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In the companion paper it is shown that there are six observables in gg → tt̄ → ðbb̄cÞðb̄lν̄Þ that can be
used to reveal the presence of new physics (NP) in t → bb̄c. In the present paper we examine the prospects
for detecting and identifying such NP at the LHC, in both the short term and long term. To this end, we
develop an algorithm for extracting the NP parameters from measurements of the observables. In the short
term, depending on what measurements have been made, there are several different ways of detecting the
presence of NP. It may even be possible to approximately determine the values of certain NP parameters. In
the long term, it is expected that all six observables will be measured. The values of the NP parameters can
then be determined reasonably precisely from a fit to these measurements, which will provide good
information about the type of NP present in t → bb̄c.
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I. INTRODUCTION

Top physics provides a fertile ground for new-physics
(NP) searches. With a mass close to the electroweak scale,
the top quark may well be sensitive to interactions that do
not affect other fermions. In Ref. [1], the companion paper,
top decay is investigated for the presence of NP. It is noted
that, given the good agreement between the experimental
measurement of Γt and its theoretical prediction [2],
significant NP contributions to top decay can only be
present in decay modes that are suppressed in the standard
model (SM). One example is t → bb̄c, whose amplitude
involves the small element Vcb (≃0.04) of the Cabibbo-
Kobayashi-Maskawa quark mixing matrix. Reference [1]
focuses on this decay at the LHC, where top production
occurs predominantly via gluon fusion: gg → tt̄. The goal
is to find observables in the channel gg → tt̄ with t → bb̄c
and t̄ → b̄lν̄ that can reveal the presence of NP.
NP contributions to the decay t → bb̄c can be para-

metrized in terms of higher-dimensional operators. If one
restricts to dimension-6 operators, then this is realized in
the form of ten operators that span all possible Lorentz
structures. In Ref. [1], two types of observables are
identified that can then be used to get a handle on this
NP. The first consists of invariant mass-squared distribu-
tions involving the fb; cg, fb̄; cg, or fb; b̄g quark pairs
coming from t → bb̄c. As for the second type, we note
that, in gg → tt̄, the spins of the t and t̄ are correlated. The

spin-correlation coefficient (κtt̄) depends only on the
production process. However, since the t quark has an
extremely short lifetime, this quantity has to be inferred by
measuring the angular correlation between the decay
products of the t and those of the t̄. If there are NP
contributions to the decay, the inferred value of κtt̄ is
necessarily altered from that of the SM. It is this feature that
provides information about the NP. Therefore, the second
type of observable consists of these angular correlations.
They are taken between the l− coming from the t̄ decay and
one of b̄, b or c coming from the t decay.
The NP operators not only change the top branching

fraction of this decay, but also modify the shapes of these
distributions. It is shown in Ref. [1] that the NP contribu-
tions to all of the above observables can be written in terms
of certain combinations of the NP couplings denoted as Âσ

i .
Furthermore, the observables are found to be practically
unaffected by parton densities, etc., so that they provide
direct access to the values of these Âσ

i ’s.
Now, the observables described above involve the b̄

quark coming from the decay of the t. However, there is
also a b̄ produced in the t̄ decay. A realistic analysis must
deal with the question of how to distinguish the two b̄’s. In
addition, while the focus in Ref. [1] was entirely on tt̄
production from gluon fusion, there is also a contribution
from qq̄ → tt̄ which must be considered.
In the present paper we address these issues. In Ref. [1],

the analytical expressions for the observables are compared
with the results of a numerical simulation of the LHC using
MADGRAPH 5 [3]. Here we extend our MADGRAPH 5
simulations to examine different strategies for extracting
the NP parameters. In so doing, we include a method for
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distinguishing the two b̄’s. We also take the contribution
from qq̄ → tt̄ into account, examining its effect on the
aforementioned observables and their sensitivity to the
Âσ
i ’s. In our simulations we consider numbers of total

events representative of LHC measurements in both the
short and long terms. While the long-term results obviously
have smaller errors, it is still possible in the short term to
detect and partially identify NP in t → bb̄c.
We begin in Sec. II by summarizing the results of

Ref. [1]. We present the NP operators that contribute to
t → bb̄c, as well as the gg → tt̄ → ðbb̄cÞðb̄lν̄Þ observables
that can reveal the presence of the NP. In Sec. III we
develop the algorithm to extract the NP parameters from the
observables. We discuss the MADGRAPH 5 simulations in
Sec. IV, and apply the algorithm. Here we show that the
measurement of the observables at the LHC can lead to the
detection of the NP, and possibly even its identification.1

We conclude in Sec. V.

II. NEW PHYSICS IN TOP DECAY

In this section, we summarize the main results
of Ref. [1].

A. t → bb̄c: Effective Lagrangian

In the SM, the decay t → bb̄c proceeds through
t → Wþb, followed by Wþ → b̄c. The NP contributions
to this can be parametrized by the effective Lagrangian
Leff ¼ LV

eff þ LS
eff þ LT

eff , with

LV
eff ¼ 4

ffiffiffi
2

p
GFVcbVtbfXV

LLb̄γμPLtc̄γμPLb

þ XV
LRb̄γμPLtc̄γμPRbþ XV

RLb̄γμPRtc̄γμPLb

þ XV
RRb̄γμPRtc̄γμPRbg þ H:c:; ð1Þ

LS
eff ¼ 4

ffiffiffi
2

p
GFVcbVtbfXS

LLb̄PLtc̄PLbþ XS
LRb̄PLtc̄PRb

þ XS
RLb̄PRtc̄PLbþ XS

RRb̄PRtc̄PRbg þ H:c:; ð2Þ

LT
eff ¼ 4

ffiffiffi
2

p
GFVcbVtbfXT

LLb̄σ
μνPLtc̄σμνPLb

þ XT
RRb̄σ

μνPRtc̄σμνPRbg þ H:c:; ð3Þ

Here the color indices are assumed to contract in the same
way as in the SM (i.e., the fields b̄ with t and c̄ with b).
Color-mismatched terms, in which the indices contract in
the opposite way, may occur in certain models and can be
incorporated in a straightforward manner [4].
The NP couplings (the XI

AB in the above equations)
contain weak phases, but the strong phases are negligible
[5]. In addition, the XI

AB may be assumed, quite generally,

to be Oð1Þ. The sizes of the SM and NP contributions to
t → bb̄c would then be roughly equal. This shows that it is
important to include both the SM-NP and NP-NP inter-
ference pieces when computing the effect of NP on a
particular observable.

