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The behavior of the ϕ meson at finite density is studied, making use of a QCD sum rule approach in
combination with the maximum entropy method. It is demonstrated that a possible mass shift of the ϕ in
nuclear matter is strongly correlated to the strangeness content of the nucleon, which is proportional to the
strange sigma term, σsN ¼ mshNjs̄sjNi. Our results furthermore show that, depending on the value of σsN ,
the ϕmeson could receive both a positive or negative mass shift at nuclear matter density. We find that these
results depend only weakly on potential modifications of the width of the ϕ peak and on assumptions made
on the behavior of four-quark condensates at finite density. To check the stability of our findings, we take
into account several higher order corrections to the operator product expansion, including αs-corrections,
terms of higher order in the strange quark mass, and terms of higher twist that have not been considered in
earlier works.
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I. INTRODUCTION

The strangeness content of the nucleon, hNjs̄sjNi, is
an important quantity, both for understanding the effects of
strange quarks on the nucleon structure [1] and the behavior
of the strange quark condensate in dense matter. The
second point is related to the fact that, via the Feynman-
Hellmann theorem, the value of hNjs̄sjNi determines, to
leading order in density ρ, the pace of restoration of chiral
symmetry of the strange quark sector in nuclear matter:

hs̄siρ ¼ hs̄si0 þ hNjs̄sjNiρ: ð1Þ

The strange quark content of the nucleon also has impli-
cations that go beyond the physics of hadrons and the
strong interaction, as it appears in the spin-independent
elastic scattering cross sections of potential dark matter
particles with nucleons and is one of the main sources of
uncertainty for these cross sections [2,3], therefore strongly
affecting experimental dark matter searches. Hence, it is
crucial to determine this quantity with high precision.
A variety of variables have been introduced in the

literature to parametrize hNjs̄sjNi. We will in this paper
mainly use

σsN ¼ mshNjs̄sjNi; ð2Þ

and refer to it as the strange sigma term. This is a
convenient quantity, because it is a renormalization group
invariant, which is only related to the strange quark and

does not directly depend on parameters related to u and d
quarks, which have their own uncertainties.1

In recent years, it has become possible to evaluate σsN by
direct lattice QCD calculations or by chirally extrapolating
the available lattice data [4–20]. These studies have shown
that the value of σsN is about a factor of 5 smaller than what
was believed to be the correct range of values until about a
decade ago. The values reported by the various groups
however still show quite a large spread, lying roughly in
the range of 0 ∼ 70 MeV, which indicates that these
calculations still contain systematic uncertainties.
We will in this paper discuss a different method for

obtaining σsN , namely by experimentally measuring the
mass of the ϕ meson in nuclear matter. The behavior of
the ϕ meson as a function of density strongly depends on
the value of σsN and can therefore provide a strong
constraint for this quantity once it is measured with
sufficiently high precision. The relation between the ϕ
meson mass and σsN [shown in Fig. 4 and Eq. (13)] is
derived from a recently developed method combining QCD
sum rules with the maximum entropy method (MEM) [21].
This method allows us to extract the most probable spectral
function directly from the sum rules, without having to
make strong assumptions on its functional form. Moreover,
by making use of the MEM, it is possible to determine
the mass shift of the ϕ meson quite precisely. As shown in
Sec. III A, we have tested the reproducibility of the mass
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1Another commonly used variable is y ¼ hNjs̄sjNi
hNjq̄qjNi ¼

2mq

ms

σsN
σπN

,
where hNjq̄qjNi and mq are averaged quantities over the u and d
quarks. σπN stands for the πN sigma term and is defined as σπN ¼
2mqhNjq̄qjNi. Other parametrizations use σ0 ¼ ð1 − yÞσπN or
fTs

