 1 gluon-gluon
fusion mechanism for several UGDFs from the literature
at

ffiffiffi
s

p ¼ 8 TeV. For reference the leading-order collinear
approximation result is typically 5–7 pb depending
somewhat on the parton distribution functions used in
the calculation. The kt-factorization results (for several

UGDFs used here) are similar, except for the Kutak-
Stasto and Kutak-Sapeta UGDFs which give much
smaller numbers. There are two reasons for this. First,
when calculating the gluon longitudinal momentum
fractions the transverse momentum of the Higgs boson
is included which increases x1 and x2 and therefore lowers
the cross section. Secondly, many low-x UGDFs do not
apply and/or are too small in the region of x1; x2 > 0.01.
Quite different cross sections are obtained for different
UGDFs. This shows that the UGDFs (often fitted only to
HERA data) are much more uncertain than the collinear
GDFs fitted to many sets of high-energy data. However,
UGDFs have the advantage that they can be used for
correct (exclusive) kinematics including transverse
momenta of initial gluons, which cannot be addressed
properly in collinear calculations.
For comparison in the middle block we show the

contribution of ij → iHj processes calculated in the
collinear-factorization approach for the jet transverse
momenta bigger than 10 GeV. The gg → gHg contribution
is of similar size as that for the leading-order gg → H
kt-factorization approach. We think that the latter contri-
bution is to a large extent contained in the calculation with
the KMR UGDF. However, the quark and antiquark
initiated contributions which are also fairly large
(∼0.6 pb) must be included in addition explicitly.
At the very bottom we show contributions of the WW

and ZZ fusions. The electroweak contribution is quite
sizeable. As will be shown below they play an important
role at large Higgs boson transverse momenta.
The so different cross sections obtained with different

UGDFs may be partially understood by looking at the
distribution in x1 or x2 (see Fig. 6). The KMRUGDF gives
a much larger contribution in the region of x1; x2 > 0.01
than the typically small-x UGDFs. The other UGDFs are
not very realistic in this range of x.

TABLE I. The cross section for Higgs production pt <
400 GeV in pb for

ffiffiffi
s

p ¼ 8 TeV and for different UGDFs from
the literature. For comparison we show also the contribution of
the gg → gHg and ij → iHj processes (p1t; p2t > 10 GeV), and
WW and ZZ fusion.

Contribution μ2r ¼ μ2f ¼ m2
H

KMR 5.2349
Jung CCFM (setA0) 8.2705
Jung CCFM (setAþ) 12.3791
Jung CCFM (setA−) 5.7335
Hautmann-Jung (set 2) 20.3774
Kutak-Staśto 2.6074
Kutak-Sapeta 1.5465
KMR, q1t, q2t > 10 GeV 2.4585
gg → gHg, q1t; q2t > 10 GeV 0.24
ij → iHj, q1t; q2t > 10 GeV 0.57
WW fusion 0.9332
ZZ fusion 0.02641
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FIG. 6. Distribution in log10ðx1Þ or log10ðx2Þ for gg → H and
for different UGDFs used in the present analysis.
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In addition, the different UGDFs in the literature have
quite different dependence on gluon transverse momenta.
This is well demonstrated in Fig. 7 where we show two-
dimensional maps in q1t × q2t for different UGDFs. The
Kutak-Sapeta UGDF gives a sharp peak at large q1t and q2t.
This means that using such an UGDF one cannot obtain
large Higgs boson transverse momenta. Quite large gluon
transverse momenta (q1t; q2t ∼mH) enter the production of
the Higgs boson for the KMR and Jung CCFM (setA0)
UGDFs. For the KMRUGDF a clear enhancement at small
q1t or q2t can be observed. This is rather a region of
nonperturbative nature, where the KMR UGDF is rather
extrapolated than calculated. However, we have checked
that the contribution of the region when q1t < 2 GeV or
q2t < 2 GeV constitutes only less than 5% of the integrated
cross section. This is then a simple estimate of uncertainty
of the whole approach.
Now we can proceed to the production of photons. We

