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In this paper we study new-physics contributions to the top-quark decay t → bb̄c. We search for ways of
detecting such new physics via measurements at the LHC. As top quarks are mainly produced at the LHC in
tt̄ production via gluon fusion, we analyze the process gg → tt̄ → ðbb̄cÞðb̄lν̄Þ. We find six observables that
can be used to reveal the presence of new physics in t → bb̄c. Three are invariant mass-squared
distributions involving two of the final-state particles in the top decay, and three are angular correlations
between the final-state quarks coming from the t decay and the l− coming from the t̄ decay. The angular
correlations are related to the tt̄ spin correlation.

DOI: 10.1103/PhysRevD.90.094015 PACS numbers: 14.65.Ha

I. INTRODUCTION

Physics beyond the standard model (SM) is expected to
exist at energies above the weak scale. While successive
experiments at the LEP, the Tevatron and the LHC have
served to validate the SM over the past few decades, no
direct evidence of new physics (NP) has been found yet.
Clearly, NP either exists at an energy scale higher than what
has been probed, or its hints are subtler than we envision.
The LHC, which is currently operational, is essentially a
top-quark factory. The properties of the t can therefore be
measured with good precision. Now, the mass of the top
quark is more than an order of magnitude larger than that
of all other fermions. As such, it may be affected by NP
in ways that do not manifest themselves in the interactions
of the lighter fermions. In addition, its large mass causes the
top to decay before it can hadronize, so that it can be
studied more or less as a free quark.
In this paper we study NP contributions to top-quark

decay. The dominant t decay modes in the SM involve
t → Wþb, with Wþ → lþνl, ud̄ or cs̄. Since the exper-
imentally measured value of the top decay width is in good
agreement with the SM prediction [1], it is evident that the
NP contribution to the dominant decay modes, if any, is

very small compared to that of the SM. On the other hand,
in the case of decay modes that are suppressed in the SM, a
NP contribution that is comparable to that of the SM in that
mode may go unnoticed simply because its impact on the
total width is small. This makes it interesting to probe rare
decays, as these could well be where the new physics is
lurking. One such decay is t → Wþb → bb̄c. It is sup-
pressed in the SM because it involves the small element Vcb
(≃0.04) of the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix. There are other suppressed decays
(e.g., t → ss̄c), but here we focus on t → bb̄c.
Single-top production is rather suppressed at the LHC

[2], so that it is difficult to isolate the decay t → bb̄c
experimentally and analyze it on its own. The most
significant production mode for top quarks at the LHC
is pair (tt̄) production. At LHC energies, this is dominated
by gluon fusion (gg → tt̄), as opposed to quark-antiquark
annihilation (qq̄ → tt̄). In order to search for NP in top
decay, the full process gg → tt̄, with t → bb̄c and t̄ → b̄lν̄,
must be analyzed. Apart from the usual difficulties of
studying a multiparticle final state, this channel suffers
from another complication—the t̄ decay leads to a second b̄
in the final state, providing an additional background that
must be taken into account.
The main purpose of this paper is to analyze the process

gg → tð→ bb̄cÞt̄ð→ b̄lν̄Þ, and to look for observables that
can reveal the presence of NP in top decay.1 We will show
that there are two types of observables that can be used. The
first is simply an invariant mass-squared distribution
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1Here we concentrate on CP-conserving observables. CP
violation in t → bb̄c, along the lines of Ref. [3], will be examined
elsewhere [4].
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involving two of the final-state particles in t → bb̄c. With
NP, its form is altered compared to that of the SM. Note,
however, that this type of observable is entirely related to
the decay of the t itself. The associated production of the t̄
is unimportant, except insofar that one must distinguish the
b̄ quarks coming from the t and t̄ decays.
The second type of observable does rely on the fact that a

tt̄ pair has been produced. The key point is that, in tt̄
production, the spins of the t and t̄ are correlated [5]. The
spin-correlation coefficient for the produced tt̄ pair can be
defined as

κtt̄ ¼
σ↑↑ þ σ↓↓ − σ↑↓ − σ↓↑
σ↑↑ þ σ↓↓ þ σ↑↓ þ σ↓↑

; ð1Þ

where ↑ and ↓ denote the alignment of the spins of the top
and antitop with respect to the chosen spin-quantization
axis. The spin of the t itself is related to the angular
distribution of its decay products through the relation

1

Γ
dΓ

d cos χi
¼ 1

2
ð1þ αi cos χiÞ; ð2Þ

where χi is the angle between the direction of the ith decay
product and the spin-quantization axis in the rest frame of
the top, and αi is a numerical coefficient whose value
depends on the identity of this decay product. The spin of
the t̄ is related to the angular distribution of its decay
products through a similar relation, with χi → χ̄i and
αi → ᾱi. Naturally then, the spin correlation between the
pair-produced top and antitop is manifested in the angular
correlation between the decay products of the two particles.
That relation is given as follows [6]:

1

σ

d2σ
d cos χid cos χ̄j

¼ 1

4
ð1þ κtt̄αiᾱj cos χi cos χ̄jÞ: ð3Þ

Its measurement permits the extraction of κtt̄. If the
measured value differs from the prediction of the SM, it
would indicate the presence of NP.
One point should be noted at this juncture. The spin-

correlation coefficient κtt̄ is, by definition, a property of
the tt̄ production process. However, its experimental
determination depends on the decay. Equation (3)
assumes that the t and t̄ decay via SM interactions only.
If there are NP contributions in top decay, the value of
κtt̄ extracted from the angular correlations of the top
and antitop decay products will be different from the
SM prediction. This would not be due to a change in the
value of κtt̄ itself, but rather to a change in the form
of Eq. (3).
While there have been several studies of the effect of NP

on tt̄ spin correlations, most of them have focused on NP
that affects tt̄ production. These span both CP-conserving
[7] and CP-violating [8] NP scenarios. Possibilities include

nonstandard gtt̄ couplings in the form of anomalous
chromomagnetic dipole or chromoelectric dipole inter-
actions, as well as many of the NP models proposed to
explain the large tt̄ forward-backward asymmetry observed
at the Tevatron [9].
Of course, NP contributions may be present in both tt̄

