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The newly observed hidden-charm meson Z7 (3900) with quantum numbers J* = 1% is considered as a
hadronic molecule composed of DD*. We give detailed predictions for the decay modes Z7 — J/ya™y
and ZS — J/wyrat ¢t ¢~ (€ = e, u) in a phenomenological Lagrangian approach.
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I. INTRODUCTION

Recently the three experimental collaborations BESIII
[1], Belle [2], and CLEO-c [3] reported on the observation
of a new charged resonance Z.(3900) detected via the
decay channel J/wz*. This observation of a charged,
hidden charm state embedded in the charmonium spectrum
presents clear evidence for an exotic meson resonance.
Interpretations of this unusual state were immediately
presented, dominantly focusing on either a compact tetra-
quark configuration [4-6] or a molecular state [7—11].

One of the tools in identifying the underlying structure rests
on the study of the decay patterns of the Z,. in addition to
the discovery decay mode J /yz*. For example, predictions
for the strong two-body transitions Z; — H + z+ with
H = U(nS), h.(mP) were already worked out in the context
of a hadronic molecule interpretation [11] (see also extension
on bottom sector Z;, [12]). In the present work we extend to
the radiative and dilepton decays of the hadronic molecule
Z1(3900) proceeding as Zf — J/yxTy and Z} —
J/wrt ¢t ¢~ (¢ = e, ). Radiative and dilepton decays can
shed light on the composite structure of the Z;(3900): decay
patterns and decay widths will depend on the structure
assumption such as a hadronic molecule, a tetraquark con-
figuration, or even a mixed state of these components.
Although radiative decays are suppressed due to the strength
of the interaction particular final states such as J/yna*y are
relatively easy to identify experimentally. The analysis is
based on a phenomenological Lagrangian approach [12—14]
together with the compositeness condition [15-17], which
is a powerful tool to formulate hadrons as bound states of
their constituents using methods of quantum field theory.

When treating the Z; as a hadronic molecule we assume
that this state together with the negative Z.(3900) and
the neutral Z.(3900)° partners form an isospin triplet
with spin and parity quantum numbers J” = 1 (as for
example briefly discussed in Ref. [13]). Therefore the
charged hidden-charm meson resonance Z; is set up as a
superposition of the molecular configurations DD* as
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Note that analogous states in the bottom sector (Z,f and
Z,") have also been considered previously Ref. [12].

To evaluate the radiative and dilepton decays of the
molecular state Z we proceed in the present paper as
follows. In Sec. II we briefly review the basic ideas of our
approach. We set up the new resonance Z} as a DD*
molecular state and specify the relevant interaction
Lagrangians for the description of the three- and four-body
decays Zf - J/yrty and ZF — J/yat (€ = e, p).
In Sec. III we introduce and discuss the kinematics of the
many-body transitions. In Sec. IV we present numerical
results and the discussion.

II. FRAMEWORK

Our approach to the molecular Z; state is based on an
interaction Lagrangian describing its coupling to the
constituents as

£ (6) = ZEH ()72 (0)+ 22 () (3). 7% ()
9z Mz, / dy®; (y?)

V2
X (D* (x, ) D (x-) + Dy (x,)D°(x_)). (2)

where x| = x + wy, x_ = x —w,y. Here x is the center-
of-mass coordinate, y is the relative (Jacobi) coordinate
of the constituents and w, = mp/(mp + mp+) and w, =
mp/(mp + mp) are the fractions of the masses of the
constituents. The dimensionless constant g describes the
coupling strength of the Z to the molecular DD* compo-
nents. $, (y?) is a correlation function which describes the
distribution of the constituent mesons in the bound state.
A basic requirement for the choice of an explicit form
of the correlation function ®, (y?) is that its Fourier
transform vanishes sufficiently fast in the ultraviolet
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region of Euclidean space to render the Feynman diagrams
ultraviolet finite. We adopt a Gaussian form for the
correlation function. The Fourier transform of this vertex
function is given by ®, (p7/A*) = exp(—pz/A*), where
pr is the Euclidean Jacobi momentum. A is a size parameter
characterizing the distribution of the two constituent mesons
in the Z system. For a molecular system where the binding
energy is negligible in comparison with the constituent
masses this size parameter is expected to be smaller than
1 GeV. From our previous analyses of the strong two-body
decays of the X, Y, Z meson resonances and of the
A.(2940) and X,(2880) baryon states we deduced a value
of maximally A ~ 1 GeV [18]. For a very loosely bound
system like the X(3872) a size parameter of A ~ 0.5 GeV
[19] is more suitable. Here we choose values for A in the
range of 0.5-0.75 GeV which reflect a weakly bound heavy
meson system. Once A is fixed the coupling constant g is
then determined by the compositeness condition [11,14,17].
It implies that the renormalization constant of the hadron
wave function is set equal to zero with:

Zz,=1-%; (M%) =0. (3)
¥/, is the derivative of the transverse part of the mass

operator ¥/ of the molecular states [see Fig. 1], which is
defined as

p'p¥ p'p*
5 (p) = (gﬂv— i )zzl_<p>+ (). @

We would like to stress again, that the size effects of the
constituent D mesons in the Z[(3900) are taken into
account by the dimensional parameter A and the coupling
constant g . These parameters are constrained by the
compositeness condition (4)—the key condition for a study
of bound states in quantum field theory. It is equivalent to
the normalization of the wave function in Bethe-Salpeter
approaches and to the Ward identity, relating hadronic
electromagnetic vertex functions to the derivative of their
mass operators on the mass-shell (see detailed discussion in
Refs. [15-17]).