¼ σsN=mN , in which mN represents the nucleon mass.
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shift in a series of mock data tests, in which we have
determined the precision of the mass shift extraction by
MEM to be of the order of 5 MeV, which is good enough
for our purposes.
QCD sum rule studies of light vector mesons at finite

density in fact already have quite a long history [22–32].
They have especially attracted much interest because QCD
sum rules provide relations between the partial restoration of
chiral symmetry in nuclear matter and modifications of
meson spectra that could be measured in experiments
[33,34]. The early works on this subject have usually focused
on the ρ and ω channels and the relation between their mass
shifts and chiral symmetry. By now, it is however understood
that this relation is not a simple one, as the driving term for
the modification of the spectrum entering into the sum rules
contains not the most simple two-quark condensate but the
more involved four-quark condensate. Moreover, for the ρ
meson, the spectral modification cannot be assumed to be a
simple mass shift of the ground state peak, but is rather a
combination of mass shift and broadening for which the sum
rules only provide a relatively weak constraint [28].
These issues are less severe for the ϕ meson. Due to the

effects of the strange quark mass on the operator product
expansion (OPE), it is for the ϕ meson channel mainly the
dimension-four term that governs the modification of the
spectral function and the dimension-six term (in which
the four-quark condensate dominates) is merely a small
correction with no large effects. As it has already been
pointed out in earlier works [22,27,31], this leads to an
unambiguous relation between the ϕ meson mass shift and
the strange sigma term, which appears at dimension four.
Furthermore, even though the ϕ is expected to experience
some broadening when put into nuclear matter, it is known
that its width will not grow above the 100 MeV level and
might even stay much below, namely around 75 MeV [35]
or at an even smaller value [36]. Therefore, the ϕ meson
will retain its character as a relatively narrow peak in the
spectral function that facilitates its analysis as no severe
complications from large broadening effects arise.
Because of these advantages, one can expect that the

predictive power of the sum rules of the ϕ is bigger than for
the ρ and ω. To check whether this expectation is actually
true and to quantify in what way the sum rules constrain
the properties of the ϕ meson peak, and, thus, inversely, in
what way the ϕ meson mass constrains the values of σsN , is
the main goal of this paper.
In Sec. II A, we will first recapitulate the basics of QCD

sum rules and their application to finite density. Next, in
Sec. II B, the OPE of the ϕmeson channel in vacuum and at
finite density will be given. Then, to demonstrate the ability
of MEM to reproduce mass shifts at finite density, the
results of our mock data analyses will be summarized in
Sec. III A. Finally, the analysis results of the OPE data are
provided and discussed in Secs. III B and IV, while the
conclusions are given in Sec. V.

II. FORMALISM

A. Basics of QCD sum rules

As usual when working with QCD sum rules [37], we
start with the two-point function of an interpolating field
coupling strongly to the ϕ meson:

Πμνðω; ~qÞ ¼ i
Z

dx4eiqxhT½jμðxÞjνð0Þ�iρ: ð3Þ

Here, the operator jμðxÞ is defined as jμðxÞ ¼ s̄ðxÞγμsðxÞ,
and hiρ stands for the expectation value with respect to the
ground state of nuclear matter at T ¼ 0. Generally,
Πμνðω; ~qÞ contains two independent Lorentz structures
[38], but for the case of the ϕ meson at rest relative to
the nuclear medium (~q ¼ 0), there is only one such
structure and it suffices to consider the contracted correlator
defined as Πðω2Þ ¼ − 1

3ω2 Πμ
μðω; ~q ¼ 0Þ. From the analy-

ticity of Πðω2Þ, the dispersion relation

Πðω2Þ ¼ 1

π

Z
∞

0

ds
ImΠðsÞ

s − ω2 − iε
ð4Þ

can be derived. The idea of the QCD sum rule approach is
now to take ω2 as a large and negative number and to
calculate the left-hand side of Eq. (4) using the OPE. This
results in a power series in 1=ω2 with (Wilson) coefficients
expressed as expansions in the strong coupling constant αs.
On the right-hand side, the function 1

π ImΠðsÞ is viewed in
terms of hadronic degrees of freedom that couple to the
operator jμðxÞ.
Equation (4) is in fact not yet the final form of the sum

rule as the integral on its right-hand side is not convergent,
and thus a subtraction term is needed. The standard way to
remedy this problem is the application of the Borel trans-
form, which cancels any subtraction constant, renders the
integral over s convergent and furthermore improves the
convergence of the OPE. This finally gives

ΠBðM2Þ ¼ 2

M2

Z
∞

0

dωe−ω
2=M2

ωAðωÞ; ð5Þ

where we have defined the spectral function AðωÞ as
AðωÞ ¼ 1

π ImΠðω2Þ. This is the final form of the sum rule
that will be used in the analyses presented in this paper.