production and in the decay. However, NP in the production
is much easier to detect, in that it should be observable even
in the dominant decay modes of the top. For this reason we
ignore the possibility of NP in tt̄ production in our analysis.
We assume it will have been detected or ruled out before the
study of NP in the decay is done.
Once the observables that carry the signature of NP have

been pinpointed, the next question is: to what extent can
they realistically be used to probe NP in top decay? Can
they be used to identify, even partially, the type of NP
present? This is examined in the companion paper [10].
There we show that it is likely that there will be enough
events at the LHC to measure these observables reasonably
precisely and extract information about the nature of NP
at play.
In this paper, we begin in Sec. II by examining how NP

in top decay can affect t → bb̄c. In Sec. III we briefly
discuss the full pair production and decay chain gg → tt̄ →
ðbb̄cÞðb̄lν̄Þ (full details are given in the Appendix). The
observables that can be used to search for NP in top decay
are described in Sec. IV. In Sec. V we perform a numerical
simulation of gg → tt̄ → ðbb̄cÞðb̄lν̄Þ at the LHC, including
NP, and compare the results for the observables with our
analytical calculations. We conclude in Sec. VI.

II. NEW PHYSICS IN TOP DECAY

As detailed in the Introduction, this work focuses on the
search for new physics in rare decays of the top quark. In
this paper, we examine the decay t → bb̄c. However, the
method described here can also be applied to other sup-
pressed decays such as t → ss̄c, etc.
While examining a suppressed decay mode, one must

consider the most dominant production mode in order to
have sufficient statistics. Hence, the search for NP in this
top decay mode must involve the process gg → tt̄. Even
there, one may have chosen to ignore the details of the
production process and focus only on the decay. However,
as we show in the following sections, there is something to
be gained by considering the full process gg → tt̄ →
ðbb̄cÞðb̄lν̄Þ, in that the tt̄ spin correlations can be put to
use in the identification of NP.

A. t → bb̄c: Effective Lagrangian

In the SM, the decay t → bb̄c arises via t → Wþb,
followed byWþ → b̄c. NP contributions to t → bb̄c can be
parametrized via an effective Lagrangian Leff ¼ LV

eff þ
LS
eff þ LT

eff , with
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LV
eff ¼ 4

ffiffiffi
2

p
GFVcbVtbfXV

LLb̄γμPLtc̄γμPLbþ XV
LRb̄γμPLtc̄γμPRbþXV

RLb̄γμPRtc̄γμPLbþ XV
RRb̄γμPRtc̄γμPRbg þ H:c:; ð4Þ

LS
eff ¼ 4

ffiffiffi
2

p
GFVcbVtbfXS

LLb̄PLtc̄PLbþ XS
LRb̄PLtc̄PRbþXS

RLb̄PRtc̄PLbþ XS
RRb̄PRtc̄PRbg þ H:c:; ð5Þ

LT
eff ¼ 4

ffiffiffi
2

p
GFVcbVtbfXT

LLb̄σ
μνPLtc̄σμνPLbþXT

RRb̄σ
μνPRtc̄σμνPRbg þ H:c: ð6Þ

In the above expressions, color indices are not shown, but are
assumed to contract in the same manner as those of the SM
(i.e., the fields b̄ with t and c̄ with b). In some NP models,
the color indices would contract in the opposite manner
(i.e., the fields c̄ with t and b̄ with b). However, with Fierz
transformations it is straightforward to incorporate color-
mismatched terms into the effective Lagrangian [3].
In general, the NP couplings (the X’s in the above

equations) have both weak and strong phases. However, as
argued in Ref. [11], since the NP strong phases can only be
generated by self-rescattering from the NP operators, they
are very small. For this reason, we neglect all NP strong
phases, so that the X’s contain only weak phases.
Furthermore, the NP couplings can all reasonably be
assumed to be of order unity, so that the SM and NP
contributions to t → bb̄c can very well be about the same
size. When computing the effect of NP on a particular
observable, it is therefore important to include both the
SM-NP and NP-NP interference pieces.

B. t → bb̄c: jMj2
We calculate the square of the matrix element for t →

bb̄c as a function of the top-quark spin (st), including the
SM and all the NP contributions. We find

1

3

X
colors;

b;b̄;c spins

jMðtðstÞ → bb̄cÞj2

¼ 96G2
FmtðVtbVcbÞ2

�X
i;σ

Aσ
i

�
pi · pt

mt
− ξσpi · st

�

− 16ImðXT
LLX

S�
LL þ XT

RRX
S�
RRÞϵðpt; st; pb̄; pcÞ

�
; ð7Þ

where ϵðpt; st; pb̄; pcÞ≡ ϵμνρσp
μ
t sνt p

ρ
b̄
pσ
c, with ϵ0123 ¼ −1

and where st is the spin four-vector of the top quark.
Above, σ ¼ �, ξ� ¼ �1 and i ¼ b̄; b; c. Aþ

b̄
is defined as

Aþ
b̄
¼ ðpt − pb̄Þ2

�
m4

W jGT j2 þ 4m2
WReðGTXV�

LLÞ þ Âþ
b̄

�
;

ð8Þ

where GT ≡GTðq2Þ ¼ ðq2 −M2
W þ iΓWMWÞ−1 and q2 ¼

2pb̄ · pc. The remaining Aσ
i ’s are defined as

Aσ
i ¼ ðpt − piÞ2Âσ

i ; ðall i; σ; except i ¼ b̄; σ ¼ þÞ:
ð9Þ

In the above,

Âþ
b̄ ¼ 4jXV

LLj2 − 8ReðXT
LLX

S�
LLÞ þ 32jXT

LLj2;
Â−
b̄ ¼ 4jXV

RRj2 − 8ReðXT
RRX

S�
RRÞ þ 32jXT

RRj2;
Âþ
b ¼ jXS

LLj2 þ jXS
LRj2 − 16jXT

LLj2;
Â−
b ¼ jXS

RRj2 þ jXS
RLj2 − 16jXT

RRj2;
Âþ
c ¼ 4jXV

LRj2 þ 8ReðXT
LLX

S�
LLÞ þ 32jXT

LLj2;
Â−
c ¼ 4jXV

RLj2 þ 8ReðXT
RRX

S�
RRÞ þ 32jXT

RRj2: ð10Þ

Note that Aþ
b̄
contains both the SM and NP contributions,

whereas the other Aσ
i ’s contain only NP contributions.