An analytical expression for the coupling g, is given
in Appendix A. In the calculation the mass of the Z. is
expressed in terms of the constituent masses and the
binding energy ¢ (a variable quantity in our calculations):
my_ = mp + mp —e where € is the binding energy. In

DYk +p/2)

Dk —p/2)

FIG. 1. Mass operator for the Z..
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order to calculate the three- and four-body decays Z! —
J/wrty and ZF — J/wrnt (€ = e, u) we need to
specify additional phenomenological Lagrangians. Their
interaction vertices occur in meson-loop diagrams which
generate the decay modes. For this purpose the lowest-
order Lagrangian £ is given by

L(x) =Ly (x) + Lz pp-(x) + Lppyjyn(X)
+ Lp(x) + Lp(x) + L(x) + Ly (x), (5)

where

£4(x) = =5 GG () = 3 MYV, (V¥ (),

£5(x) = 5 (DS(0))? = 3 m3s(x) (©

are the free Lagrangians of the spin-1 mesons V = Z., D*,
J/yw and spin-0 mesons S = x, D, respectively; G** =
VHrVY — VPVH is the stress tensor of vector/axial mesons,
VH = OF — ieA* is the covariant derivative including the
electromagnetic field in case of charged states and e is the
corresponding electric charge of hadron H. The Lagrangian
Ly pp+(x) is the gauge-invariant extension of the strong
ZDD* interaction Lagrangian (2). It includes photons
by gauging with the path integral I(x,y) = [YA,dw!
resulting in

9z, - —iel(x, .x
Lo, (5) = Loty 224 / B, (y?)emiells. )

x (D* (¢, )D}0(x-) + Dj (x,)DO(x.))
+H.c. (7)

This Lagrangian is manifestly gauge-invariant. As dis-
cussed in detail in Refs. [20-25], the presence of the vertex
form factor in the interaction Lagrangian (like the strong-
interaction Lagrangian describing the coupling of Z,. to its
constituents [Eq. (2)]) requires special care in establishing
gauge invariance. One of the possibilities is provided by a
modification of the charged fields which are multiplied by
an exponential containing the electromagnetic field and the
electrical charge e. This procedure was first suggested in
Ref. [26] and applied in Refs. [14,27-30]. In doing so the
fields of the charged D = D, D* mesons are modified as

Dt (x;) = e PID (i), (8)

which leads to the electromagnetic gauge-invariant
Lagrangian (7). The interacting terms up to first order in
A" are obtained by expanding Ly pp-(x) in terms of
I(x,, x). Diagrammatically the first order term gives rise
to a nonlocal vertex with an additional photon line attached
[see Fig. 2].
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FIG. 2. Photon attached to the nonlocal vertex.

In the calculation of the three- and four-body decays
ZH > Jjyrty and ZF — J/wat € (€ = e, u) we also
need the four-particle DD*J/ywn vertex generated by a
phenomenological Lagrangian proposed in Ref. [11]

Lpp1pyx(X) = =9pp 192" (%) D (x)V 7 (x)D(x) 4+ H.c.
)

where V, is the covariant derivative. The coupling constant
9DD*J Jyx is given by

_ \/6 9/pDYD*Dr 10
9pD*J)yr = 5 ﬂ 5 5 o\ ( )
(m3, = m3,,) (1+5.4)
as defined in Ref. [11]. The numerical value for

Gpp9ppe/2V2 was evaluated in Ref. [11] and is
expressed through ¢;ppgp pe/2V2 = 47.08. # is the pion
matrix

ﬁ:?ﬁ:( a ’ﬁﬁ) (11)

JT_\/E —JZ'O

and J# = OMJ¥ — 0" J* is the stress tensor of the J/y state.
D = (D*,DY), D* = (D**, D*") are the doublets of pseu-
doscalar and vector charmed D mesons, respectively. To
simplify the calculations we neglect the transverse part of
the vector propagators and of all vertex factors where the
vector fields are involved. This is justified by the fact that
the transverse parts only give a minor contribution to the
transition amplitude. For a better and compact overview the
external momenta of the three- and four-body decays are
summarized in Figs. 3 and 4, respectively. To summarize we
also indicate the respective Feynman rules in Appendix B.