start from two-dimensional distributions in dσ
dydpt

in rapidity

and transverse momentum of the Higgs boson calculated
according to Eq. (2.3) and perform its decay isotropically in
the Higgs boson rest frame (assuming spin zero of the
Higgs boson). Next relativistic boosts are performed to get
distributions of photons in the proton-proton center-of-
mass system. As an example in Fig. 8 we show two-
dimensional distributions in photon transverse momenta.
Also here the distributions for different UGDFs differ
significantly. In Fig. 9 we show in addition two examples
but in the contour form which shows some details better
than the lego plot.
In order to confront our calculations with the preliminary

ATLAS data [14] extra cuts on photon rapidities and
transverse momenta must be imposed in addition.We require

−2.37< ηγ;1;ηγ;2 < 2.37; maxðp1t;p2tÞ> 0.35×Mγγ;

minðp1t;p2tÞ> 0.25×Mγγ; 105GeV<Mγγ < 160GeV

ð3:1Þ

FIG. 7 (color online). Distribution in q1t and q2t for gg → H and for different UGDFs: KMR, Jung CCFM (setA0), Kutak-Staśto and
Kutak-Sapeta.
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FIG. 8 (color online). Distributions in photon transverse momenta p1t and p2t for the gg → H and for the KMR, Jung CCFM (setA0),
Kutak-Staśto and Kutak-Sapeta UGDFs.

FIG. 9. Distributions in photon transverse momenta p1t and p2t for gg → H and for the KMR and Jung CCFM (setA0) UGDFs for the
contour representation.
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as relevant for the ATLAS analysis [14]. The distribution in
the transverse momentum of the photon pair (almost trans-
verse momentum of the Higgs boson) is shown in Fig. 10 for
different UGDFs from the literature together with the
ATLAS data [14]. The calculated distributions lie much
below the ATLAS data. How the situation can be improved
including Higgs off-shell effects, higher-order QCD and
electroweak corrections will be discussed in the rest of
the paper.

B. gg → H� → γγ

In this section we shall present the results of calculations
performed within the kt factorization approach in the second
method. The photon distributions from virtual Higgs decay
are calculated including correctly kinematics of the 2 → 2
subprocess gg → H� → γγ. Now we wish to compare
differential cross sections obtained in this way with those
obtained within the first method. Clearly the second method
leads to sizeably larger cross sections. This may be helpful in
the context of the deficit discussed in the previous section,
but certainly not sufficient. At this point we observe a
disagreement (of about a factor of 2) of the results of our
gg → H� → γγ calculation with those in Ref. [10].
In Fig. 11, as an example, we show a somewhat theoretical

distribution in log10ðxiÞ, i ¼ 1; 2 for the KMR UGDF with
μ2 ¼ m2

H. Both low-x (x < 10−2) and high-x (x > 10−2)
regions give similar contributions to the cross section.
In Fig. 12 we show the distribution in p1t or p2t

(identical) for the two methods. The two distributions
are rather similar as far as the shape is considered.
The distribution in pt;sum (~pt;sum ¼ ~p1t þ ~p2t) is particu-

larly interesting as it reflects the distribution of the Higgs
boson and can be measured experimentally. In Fig. 13 we
again compare the results obtained within the two methods.
The shapes obtained with the two methods are practically
identical but there is a difference in the normalization.

Now we wish to show several results for the second
approach only. Let us start from the single-photon trans-
verse momentum distribution. In Fig. 14 we show such
distributions for two selected UGDFs. The peak at pt ∼
mH=2 is of kinematical nature. The KMR UGDF leads to
larger photon transverse momenta.
Particularly interesting is distribution in the two-photon

invariant mass. The huge peak atMγγ ¼ MH corresponds to
the on-shell Higgs boson. We observe (see Fig. 15) small
contributions from off-shell Higgs boson configurations
with invariant masses both smaller or larger than the on-
shell (peak) value. The sharp peak shows that the integra-
tion of the cross section is not easy. We have, however,
carefully checked the convergence.
As was already mentioned, the distribution for pt;sum

