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The ground state and excited spectra of baryons containing three identical heavy quarks, b or c, have
been recently calculated in nonperturbative lattice QCD. The energy of positive and negative parity
excitations has been determined with high precision. Lattice results constitute a unique opportunity to learn
about the quark-confinement mechanism as well as elucidating our knowledge about the nature of the
strong force. We analyze the nonperturbative lattice QCD results by means of heavy-quark static potentials
derived using SU(3) lattice QCD. We make use of different numerical techniques for the three-body
problem.
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I. INTRODUCTION

A precise calculation of the mass of the ground state
triply bottom baryon, Ωbbb, and ten excited positive and
negative parity states with angular momentum up to J ¼
7=2 has been recently performed in nonperturbative lattice
QCD with 2þ 1 flavors of dynamical light quarks in
Refs. [1,2]. The b quark was implemented very accurately
with improved lattice nonrelativistic QCD as suggested in
Ref. [3]. There are also recent nonperturbative calculations
of the ground and excited states with angular momentum up
to J ¼ 7=2 of triply charm baryons using anisotropic lattice
QCD with a background of 2þ 1 dynamical light quark
fields [4]. Within the same framework of Refs. [1,2],
dynamical 2þ 1 flavor lattice QCD and improved non-
relativistic lattice QCD for the b quarks, the bottomonium
spectrum was computed in Ref. [5], obtaining an excellent
agreement with the experiment. A calculation of the
charmonium spectrum with the same lattice action and
the same lattice spacing used in Ref. [4] can be found in
Ref. [6], where one can get an idea of the typical size of the
systematic uncertainties. Such studies grant the lattice QCD
results for the bound state problem of three-heavy quarks
with the category of experimental data and thus provide us
with a unique opportunity to test phenomenological quark
models for baryons in the energy regime in which the
description using potential models is expected to work best.
As pointed out by Bjorken some time ago [7], bound

states of three-heavy quarks, QQQ, may provide a new
window for the understanding of baryon structure. Baryons
made of three-heavy quarks reveal a pure baryonic spec-
trum without light-quark complications and provide

valuable insight into the quark-confinement mechanism
as well as to elucidate our knowledge about the nature of
the strong force. On the theoretical side, one would expect
the potential models would be able to describe triply heavy
baryons to a similar level of precision as their success in
charmonium and bottomonium. In the same way the QQ̄
interactions are examined in heavy mesons, the study of
triply heavy baryons will probe the QQ interactions in the
heavy-quark sector. Triply heavy baryons have been
studied by different methods, including quark models
(see Refs. [8,9] for a comprehensive review of quark-
model theoretical approaches), QCD sum rules [10–13],
and potential nonrelativistic QCD with static potentials
from perturbation theory at leading order [14] and next-to-
next-to-leading order [15,16]. However, no experimental
results are available so far for triply heavy baryons (see
Ref. [17] for a recent calculation of the production cross
section at the LHC), and thus the predictions of their
properties cannot yet be compared to the real world.
Our poor knowledge of the three-quark, 3Q, potential

stems from the difficulty to produce QQQ states and, as
said above, the consequent lack of experimental data. The
precise calculation of the ground and excited states of triply
bottom baryons [1,2], together with the ground and excited
states of triply charm baryons [4], provides us with the ideal
test bench to improve our understanding of phenomeno-
logical quark models for baryons in the heavy-quark sector.
The quark-model dependent calculations could be tested by
comparing them to nonperturbative first-principles calcu-
lations in lattice QCD of the bbb and ccc systems. An
adequate starting point may be the static 3Q potential
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derived in SU(3) lattice QCD that will be described in the
next section. In Sec. III we will present our results,
emphasizing the comparison between nonperturbative lat-
tice QCD data and the results obtained with the static 3Q
potential derived in SU(3) lattice QCD. For this purpose,
we will make use of different numerical techniques for the
three-body problem, generalized Gaussians variational
approaches, hyperspherical harmonics, and Faddeev equa-
tions [18–20], to test quark-quark potential descriptions in
the heavy-quark limit. Finally, in Sec. IV, we will briefly
summarize the main conclusions of this study.