B. OPE of the ϕ meson channel in vacuum
and at finite density

The result of the OPE is generally obtained as shown
below:

ΠB
OPEðM2; ρÞ ¼ c0ðρÞ þ

c2ðρÞ
M2

þ c4ðρÞ
M4

þ c6ðρÞ
M6

þ � � � :
ð6Þ
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In this work, we consider terms up to dimension six. The
coefficients ciðρÞ have mass dimension i and can contain
logarithmic dependencies on the Borel mass M, which we
have not explicitly spelled out in Eq. (6) for simplicity of
notation.
The coefficients in the vacuum (ρ ¼ 0) can be given as

follows [37,39–42]:

c0ð0Þ ¼
1

4π2

�
1þ αs

π

�
;

c2ð0Þ ¼
m2

s

4π2

�
−6 − 4

αs
π

�
4 − 6 log

�
M
μ

�
þ 3γE

��
; ð7Þ

c4ð0Þ ¼
1

12

�
1þ 7

6

αs
π

��
αs
π
G2

�
þ 2ms

�
1þ 1

3

αs
π

�
hs̄si

þ 3

4π2
m4

s

�
1þ 4 log

�
M
μ

�
− 2γE

�

−
1

6π2
m4

s
αs
π

�
35 − 3π2 − 24ζð3Þ

þ 3

�
2 log

�
M
μ

�
− γE

�
þ18

�
2 log

�
M
μ

�
− γE

�
2
�
;

ð8Þ

c6ð0Þ ¼ −
112

81
παsκ0hs̄si2 þ

1

18
m2

s

�
αs
π
G2

�
−
4

3
m3

shs̄si:

ð9Þ

Up to dimension four, we have taken into account the first
order αs corrections to all the Wilson coefficients, which
were calculated already a long time ago [40,41], but have to
our knowledge not taken into account in the available sum
rule studies on the ϕ meson. These corrections, however,
turn out to be quite small, namely around 10% of the
leading order terms or smaller, with the exception of the
m2

s and m4
s terms. Note that for full consistency, we, in

principle, should have included the terms of α2s in the
perturbative dimension-zero term of Eq. (7), since they
correspond to the hard parts of the diagrams that give the
first order αs corrections to the Wilson coefficients of the
gluon condensate, which we have taken into account in
Eq. (8). As these α2s terms, in contrast to their counterparts
appearing with the gluon condensate, however, do not give
any contribution to the density dependence of the OPE
and hence to the ϕ meson mass shift, we have ignored
them here.
Furthermore, we include several higher order terms in

the strange quark massms, which have not been considered
before: m4

s [40], m2
shαsπ G2i and m3

shs̄si [39]. These correc-
tions have also turned out to be small compared to other
terms of the same dimension. Note that there are in fact
more condensates of dimension six that can, in principle,
appear in the OPE. Specifically, these are mshs̄gσ ·Gsi and

hg3G3i, whose Wilson coefficients, however, are known to
vanish at leading order in αs [39]. One further point worth
mentioning here is concerned with the four-quark con-
densate term at dimension six. To obtain its form given in
Eq. (9) we have assumed that the vacuum saturation
approximation holds, and have parametrized the possible
breaking of this approximation by the parameter κ0. In
vacuum we will assume that κ0 is 1 (and thus that the
vacuum saturation approximation is exact), but will con-
sider its deviation from 1 later in the finite density case.
To get an idea of the behavior of the various terms of