B. Observables in gg → tt̄ → ðbb̄cÞðb̄lν̄Þ
The kinematics of gg → tt̄ → ðbb̄cÞðb̄lν̄Þ is represented

in Fig. 1. The six-body phase space is decomposed into five
solid angles dΩ��

1 , dΩ�
2, dΩ��

4 , dΩ�
5 and dΩt, and two

invariant masses M2 and M5. The * and ** superscripts on
the solid angles indicate that these angles are defined in
reference frames that are, respectively, one and two boosts
away from the tt̄ rest frame. M2 and M5 are defined by
M2

2 ¼ ðp1 þ p2Þ2 and M2
5 ¼ ðp4 þ p5Þ2. Note that p1, p2

and p3 are the momenta of the b, b̄ and c quarks in
t → bb̄c, but all permutations are allowed. The observables
use several of these possibilities.
The differential cross section for gg → tt̄ → ðbb̄cÞðb̄lν̄Þ

is computed in Ref. [1]. It is a function of the final-
state momenta pi (i ¼ 1; 2;…; 6) and SM and NP
couplings, and is defined with respect to
dM2

2dM
2
5dΩ��

1 dΩ�
2dΩ��

4 dΩ�
5dΩt. The cross section is then

integrated overM2
5 and over all angles except for θ

�
2 and θ

�
l.

The observables are obtained by (i) assigning the pi to
specific final-state particles, and (ii) integrating further over
θ�2 and θ�l, or M

2
2.

There are three possibilities for the particle assignments:
(i) p1 ¼ pc, p2 ¼ pb, p3 ¼ pb̄1 , (ii) p1 ¼ pc, p2 ¼ pb̄1 ,
p3 ¼ pb, (iii) p1 ¼ pb, p2 ¼ pb̄1 , p3 ¼ pc. Here pb̄1 refers
to the b̄ coming from the t. Also, p6 ¼ pl− . For each case
there are two observables.

FIG. 1. Kinematics for the process gg → tt̄ → ðbb̄cÞðb̄lν̄Þ [6].
Ω��

1 denotes the direction of ~p��
1 in the rest frame of M2, relative

to the direction of ~p�
1 þ ~p�

2, where M2
2 ¼ ðp1 þ p2Þ2. Similarly,

Ω�
2 denotes the direction of ð~p�

1 þ ~p�
2Þ in the t rest frame, relative

to the direction of ~pt in the tt̄ rest frame. Ωt denotes the direction
of ~pt relative to ~q1, also in the tt̄ rest frame. The solid angles Ω��

4

and Ω�
5 are defined analogously to Ω��

1 and Ω�
2, respectively, and

M2
5 ¼ ðp4 þ p5Þ2.

1When we refer to the “identification of NP,” what is implied is
the measurement of the various Âσ

i ’s and ReðXV
LLÞ.
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(1) Invariant mass-squared distribution:

dσ
dζ212

¼ σSM

�
F12

6h12SMðζ212Þ
ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

þ 3GFm2
tffiffiffi

2
p

π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ
X
i;σ

Âσ
i h12i ðζ212Þ

�
:

ð4Þ

(2) Angular correlation:

dσ
d cos θ�3d cos θ

�
l
¼ σSM

4

�
½1þ ρ3ðζ2WÞκðrÞ cos θ�3 cos θ�l� þ

3GFm2
t

4
ffiffiffi
2

p
π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

��X
i;σ

Âσ
i

�

þ
�
Âþ
3 − Â−

3 −
1

3
ðÂþ

1 − Â−
1 þ Âþ

2 − Â−
2 Þ
�
κðrÞ cos θ�3 cos θ�l

��
: ð5Þ

The numerical subscripts and superscripts correspond to the particle assignments in each of the three cases. That is, in case
(i), the subscript 12 corresponds to bc (b is particle 1, c is particle 2), and similarly for cases (ii) (12 ¼ b̄c) and (iii)
(12 ¼ bb̄). In the summations, σ ¼ þ;− and i ¼ b; b̄; c.
σSM is given in Eq. (60) of the Appendix of Ref. [1], ζ212 ≡ ðp1 þ p2Þ2=m2

t , ζW ≡mW=mt, and κðrÞ is defined as

κðrÞ ¼ ð−31r4 þ 37r2 − 66Þr − 2ðr6 − 17r4 þ 33r2 − 33Þtanh−1ðrÞ
r2½ð31r2 − 59Þrþ 2ðr4 − 18r2 þ 33Þtanh−1ðrÞ� ; ð6Þ

where

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =Q2

q
; Q≡ pt þ pt̄: ð7Þ

The functions hmn
i (mn ¼ bc; b̄c; bb̄; i ¼ b; b̄; c) are de-

fined in Table I, and

hbcSMðζ2bcÞ ¼ ð1 − ζ2bcÞζ2bcθð1 − ζ2W − ζ2bcÞ;

hb̄cSMðζ2b̄cÞ ¼
�
ζWγW
6π

� ð1 − ζ2
b̄c
Þ2ð1þ 2ζ2

b̄c
Þ

ðζ2
b̄c
− ζ2WÞ2 þ ðζWγWÞ2

;

hbb̄SMðζ2bb̄Þ ¼ ð1 − ζ2W − ζ2
bb̄
Þðζ2W þ ζ2

bb̄
Þθð1 − ζ2W − ζ2

bb̄
Þ:
ð8Þ

In addition,

ρb̄ðζ2WÞ ¼ 1; ρbðζ2WÞ ¼ −
�
1 − 2ζ2W
1þ 2ζ2W

�
;

ρcðζ2WÞ ¼
1 − 12ζ2W þ 9ζ4W þ 2ζ6W − 12ζ4W lnðζ2WÞ

ð1 − ζ2WÞ2ð1þ 2ζ2WÞ
; ð9Þ

and

Fbc ¼ Fbb̄ ¼ 1; Fb̄c ¼ 1 − 4ð1 − ζ2
b̄c
=ζ2WÞReðXV

LLÞ:
ð10Þ

Note that we have neglected some mild dependence on
ReðXV

LLÞ in the bc and bb̄ distributions. This dependence
is, however, properly taken into account in the numerical
work below.