reflects the Higgs boson transverse momenta. An interesting
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question is how the distribution is sensitive to the choice of
the UGDF model. Figure 16 shows that the KMR UGDF
generates much bigger Higgs boson transverse momenta
than the Jung CCFM (setA0).
Another interesting observable is the correlation in the

azimuthal angle between the outgoing photons (see
Fig. 17). A bigger back-to-back correlation is observed
for the Jung CCFM (setA0) than for the KMR UGDF. This
is similar as already observed for the azimuthal correlations
between cc̄ (see e.g. Ref. [41]). The decorrelation for the
KMR UGDF is even larger (compare only shapes) than in
the soft-gluon transverse momentum resummation [8].
Small ϕγγ are strongly correlated with large gluon trans-
verse momenta q1t or q2t. As discussed above this may be
overestimated in the kt-factorization approach with the
KMR UGDF.

In Fig. 18 we show rather theoretical distributions in
“initial” gluon transverse momenta. Those distributions are
almost identical to those discussed already for on-shell
Higgs boson production (see Fig. 7). The distribution for
the KMR UGDF is broader than that for the Jung CCFM
(setA0) UGDF.
Finally we wish to present two-dimensional correlations

in photon transverse momenta (see Fig. 19). Again this
distribution is similar to its counterpart obtained within the
first method (compare Fig. 8).

C. Higgs in association with one jet (gluon)

Now we wish to show some results of the calculation for
Higgsþ gluon production within the kt-factorization
approach.
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We start from a pedagogical two-dimensional distribu-
tion (a similar distribution was discussed in the context of
the gg → H mechanism) in initial gluon transverse
momenta (q1t; q2t). In Fig. 20 we show the distribution
for the four different UGDFs used also for the gg → H
calculation.
The Higgs transverse momentum distribution is particu-

larly interesting in the context of the preliminary ATLAS
data. In leading-order collinear approximation the distri-
bution in the Higgs transverse momentum (transverse
momentum of the photon-photon pair in our analysis) is
a two-dimensional delta function. Nonzero transverse
momenta are obtained only in next-to-leading-order
approximation. In Fig. 21 we show the result of the
collinear NLO calculation. In addition we show the result
of our calculation in the kt factorization with the KMR

UGDFs. One can observe the coincidence of both results at
large Higgs transverse momenta. In addition the singularity
present in the collinear approach disappears in the
kt-factorization approach.
In Fig. 22 we show distributions in the transverse

momentum for all the five UGDFs from the literature used
in the present study. It is worth to notice that in all cases the
inclusion of gluon transverse momenta automatically
removes singular behavior of the cross section at
pt → 0. We observe that the cross section for gg → Hg
is of the same order of magnitude as that calculated before
for gg → H. We wish to notice here that in contrast to other
gluon-initiated processes the dominant piece of the gg →
Hg is not included in the calculation of gg → H. This can
be easily understood by inspecting the diagrams in Figs. 1
and 2. While for the gg → H fusion the triangle with top
quarks is the dominant mechanism, in the case of the gg →
Hg process these are the diagrams with top-quark boxes
that dominate. This can be easily understood already in the
collinear next-to-leading-order calculation by switching
only the terms corresponding either to triangles or boxes
separately (see also a discussion in the early papers on the
subject [32]). It can be easily checked that at LHC energies
triangles play an important role only at small transverse
momenta of the Higgs boson. Above pt > 50 GeV the
contribution of the triangles is negligibly small compared to
the contribution of the boxes. The same is of course true for
the kt-factorization approach.
Due to their completely different topology the diagrams

with boxes are certainly not contained in our previous
calculations for the gg → H fusion. The same is true for all
previous calculations of the Higgs boson production in the
kt factorization [10,20,23,24].
In Fig. 23 we show the sum of the leading (gg → H) and

the next-to-leading (gg → Hg) contributions again for the
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FIG. 17 (color online). Distribution of the azimuthal angle
between photons for the KMR (solid line) and the Jung CCFM
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H.