The term proportional to ϵðpt; st; pb̄; pcÞ in Eq. (7)
describes the triple product (TP) in the decay. Because
the X’s contain only weak phases, the TP is purely CP
violating. Furthermore, Eq. (8) contains terms proportional
to ReðGTÞReðXV�

LLÞ and ImðGTÞImðXV�
LLÞ. Of these,

ImðGTÞImðXV�
LLÞ is also CP violating. Now, if one adds

Eq. (7) to its CP-conjugate counterpart, all CP-violating
terms cancel, leaving the remaining terms unchanged (apart
from a normalization factor of 1=2). In focusing on CP-
conserving observables, we implicitly assume that this CP
averaging has been performed.
The main point to be retained from Eq. (7) is that the

amplitude squared depends on seven different combina-
tions of NP couplings—six Âσ

i ’s and ReðXV�
LLÞ. Thus, there

are a number of independent observables that, in principle,
can provide information about the NP. While we can hope
to measure all seven of these quantities, we cannot measure
all of the individual X parameters. In the remainder of this
paper (and in the companion paper), when we refer to
“identifying” the NP, what is meant is this partial identi-
fication of the six Âσ

i ’s and ReðXV�
LLÞ, not the complete

identification of all of the X parameters.

III. gg → tt̄ → ðbb̄cÞðb̄lν̄Þ
As a first step, we calculate the cross section for tt̄ pair

production followed by the decay chain t → bb̄c, t̄ → b̄lν̄.
We present an outline of the analysis in what follows; the
more technical details can be found in the Appendix.
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Briefly, the analysis proceeds as follows. The process is
represented in Fig. 1. The six-body phase space is decom-
posed into five solid angles and four invariant masses. The
narrow-width approximation2 is then used for the t and t̄
quarks to eliminate two of the invariant-mass degrees of
freedom. The solid angles dΩ��

1 , dΩ�
2, dΩ��

4 , dΩ�
5 and dΩt

are defined in five different rest frames, as indicated in
Fig. 1. The � and �� superscripts indicate that these angles

are defined in reference frames that are, respectively, one
and two boosts away from the tt̄ rest frame. The invariant
masses M2 and M5 are defined through the relations M2

2 ¼
ðp1 þ p2Þ2 and M2

5 ¼ ðp4 þ p5Þ2. In the end, the differ-
ential cross section is a complicated function of the final-
state momenta pi (i ¼ 1–6) and the couplings, and is
defined with respect to dM2

2dM
2
5dΩ��

1 dΩ�
2dΩ��

4 dΩ�
5dΩt.

We stress that Fig. 1 represents only the kinematics of
gg → tt̄ → ðbb̄cÞðb̄lν̄Þ. It is not a Feynman diagram.
In particular, M2

5 does not necessarily correspond to the
W− resonance in the t̄ decay, and M2

2 does not necessarily
correspond to the Wþ resonance in the SM part of the t
decay. Rather, p1, p2 and p3 are the momenta of the b, b̄
and c quarks in t → bb̄c, with all permutations being
allowed. That is, p1, p2 and p3 can each stand for pb, pb̄ or
pc, and similarly for the particles in the t̄ decay. In
constructing the observables, we consider several of these
possibilities.

IV. OBSERVABLES

The first step in finding observables that can yield
information about NP in top decay is to define which
final-state particles correspond to p1-p6. There are several
choices possible, corresponding to different observables.
Throughout this work the momenta for the t̄ decay products
are assigned as follows: p4 ¼ pν̄, p5 ¼ pb̄ and p6 ¼ pl.
Taking p1 ¼ pc, p2 ¼ pb and integrating Eq. (A29) from
the Appendix overM2

5 and over all angles except θ
�̄
b
and θ�l,

we find3

dσ
d cos θ�̄

b
d cos θ�ldζ

2
bc

¼ σSM
4

�
6hbcSMðζ2bcÞ

ð1 − ζ2WÞ2ð1þ 2ζ2WÞ
½1þ κðrÞ cos θ�̄

b
cos θ�l� þ

3GFm2
tffiffiffi

2
p

π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

×
X
i;σ

Âσ
i ½hbci ðζ2bcÞ þ ~hbci ðζ2bcÞξσκðrÞ cos θ�̄b cos θ�l�

�
; ð11Þ

where ζ2bc ≡ ðpb þ pcÞ2=m2
t and ζW ≡mW=mt. σSM is defined in Eq. (A33) of the Appendix, the Âσ

i ’s are given in Eq. (10),
and κðrÞ is defined as

κðrÞ ¼ ð−31r4 þ 37r2 − 66Þr − 2ðr6 − 17r4 þ 33r2 − 33Þtanh−1ðrÞ
r2½ð31r2 − 59Þrþ 2ðr4 − 18r2 þ 33Þtanh−1ðrÞ� ; ð12Þ

where r is defined in Eq. (A1) in the Appendix. Note that hκðrÞi ¼ −κtt̄ as defined in Eq. (1). The functions hbci ðζ2bcÞ and ~hbci
are defined in Table I, and

2The narrow-width approximation is equivalent to assuming that the decaying particle is on shell. Throughout the paper, we apply this
to the t and t̄ quarks produced via gluon fusion, to the W produced in the t̄ decay, and generally to the W produced in
the t decay.

3The angle θ�̄
b
is “θ�2” in this case (see the caption of Fig. 1 for a precise definition). This angle is associated with the direction of the

b-c center of mass in the top rest frame, which is opposite to the direction of the b̄ in this frame. Similarly, θ�l is “θ�5.”