TABLE I. Definitions of the hmn
i (mn ¼ bc; b̄c; bb̄) functions. The columns correspond to i ¼ b; b̄; c.

b b̄ c

hbci ðζ2Þ 1
2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 3ð1 − ζ2Þ2ζ2 1

2
ð1 − ζ2Þ2ð1þ 2ζ2Þ

hb̄ci ðζ2Þ 3ð1 − ζ2Þ2ζ2 1
2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 1

2
ð1 − ζ2Þ2ð1þ 2ζ2Þ

hbb̄i ðζ2Þ 1
2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 1

2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 3ð1 − ζ2Þ2ζ2
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The NP parameters appear in the observables in the
Âσ
i ’s:

Âþ
b̄ ¼ 4jXV

LLj2 − 8ReðXT
LLX

S�
LLÞ þ 32jXT

LLj2;
Â−
b̄ ¼ 4jXV

RRj2 − 8ReðXT
RRX

S�
RRÞ þ 32jXT

RRj2;
Âþ
b ¼ jXS

LLj2 þ jXS
LRj2 − 16jXT

LLj2;
Â−
b ¼ jXS

RRj2 þ jXS
RLj2 − 16jXT

RRj2;
Âþ
c ¼ 4jXV

LRj2 þ 8ReðXT
LLX

S�
LLÞ þ 32jXT

LLj2;
Â−
c ¼ 4jXV

RLj2 þ 8ReðXT
RRX

S�
RRÞ þ 32jXT

RRj2: ð11Þ

As pointed out in the Introduction, the six observables have
different functional dependencies on the Âσ

i ’s.

III. EXTRACTING NEW PHYSICS
FROM OBSERVABLES

In the companion paper [1], we showed that the chosen
observables, namely the three invariant mass-squared dis-
tributions (dσ=dζ212) and the three angular correlations
(dσ=d cos θ�3 cos θ

�
l), are sensitive to certain combinations

of the new-physics parameters. This dependence is repre-
sented in Eqs. (4) and (5) as combinations of the various
Âσ
i ’s, which in turn can be defined [Eq. (11)] in terms of the

NP coefficients XI
AB that appear in the effective Lagrangian.

In addition, the NP operator proportional to XV
LL has the

same Lorentz structure as the corresponding SM operator,
so that these two interfere, leading to an explicit depend-
ence on XV

LL itself. As discussed in Ref. [1], the shapes of
the observables are largely insensitive to effects due to
parton distribution functions (PDFs). It is only natural then
to expect that it should be possible to extract the various
combinations of NP parameters by fitting these distribu-
tions. Further, one expects that, by combining information
from all six observables, it should be possible to extract the
values of the individual Âσ

i ’s and ReðXV
LLÞ as well. In this

section we develop the procedure to carry out this
extraction.

A. Algorithm

Consider first the conventional fitting method, which
involves individual observables. If the underlying theory
hasN theoretical unknowns, their values can be determined
only if at least N observables are measured. There are
theoretical expressions for these observables in terms of the
N unknowns. Using these expressions, the best-fit values of
the unknowns are those for which the measured values of
the observables are best reproduced.
In our case, the observables are distributions and

correlations, specifically dσ=dζ212 [Eq. (4)] and
dσ=d cos θ�3 cos θ

�
l [Eq. (5)]. Each distribution/correlation

contains many measurements [at different values of ζ212 or
(cos θ�3, cos θ

�
l)]. Equations (4) and (5) show that each of

the ζ212 distributions and the angular correlations can be
written as a linear combination of the SM piece and several
NP pieces [six Âσ

i ’s, ReðXV
LLÞ]. With this in mind, we use

MADGRAPH 5 in conjunction with FEYNRULES [7] to
generate eight templates for each distribution/correlation.
The templates are nothing but the said distributions/
correlations generated with the input values of the param-
eters chosen such that certain specific contributions to the
observables are retained, while all others are set to zero.
The objective is to isolate the contributions coming from
the SM, the individual Âσ

i ’s and ReðXV
LLÞ. Table II gives the

parameter choices made for each template (labeled TM-i)
and the contributions that they represent.
Once we have these templates, a ζ212 distribution or an

angular correlation arising from a generic choice of NP
parameters can be represented as a linear combination of
the corresponding templates with appropriate coefficients.
Extracting these coefficients allows one to determine the
values of the NP parameters involved.

B. Testing the algorithm

We use “pseudodata” generated in Monte Carlo simu-
lations to test our fitting procedure. Once again, we use
MADGRAPH 5 to generate these samples. In Ref. [1] we
presented plots of the normalized distributions and corre-
lations. Here we use the unnormalized distributions for the

TABLE II. NP parameter choices for each of the templates TM-i.

Template XI
AB Âσ

i Description

TM-0 All XI
AB ¼ 0 All Âσ

i ¼ 0 SM contribution
TM-1 XS

LL, X
T
LL ≠ 0 Âþ

b̄ ≠ 0; all other Âσ
i ¼ 0 Contribution ∝ Âþ

b̄

TM-2 XV
RR ≠ 0 Â−

b̄ ≠ 0; all other Âσ
i ¼ 0 Contribution ∝ Â−

b̄

TM-3 XS
LL ≠ 0 Âþ

b ≠ 0; all other Âσ
i ¼ 0 Contribution ∝ Âþ

b

TM-4 XS
RR ≠ 0 Â−

b ≠ 0; all other Âσ
i ¼ 0 Contribution ∝ Â−

b

TM-5 XV
LR ≠ 0 Âþ

c ≠ 0; all other Âσ
i ¼ 0 Contribution ∝ Âþ

c

TM-6 XV
RL ≠ 0 Â−

c ≠ 0; all other Âσ
i ¼ 0 Contribution ∝ Â−

c

TM-7 XV
LL ≠ 0 Âþ

b̄ ≠ 0; all other Âσ
i ¼ 0 Contributions ∝ ReðXV

LLÞ and Âþ
b̄

TM-8 TM-7 − TM-1 Contribution ∝ ReðXV
LLÞ
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fitting. Since both the templates and the “data sets” are
obtained with MADGRAPH 5 with the same choices of PDFs,
scale, etc., the overall normalization is automatically
accounted for.
Our procedure is as follows. We generate pseudodata

using MADGRAPH 5, in conjunction with FEYNRULES, for
certain chosen values of the NP parameters (i.e., the XI