The graphs governing the three-body decay Z) —
J/wnTy are shown in Figs. 5 and 6. The diagrams are
evaluated using the Schwinger representation for the
propagators:

1 ©
m = /) dae_“('”z_kz). (12)

The resulting matrix element for the three-body decay
Zt — J/wr'y is gauge invariant as shown in Appendix C.
It can be decomposed into the following Lorentz structures:
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J/

FIG. 3. the kinematics of

Notation for
ZH > T yrty.

the process

5
T =3 T = (475~ psg")F,

=
+ (p2 - p1g™ - Pgl’/l})l?szas
+ ((p = p2) - P29 — P3PPI Fs.  (13)

where with F, Fy5 = F> + F3 + F5 and F, we denote
structure integrals collected in Appendix D. Since the
diagrams (2,3,5) in Fig. 5 and Fig. 6 have the same
Lorentz structure they can be summed up together.

The matrix element M® for the four-body decay Z/ —
J/wat€T¢~ can be simply deduced from the matrix
element for the three-body decay. We assume that only
the photon contributes through conversion to the dilepton
final state. Hence the matrix element for the four-body
decay factorizes into a three-body part 7 of the Z —
J/wrty transition and a leptonic part £ corresponding to
the dilepton production y — £+~

2
e
M”ﬂ — —TT(lﬁpl/ﬂ/), (14)

where t = (ks + k4)?, ¢7 = ii(k3)y’v(k,) is the leptonic
current and #(ks3), v(ky) denote the spinors of the lepton
and antilepton in the final state, respectively.

FIG. 4. Notation for the kinematics of the process Z — J/
yrty[— eTe].
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7 (p1) 7 (p1)
v(a)
J/¢(p2) J/9(p2)
(1a) (2a)
7(q) 7 (p1)
™ (p1)
D+ D+
v(q)
ZHp) = Z(p)
D*O D*O
J/1(p2) J/1(p2)
(3a) (4a)
v(q)
7 (p1)
D+
ZHp) =
D*U

I/ (p2)

FIG.5. D**D* meson loop diagrams contributing to the three-
body decay Z — J/wn"y.

In the final state we sum over all polarizations. The
polarization sum factorizes into three different parts, one
for the Z.., one for the J/y, and one for the photon:

Do p*p®
7 Zep ) (p) =~ + e (19)
Z

D 23: /i
1 iy p

o=1 mJ/l/I
2

D =S e (@) (g) =~ (17)

=1

where €7 denotes the polarization vector. Using these, for
the spin-averaged square of the Z7 — J/way amplitude
we write:

ST =D DGeDIT oo (Tapp,)- (18)
pol

The leptonic L7172 and hadronic H”'”2 tensor contributing
to the ZJ — J/wn™ £ ¢~ decay rate are

H

_ b paa T
PPy T DJ;, ZDZ:. 2T{1,ﬁ]/)| (T(lzﬂzpz) s

=Y D (ky)yrr o) (ky) 80 (ka )y ul (k3)

= tr[(k3 + m)y" (ky — m)y"]
= A[KE K + KK — 72 (m + ksky)], (19)

LP1P2

PHYSICAL REVIEW D 90, 094013 (2014)

7 (p1)

I/ (p2)
1@ ()
T (p1)
D+
¥(a)
ZH(p) =
D()
I/ (p2) J/(p2)
(3b) (4b

7 (p1)

I/ (p2)

(5b)

FIG. 6. D°D** meson loop diagrams contributing to the three-
body decay Z — J/yn"y

where m, is the lepton mass. The spin-averaged square
of the amplitude for the four-body decay Z —
J/wrt¢T¢ in terms of leptonic and hadronic tensors is
finally written as

D IMP =L, (20)

pol

In the next step the invariant matrix element squared,
> ot M[?, will be expressed in terms of Lorentz scalar

products of the five momenta p;, p,, k3, k4 and p. For
the sake of simplicity we do not display the explicit,
complicated result for Y~ | M|

III. KINEMATICS

To calculate the decay rates we have to specify two
independent kinematical variables for the three-body decay
Zt — J/wrty and five independent ones for the four-body
decay Z7 — J/wnT¢T¢~. For the three-body decay we
choose the invariant Mandelstam variables as

si2 = (p1 + p2)?,
s31 = (p1 +q)°,
532 = (P2 +q)°,
Sip 831+ 83 = m% + m%/l,, +mi+ém2, (21)
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where 6m3 is a cutoff parameter for the phase-space
integration to avoid the infrared bremsstrahlung singularity
for sy = m2 and s, = m%(_ [see Sec. IV for further
discussion].

With these definitions we can express the scalar products
between the momenta p;, p,, and ¢ as

1
P1-P2= E(SIZ —my — mi/w)’
1
P19 25(531 - m; —5”1;%)7
1
P2 q= z(m%(. +mz =515 = 531). (22)

The scalar products between p and one outgoing momen-
tum can be eliminated due to momentum conservation.
Now the phase space region of the three-body decay can be
expressed through the following ranges for the kinematical
variables [31]:

(mﬂ' + 5my)2 < S31 < (mZ(. - mJ/I/I)z’

Sty < 512 < 575, (23)
where
St = m%/l,, + m2
— %31 [(s31 = m%ﬁ + mg/w)(sn + m2 — 5m2)
A (o1 VA2 (530, o) (24)

and A(x,y,z) = x> +y* + 22 =2(xy + xz +yz) is the
Killen triangle kinematical function.