II. STATIC THREE-QUARK POTENTIAL
IN SU(3) LATTICE QCD

Since the early days of QCD, the interaction among
heavy quarks has been explored as an important tool to
learn about the behavior of QCD at low energies. The QQ̄
static potential has been studied extensively by lattice
gauge theories [21], being nowadays a very well-known
quantity. The typical shape of the color-singlet QQ̄ static
potential, which is characterized by a short-range Coulomb
behavior and a long-range linear rise, well represents the
double nature of QCD as an asymptotically free and
infrared confined theory. The excitation spectrum of the
gluon field around a static quark-antiquark pair has also
been explored by lattice calculations [22]. On the large
length scale, the spectrum agrees with that expected for
stringlike excitations, while in the short range, it shows a
Coulomb-like behavior as it was first noted within the
context of the static bag picture of gluon excitations [23].
In QCD, the three-quark potential is of prime importance

reflecting the SU(3) gauge symmetry and being directly
responsible for the structure and properties of baryons, in
the same way theQQ̄ potential is responsible for the meson
properties. Furthermore, the 3Q potential is a key quantity
to clarify the quark confinement mechanism in baryons.
However, up to now, lattice QCD studies have paid
relatively less attention to the potential that describes the
interaction of three-heavy quarks, as a consequence of their
still missing experimental evidence. Thus, the 3Q potential
is much less known than the heavy QQ̄ potential for which
many lattice studies exist [21]. Even for the ground state, its
accurate measurement using lattice QCD is relatively
difficult and has been performed recently [24–27]. The
gluonic excitation (excitations of the gluon field that are not
thus of quark origin) of the three-quark system has also
been studied in SU(3) lattice QCD [28,29], concluding that
the lowest excitation would be almost 1 GeV above the
ground state. This is rather large in comparison with the
low-lying excitation energy of the quark origin that makes
the gluonic excitation mode invisible in the low-lying
excitations of baryons. Thus, quark degrees of freedom
play the dominant role in low-lying baryons with excitation
energy below 1 GeV. This large gluonic excitation energy is
conjectured to give a physical reason of the success of the

quark model for low-lying baryons even without explicit
gluonic modes [29].
Most of the existing lattice studies of the three-quark

static potential have mainly explored the region of large
interquark distances [24–36]. As for the QQ̄ case, the
characteristic signature of the long-range non-Abelian
dynamics is believed to be a linear rising of the static
interaction. Moreover, the general expectation for the
baryonic case is that, at least classically, the strings meet
at the so-called Fermat (or Torricelli) point, which has
minimum distance from the three sources (Y-shape con-
figuration). If this is the case, one should see a genuine
three-body interaction among the static quarks. The con-
fining short-range 3Q potential could be also described as
the sum of two-body potentials (Δ-shape configuration)
[27,29,32,34]. Many of the lattice calculations have
focused on distinguishing the Y from the Δ configuration,
despite the difference between a Δ and a Y-shape potential
being rather small and difficult to detect.
In recent years, according to the remarkable progress of

the computational power, the lattice QCD Monte Carlo
calculations have become a reliable and useful method for
the analysis of nonperturbative QCD. In particular, the QQ̄
potential, responsible for the meson properties, has been
extensively studied using lattice QCD. The data of the QQ̄
ground state potential are well reproduced by a sum of a
Coulomb term, due to the perturbative one-gluon exchange,
and a linear confinement [25,29],

VQQ̄ðrÞ ¼ −
AQQ̄

r
þ σQQ̄rþ CQQ̄: ð1Þ

We give in Table I the parameters of theQQ̄ potential taken
from Ref. [25]. The value of the QQ̄ confinement strength
was determined to reproduce the value obtained from the
linear Regge trajectories of the pseudoscalar π and K
mesons,

ffiffiffi
σ

p ¼ ð429� 2Þ MeV [21].
However, there is almost no reliable formula to

describe the 3Q potential directly based on QCD, in
spite of its importance for the study of baryon properties.
There have been recent advances on the determination
of the ground state 3Q potential that is expected to take
the form [25]

TABLE I. Standard string tension, σ; Coulomb coefficient, A;
and constant term, C, of the static heavy-quark potential obtained
from SU(3) lattice QCD taken from Ref. [25] for a lattice spacing
a ¼ 0.19 fm.