AB).
This gives us three ζ212 distributions and three angular
correlations. We divide each of these into 25 bins (using a
5 × 5 array for the angular correlations). We then perform a
single χ2 minimization involving all six histograms in order
to determine the coefficients for the templates that result in
the best fit for all six observables simultaneously. For this
purpose, we use standard, publicly available routines [8].
Finally, we examine to what extent the values of the NP
parameters extracted from the fit agree with their input
values.
We consider four different test cases of pseudodata,

which we label EX-1,EX-2,EX-3 andEX-4. The values of
the input NP parameters for these test cases are listed in
Table III, along with the size of the cross section relative to
the SM prediction. The data sets EX-i have been generated
for the process gg → tt̄ → ðbb̄cÞðb̄e−ν̄eÞ, taking a bench-
mark luminosity that corresponds to 105 SM events. The
uncertainties incorporated in the fitting procedure are
statistical only, and are estimated by considering the
number of events in each bin in the histograms to be
Poisson distributed. The templates TM-i have been gen-
erated for the same process but with Oð106Þ events, so that
uncertainties from these can be neglected in the fit.

1. Fit 1

As detailed above, the templates are generated
by assuming there is only a single contribution at a
time to the distributions/correlations for the process
gg → tt̄ → ðbb̄cÞðb̄e−ν̄eÞ. The observables are represented
by the analytical expressions in Eqs. (4) and (5). However,
these expressions have been derived [1] under the (unre-
alistic) assumption that the two b̄’s in the final state are
distinguishable. In Fit 1, as a first test of the algorithm, we
retain this assumption.
Table IV shows the values of the Âσ

i ’s and ReðXV
LLÞ

extracted from the fit for the four different test cases of

pseudodata in Table III. A comparison of the two
tables shows that most of the values of the parameters
extracted from the fit agree with their input values within
�1σ. This demonstrates that the fundamental idea
of the algorithm, namely fitting using the templates,
is sound.
The worst-fitted parameter is ReðXV

LLÞ in the case where
Âþ
b̄ is nonzero but ReðXV

LLÞ ¼ 0. This poor fit is an artifact
of the somewhat simple-minded fitting procedure that we
adopt: Âþ

b̄ and ReðXV
LLÞ are treated as independent param-

eters in the fit, despite the fact that they are correlated [see
Eq. (11)]. Note that the contribution proportional exclu-
sively to ReðXV

LLÞ appears primarily in dσ=dζ2
b̄c
.2 Even so,

the fit performs rather well when ReðXV
LLÞ is, in fact,

nonzero. On the other hand, not considering ReðXV
LLÞ as a

fit parameter leads to an overall worsening of the fits. For
this reason we retain it in our fitting algorithm, while taking
care to avoid drawing any strong conclusions from the
extracted value of this parameter.

2. Fit 2

In Fit 2 we drop the assumption that the two final-state
b̄’s are distinguishable. The Monte Carlo pseudodata (as
well as the templates) for the process gg → tt̄ →
ðbb̄cÞðb̄e−ν̄eÞ now include the amplitudes in which the
momenta of the two b̄’s in the final state are exchanged.
However, in order to construct the above observables,
we necessarily need to identify the b̄ emerging from the
top decay. Hence we must restrict our analysis to regions
of phase space where the two b̄’s can effectively be
considered to be distinguishable. To do this, we construct
the two quantities m2

1 ¼ ðpb þ pc þ pb̄1Þ2 and m2
2 ¼

ðpb þ pc þ pb̄2Þ2. If both m1 and m2 lie within the range
mt � 15Γt, the event is discarded. Otherwise, it is assumed
that the b̄i that yields the smaller value of jmi −mtj comes
from the t-quark decay. This leads to a loss of about 20% of

TABLE III. Input values of the NP parameters for the four test cases EX-i. The last column illustrates how the total cross section σ is
affected in each of the test cases.

Test case XI
AB Âσ

i σ=σSM

EX-1 XT
LL ¼ 1; XT

RR ¼ 1 Âþ
b̄ ¼ 32; Âþ

b ¼ −16; Âþ
c ¼ 32; 3.1

Â−
b̄ ¼ 32; Â−

b ¼ −16; Â−
c ¼ 32

EX-2 XS
LR ¼ 5 Âþ

b ¼ 25; all other Âσ
i ’s ¼ 0 1.6

EX-3 XS
LR ¼ 3; XS

RL ¼ 4 Âþ
b ¼ 9; Â−

b ¼ 16; all other Âσ
i ’s ¼ 0 1.6

EX-4 XV
LL ¼ 3; XS

LL ¼ 5 Âþ
b̄ ¼ 36; Âþ

b ¼ 25; all other Âσ
i ’s ¼ 0 2.4

2Based on our theoretical analysis, we expect the ζ2
b̄c

distri-
bution to have the most sensitivity to ReðXV

LLÞ. This expectation
is confirmed by an examination of the templates. Having said
this, the dependence on ReðXV

LLÞ is not completely negligible for
the other distributions and correlations, and in our numerical
work we include the corresponding template (TM-8) in the fits for
all distributions and correlations.
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the events. This cut also distorts the angular correlation
such that it no longer conforms to the familiar
(a1 þ a2 cos θ�3 cos θ

�
l) form, even for the SM. Despite

the distortion, the fit can be performed using the same

algorithm as long as the same method of event selection is
applied to the pseudodata as well as the templates.
The results of the fit are presented in Table V for the four

test cases. The agreement between the values of the fitted

TABLE V. Values of the NP parameters extracted from the four test cases EX-i using Fit 2.