To calculate the scalar products between the momentum
vectors p; pa, k3, and k; we will consider three reference
frames for the four particle phase space: the rest frame X,
of the Z, meson, the dilepton center-of-mass frame X,
and the center-of-mass frame X/, , of the J/yz-pair [see
Fig. 7]. For the four-body decay we choose the kinematical
variables suggested in Ref. [32] and extensively used, e.g.,
in Refs. [33-36]:

(1) s;,, the invariant mass squared of the J/yr-pair

(i1) s$34, the invariant mass squared of the lepton pair

DIy

J/l/m"*'cms.

FIG. 7. Choice of kinematical variables in the four-particle
decay Z/ — J/yrntet e,

PHYSICAL REVIEW D 90, 094013 (2014)

(iii) O, the angle of the antilepton £ in X, with
momentum k3 and with respect to the dilepton line
of flight in X,

(iv) ¢, the angle of the pion 7" in X, with momentum
p; and with respect to the dimeson line of flight
in X,

(v) ¢, the angle between the plane formed by the
mesons J/y, 7 in X, and the corresponding plane
formed by the dileptons.

It proves to be very helpful to introduce linear combinations
of the momenta p, p;, p,, k3, and k4. One of these
momenta can always be eliminated due to momentum
conservation:

L=p—p,,
R:k3—k4.

K = p;+ p,,
O = k3 + ky,

In order to express the Lorentz scalar products in terms
of the kinematical variables specified above, we need
the following expressions with the general masses
M,my,m,y, my, my (note that these expressions will hold
for any four-body decay with the frames specified in Fig. 7)
K-K=s 125
Q-0 =s3,

1
K-Q :E(MZ—S12—S34)v
K- L= m% - m%
Q-R=m}—m3,

(K-L)

0 L=

(K- Q)+ x0,c0s¢,

—

QX
23

K-R= (K- Q) +x034c080,

=R

X0, cosE+ uxa34 cos6

(K- K)

(Q-R) (K-L)
(0-0)(K-K)
— /512534012034 8inEsin@ cos ¢

1/2 2 2

_/1/ (sij,mi,m7)

CiT T
ij

S

R-L=

©
S

)

+ (K- Q)o,034cosEcosO+

(K-0Q)

1

XZEAI/Z(M2,S12’S34)' (25)

These relations are obtained by calculating the Lorentz
boosts between the different frames %;, X, ,,,, and X as
done in [34]. Now all scalar products between the outgoing
momenta occurring in the spin-averaged amplitude
> potlM|?* for the four-body decay can be written as
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1
P1'Pz=§(512—m%—m%)7
1
k3-k4:§(s34—m§—m2),
1
1
Pz'k3Iz(Q'K—Q'L-i-R'K—R-L),
1
Pl‘k421(Q‘K+Q'L—R‘K_R'L)’
1
prky=-(Q-K-—Q-L—R-K+R-L). (26)

4

The ranges of the variables, which define the limits of the
phase-space integration, are

(m3 +my)? < s33 < (M —my —my)?,

(my +my)? <515 < (M — \/534)%

In our case we set M = my , m; = m,, my =my,, and
msy = my = m;. The decay rates can then be written as
(see, e.g., [31])

1
Nz = ) = [ ds [ s (TP

pol
T4(Zf - J)yrteter)

1
=N4/d534/d512

X / d cos 0d cos §d¢xs0'120342|/\/l

pol

g (28)

where N3 = 3 x 28723m3}, and Ny =3 x 252%m3, .

IV. NUMERICAL RESULTS

With the phenomenological Lagrangians, kinematics,
and partial evaluation of the transition amplitudes intro-
duced we now can proceed to determine the widths of the
three- and four-body decays numerically.

A full list of the results for the coupling g, and the decay
widths is tabulated in Tables I-IV. Table I contains the
values for the coupling g . In Tables II-IV we display the
predictions for the three- and four-body decay rates for
different values of the binding energy with ¢ = 0.5 MeV
to 5 MeV and of the cutoff in the vertex function with
A =500 MeV to 800 MeV. A substantial increase of the
size parameter A, more suitable for a compact bound state,
would lead to a sizable increase in the decay rates.
Therefore, if experiment will deliver larger values for the

PHYSICAL REVIEW D 90, 094013 (2014)

TABLE 1. Numerical values for the dimensionless phenom-
enological coupling constant g as a function of ¢ (column 1)
and A (row 1).

e\A [MeV] 500 550 600 650 700 750 800

0.5 623 595 571 552 535 521 5.09
1.0 636 6.07 583 562 545 531 5.18
1.5 649 6.19 594 573 555 540 527
2.0 6.62 631 6.05 583 565 549 536
2.5 6.75 643 6.16 593 574 558 544
3.0 6.88 654 627 603 584 567 553
35 701 6.66 637 6.13 593 576 5.6l
4.0 7.13 677 648 623 6.03 585 5.70
4.5 726 6.89 658 633 6.12 594 5.78
5.0 738 7.00 6.69 643 621 6.02 586

decay rates than predicted in our approach, this could signal
that the Z} is probably not a molecular state.