FIG. 18 (color online). Two-dimensional distribution in ðq1t; q2tÞ for the KMR (left panel) and for the Jung CCFM (setA0) (right
panel) UGDF and for μ2 ¼ m2

H.
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FIG. 19 (color online). Two-dimensional distribution in photon transverse momenta ðp1t; p2tÞ for the KMR (left panel) and for the
Jung CCFM (setA0) (right panel) UGDF and for μ2 ¼ m2

H.

FIG. 20 (color online). Two-dimensional distribution in ðq1t; q2tÞ for the gg → Hg process for the four different UGDFs used
previously also for the gg → H calculation: KMR UGDF and μ2F ¼ m2

H (left top panel) and Jung CCFM setA0 (right top panel),
Kutak-Staśto (left bottom panel) and Kutak-Sapeta (right bottom panel).

INCLUSIVE PRODUCTION OF HIGGS BOSON IN THE … PHYSICAL REVIEW D 90, 094023 (2014)

094023-13



different UGDFs used so far. The result for the KMR and
Jung CCFM setA0 UGDFs is already almost consistent
with the new ATLAS data. The electroweak contribution
will be discussed below.

D. Higgs in association of two jets

It is interesting to compare the kt-factorization calcu-
lation at large q1t and q2t (transverse momenta of the fusing
gluons) with the standard (collinear) calculation of the
Higgs boson production associated with two jets. In Fig. 24
we show a two-dimensional distribution in the space of the
transverse momenta of the associated jets (p3t, p4t) for the
gg → gHg process only. Since the initial gluons are
collinear this is also exactly the distribution in ðq1t; q2tÞ
(transverse momenta of the t-channel gluons) and can be
directly compared with similar distributions obtained pre-
viously in the kt-factorization gg → H calculation. In this
calculation the high-energy limit and rapidity ordering (see
Ref. [39]) were assumed. The shape here is similar to that
for the KMR UGDF. However, the absolute normalization
is sizeably smaller. We think that such contributions are
therefore effectively included in the calculation with the
KMR UGDF. But this is certainly not true for saturation-
inspired UGDFs.
The contributions of the gqðq̄Þ, qðq̄Þ and ðqðq̄Þ; qðq̄Þ

discussed previously in the formalism section are usually
not included explicitly in the kt-factorization approach with
most of the UGDFs (except for the KMRUGDF) and has to
be taken into account when comparing the theoretical
results to the experimental data.
Let us make further comparison of the results for gg →

gHg with p3t; p4t < 10 GeV (which automatically means
q1t; q2t < 10 GeV) with a similar result obtained within the
kt-factorization approach for gg → H with the KMR
UGDF. From Table I we see that the result for the KMR
UGDF is much bigger than that for the gg → gHg collinear-
factorization approach. This is difficult to understand as in
the KMR model the whole transverse momentum is
generated in the last step of the ladder. In Fig. 25 we
show distributions in log10ðx1Þ or log10ðx2Þ for both cases.
One clearly sees that the x’s for the kt-factorization
approach [maximum at log10ðxiÞ ≈ −1] are smaller than
their counterparts for the gg → gHg [maximum at
log10ðxiÞ ≈ −2]. This explains the huge cross section at
large q1t and/or large q2t within the kt-factorization
approach for gg → H which does not include fully cor-
rectly the kinematics of the actual process (missing jets are
not included in calculating x1 and x2). It is not clear to us
how to consistently correct the calculation for the kin-
ematical effect.

E. Other contributions

In Fig. 26 we compare contributions of different mech-
anisms. The QCD contributions shown in this subsection
were calculated with the KMR UGDF. Surprisingly the
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contribution of the next-to-leading-order mechanism gg →
Hg is even slightly bigger than that for the gg → H fusion,
especially for intermediate Higgs boson transverse
momenta. As already discussed, there is almost no double
counting when adding the corresponding cross sections due
to quite different Feynman diagram topology. As shown in
the present analysis the gg → H mechanism is not suffi-
cient within the kt-factorization approach. The 2 → 3
contribution of the gg → gHg subprocess is probably also
quite large but here one can expect that a big part is already
contained in the gg → H calculation especially with the
KMR UGDF. Therefore we do not add this contribution
explicitly when calculating dσ=dpt;sum. The contribution of
the WW, ZZ fusion is also fairly sizeable. In principle, the
Higgs bosons (or photons from the Higgs boson) could be
to some extend isolated by requiring a rapidity gap i.e. the
production of the Higgs boson isolated off other hadronic
activity.