Test case Fit results χ2=d:o:f:

EX-1 SMcoefficient ¼ 1.005� 0.004 1.09
Âþ
b̄ ¼ 29� 2 Â−

b̄ ¼ 33� 2

Âþ
b ¼ −15� 2 Â−

b ¼ −16� 2

Âþ
c ¼ 33� 2 Â−

c ¼ 31� 2
ReðXV

LLÞ ¼ 0.40� 0.03

EX-2 SMcoefficient ¼ 0.999� 0.003 1.05
Âþ
b̄ ¼ 1� 1 Â−

b̄ ¼ −1� 1

Âþ
b ¼ 26� 1 Â−

b ¼ 0� 1

Âþ
c ¼ 1� 2 Â−

c ¼ −2� 2
ReðXV

LLÞ ¼ −0.01� 0.02

EX-3 SMcoefficient ¼ 1.005� 0.003 0.89
Âþ
b̄ ¼ −1� 1 Â−

b̄ ¼ 1� 1

Âþ
b ¼ 10� 1 Â−

b ¼ 15� 1

Âþ
c ¼ 0� 2 Â−

c ¼ 0� 2
ReðXV

LLÞ ¼ −0.01� 0.02

EX-4 SMcoefficient ¼ 0.997� 0.003 1.29
Âþ
b̄ ¼ 38� 2 Â−

b̄ ¼ −1� 2

Âþ
b ¼ 23� 2 Â−

b ¼ 2� 2

Âþ
c ¼ 1� 2 Â−

c ¼ −1� 2
ReðXV

LLÞ ¼ 2.98� 0.02

TABLE IV. Values of the NP parameters extracted from the four test cases EX-i using Fit 1.

Test Case Fit Results χ2=d:o:f:

EX-1 SMcoefficient ¼ 1.005� 0.003 1.30
Âþ
b̄ ¼ 33� 2 Â−

b̄ ¼ 30� 2

Âþ
b ¼ −16� 2 Â−

b ¼ −15� 2

Âþ
c ¼ 33� 2 Â−

c ¼ 31� 2
ReðXV

LLÞ ¼ 0.40� 0.02

EX-2 SMcoefficient ¼ 1.000� 0.002 1.21
Âþ
b̄ ¼ 0� 1 Â−

b̄ ¼ 0� 1

Âþ
b ¼ 24� 1 Â−

b ¼ 1� 1

Âþ
c ¼ 1� 1 Â−

c ¼ 0� 1
ReðXV

LLÞ ¼ 0.01� 0.02

EX-3 SMcoefficient ¼ 0.994� 0.002 1.22
Âþ
b̄ ¼ 1� 1 Â−

b̄ ¼ −1� 1

Âþ
b ¼ 10� 1 Â−

b ¼ 15� 1

Âþ
c ¼ 0� 1 Â−

c ¼ 0� 1
ReðXV

LLÞ ¼ 0.02� 0.02

EX-4 SMcoefficient ¼ 1.003� 0.003 1.43
Âþ
b̄ ¼ 36� 1 Â−

b̄ ¼ 0� 1

Âþ
b ¼ 25� 1 Â−

b ¼ −1� 1

Âþ
c ¼ 1� 1 Â−

c ¼ −1� 1
ReðXV

LLÞ ¼ 3.03� 0.01
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parameters and their input values is almost as good as in the
idealized case (Fit 1): apart from ReðXV

LLÞ in EX-1, all
values agree within �1.5σ. We find that, with the event
selection discussed above, despite the resulting loss of
statistics, one obtains a slight improvement in the goodness
of fit, as can be seen from the smaller values of χ2=d:o:f.
All of this demonstrates that our algorithm continues to
hold, even when one imposes a “cut” to distinguish the two
b̄’s in the final state.

3. Fit 3

Finally, at the LHC, there is a small (≈10%–15%)
contribution to tt̄ production from qq̄ annihilation. In Fit
3 we consider the impact of this additional contribution.
It must be said that we do not expect a significant effect.

Since the NP couplings play a role only in top decay, the
structure of Eqs. (4) and (5) remains largely unchanged.
The change in Eq. (4) is the analytical form of the factor
σSM; in Eq. (5), the changes appear in the expressions for
σSM and κðrÞ. The decomposition of the NP contribution in
terms of a linear combination of Âσ

i ’s and ReðXV
LLÞ there-

fore remains valid for the purposes of the fit. Moreover,
in the

ffiffiffî
s

p
range that is sampled,3 tt̄ production is over-

whelmingly dominated by gg fusion, simply because the
gluon density is large at low values of momentum fractions

(the well-known Bjorken x1 and x2). This means that the
corrections due to qq̄ → tt̄ are small in magnitude over the
entire region of phase space that can be probed.
The results of Fit 3 are presented in Table VI. As

expected, the fitting procedure described above proves just
as effective for the full process pp → tt̄ → ðbb̄cÞðb̄e−ν̄eÞ.
Although the essential structure of our statistical analysis

is based on the analytical expressions obtained in Ref. [1],
where several simplifying assumptions were made, through
the above series of fits we have obtained a reliable
algorithm that includes a procedure to distinguish the
two final-state b̄’s, and works well even in the presence
of the contribution from qq̄ → tt̄. We now use this
algorithm to examine the prospects for obtaining informa-
tion about NP in the decay t → bb̄c at the LHC, in both the
short and long terms. This is discussed in the next section.

IV. DETECTING NEW PHYSICS IN TOP DECAY

Above, we have established a method for the extraction
of NP parameters involved in the decay t → bb̄c. However,
should a sizeable NP contribution exist, it is likely that it
would first be detected simply by measuring the total cross
section in this channel. It is only afterwards that the ζ212
distributions and the angular correlations discussed in the
preceding sections would be used to indicate the presence
of NP. While this is true, it should also be pointed out that
the overall normalization of the cross section suffers from
inherent theoretical uncertainties such as the choice of

TABLE VI. Values of the NP parameters extracted from the four test cases EX-i using Fit 3.