Let us first discuss the Dalitz plot d°I'/ds,ds=, for the
three-body transition Z — J/wz"y. The contour plot in

TABLE II. Numerical values for the decay rate I'; in keV for
the transition Z! — J/ya"y for 6m, = 150 MeV as a function
of € (column 1) and A (row 1).

e\A [MeV] 500 550 600 650 700 750 800

0.5 61.1 674 739 805 875 947 1019
1.0 58.1 642 708 775 845 91.7 99.2
1.5 56.1 625 690 757 829 902 977
2.0 549 613 679 748 81.8 893 968
2.5 540 604 67.1 741 812 886 963
3.0 533 59.8 665 73.6 808 883 96.1
35 528 593 662 733 80.6 883 96.0
4.0 524 59.1 659 73.1 80.6 881 96.1
4.5 52.1 58.8 658 73.0 805 883 963
5.0 519 587 657 73.0 80.6 884 965
TABLE III. Numerical values for the decay rate 'y in keV for

the transition Z — J/wzn"eTe™ as a function of € (column 1)
and A (row 1).

e\A [MeV] 500 550 600 650 700 750 800

0.5 5770 6.440 7.070 7.239 7.620 8.575 9.230
1.0 4.802 5.118 5.725 6.079 6.664 7.149 7.597
L5 4308 4.704 5208 5.678 6.332 6.853 7.207
2.0 4.123 4.531 4970 5.484 5.995 6.536 6.999
2.5 3.933 4.418 4911 5.303 5.843 6.331 6.931
3.0 3.826 4.308 4.782 5.321 5.859 6.293 6.885
3.5 3778 4.253 47719 5.202 5.774 6.279 6.824
4.0 3.726 4.174 4.673 5.174 5.704 6.246 6.812
4.5 3.690 4.150 4.636 5.142 5.703 6.265 6.804
5.0 3.661 4.141 4.623 5.151 5.699 6.278 6.854
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TABLE IV. Numerical values for the decay rate Iy in eV for the transition ZF — J/yn™

(column 1) and A (row 1).

PHYSICAL REVIEW D 90, 094013 (2014)

utp~ as a function of ¢

e\A [MeV] 500 550 600 650 700 750 800

0.5 9.593 10.559 11.574 12.621 13.711 14.826 15.986
1.0 9.080 10.064 11.079 12.130 13.216 14.352 15.515
L5 8.779 9.7613 10.789 11.848 12.951 14.082 15.252
2.0 8.572 9.5626 10.587 11.664 12.775 13.922 15.105
25 8.415 9.4161 10.461 11.541 12.656 13.810 15.006
3.0 8.297 9.3083 10.360 11.453 12.584 13.750 14.955
35 8.206 9.2270 10.294 11.391 12.528 13.708 14918
4.0 8.136 9.1672 10.237 11.349 12.493 13.683 14.906
4.5 8.084 9.1159 10.196 11.316 12.478 13.673 14.906
5.0 8.035 9.0827 10.165 11.300 12.466 13.675 14.920

Fig. 8 shows an infrared bremsstrahlung singularity for the
limits s3; — m2 and s, — mZ For these values of s3; and
s1o the bremsstrahlung dlagrams 4a, 4b, S5a, and 5b in
Figs. 5 and 6 will generate a divergence in the double
differential decay rate d’I"/ds,ds5;.

A measurement of the partial or differential decay rate
depends on the minimum photon energy detectable in the
experimental facility. Hence, both in experiment and in
theory, it is only possible to determine the partial or
differential decay rate as a function of an energy cut
5m To handle the bremsstrahlung singularity for s3; —
m2 and S — m% we will use an energy cut at ém,
150 MeV which holds for most facilities. When we apply

we give the differential decay rate dI';/ds3; which has been
evaluated from d’I’y/ds;,ds5, by integration over s, for
an energy cut at 6m, = 150 MeV.

In Fig. 12 we demonstrate the sensitivity of the decay
rate I'y on variations of the free parameters ¢ and A for an
energy cut at om, = 150 MeV. We note that the depend-
ence is rather flat, the decay rate does not change
significantly under the considered variations of ¢ and A.