FIG. 1. Kinematics for the process gg → tt̄ → ðbb̄cÞðb̄lν̄Þ [12].
Ω��

1 denotes the direction of ~p��
1 in the rest frame of M2, relative

to the direction of ~p�
1 þ ~p�

2, where M2
2 ¼ ðp1 þ p2Þ2. Similarly,

Ω�
2 denotes the direction of ð~p�

1 þ ~p�
2Þ in the t rest frame, relative

to the direction of ~pt in the tt̄ rest frame. Ωt denotes the direction
of ~pt relative to ~q1, also in the tt̄ rest frame. The solid angles
Ω��

4 and Ω�
5 are defined analogously to Ω��

1 and Ω�
2,

respectively, and M2
5 ¼ ðp4 þ p5Þ2.
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hbcSMðζ2bcÞ ¼ ð1 − ζ2bcÞζ2bcθð1 − ζ2W − ζ2bcÞ: ð13Þ

In writing down Eq. (11), we have dropped a contri-
bution proportional to ReðXV�

LLÞ, which tends to yield a
somewhat small effect in practice. This contribution is
not difficult to calculate, but its inclusion makes the
expression for the differential cross section somewhat
cumbersome. Also, since we are only considering
CP-even contributions, we have dropped a term propor-
tional to ImðXV�

LLÞ.
Starting from Eq. (11), we can integrate one or two more

times to obtain differential cross sections in terms of the
two angles or in terms of the invariant mass squared,
respectively. These are the two types of observables we
focus on in this paper.

A. Invariant mass-squared distribution

Integrating over the angles θ�̄
b
and θ�l in Eq. (11) yields

dσ
dζ2bc

¼ σSM

�
6hbcSMðζ2bcÞ

ð1− ζ2WÞ2ð1þ 2ζ2WÞ

þ 3GFm2
tffiffiffi

2
p

π2ð1− ζ2WÞ2ð1þ 2ζ2WÞ
X
i;σ

Âσ
i hbci ðζ2bcÞ

�
: ð14Þ

The above contains three functions of ζ2bc that multiply the
various SM and NP terms: hbcSM, h

bc
b̄

and hbcb ¼ hbcc . The
three functions are qualitatively different from each other,
so that the measurement of the invariant mass-squared
distribution permits the extraction of the NP parameters
Âþ
b̄ þ Â−

b̄ and Âþ
b þ Â−

b þ Âþ
c þ Â−

c .

B. Angular correlation

Integrating over ζ2bc in Eq. (11), we obtain

dσ
d cos θ�̄

b
d cos θ�l

¼ σSM
4

�
½1þ κðrÞ cos θ�̄

b
cos θ�l� þ

3GFm2
t

4
ffiffiffi
2

p
π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

×

��X
i;σ

Âσ
i

�
þ
�
Âþ
b̄ − Â−

b̄ −
1

3
ðÂþ

b − Â−
b þ Âþ

c − Â−
c Þ
�
κðrÞ cos θ�̄

b
cos θ�l

��
: ð15Þ

By measuring this differential cross section and comparing it to the SM prediction, one can extract the sum of NP
parameters

P
i;σÂ

σ
i and a linear combination of the differences Âþ

i − Â−
i (i ¼ b̄; b; c). Note that this observable is sensitive

to the tt̄ spin correlation. For the SM, this is just the coefficient of the term proportional to cos θ�̄
b
cos θ�l, up to an overall

normalization factor. Once NP is included, this term gets an additional contribution proportional to a combination of
differences of the NP parameters.
It is straightforward to perform the above analysis for the two other invariant masses and angles in the t decay. Taking

p1 ¼ pc and p2 ¼ pb̄, we have

dσ
dζ2

b̄c

¼ σSM

�
½1 − 4ð1 − ζ2

b̄c
=ζ2WÞReðXV�

LLÞ�
6hb̄cSMðζ2b̄cÞ

ð1 − ζ2WÞ2ð1þ 2ζ2WÞ
þ 3GFm2

tffiffiffi
2

p
π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

X
i;σ

Âσ
i hb̄ci ðζ2

b̄c
Þ
�
; ð16Þ

where the hb̄ci are defined in Table I and

hb̄cSMðζ2b̄cÞ ¼
�
ζWγW
6π

� ð1 − ζ2
b̄c
Þ2ð1þ 2ζ2

b̄c
Þ

ðζ2
b̄c
− ζ2WÞ2 þ ðζWγWÞ2

; ð17Þ

TABLE I. Definitions of the hmn
i (mn ¼ bc, b̄c, bb̄) and ~hbci functions. The columns correspond to i ¼ b, b̄, c.

b b̄ c

hbci ðζ2Þ 1
2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 3ð1 − ζ2Þ2ζ2 1

2
ð1 − ζ2Þ2ð1þ 2ζ2Þ

~hbci − 1
2
ð1 − ζ2Þ2ð1 − 2ζ2Þ 3ð1 − ζ2Þ2ζ2 − 1

2
ð1 − ζ2Þ2ð1 − 2ζ2Þ

hb̄ci ðζ2Þ 3ð1 − ζ2Þ2ζ2 1
2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 1

2
ð1 − ζ2Þ2ð1þ 2ζ2Þ

hbb̄i ðζ2Þ 1
2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 1

2
ð1 − ζ2Þ2ð1þ 2ζ2Þ 3ð1 − ζ2Þ2ζ2
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with γW ¼ ΓW=mt. Here, since hb̄cb is different from hb̄c
b̄

¼ hb̄cc , the measurement of the invariant mass-squared distribution

permits the extraction of the NP parameters Âþ
b þ Â−

b and Âþ
b̄ þ Â−

b̄ þ Âþ
c þ Â−

c , as well as ReðXV�
LLÞ.

The corresponding angular correlation is given by

dσ
d cos θ�bd cos θ

�
l
¼ σSM

4

�
½1þ ρbðζ2WÞκðrÞ cos θ�b cos θ�l� þ

3GFm2
t

4
ffiffiffi
2

p
π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

×

��X
i;σ

Âσ
i

�
þ
�
Âþ
b − Â−

b −
1

3
ðÂþ

b̄ − Â−
b̄ þ Âþ

c − Â−
c Þ
�
κðrÞ cos θ�b cos θ�l

��
; ð18Þ

where

ρbðζ2WÞ ¼ −
�
1 − 2ζ2W
1þ 2ζ2W

�
: ð19Þ

The measurement of this angular correlation allows one to extract the sum of NP parameters
P

i;σÂ
σ
i and a different linear

combination of the differences Âþ
i − Â−

i (i ¼ b̄; b; c) as compared to Eq. (15).
Finally, we take p1 ¼ pb and p2 ¼ pb̄. In this case,

dσ
dζ2

bb̄

¼ σSM

�
6hbb̄SMðζ2bb̄Þ

ð1 − ζ2WÞ2ð1þ 2ζ2WÞ
þ 3GFm2

tffiffiffi
2

p
π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

X
i;σ

Âσ
i hbb̄i ðζ2

bb̄
Þ
�
; ð20Þ

where the hbb̄i are defined in Table I, and

hbb̄SMðζ2bb̄Þ ¼ ð1 − ζ2W − ζ2
bb̄
Þðζ2W þ ζ2

bb̄
Þθð1 − ζ2W − ζ2

bb̄
Þ: ð21Þ

We have dropped a contribution proportional to ReðXV�
LLÞ in Eq. (20), because its effect is somewhat small in

practice. The measurement of the invariant mass-squared distribution permits the extraction of the NP parameters Âþ
c þ

Â−
c and Âþ

b þ Â−
b þ Âþ

b̄ þ Â−
b̄ .