Test Case Fit Results χ2=d:o:f:

EX-1 SMcoefficient ¼ 1.002� 0.004; 1.01
Âþ
b̄ ¼ 32� 3; Â−

b̄ ¼ 31� 3

Âþ
b ¼ −16� 2; Â−

b ¼ −15� 2

Âþ
c ¼ 32� 3; Â−

c ¼ 33� 3
ReðXV

LLÞ ¼ 0.42� 0.03;

EX-2 SMcoefficient ¼ 0.998� 0.003; 1.00
Âþ
b̄ ¼ −1� 2; Â−

b̄ ¼ 0� 2

Âþ
b ¼ 24� 2; Â−

b ¼ 1� 2

Âþ
c ¼ 1� 2; Â−

c ¼ −1� 2
ReðXV

LLÞ ¼ −0.01� 0.02;

EX-3 SMcoefficient ¼ 1.001� 0.003; 1.08
Âþ
b̄ ¼ 1� 2; Â−

b̄ ¼ −1� 2

Âþ
b ¼ 9� 2; Â−

b ¼ 16� 2

Âþ
c ¼ 1� 2; Â−

c ¼ −1� 2
ReðXV

LLÞ ¼ −0.01� 0.02;

EX-4 SMcoefficient ¼ 0.999� 0.003; 1.01
Âþ
b̄ ¼ 38� 2; Â−

b̄ ¼ −2� 2

Âþ
b ¼ 24� 2; Â−

b ¼ 1� 2

Âþ
c ¼ 1� 3; Â−

c ¼ −1� 2
ReðXV

LLÞ ¼ 2.97� 0.02;

3At a 14 TeV pp collider, with Oð105Þ events, this range is
approximately 350 to 1200 GeV.
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PDFs, the renormalization and factorization scales, etc. On
the other hand, compared to the total cross section, the
distributions/correlations have additional discriminating
power since their shapes also get modified under the
influence of NP.
In the following subsections, using the distributions/

correlations, we perform simulations to examine the pros-
pects for detecting NP, for measuring certain combinations
of NP parameters, and for partially identifying the NP. The
simulations are done using a total number of events
consistent with either short-term or long-term measure-
ments at the LHC.

A. Short term

The tt̄ cross section at the LHC at a center-of-mass
energy of 14 TeV is ∼900 pb [9]. Considering the SM
branching fractions for t → bb̄c and t̄ → b̄l−ν̄l, the effec-
tive cross section in this channel is ∼0.1 pb. For the short-
term simulations, we consider an integrated luminosity
which, after factoring in the b-tagging efficiency,4 will lead
to 104 events of the type pp → tt̄ → ðbb̄cÞðb̄l−ν̄lÞ from

the SM alone.5 This is expected to be delivered by 2020–
2021 [10].
In the preceding sections, we noted that, in the presence

of NP, the shapes of the distributions/correlations can be
modified. This suggests that NP can be detected by
examining a particular distribution/correlation and seeing
a clear difference between the measured shape and its SM
prediction. This is explored in Fig. 2 Here all three ζ212
distributions are shown for the NP scenario EX-1. Clearly,
in the cases of dσ=dζ2bc and dσ=dζ2

b̄c
, the measurement of

the distributions alone would indicate the presence of NP.
On the other hand, it would be difficult to draw conclusions
from the shape of the corresponding dσ=dζ2

bb̄
distribution.6

However, even in the case of dσ=dζ2
bb̄
, information about

the NP can be obtained. To see this, we use the fitting
procedure developed in the previous section and examine
what kind of information can be extracted by fitting this
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FIG. 2 (color online). Normalized dσ=dζ212 distributions: (a) dσ=dζ2bc, (b) dσ=dζ
2
bb̄
, (c) dσ=dζ2

b̄c
, (d) dσ=dζ2

b̄c
on a semilog scale.

4This is assumed to be 70% for each of the three b or b̄’s in the
final state.

5Here l ¼ e; μ. In the CP-conserving scenario that we con-
sider, there would be an equal number of events in which t̄ → b̄bc̄
and t → blþνl. We assume that the events in which the t̄ decays
leptonically can be identified by tagging the charge of the lepton
and consider only those events in our analysis.

6If we were not normalizing the distribution to the total number
of events, the difference between the SM and EX-1 cases would
be much more apparent.
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distribution alone. From Eq. (4) one sees that the ζ2
bb̄

distribution depends on three distinct kinematic structures:
hbb̄SM, h

bb̄
c and hbb̄b ð¼ hbb̄

b̄
Þ. These kinematic structures will

in principle be modified by cuts, such as we place on the
final state b̄’s. In addition, as described above, there is a
mild (but potentially important) dependence on ReðXV

LLÞ in
the ζ2

bb̄
distribution. We did not include this dependence

in the analytical expressions above, but we do retain it here
in our numerical work. Thus, a fit using only the ζ2

bb̄
distribution would be sensitive to the relative weights
of the SM contribution, ReðXV

LLÞ, (Âþ
c þ Â−

c ) and
(Âþ

b̄ þ Â−
b̄ þ Âþ

b þ Âþ
b ). Accordingly, we modify our fitting

procedure: instead of using all eight templates in the fit, we
use only four, namely TM-0, TM-1, TM-5 and TM-8. The
values that we obtain for the above combinations of NP
parameters are presented in Table VII. Once again,
ReðXV

LLÞ proves to be the weakest link. For the other
combinations of NP parameters, the values extracted from
the fit agree with their input values within�3.2σ. However,
the key point is this: in each test case, a parameter
combination whose input value is nonzero is found from
the fit to be nonzero to at least 7σ. So, for the NP scenario
EX-1, although one cannot draw any conclusions about NP
from a visual examination of the normalized dσ=dζ2

bb̄
distribution, a fit provides statistically significant evidence
that NP is present.
Similar fits can be performed with the dσ=dζ2bc and

dσ=dζ2
b̄c
distributions to extract other combinations of Âσ

i ’s.
If all the dσ=dζ212’s are combined in one fit, it is possible

to obtain the combinations (Âþ
b̄ þ Â−

b̄ ), (Âþ
b þ Â−

b )

and (Âþ
c þ Â−

c ).
Analogous to the above example, one may wish to

attempt the fit of a single angular correlation. This,
however, is a more complicated task. As argued earlier,
the fits are not sensitive to the individual Âσ

i ’s, but rather to
the different kinematic structures that are present. In the
case of the angular correlations [see Eq. (5)], there are two
kinematic structures: a constant term and a term propor-
tional to cos θ�3 cos θ

�
l. However, the coefficients of these

pieces involve both SM and NP parameters. Therefore only
these combinations of SM and NP parameters can be
extracted. Furthermore, note that, in the case of the ζ212
distributions, each template is proportional to a single
kinematic structure. For example, for dσ=dζ2

bb̄
, TM-5 is

only sensitive to hbb̄c . On the other hand, in the case of the
angular correlations, each template contains both the
constant piece and the cos θ�3 cos θ

�
l piece.