To avoid the bremsstrahlung singularity for sy, — m2
and s, — m% , another physics possibility is available: a
lepton—antilepfon pair can be attached to the photon line as
described in Sec. II. Although the phase-space treatment
for the four—body decays Z/ — J/wrntete™ and Z —

the energy cut to the Dalitz plot in Fig. 8 we obtain Fig. 9 J/yx"u"u~ gets more complicated, now an energy cut
which has no bremsstrahlung singularity any more. In
Fig. 10 we show the partial decay rate for the three-body
transition Z{ — J/wz"y as a function of ém,. In Fig. 11
CL[Gev3)
dsyp ds
d’r 3 3
dslzd;l [GeV™] 135}
13.0¢ 4.x107*
— 12x107*
] ) < 12.5} .
N 4.x107* 9 3.6x10
F S 12.0
o 12x10™ o 1.1x107°
% s 33%1076
ﬁ 3.6x10 1150 3X
o 1.1x107° 1.x107¢
- 33x 107 11.0¢
1.x107° 105 — ‘ ‘ g
1l 0.1 02 03 04 05 0.6
531 [GeV?]
01 02 03 04 05 06 FIG. 9 (color online). Double differential decay rate
531 [GeV?] d*T5/ds ,dsy;, in GeV™3 for the three-body decay Zi —
J/wrty (e =3 MeV and A = 650 MeV). The contour is nearly
FIG. 8 (color online). Double differential decay rate the same as in Fig. 8 except for 55, — m2 and s, — m%( where

d’T';/ds,dsy, in GeV™> for the three-body decay Z7 —
J/wrty (€ =3 MeV and A = 650 MeV).

the bremsstrahlung singularity is located. This area is now
excluded with an energy cut at 6m, = 150 MeV.
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— e=05MeV — e=5.MeV —— e=05MeV —— e=3.MeV
A=500 MeV A=500 MeV A=800 MeV A=650 MeV

I [MeV]

6 my [MeV]

FIG. 10 (color online). Partial decay rate I'y; in MeV~! as a
function of ém, for selected values of € and A for the three-body
decay Z} — J/yrty.

— e=05MeV — e=5.MeV —— e=05MeV —— e=3.MeV — €=5.MeV
A=500 MeV A=500 MeV A=800 MeV A=650 MeV A=800 MeV
0.001 - 4
flown) 10_4 £ E|
>
3
= _ 10—5 4
5|8
107 :
10—7 do L I L N A
0.1 02 03 04 0.5 0.6
531 [GeV?]

FIG. 11 (color online). Differential decay rate dI'z/ds;; in
GeV~! for selected values of € and A for the three-body decay
Z} — J/wr"y with 6m, = 150 MeV.

FIG. 12 (color online). Partial decay rate I'; in keV in
dependence on ¢ and A for the three-body decay Z —
J/wry with 6m, = 150 MeV.
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¥ [(GevI

dsyp dsay
15F
14}
| 1.x107%
—_ 1.5x 1077
> 13} 1 22x10®
[ \ 9
<] N 32x10
2 \ 4.6x10710
12 1 ' 6.8x 107"
11
0.0 0.1 02 03 04
534 [GeV?]
FIG. 13 (color online). Double differential decay rate

d*Ty/ds ,ds3, in GeV™> for ¢ =3 MeV and A = 650 MeV
for the four-body decay Z! — J/wntete™.

om, is not needed, the differential decay rates do not
diverge. For the typical values of ¢ =3 MeV and A =
650 MeV we obtain the Dalitz plots d’I'y/ds; dss,
depicted in Figs. 13 and 14 for the four-body decays
Z5 > Jlyrtete and ZF — J/wntutpu .

The differential decay rates dI'y/ds34, which have been
evaluated from d’T";/ds ,dss;, by integration over sy,,
are displayed in Figs. 15 and 16. We demonstrate the
sensitivity of the decay rates 'y on variations of the free
parameters ¢ and A in Figs. 17 and 18. Here again, the
decay rates do not change significantly under variations of
€ and A.

L Gev-3

dsjpdsyy

130
6.x10°8
- 1251 \ [1.4><10-8
% 12.0 N 1 33x107°
<) -7.7%10710
BN AN -1.8x 10710

._
—
n

i4.3>< 10-1

—
—
(=]

105 e

s34 [GeV?]

FIG. 14 (color online). Double differential decay rate
d’T'y/dsydsyy in GeV™> for e =3 MeV and A = 650 MeV
for the four-body decay Z7 — J/wratuTp.
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— €=0.5MeV €=5.MeV €=0.5 MeV €=3. MeV €=5.MeV
A=500 MeV A=500 MeV A=800 MeV A=650 MeV A=800 MeV

T T T T T
10—4 L 4

1076F

00 0.1 02 0.3 04
s34 [GeV?]

FIG. 15 (color online). Differential decay rate dI'y/dss4 in
GeV~! for selected values of ¢ and A for the four-body
decay Z} — J/yrteTe .

— €=0.5MeV €=5.MeV €=0.5 MeV €=3. MeV €=5.MeV
A=500 MeV A=500 MeV A=800 MeV A=650 MeV A=800 MeV
10—7 i
;I—‘ 10—9 i
>
[
g 11
< < 107 1
=&
o | T
10~ 13 d
10—15 L I I L L | I ‘
005 0.10 0.15 020 025 030 035 040
s34 [GeV?]

FIG. 16 (color online). Differential decay rate dl'y/dsz, in
GeV~! for selected values of e and A for the four-body decay
ZE = Jwrtutum.