The angular correlation is given by

dσ
d cos θ�cd cos θ�l

¼ σSM
4

�
½1þ ρcðζ2WÞκðrÞ cos θ�c cos θ�l� þ

3GFm2
t

4
ffiffiffi
2

p
π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

×

��X
i;σ

Âσ
i

�
þ
�
Âþ
c − Â−

c −
1

3
ðÂþ

b − Â−
b þ Âþ

b̄ − Â−
b̄ Þ
�
κðrÞ cos θ�c cos θ�l

��
; ð22Þ

where

ρcðζ2WÞ ¼
1 − 12ζ2W þ 9ζ4W þ 2ζ6W − 12ζ4W lnðζ2WÞ

ð1 − ζ2WÞ2ð1þ 2ζ2WÞ
: ð23Þ

Here the measurement of the angular correlation allows
one to extract the sum of NP parameters

P
i;σÂ

σ
i and a

third distinct linear combination of the differences
Âþ
i − Â−

i (i ¼ b̄; b; c).
The measurement of any of these observables allows one

to detect the presence of NP in top decay. If all three
angular correlations and invariant mass-squared distribu-
tions can be measured, the results can be combined to give
measurements of all six NP parameters Âσ

i , as well as

ReðXV�
LLÞ. Furthermore, there are numerous measurements,

providing significant redundancy. This is discussed in
detail in the companion paper, Ref. [10].
One can also perform all of the integrations, giving the

total cross section [3]:

σ ¼ σSM

�
1þ 3GFm2

t

4
ffiffiffi
2

p
π2ð1 − ζ2WÞ2ð1þ 2ζ2WÞ

X
i;σ

Âσ
i

�
: ð24Þ

The measurement of σ is, in principle, the most straightfor-
ward way to detect NP. Any disagreement between the
measured total cross section and its SM value would
indicate NP. The downside of this approach, however, is
that the absolute size of the cross section might be difficult
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to determine due to QCD corrections, etc.4 For this reason it
may be better to use the invariant mass-squared distribu-
tions and/or the angular correlations.
The measurement of the triple-differential distribution of

Eq. (11) would give a great deal of information about the
NP parameters. However, it is unlikely there will be
sufficient statistics to allow this measurement to be carried
out.

V. NUMERICAL SIMULATION

The expressions in the previous section provide a clear
picture of the corrections to the various observables
introduced by the new-physics contributions. In order
to obtain meaningful projections in the context of the
LHC, we perform a numerical simulation using
MADGRAPH [14]. The new couplings due to the effec-
tive Lagrangian [Eqs. (4)–(6)] are incorporated into
MADGRAPH 5 via FEYNRULES [15]. We compute gg →
tt̄ → ðbb̄cÞðb̄e−ν̄eÞ and obtain the dσ=dζ2ij distributions
and the angular correlations discussed in the previous
section. This naturally involves the convolution of the
cross sections and differential cross sections calculated at
the parton level with the appropriate parton densities. We
use CTEQ6L1 parton distribution functions (PDFs) [16]
with the factorization and renormalization scales set
to mt ¼ 172 GeV.
In Fig. 2, we compare the normalized dσ=dζ2bc dis-

tribution obtained using MADGRAPH 5 for a pp collider
with a center-of-mass energy of 14 TeV with that
obtained for gluons colliding at a fixed center-of-mass
energy of 600 GeV using the analytic expression in
Eq. (14). This is done for both the SM and a particular
NP scenario.5 In both cases there is remarkable agree-
ment between the two methods of obtaining dσ=dζ2bc. At
first glance, this may seem extremely surprising, but a
slightly closer look at the issue reveals that it is not
really so.
The dσ=dζ2ij distributions involve only the decay prod-

ucts of the top. Any observable that involves only particles
coming from a single decay can be computed in the rest
frame of the decaying particle and converted to its
laboratory-frame equivalent by applying a Lorentz boost.
At a pp collider, each event would be associated with a
different boost. But since ζ2ij is Lorentz invariant by
construction, the distributions can be expected to look

identical in both the top rest frame and the laboratory frame,
which is what is seen in Fig. 2.
Note, however, that the observed dσ=dζ2ij distribution

is the result of an ensemble of top decays in which the
top quarks are not all identical to begin with. While most
of the top quarks are produced on shell, the ensemble
also includes top quarks that are off shell to varying
degrees. Moreover, the virtuality of the tops is distributed
differently in the fixed-energy and variable-energy cases:
in the fixed-energy case one has the additional condition
that ðpt þ pt̄Þ2 is fixed. Nevertheless, it turns out that this
is a small effect. The normalized distributions for the two
cases look almost identical, and the inclusion of PDFs
does not lead to any significant change in their shape.
The slight (noticeable) difference in the region ζ2bc ≈ 0.8
is due to the following. In the analytic expressions, the
widths of the t and the W are dealt with in slightly
different ways. For the t, the narrow-width approximation
is incorporated by making the substitution (see the
Appendix)

1

ðp2
t −m2

t Þ2 þ Γ2
t m2

t
⟶

π

Γtmt
δðp2

t −m2
t Þ: ð25Þ

For the W, the result of applying the narrow-width
approximation is encapsulated in the factor θð1 − ζ2W −
ζ2bcÞ appearing in the definition of hbcSM in Eq. (13). The
finite width of the W can be approximated to some extent
by making the replacement

θð1 − ζ2W − ζ2bcÞ

⟶
1

π

�
tan−1

�
1 − ζ2W − ζ2bc

ζWγW

�
þ tan−1

�
ζW
γW

��
: ð26Þ
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FIG. 2 (color online). A comparison of the normalized dσ=dζ2bc
distribution obtained using MADGRAPH 5 with that of Eq. (14).
This is done for the SM and for the NP scenario in which
XS
RR ¼ XV

RR ¼ XT
RR ¼ 1þ i, with all other NP parameters set to

zero (labeled here as NP-RR).