In order to work around these difficulties, we proceed as
follows. First, we fix the weight of the SM contribution7 to
be 1.0. Second, the templates themselves have to be
reorganized. For example, consider dσ=d cos θ�cd cos θ�l.
Here a template defined as (TM-5þ TM-6) would be
proportional to the constant piece, and another defined
as (TM-5 − TM-6) would be proportional to the
cos θ�c cos θ�l piece.

8 The coefficients of these two modified
templates would then be expected to yield the values
of ðÂþ

c þ Â−
c þ Âþ

b̄ þ Â−
b̄ þ Âþ

b þ Â−
b Þ and ðÂþ

c − Â−
c−

1
3
fÂþ

b̄ − Â−
b̄ þ Âþ

b − Â−
bgÞ.

The results of the fit for the different EX-i are
presented in Table VIII. For all four EX-i, the agreement
between best-fit and input values is very good for
ðÂþ

c þ Â−
c þ Âþ

b̄ þ Â−
b̄ þ Âþ

b þ Â−
b Þ. The key point is that,

in all cases, this combination of NP parameters is definitely
nonzero. For ðÂþ

c − Â−
c − 1

3
fÂþ

b̄ − Â−
b̄ þ Âþ

b − Â−
bgÞ the

error bars are larger: the best-fit and input values agree
to within 1–3σ. Nevertheless, a fit to a single angular
correlation can provide statistically significant evidence
that NP is present. The measurement of an angular
correlation would, however, most likely be more challeng-
ing than the measurement of a ζ212 distribution, which is
essentially an invariant mass-squared distribution. Hence it
is very likely that NP, if present, will be discovered first in a
ζ212 distribution.
The simplest approach towards the fitting of the

angular correlations would have been to fit them to the
functional form a1 þ a2 cos θ�3 cos θ

�
l, as is the usual

TABLE VII. Values of the combinations of NP parameters
extracted from dσ=dζ2

bb̄
. The integrated luminosity corresponds

to 104 SM events.

Test case Parameter Input value Fit result χ2=d:o:f:

EX-1 SM coefficient 1 1.2� 0.2 1.31
Âþ
c þ Â−

c 64 72� 6

Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 32 16� 5

ReðXV
LLÞ 0 3� 1

EX-2 SM coefficient 1 0.9� 0.1 1.24
Âþ
c þ Â−

c 0 −1� 4

Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 25 28� 3

ReðXV
LLÞ 0 0.0� 0.7

EX-3 SM coefficient 1 1.3� 0.1 1.32
Âþ
c þ Â−

c 0 −10� 4

Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 25 22� 3

ReðXV
LLÞ 0 −1.0� 0.7

EX-4 SM coefficient 1 1.0� 0.1 0.96
Âþ
c þ Â−

c 0 −2� 5

Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 61 63� 4

ReðXV
LLÞ 3 2.3� 0.8

7Note that this could also have been done for the fits to the ζ212
distributions. However, in the case of an angular correlation it
must be done.

8This holds as long as the values of Âþ
c and Â−

c used to generate
TM-5 and TM-6, respectively, are identical.
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procedure for measuring κtt̄. However, this possibility is
precluded due to the fact that the event-selection criteria
described in Fit 2 distorts the shape of the correlation.
We have used a somewhat simple-minded approach to
deal with the identical b̄’s in the final state. It is certainly
possible that experimentalists will find a better way to
deal with this situation (perhaps through the use of
some sophisticated multivariate technique, such as neural
networks or boosted decision trees) and that such an
approach would lead to less distortion of the shape of
the correlation.
Finally, we consider the full fit involving all six

observables, with statistics corresponding to 104 events

for the SM. The results are presented in Table IX. Apart
from ReðXV

LLÞ in EX-1, the values of all NP parameters
agree with their input values within �1.7σ.
To sum up, the above simulations demonstrate that, even

in the short term, it is possible to detect the presence of NP
in top decay through the measurement of the invariant
mass-squared distributions and/or the angular correlations.
This can be done by comparing the measured shapes of the
distributions/correlations with the SM predictions. More
sensitivity can be obtained by performing fits to extract
combinations of NP parameters. If all six distributions and
correlations can be measured, a combined fit can be
performed to extract all the NP parameters. The

TABLE IX. Values of the NP parameters extracted from a fit to all six observables. The integrated luminosity corresponds to 104 SM
events.

Test Case Fit Results χ2=d:o:f:

EX-1 SMcoefficient ¼ 1.00� 0.01 1.18
Âþ
b̄ ¼ 36� 9 Â−

b̄ ¼ 28� 9

Âþ
b ¼ −22� 8 Â−

b ¼ −11� 8

Âþ
c ¼ 47� 9 Â−

c ¼ 18� 9
ReðXV

LLÞ ¼ 0.31� 0.09

EX-2 SMcoefficient ¼ 0.988� 0.009 0.92
Âþ
b̄ ¼ 6� 6 Â−

b̄ ¼ −3� 6

Âþ
b ¼ 23� 5 Â−

b ¼ 1� 6

Âþ
c ¼ 0� 6 Â−

c ¼ −1� 6
ReðXV

LLÞ ¼ 0.03� 0.05

EX-3 SMcoefficient ¼ 1.013� 0.009 0.94
Âþ
b̄ ¼ 4� 6 Â−

b̄ ¼ −3� 6

Âþ
b ¼ 16� 5 Â−

b ¼ 8� 6

Âþ
c ¼ 1� 6 Â−

c ¼ −2� 6
ReðXV

LLÞ ¼ 0.03� 0.05

EX-4 SMcoefficient ¼ 1.00� 0.01 0.99
Âþ
b̄ ¼ 47� 7 Â−

b̄ ¼ −12� 7

Âþ
b ¼ 34� 7 Â−

b ¼ −9� 7

Âþ
c ¼ 8� 8 Â−

c ¼ −8� 8
ReðXV

LLÞ ¼ 2.91� 0.05

TABLE VIII. Values of the combinations of NP parameters extracted from dσ=d cos θ�cd cos θ�l. The integrated luminosity corresponds
to 104 SM events. The weight of the SM contribution is fixed to be 1.0.