If we added the contribution together we would almost
describe the ATLAS data.
In the future one could include into such an analysis an

even higher-order gg → gHg contribution as well as asso-
ciated production gg → tHt̄, qq̄ → WH and qq̄ → ZH.
Their contributions are known to be only slightly smaller
than the contribution of the WW and ZZ fusion.

IV. CONCLUSIONS

In the light of new ATLAS data we have carefully
analyzed Higgs boson production in the γγ channel. We
have concentrated rather on QCD contributions. The gg →
H mechanism has been considered within the kt-factori-
zation approach. Different unintegrated gluon distributions
from the literature have been used. In general, the cross
section for the leading-order Higgs production within the
kt-factorization approach is somewhat smaller than its
counterpart for the leading-order collinear approximation.

FIG. 24 (color online). Two-dimensional distribution in jet transverse momenta ðp3t; p4tÞ for the 2 → 3 process gg → gHg (left) and
ij → iHj (right). In this calculation μ2F ¼ m2

H and μ2r;1 ¼ p2
3t, μ

2
r;2 ¼ p2

4t. A cut on p3t; p4t > 10 GeV has been assumed in addition.
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FIG. 26 (color online). Transverse momentum distribution of
the Higgs boson in the γγ channels for different mechanisms:
gg → H (solid line), gg → Hg (dashed line) andWW → H (dash-
dotted line).

INCLUSIVE PRODUCTION OF HIGGS BOSON IN THE … PHYSICAL REVIEW D 90, 094023 (2014)

094023-15



We have calculated the cross section for gg → H → γγ
within two methods. In the first method we have performed
decay of the on-shell Higgs boson within a Monte Carlo
method using the H → γγ branching fraction known from
the literature. In the second method we have performed
direct calculation with an explicit 2 → 2 gg → H� → γγ
subprocess. In the second method the intermediate Higgs
boson is off-mass-shell. The two methods give slightly
different results. We have carefully discussed the corre-
sponding differences. The second, more proper method
leads to a small enhancement of the cross section with
respect to the first method. If this is the explanation of the
enhancement of the γγ channel as observed by the ATLAS
and CMS collaborations requires further studies.
In contrast to recent claims in the literature, the leading-

order gg → H calculation does not describe the preliminary
ATLAS data when correct Standard Model couplings are
taken into account. Higher-order corrections within kt
factorization such as gg → Hg have been discussed in
addition. Their contribution turned out to be of similar
order as that for gg → H. We have argued that there is
almost no double counting when adding the leading-order
gg → H and next-to-leading-order gg → Hg contributions
in the kt-factorization approach. The reason is that the box
diagrams dominate for the gg → Hg subprocess and they
are not present in the leading-order gg → H subprocess.
Also ij → iHj (i; j ¼ q; q̄g) collinear NNLO contributions
have been shown to be rather sizeable, also those with

quarks and/or antiquarks that are certainly not included in
the leading-order kt-factorization approach.
In addition, we have calculated purely electroweak

contributions of the WW and ZZ fusion and associated
production qq0 → WH and qq → ZH. In general, the
electroweak contributions are also not negligible.
The sum of all (QCD and electroweak) contributions

gives a result which is almost consistent with the ATLAS
preliminary data. This requires, however, a further analysis
as some double counting between the leading-order
(gg → H), next-to-leading-order (gg → Hg) and NNLO
(gg → gHg) contributions have to be carefully studied in
this approach.
In summary, the production of the Higgs boson in the γγ

channel can be used to test unintegrated gluon distributions
provided all contributions to the cross section are carefully
taken into account.
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