4Theoretical calculations of the cross section for tt̄ pair
production can be found in Ref. [13]. These include contributions
from both gg and qq̄, as well as higher-order corrections. The tt̄
cross section at the LHC at a center-of-mass energy of 14 TeV is
∼900 pb.

5We take XS
RR ¼ XV

RR ¼ XT
RR ¼ 1þ i. Note that, although

these NP parameters are complex, there are no SM-NP or
NP-NP interference effects. As such, they do not lead to CP
violation.
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This is included in the curves in Fig. 2. On the other
hand, in MADGRAPH 5 both the t and W widths are dealt
with identically with the integral covering an interval of
m� 15Γ in each case.6

Next we turn to the angular correlation (Fig. 3). This
observable involves decay products coming from two
different decays. It is therefore sensitive not only to the
physics in the two decays (whether new or standard),
but also to the correlations in the production of the two
decaying particles (i.e., the tt̄ spin correlations). This
information is contained in the factor κðrÞ. In a fixed-
energy gluon-gluon collison, κðrÞ is fixed. In our expres-
sion [Eq. (15)], κðrÞ is replaced by its expectation value
hκðrÞi. When this is calculated over the energy range
sampled in 14 TeV pp collisions, we find that, once again,
the normalized distributions obtained using this expression
agree very well with those obtained from the full numerical
simulation using MADGRAPH 5.
The fact that the analytical expressions for the observ-

ables agree with numerical simulations suggests that it
is possible to extract some of the new-physics parameters
by fitting the shapes of these distributions. We present
the results of these fits in the companion paper [10].
Note that, in comparing the analytical expressions
with the MADGRAPH 5 simulation, we have taken the b̄
quark to be that coming from the t decay. However, as
noted in the Introduction, there is also a b̄ coming from the
t̄ decay, and this background must be taken into account.
This issue, along with other complications, is addressed
in Ref. [10].

VI. CONCLUSIONS

In this paper we study NP contributions to top-quark
decay. Such effects can be significant only for decays that
are suppressed in the SM. Here we focus on t → bb̄c,
whose SM amplitude involves the small element Vcb

(≃0.04) of the CKM matrix. Allowing for all Lorentz
structures, there are ten possible dimension-6 NP operators
that can contribute to this decay. The goal is to find ways of
detecting the presence of such NP in t → bb̄c.
Since the LHC produces top quarks copiously, it is an

excellent place to search for signals of NP in t → bb̄c.
However, the dominant mode for top-quark production is
pair (tt̄) production via gluon fusion: gg → tt̄. This makes it
difficult to study t → bb̄c on its own. In order to search for
NP in top decay, the full process gg → tt̄ → ðbb̄cÞðb̄lν̄Þ
must be analyzed.
We consider only CP-conserving NP, and find that there

are two types of observables that can be used to reveal the
presence of NP in top decay. The first is an invariant mass-
squared distribution involving two of the final-state par-
ticles in t → bb̄c. There are three such distributions. The
second is an angular correlation between the decay prod-
ucts of the t and t̄. This is related to the tt̄ spin correlation.
We consider the angular correlation between one of the
final-state quarks in t → bb̄c and the l− coming from the t̄
decay. There are three such correlations. The six observ-
ables depend on different combinations of the coefficients
of the ten NP operators.
We compare the analytical expressions for the observables

with the results of a numerical simulation of the LHC using
MADGRAPH 5. We find that the agreement between the two is
excellent. This suggests that the measurement of these
observables can indeed be used to extract some of the
new-physics parameters. In the companion paper, Ref. [10],
we demonstrate this explicitly by performing fits of such
measurements. We also show how to deal with complications
such as the background due to the b̄ coming from the t̄ decay.
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FIG. 3 (color online). A comparison of the normalized
dσ=d cos θ�̄

b
d cos θ�l angular distribution obtained using

MADGRAPH 5 with that of Eq. (15). This is done for the SM
and for the NP scenario in which XS

RR ¼ XV
RR ¼ XT

RR ¼ 1þ i
(labeled here as NP-RR).

6Within MADGRAPH 5, this is governed by the parameter
bwcutoff, which takes the default value 15.
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APPENDIX

In this Appendix we work out an expression for the
differential cross section for gg → tt̄ → ðbb̄cÞðb̄lν̄Þ.
Our main result may be found below in Eqs. (A29)–
(A32). As an intermediate step, we write the differential
cross section for gg → tt̄ → ðbb̄cÞðb̄lν̄Þ in a quasifactor-
ized form that makes use of expressions for gg → tt̄, t →
bb̄c and t̄ → b̄lν̄ [see Eq. (A23), below]. Throughout, we
assume that NP is present only in t → bb̄c; gg → tt̄ and

t̄ → b̄lν̄ are purely SM in nature. Furthermore, we always
employ the narrow-width approximation for the t and t̄,
which is equivalent to assuming that they are on shell.