FIG. 17 (color online). Partial decay rate I'; in keV as a function
of € and A for the four-body decay Z7 — J/yn"e e .
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FIG. 18 (color online). Partial decay rate I'; in keV as a function
of € and A for the four-body decay ZF — J/yrxtutpu .

V. SUMMARY

We have discussed the three- and four-body decays
Z5 - J/wyrty and Z — J/yat£¢~ of the ZF(3900)
considered as a hadronic DD* molecule in a phenomeno-
logical Lagrangian approach. Our approach is manifestly
Lorentz and gauge invariant and is based on the use of the
compositeness condition. We have only two model param-
eters: the binding energy ¢ and A, which is related to the
size of the DD* distribution in the Z}-meson and, there-
fore, controls finite-size effects. The detailed results given
for these decays are typical for a molecular state. A naive
estimate for a compact configuration would correspond
to considerably larger values of A leading to a sizable
enhancement of these decay rates. But this effect should be
confirmed by an explicit calculation of the decay modes for
a tetraquark interpretation of the Z/.

To summarize, when interpreting the Z} as a DD*
molecule the resulting values for the decay widths are
50-100 keV for the transition Z7 — J/wxty, 4-10 keV
for Zf — J/wntete™ and 8-16 eV for the decay
ZY — J/wrtutu~. The predictions given here can add
to the understanding of the Z; structure once the decay
modes become accessible experimentally.

To elaborate further on a possible molecular structure of
the Z$(3900) in future we plan to examine the transition
7 — J/yrty and ZF — J/yxtetTE~ for the possible
partner state Z."(3900), which is treated as a D*D*
molecule [11]. As another possible continuation of this
work Z! decays can also be studied in the tetraquark model
[37]. This approach is also based on the compositeness
condition and was successfully applied to the study of the
X(3872) as a possible tetraquark state. A full treatment of
these observables for various structure interpretations can
possibly help to understand the nature of these unusual
meson states.
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APPENDIX A: MASS OPERATOR AND
COUPLING CONSTANT

The expressions for the coupling constant g, is

2 =3 (m2) m%“/oodd L
= m = X — —_—
9z. L2302 Va3 2m3.a

2 2

l
X exp (m%cg—me—mD*y), (A1)

where a =25 +x +y, [ = sx + sy + 2xy, s = A2,
The numerical values are given in Table L.

APPENDIX B: FEYNMAN RULES

Since nonlocal gauge theories are not so common, we
will briefly indicate the relevant Feynman rules in this
appendix. In our calculations we use

i +5) i
e
i
Stk) =—5—
W=

D (k) =

for the vector and scalar propagators, respectively. The
previously discussed arbitrary parameters w; and w, are
now constrained to w; = w, = 1/2. The vertex factors can
be easily found by calculating the derivative of the Fourier
transformed action of the corresponding diagram with
respect to the fields which are attached to the vertex

_ Tlgz,
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v(q)

o ﬁ(l
Zt(p) ZX(p)
P D+
(V1)
pg L 2r D pr ~L, 2r b
v v
(V3) (V4)
D+ }v J/p D+ }' J/
Y
o %‘ — o }‘ ot
(V5) (V6)

FIG. 19. Vertices contributing to the three-body decay
Z5 = J/ynty.

j i0"S;|®
iL,(p1, P2y ees Pp) = —= o 1P _ '
5P (p1)6%,(p2)...69,(p,) §,0

The relevant vertices are denoted in Fig. 19. One finds
for the vertex factors by dropping the usual factor

(2”)454(2 Pin - Z Pout):

. 9z, 1
i = “m, e + py + 2”“"/ dt®' (—zot —z4(1 — ¢
22 Z, (P1+p2+q/2)g A (=22 i ( )

Dl = ie[g™(p1 + pa)’ — ¢ Py — g ph ~ ie(py + p2)’ g

(V1): il = NG mz, ®(=z1)g™

(va): i =

(V3)

(V4): il = —ie(py + o)’

(V5): iI' = _igDD*J/y/zr\/iQ’Z -p1g? - PZP/]})
(V6): il' = igDD*J/We\/E(Q”ﬂPg - phg”),

where z; = (p1/2+ p2/2)% 2o = (¢/2+ p1/2 + p2/2)*.

APPENDIX C: GAUGE INVARIANCE

In this appendix we demonstrate that gauge invariance is fulfilled for the transition amplitude of the three-body decay
Zr - J/yrty. The D D*-meson loop integrals corresponding to the diagrams in Fig. 5 are given by (we drop the general

— I
constant ¢ = T gzcmzl,gDD*J/y/ne)
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illa - aﬂp/’

pig) [ Lo

PHYSICAL REVIEW D 90, 094013 (2014)

~k*)S(k + p/2)D(k - p/2)

il), = —(pz-plg"/}—p‘z’p’f)/d—f@( —k*)S(k+ p/2)S(k+ p/2 - q)D(k— p/2)(2k + p — q)"

il3, = (ps - P19aﬂ—1’21’1 / dt/

(k +3/49)"®' (= (k + q)*t — (k+ q/2)*(1 = 1))D(k = p/2 + q)S(k + p/2)

, d*k , .
ilsy =—=((p = p2) - P29 — pS(p — p2)P)(2p1 + q)”/g‘ﬂ —k*)S(k+ p/2)D(k = p/2)S.(p — p2)

4
ils, = —(py - prg” — psp7)(2p —Q)'”/%@( —k*)S(k+ p/2—q/2)D(k— p/2+q/2)D;. (p - q).

where k is the loop momentum and

- 1 - 1

S (k) = ———, k) = ,
;1() m,2, k2 Z(.() méc k2
N 1 - 1

S(k) = ———, D(k) = ,
(k) m%)—k2 (k) sz*—k2

are the propagators of the scalar and vector fields, respec-
tively. As was already mentioned, the transverse parts of the
vector propagators are neglected.