σ (a−2) σ (GeV2) A C (a−1) C (GeV)

QQ̄ 0.1629(47) 0.1757 0.2793(116) 0.6203(161) 0.6442
3QðYÞ 0.1524(28) 0.1644 0.1331(66) 0.9182(213) 0.9536
3QðΔÞ 0.0858(16) 0.0925 0.1410(64) 0.9334(210) 0.9694
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V3QðrÞ ¼ −A3Q

X
i<j

1

j~ri − ~rjj
þ σY3QLmin þ C3Q; ð2Þ

where Lmin is the minimal value of the total length of
color flux tubes linking the three quarks, and

A3Q ≃ 1

2
AQQ̄; σY3Q ≃ σQQ̄: ð3Þ

The short-distance behavior of V3QðrÞ is expected to be
described by the two-body Coulomb potential as the one-
gluon exchange result in perturbative QCD. Fit analysis
in terms of a Yukawa potential considering a possible
gluon mass mB has concluded mB ¼ 0, which reduces the
Yukawa to the Coulomb potential [25]. The one-gluon
exchange result indicates also the simple relation on the
Coulomb coefficients in the QQ̄ and the QQQ potentials
as A3Q ≃ 1

2
AQQ̄. For the long-distance behavior, the

confining baryonic static potential rises like the Y ansatz
[29,32].
Calculations both in full and quenched QCD demon-

strate that the confining baryonic static potential
approaches the Δ ansatz at short distances [27,29,32].
The Δ ansatz behavior at short distances is of great
importance for phenomenological models since the calcu-
lation of orbital excited states with the Δ ansatz are much
simpler. For an equilateral QQQ arrangement, as expected
for a system of three-heavy identical quarks, departure from
the Δ ansatz is not significant until dQQ ∼ 0.7 fm [27,32],
so that the Δ ansatz may be the more relevant one for
quarks confined inside a baryon and then for the case of
QQQ bound states for which the root-mean-square radii are
much smaller than such a distance (see Table II). Thus, the
static three-quark potential could be described by a simple
sum of the effective two-body QQ potentials with a
reduced string tension [25–27],

V3QðrÞ ¼ −A3Q

X
i<j

1

j~ri − ~rjj
þ σΔ3Q

X
i<j

j~ri − ~rjj þ C3Q;

ð4Þ
where

A3Q ≃ 1

2
AQQ̄; σΔ3Q ≃ 0.53σQQ̄: ð5Þ

The reduction factor in the string tension can be naturally
understood as a geometrical factor rather than the color
factor, due to the ratio between Lmin and the perimeter
length of the 3Q triangle, suggesting σΔ3Q ¼ ð0.50∼
0.58ÞσQQ̄ [25]. For the particular case of quarks in an
equilateral triangle, σΔ3Q ¼ 1ffiffi

3
p σQQ̄ ¼ 0.58σQQ̄ [32]. When

the Δ ansatz is adopted for the two-body linear potential,

still the same relation holds for the strength of the Coulomb
potential A3Q ≃ 1

2
AQQ̄. This Δ ansatz has been widely

adopted in the nonrelativistic quark model because of its
simplicity [8,9,18,19,37–39].

III. RESULTS AND DISCUSSION

To check if the static three-quark potential of Eq. (4) [or
Eq. (2)] with the parameters in Table I determined from
lattice QCD [25] can reproduce the bbb and ccc baryon
spectra measured also in lattice QCD [1,2,4], we will make
use of three different numerical methods: the generalized
Gaussians variational approach [20], hyperspherical har-
monics [19], and Faddeev equations [18]. The three
methods have been used, and the difference in results is
negligible. In all cases, we solve the nonrelativistic
Schrödinger equation

fH0 þ V3QðrÞgΨð~rÞ ¼ EΨð~rÞ;

where H0 is the free part of three-heavy quarks without
center-of-mass motion,

H0 ¼
X3
i¼1

�
MQ þ ~p2

i

2MQ

�
− TCM;

and MQ is the mass of the heavy quark. The mass of the
heavy baryon will be finally given by M3Q ¼ 3MQ þ E.
We have checked the validity of the Δ ansatz for the

spectroscopy of triply heavy baryons, calculating their
masses and root-mean-square radii by means of a simple
confining interaction given either by a Y-shape or a
Δ-shape interaction. The Y-shape potential would be given
by [25]