Test Case Parameter Input Value Fit Result χ2=d:o:f:

EX-1 Âþ
c þ Â−

c þ Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 96 97� 1 1.19

Âþ
c − Â−

c − 1
3
ðÂþ

b̄ − Â−
b̄ þ Âþ

b − Â−
b Þ 0 26� 11

EX-2 Âþ
c þ Â−

c þ Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 25 26� 1 1.00

Âþ
c − Â−

c − 1
3
ðÂþ

b̄ − Â−
b̄ þ Âþ

b − Â−
b Þ −8.33 −10� 7

EX-3 Âþ
c þ Â−

c þ Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 25 26� 1 1.01

Âþ
c − Â−

c − 1
3
ðÂþ

b̄ − Â−
b̄ þ Âþ

b − Â−
b Þ 2.33 −3� 7

EX-4 Âþ
c þ Â−

c þ Âþ
b̄ þ Â−

b̄ þ Âþ
b þ Â−

b 61 64� 1 0.97

Âþ
c − Â−

c − 1
3
ðÂþ

b̄ − Â−
b̄ þ Âþ

b − Â−
b Þ −20.33 −31� 9
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determination of which parameters are nonzero allows for a
partial identification of the NP.

B. Long term

As noted above, the effective cross section in gg → tt̄ →
ðbb̄cÞðb̄lν̄Þ is ∼0.1 pb. The LHC is projected to deliver
3000 fb−1 worth of data by the year 2030 [10]. Assuming
this integrated luminosity and a b-tagging efficiency of
70% for each of the three b or b̄’s in the final state, one
obtains ≈105 events of the type pp → tt̄ → ðbb̄cÞðb̄l−ν̄lÞ
from the SM. This is the number of events in our long-term
simulations.
By 2030, all six distributions and correlations will, in all

likelihood, have been measured. For this reason we con-
sider only the fit to all distributions/correlations with 105

SM events. The corresponding results have already been
presented in Table VI. Apart from ReðXV

LLÞ in EX-1, the
best-fit values of all NP parameters differ from their input
values by at most 1σ. The errors on the Âσ

i ’s are typically in
the range 1.75–2.75. Thus, any Âσ

i that is≳10will be found
to be nonzero at a statistically significant level. In this way
it will be possible to determine which NP parameters are
nonzero, thus producing an identification of the NP.

V. CONCLUSIONS

In Ref. [1], the companion paper, NP in the decay
t → bb̄c is considered. There, ten dimension-6 NP oper-
ators contributing to t → bb̄c are delineated, and two types
of observables are identified that can be used to search for
this NP in the process gg → tt̄ → ðbb̄cÞðb̄lν̄Þ. They are
(i) invariant mass-squared distributions involving the
fb; cg, fb̄; cg, or fb; b̄g quark pairs coming from
t → bb̄c, and (ii) angular correlations between the l−

coming from the t̄ decay and one of b̄, b or c coming
from the t decay. It is further shown that the NP contri-
butions to these observables can be written in terms of
certain combinations of the NP couplings denoted as Âσ

i . In
the present paper we examine the prospects for detecting
and identifying such NP at the LHC.
The first step is to develop an algorithm to extract the

Âσ
i ’s and ReðXV

LLÞ from the observables. From the analyti-
cal expressions obtained in Ref. [1] [summarized here in
Eqs. (4) and (5)], we learn that the NP contribution to the
observables can be represented as a linear combination of
pieces proportional to the different Âσ

i ’s and ReðXV
LLÞ.

Using this idea, we perform a Monte Carlo simulation
using MADGRAPH 5 to compute “templates,” which are the
contributions of the SM, each Âσ

i and ReðXV
LLÞ to the

observables. We also generate Monte Carlo data for four
possible NP scenarios. For each of these scenarios, we
extract the NP parameters simply by obtaining the weights
with which the templates must be combined to reproduce
the Monte Carlo data.

Although the fit algorithm is based on a simple premise,
there are two issues that must be taken into account. First,
the construction of the observables requires distinguishing
the decay products of the t from those of the t̄. However, the
final state contains two b̄’s, which are indistinguishable, at
least in some parts of phase space. We designate the b̄ that
yields the smaller value of jmt −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpb̄ þ pb þ pcÞ2

p
j as

that having come from the t decay. However, if both b̄’s in
the event yield sufficiently small values of this quantity
(less than 15Γt), then we consider them to be indistinguish-
able and exclude such events from the analysis. Second, the
contribution to tt̄ production from a qq̄ initial state is not
included in the analytical expressions. However, this must
be taken into account as there are no known algorithms that
can efficiently separate tt̄ pairs coming from gluon fusion
from those occurring due to qq̄ annihilation.
In order to examine the prospects for detecting the

presence of NP in t → bb̄c, and for its identification, we
perform further simulations of the distributions/
correlations. The simulations are done for either short-term
or long-term measurements at the LHC. For the
short-term analysis we use 104 events of the type
pp → tt̄ → ðbb̄cÞðb̄l−ν̄lÞ. This is expected to be delivered
by 2020–2021. For the long term we use 105 events, which
is projected by the year 2030.
In the short term not all distributions/correlations may be

measured, and what can be learned about the NP depends
on what measurements have been made. In the presence of
a sufficiently large NP contribution to t → bb̄c, the shapes
of the distributions/correlations can be significantly modi-
fied. Thus, NP in t → bb̄c may be inferred by observing a
clear difference between the shape of a measured distri-
bution and its SM prediction. Even if there is no discernible
difference in the shapes, it may still be possible to obtain
information about NP contributions. Using the above
algorithm with a slight modification, one can perform a
fit to a single distribution. In this case, not all the individual
Âσ
i ’s are extracted, but rather certain combinations of

the Âσ
i ’s. We show that, even for a scenario in which the

presence of NP does not induce a substantial change in the
shape of the distribution, a fit may still yield statistically
significant evidence that NP is present. Finally, if all six
distributions/correlations are measured, we can use the
algorithm to perform a simultaneous fit on all the observ-
ables to extract ReðXV

LLÞ and all the Âσ
i ’s separately. In the

examples studied, we find that the values of all NP
parameters agree with their input values within �1.7σ.
Although the errors are large, this provides an approximate
determination of the values of the NP parameters. More
importantly it allows us to infer that a nonzero NP
contribution to t → bb̄c exists.
In the long term, it is likely that all six distributions/

correlations will be measured. Furthermore, the availability
of larger statistics will lead to an improvement in the
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quality of the fits. We find that, with 105 events, the best-fit
values of all NP parameters differ from their input values by
at most 1σ. Thus, if NP is present in t → bb̄c, the fit will
allow the determination of its nature.
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