To test for gauge invariance every loop diagram
is contracted with the photon momentum g. In the follow-
ing it will be helpful to establish the following relations
by taking advantage of momentum conservation p =

Pt p2tag:

q-(2k+p-q)=(k+p/2)>—(k+p/2-q)? (CI)
=S5 (k+p/2-q)

S (k+p/2) (C2)
q-2p1+q)==S5:'(p - p2) (C3)
q-(2p —q) = Dz (p1 + p2). (C4)

Multiplying diagram il,, with ¢ we get
qil, = =(9"q - p» — P3¢’
« [ ERors s pb-pr). (05

For the contraction of il,, with ¢ and using (C2) we obtain

. d*k
qil,, =—(pz~plg“ﬁ—p‘2’p/f)/ﬂ D(—k*)

x D(k = p/2)[S(k+ p/2) = S(k+ p/2 - q)).
(Co6)

|
Diagram il5, multiplied with g reads as

4

qilz, = (Pz'Plgaﬁ—Png)/%q’(—kz)
x [D(k—p/2+q/2)S(k+ p/2—q/2)
—D(k—p/2)S(k+ p/2 - q)].

where we have used

(€7)

Al drq - (k+3/4q)®' (=(k+q)*t = (k+q/2)*(1 - 1))

= —®(=(k +q)?) + B(=(k + g/2)?).

Furthermore we have shifted the first term of the integral
containing the latter expression by k — k— ¢ and the
second term by k — k — ¢/2. When multiplying il,, with
g we obtain with the help of (C3) and using momentum
conservation

qils, = ((p1 + q) - P29 — pP§(p1 + q@)P)

< [ L a8+ p/2D p/2).

5 (c8)

We get the last expression with (C4) and by multiplying
ils, with ¢

. d*k
qils, = —(Pz : Plgaﬂ - PgP/]}) /EqJ(_H)

x S(k+ p/2—q/2)D(k—p/2+q/2). (C9)
Now it is easy to show that the expressions (C5) to (C9)
cancel

q(llla+l12a+ll3u+ll4a+115a) =0. (C]O)
Thus gauge invariance for the D% D*-meson loop integrals
of Fig. 5 is shown. The proof of gauge invariance for the
D°D** loop diagrams of Fig. 6 proceeds exactly the same
way as for the previous case of the D?*D*—nleson loop
integrals by inserting the replacements S(k)<>D (k).
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APPENDIX D: STRUCTURE INTEGRALS

In this appendix the structure integrals Fy, Fys=F,+ F3+ Fs and F, are explicitly listed. We define
¢ =igz myz gppryae/(167%), s = A7 and Q = q for the three-body decay Z — J/wa"y and Q = k3 + ky for the

four-body decay Z/ — J/wnt £t

o e~/ a=M;
iF, = 2(:/ dxdy ———
0 aj

© 2
iF, = c/ dxdydzs +3 <
0 a

e—r%/az (e—M%u 4 e—Mgh)

o0 1 —
iF; = —c/ dxdy/ dtLgy)e_’%/%(e_Mga + e‘Mﬁb)
0 0 2613

2 2
el aa=M; 1

iF :4c/oodxdy
o ai  mi—(pi+0Q)

s e—r?/as—Mg 1
iFs = 4c/ dxdy
0 a  mi—(pi+p)?

ri=p(s/2+y)
a=s+x+y
M? = —m%c(s/4 +y) + mby + mi.x

ry=p(s/2+2)+Qy

a=s+x+y+z

M3, = —m7 (s/4+z2) + mh(x +y) + mh.z — Q%
M3, = —m3 (s/4+z2) + mp.(x + y) + mpz — Q%

rs=10(s2r=1)=3x+y) +1p(x—y)

a3 =s+x+y

M3, = (4p- Q(3x+y) — Q*(s + 9x + )
+4(dmpx + dmjy.y — p*(x +)))/16

M2, = (4p-QBx +y) — Q*(s +9x +)
+4(4mp.x + Ampy — p*(x +3)))/16

ry =p(s/2+y)

ag=s+x+y

M3 = —m2, (s/4 +y) + mby + m.x

rs=p(s/2+x)+0(s/2+Y)

as=s+x+y

M?: = —m%c(s/4+x) + mb.x + mhy
-p-0s/2—0%s/4+y)
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