V3QðrÞ ¼ σY3QLmin; ð6Þ

where Lmin,

TABLE II. Mass, in GeV, and root-mean-square radius, in fm,
of the ground state, E1ð32þÞ, and the first positive parity excited
state, E2ð32þÞ, of QQQ baryons for different values of the mass of
the heavy quark MQ, in GeV, and for the Y-shape and Δ-shape
confining potentials of Eqs. (6) and (9), respectively.

Y shape Δ shape

MQ E1ð32þÞ E2ð32þÞ E1ð32þÞ
ffiffiffiffiffiffiffiffi
hr21i

p
E2ð32þÞ

ffiffiffiffiffiffiffiffi
hr22i

p
4.0 12.814 13.121 12.795 0.236 13.094 0.334
4.4 13.989 14.286 13.970 0.228 14.260 0.324
4.8 15.166 15.455 15.148 0.222 15.430 0.315
5.2 16.346 16.627 16.328 0.216 16.603 0.306
5.6 17.528 17.801 17.509 0.211 17.778 0.299
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Lmin ¼
�
1

2
ða2 þ b2 þ c2Þ þ

ffiffiffi
3

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bþ cÞð−aþ bþ cÞða − bþ cÞðaþ b − cÞ

p �1=2
; ð7Þ

with a, b, and c being the three sides of the 3Q triangle,
when the angles of the 3Q triangle do not exceed 2π=3.
When an angle of the 3Q triangle exceeds 2π=3, one gets

Lmin ¼ aþ bþ c −max ða; b; cÞ: ð8Þ

We have taken for the string tension a standard value of
σY3Q ¼ 0.1648 GeV2 [24–29]. The Δ shape potential would
have the form

V3QðrÞ ¼ σΔ3Q
X
i<j

j~ri − ~rjj; ð9Þ

with σΔ3Q ¼ 0.53σY3Q ¼ 0.0874 GeV2. The results are
shown in Table II for different values of the heavy-quark
mass. As can be seen, the two geometrical configurations
give the same result with a small difference of 0.15%. If the
geometrical factor in front of the Δ-shape interaction is
slightly modified, 0.55 instead of 0.53, the Y-shape and the
Δ-shape results would be exactly the same. This result was
already noted in Ref. [40]. Besides, one observes how the
root-mean-square radii are much smaller than the quark-
quark distance for which the Y andΔ shapes start to slightly
differ, ∼0.7 fm [27].
Looking for the general pattern of the results of non-

perturbative lattice QCD for the bbb system, we have
compared against the result of a single Δ-shape confining
potential or a single Coulomb interaction. The results are
shown in Fig. 1. In both cases, we have fixed the strength of
the potential to reproduce the E2ð3=2þÞ − E1ð3=2þÞ mass
difference correctly, obtaining σΔ3Q ¼ 0.2076 GeV2 for the
case of the single Δ-shape confining interaction and A3Q ¼
0.4231 for the single Coulomb potential case. We clearly
note the large strength of the two interactions as compared
to the predictions of SU(3) lattice QCD (see Table I), where
both terms would simultaneously contribute. The Δ-shape
interaction (upper panel) produces a splitting between the
positive (i.e., the first excited state of JP ¼ 3=2þ) and
negative (i.e., the first excited state of JP ¼ 3=2−) parity
excited states too large and a rather small excitation energy
for the positive parity excitations. On the contrary, the
Coulomb interaction (lower panel), being an almost hyper-
central potential, drives to the expected degeneracy
between the positive and negative parity excited states,
not observed in the nonperturbative lattice QCD results.
Thus, as the strength of the potential has been fixed to
reproduce the E2ð3=2þÞ − E1ð3=2þÞ mass difference cor-
rectly, the negative parity excited states are obtained close
to the positive parity excited states in clear disagreement
with the nonperturbative lattice QCD results. Besides,
the positive parity states (except the first excited state of