1. gg → tt̄

We begin with gg → tt̄ (see Fig. 4). The amplitude
squared for gg → tt̄, including the t and t̄ polarizations, was
computed in Ref. [17]. It is useful to define the following
quantities7:

Pt ≡ pt − pt̄; Q≡ q1 þ q2 ¼ pt þ pt̄; Pg ≡ q1 − q2;

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

t =Q2

q
; z≡ −Pt · Pg=ðrQ2Þ; ðA1Þ

where pt and pt̄ are the t and t̄momenta, and q1 and q2 are the momenta of the initial gluons. The matrix element squared is
then given by [see also Fig. 5 and Eq. (A6) below]

1

256

X
a;b;i;j;

gluon pol0ns

jMab;ijðgg → tðstÞt̄ðst̄ÞÞj2 ¼
g4sð9r2z2 þ 7Þ
192ðr2z2 − 1Þ2

�
−fðr; zÞ þ st · st̄gðr; zÞ

þ r2ðr2 − 1Þðz2 − 1Þ
2m2

t
½Pg · stðPg · st̄ −Q · st̄rzÞ þQ · stðPg · st̄rz −Q · st̄Þ�

�
;

ðA2Þ

in which

fðr; zÞ ¼ z4r4 þ 2r2z2ð1 − r2Þ þ 2r4 − 2r2 − 1; ðA3Þ

gðr; zÞ ¼ r4ðz4 − 2z2 þ 2Þ − 2r2 þ 1: ðA4Þ

Integrating the amplitude squared over phase space and
summing over the t and t̄ spins yields the following
expression for the parton-level scattering cross section:

σðgg → tt̄Þ ¼ πα2sð1 − r2Þ
192m2

t
½rð31r2 − 59Þ

þ 2ðr4 − 18r2 þ 33Þtanh−1ðrÞ�: ðA5Þ

2. Formal factorization of the production
and decay processes

We now derive expressions that can be used to translate
t-spin-dependent observables into a form that may be more
useful to experimentalists. Our starting point is the obser-
vation that the spins of the t and the t̄ are correlated in
gg → tt̄ [see Eq. (A2)]. Thus, t-spin observables can in
principle be translated into observables that employ the

spin of the t̄. This is shown schematically in Fig. 5(a). Of
course, the spin of the t̄ is itself not directly measurable.
Fortunately, however, the momentum of the charged lepton
in t̄ → b̄lν̄ is correlated with the spin of the t̄. Thus, in
order to consider t-spin-dependent observables in t → bb̄c,
we can study the full process gg → tt̄ → ðbb̄cÞðb̄lν̄Þ, as is
indicated in Fig. 5(b).
Consider the two diagrams shown in Fig. 5. The matrices

A, B̄ and C indicated there are defined via the production
and decay amplitudes as follows:

Mab;ijðgg → tðstÞt̄ðst̄ÞÞ ¼ ūtðpt; stÞAab;ijvt̄ðpt̄; st̄Þ; ðA6Þ

MiklmðtðstÞ → bb̄cÞ ¼ B̄iklmutðpt; stÞ; ðA7Þ

Mjnðt̄ðst̄Þ → b̄lν̄Þ ¼ v̄t̄ðpt̄; st̄ÞCjn; ðA8Þ

7These definitions are slightly different from those used in
Ref. [17].

FIG. 4. Feynman diagrams for gg → tt̄. The t subsequently
decays to bb̄c.
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in which i; j;…; n are color indices. We assume that color indices contract as in the SM, so that

B̄iklm ¼ B̄δikδlm and Cjn ¼ Cδjn: ðA9Þ

Note that B̄ is assumed to contain all of the NP effects. Explicit calculation starting from the effective Lagrangian given in
Eqs. (4)–(6) yields

B̄ ¼ 4
ffiffiffi
2

p
GFVcbVtb

�
1

2
m2

WðūbγμPLÞðūcγμPLvb̄ÞGTð2pb̄ · pcÞ þ XV
LLðūbγμPLÞðūcγμPLvb̄Þ

þ XV
LRðūbγμPLÞðūcγμPRvb̄Þ þ � � � ·

�
: ðA10Þ

Furthermore, we define Ā, B and C̄ via the following relations:

Āab;ij ≡ γ0ðAab;ijÞ†γ0; B̄≡ B†γ0 and C̄≡ C†γ0: ðA11Þ

Let us begin by considering the diagram in Fig. 5(a). The amplitude for this process may be written as follows:

Mab;klmjðgg → ðbb̄cÞt̄ðst̄ÞÞ ¼ −
1

p2
t −m2

t þ iΓtmt

X
i

B̄iklmðpt þmtÞAab;ijvt̄ðpt̄; st̄Þ: ðA12Þ

Multiplying the above expression by its complex conjugate and making the substitution

½ðp2
t −m2

t Þ2 þ Γ2
t m2

t �−1 ≃ π

Γtmt
δðp2

t −m2
t Þ; ðA13Þ

we have

1

256

X
a;b;k;l;m;j

X
spins

jMab;klmjðgg → ðbb̄cÞt̄ðst̄ÞÞj2

¼ 3π

256Γtmt

X
a;b;k;j

X
spins

δðp2
t −m2

t Þ
1

2
Tr½BB̄ðpt þmtÞAab;kjðpt̄ −mtÞð1þ γ5st̄ÞĀab;kjðpt þmtÞ�; ðA14Þ

where the sum over spins includes the gluon spins as well as those of the b, b̄ and c. Note that the t quark only shows up via
its propagator in this expression. Thus, the spin of the t is summed over, as it should be. The spin of the t̄, however, appears
explicitly.

(a) (b)

FIG. 5. Feynman diagrams for (a) gg → tt̄ → ðbb̄cÞt̄ and (b) gg → tt̄ → ðbb̄cÞðb̄lν̄Þ. The subscripts i; j;…; n are color indices. All
NP effects are assumed to be contained in B̄; gg → tt̄ and t̄ → b̄lν̄ are assumed to be SM-like.
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This can be simplified by using the following identity,
which is similar to an expression in Ref. [18] (see also
Ref. [19]):

Tr½Xðp�mÞY ðp�mÞ�

¼ 1

2
fTr½Xðp�mÞ�Tr½Y ðp�mÞ�

− ημνTr½Xðp�mÞγ5γμ�Tr½Y ðp�mÞγ5γν�g; ðA15Þ

where

ημν ≡ gμν −
pμpν

m2
; ðA16Þ

and where it is assumed that p2 ¼ m2. Setting

X ¼ BB̄; ðA17Þ

Y ¼ 1

2
Aab;kjðpt̄ −mtÞð1þ γ5st̄ÞĀab;kj; ðA18Þ

we can split the trace in Eq. (A14) into two pieces, one
corresponding to the tt̄ production (Y ) and one to the t
decay (X). Finally, defining

ntμ ≡ −ημνTr½BB̄ðpt þmtÞγ5γν�=Tr½BB̄ðpt þmtÞ�;
ðA19Þ

we find that we can write the differential cross section
corresponding to Fig. 5(a) in the following suggestive
form [18]:

dσðgg → ðbb̄cÞt̄ðst̄ÞÞ

¼ 2

Γt

X
b;b̄;c spins

dσðgg → tðntÞt̄ðst̄ÞÞdΓðt → bb̄cÞ: ðA20Þ

Note, however, that there are a few subtleties involved
in writing the differential cross section in this way. In
particular,
(1) The t polarization ntμ is a very particular four-vector

defined in Eq. (A19).

(2) While dσðgg → tðntÞt̄ðst̄ÞÞ is calculated for a par-
ticular spin four-vector for the t, the t spin is
averaged in dΓðt → bb̄cÞ.

(3) Although Eq. (A20) has the appearance of being
factorized cleanly into two pieces, the t-polarization
four-vector contained in dσðgg → tðntÞt̄ðst̄ÞÞ de-
pends on the phase-space variables contained in
dΓðt → bb̄cÞ. Similarly, the spin four-vectors for the
b, b̄ and c appear both in ntμ and in dΓðt → bb̄cÞ.

(4) Given the preceding comment, one must exercise
some caution when integrating over phase space and
summing over the b, b̄ and c spins. In particular, one
must do so for the product of dσðgg → tt̄Þ and
dΓðt → bb̄cÞ, and not for the two quantities sepa-
rately. For the spin sum, the t-polarization-
dependent quantity that appears in calculations is
always Tr½BB̄ðpt þmtÞ�ntμ. It is safe to sum this
quantity over spins.

The above approach can be generalized to the scenario
indicated in Fig. 5(b) by applying the trick in Eq. (A15)
twice in succession, once for the t and once for the t̄. One
new subtlety in this case is that the final state contains two
identical b̄ antiquarks. One should therefore antisymme-
trize the total amplitude under the exchange of the two b̄’s.
In practice, we implement cuts in such a way that the two
b̄’s can effectively be distinguished. In particular, in
t → bb̄c, we have ðpb þ pb̄ þ pcÞ2 ¼ m2

t . But this relation
will not, in general, be satisfied if the b̄ comes from the
decay of the t̄. Thus, the two b̄’s can be distinguished using
experimental cuts, and we therefore treat them as non-
identical. Further discussion on this point is included in the
companion paper [10]. Defining

~nt̄μ ≡ −η̄μνTr½CC̄ðpt̄ −mtÞγ5γν�=Tr½CC̄ðpt̄ −mtÞ�;
ðA21Þ

where

η̄μν ≡ gμν −
pt̄μpt̄ν

m2
t

; ðA22Þ

and proceeding as above, we find [18]

dσðgg → ðbb̄cÞðb̄lν̄ÞÞ ¼ 4

Γ2
t

X
b;b̄;c spins

X
b̄;l;ν̄ spins

dσðgg → tðntÞt̄ð ~nt̄ÞÞdΓðt → bb̄cÞdΓðt̄ → b̄lν̄Þ: ðA23Þ

Use of the above expression requires some care, since the same subtle issues are present as were noted above for the
analogous expression in Eq. (A20).

3. Explicit expressions for nαt and ~nαt̄
At this stage, let us work out expressions for the “special” t- and t̄-polarization four-vectors, nαt and ~nαt̄ , respectively. The

quantity that is of interest in the calculation is

SEARCH FOR NEW PHYSICS IN RARE TOP DECAYS: … PHYSICAL REVIEW D 90, 094015 (2014)

094015-11



X
b;b̄;c spins

Tr½BB̄ðpt þmtÞ�nαt ¼ −ηαβ
X

b;b̄;c spins

Tr½BB̄ðpt þmtÞγ5γβ�

¼ −ð4
ffiffiffi
2

p
GFVtbVcbÞ2

�X
i;σ
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Note that this special polarization four-vector for the t quark, which will eventually be incorporated into the expression for
gg → tt̄ → ðbb̄cÞðb̄lν̄Þ, contains all of the relevant information and correlations related to the decay of the t.
Since the semileptonic decay of the t̄ is assumed to be SM-like, the expression for ~nαt̄ is much simpler. Defining

Al ¼ ðpt̄ − plÞ2m4
W jGTð2pl · pν̄Þj2 ðA25Þ

[in analogy with the SM part of Eq. (8)], we find
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Equations (A24) and (A26) may be compared to related expressions in Ref. [19]. The following expressions are also useful:
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With these expressions in hand, we can now work out the final expression for the differential cross section.

4. Differential cross section

Using Eqs. (A24) and (A26) in Eq. (A23), we have

dσðgg → tt̄ → ðbb̄cÞðb̄lν̄ÞÞ ¼ ðBnon-TP þ BTPÞdλ; ðA29Þ
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and
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In the above, the pi are the momenta of the final-state
quarks coming from the top decay (i.e., b, b̄ and c); also,
Pt, Q, Pg, r, z, fðr; zÞ and gðr; zÞ were defined in
Eqs. (A1), (A3) and (A4). In arriving at the above
expression for dλ, we have decomposed the six-body phase
space into five solid angles and four invariant masses (see
Fig. 1), and then have used the narrow-width approxima-
tion for the t and t̄ quarks to eliminate two of the invariant-
mass degrees of freedom. The solid angles dΩ��

1 -dΩt and
the invariant masses M2 and M5 are discussed in Sec. III.

Inspection of Eqs. (A30) and (A31) reveals elements that
are a combination of expressions coming from the pro-
duction and decay of the t and t̄ quarks. The Aσ

i ’s are related
to the decay t → bb̄c [see Eqs. (8)–(10)]. Al is similarly
related to the semileptonic decay of the t̄.

5. Integrated cross section

In the SM,

σSM ≡ σðgg → tt̄ → ðbb̄cÞðb̄lν̄ÞÞjSM
¼ σðgg → tt̄ÞBRðt → bb̄cÞjSMBRðt̄ → b̄lν̄Þ; ðA33Þ

in which σðgg → tt̄Þ is defined in Eq. (A5), BRðt →
bb̄cÞjSM ¼ V2

tbV
2
cb=3 and BRðt̄ → b̄lν̄Þ ¼ V2
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After the inclusion of new physics,
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