JP ¼ 3=2þ that has been fitted) are predicted slightly above
the nonperturbative lattice QCD results.
Thus, bbb nonperturbative lattice QCD calculations

point to a static 3Q potential given by a mixture of

FIG. 1. bbb excited state spectra, solid lines, for a single
Δ-shape confining potential (upper panel) or a single Coulomb
interaction (lower panel). In both cases, we have fixed the
strength of the potential to reproduce the E2ð3=2þÞ −
E1ð3=2þÞ mass difference correctly, obtaining σΔ3Q ¼
0.2076 GeV2 for the case of the single Δ-shape confining
interaction and A3Q ¼ 0.4231 for the case of the single Coulomb
potential. The boxes stand for the nonperturbative lattice QCD
results of Ref. [2].
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a Δ-shape confinement and a Coulomb interaction.
Therefore, we have made use of the standard 3Q static
potential derived from SU(3) lattice QCD and shown in
Eq. (4) with the parameters reported in Ref. [25] and quoted
in Table I, A3Q ¼ 0.1410 and σΔ3Q ¼ 0.0925 GeV2, to
calculate the bbb and ccc spectra. The results are shown
in Fig. 2. We have fixed the mass of the heavy quark to
reproduce the JP ¼ 3=2þ ground state of the bbb and ccc
systems, 14.372 GeV [1,2] and 4.758 GeV [4], respec-
tively, obtaining mb ¼ 4.655 GeV and mc ¼ 1.269 GeV.
As we can see in Fig. 2, there is a large difference in the
excited states with the nonperturbative lattice QCD results,
predicting a small splitting between positive and negative

parity excited states and also a small excitation energy for
the positive parity states. These results clearly point to a
lack of strength either in the confining or in the Coulomb
potential.
One may think about several possible reasons for the

disagreement:
(i) The parameters of Eq. (4) obtained in quenched

QCD in Ref. [25] might be different from those in
2þ 1 flavor QCD employed in Refs. [1,2,4]. To
check this possibility, one has to calculate param-
eters of Eq. (4) in 2þ 1 flavor QCD, but such
calculations do not exist so far.

(ii) Results from both Ref. [25] and Refs. [1,2,4] contain
systematic errors such as lattice artifacts and chiral
extrapolation as well as statistical errors. This may
cause the disagreement.

(iii) The fitting form Eq. (4), or Eq. (2), might not be
appropriate to describe the static three-quark poten-
tial in lattice QCD.

(iv) The static quark description might be inaccurate for
bbb and, in particular, for ccc. Higher-order terms
might be necessary.

(v) The quark model description with “3-quark poten-
tial” might be inappropriate for bbb and ccc
systems.

IV. SUMMARY

To summarize, the spectra of baryons containing three
identical heavy quarks, b or c, have been recently calcu-
lated in nonperturbative lattice QCD. The energy of the
lowest positive and negative parity excited states has been
determined with high precision. These achievements con-
stitute a unique opportunity to test phenomenological
potential models in the regime in which they are expected
to work best. We have analyzed these results by means of
static three-quark potentials derived using SU(3) lattice
QCD using different numerical techniques for the three-
body problem. Our results confirm the expectations of
SU(3) lattice QCD of an almost indistinguishable confining
Y or Δ type at short distances for heavy baryons. The static
three-quark potential with parameters from lattice QCD
does not reproduce bbb and ccc spectra.
In the light of the present results, a further effort to obtain

a constituent quark-model potential description of the
nonperturbative lattice QCD results, as has been done in
the past for the heavy-meson systems [42–44], may help in
understanding the connection between static three-quark
potential parameters and simple Cornell-like potential
descriptions. This work is in progress [45].
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