Eqs. (7)–(9), they are plotted in Fig. 1. For drawing
this plot, we have used αs ¼ 0.5 [43], hαsπ G2i ¼ 0.012�
0.0036 GeV4 [44],ms ¼ 128� 7 MeV [45], hs̄si¼ ð0.6�
0.1Þhq̄qi [46], hq̄qi ¼ −ð0.232� 0.06Þ3 GeV3 [47], and
κ0 ¼ 1. All these values are given at renormalization
scale 1 GeV.
It is observed in Fig. 1 that the qualitative properties of

the OPE are essentially determined by the first three terms
while the fourth term, which is dominated by the four-quark
condensate, is only a small correction. This is fortunate,
as the four-quark condensate is not well known, which in
the parametrization used here translates into our lack of
knowledge of the actual value of κ0.
Next, for investigating the finite density case, we need to

calculate the ρ dependence of the coefficients ciðρÞ in
Eq. (6). To obtain ciðρÞ for general values of ρ is a very
difficult task that is beyond our ability at the present time.
What we, however, can do is to restrict ourselves to low
densities and assume that the linear density approximation
is valid for the density regime that we are interested in.
We are in this work mainly interested in the modification of
the ϕ meson at nuclear matter density and there is evidence
that this approximation indeed works well there [22,26].
We will further discuss this point in Sec. IV and for the
moment just assume that we are considering densities at
which the above assumption is valid. The ρ dependence of
the coefficients ciðρÞ at linear order has already been
discussed many times in the literature [22,27,30]; the main
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FIG. 1 (color online). The OPE terms in vacuum, given in
Eqs. (7)–(9), as a function of the Borel massM. The contributions
are shown relative to the leading order OPE term, c0ð0Þ.
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focus, however, was usually laid on the ρ and ω channels.
We here give the result for the ϕ channel, which again
includes several new terms that have not been taken into
account in the works published so far:

c0ðρÞ ¼ c0ð0Þ; c2ðρÞ ¼ c2ð0Þ; ð10Þ

c4ðρÞ ¼ c4ð0Þ þ ρ

�
−

2

27

�
1þ 7

6

αs
π

�
MN

þ 56

27
ms

�
1þ 61

168

αs
π

�
hNjs̄sjNi

þ 4

27
mq

�
1þ 7

6

αs
π

�
hNjq̄qjNi

þ
�
1 −

5

9

αs
π

�
As
2MN −

7

12

αs
π
Ag
2MN

�
; ð11Þ

c6ðρÞ ¼ c6ð0Þ þ ρ

�
−
224

81
παsκNhs̄sihNjs̄sjNi

−
104

81
m3

shNjs̄sjNi þ 8

81
m2

smqhNjq̄qjNi

−
4

81
m2

sMN −
3

4
m2

sAs
2MN −

5

6
As
4M

3
N

�
: ð12Þ

The novel terms here are the αs corrections of the terms at
dimension four, a term related to a twist-2 gluonic operator
at dimension four, and several terms of higher order inms at
dimension six. Most of these terms only have a small effect
and do not much change the earlier results. The only
exception is the twist-2 gluonic operator at dimension four,
which is proportional to the first moment of the gluonic
parton distribution Ag

2. This term is in fact almost as large as
the twist-2 strange quark operator (proportional to As

2), and
therefore cannot be ignored. The definitions of As

2, A
s
4,

and Ag
2, which are all moments over parton distribution

functions, can be found for instance in [48].
For the numerical evaluation of Eqs. (10)–(12), we use

MN ¼ 940 MeV, 2mqhNjq̄qjNi¼ 45�7MeV [49], As
2¼

0.044 � 0.011, As
4 ¼ 0.0011� 0.0004, and Ag

2 ¼ 0.359�
0.146. The last three values have been extracted numeri-
cally from the parton distributions given in [50]. The
breaking of the factorization assumption of the four-quark
condensates is parametrized using κN . Here, we follow the
treatment of [31] and take into account the possibility that
κN can differ from the vacuum value κ0. Specifically, we
will consider the range κN ¼ 1� 1. Note that we have not
explicitly included twist-4 terms, which, in principle, can
appear at dimension six. In [26,51], the magnitude of these
terms has been estimated for the ρ (ω) meson case to be
1.36 (2.29) times the corresponding twist-2 contribution of
the same dimension. For the calculation of this paper, we
assume that the ratio between twist-2 and twist-4 terms has
the same order of magnitude for the ϕ meson case and take
the average value of 1.83 for this ratio. It is clear that this

only a very crude estimate and we therefore will attach to it
an uncertainty of 100% and use 1.83� 1.83 when comput-
ing the error of the final results. Our poor knowledge of
the twist-4 contribution does, however, not cause serious
problems, as its contribution is negligibly small. Increasing
for instance the above ratio by a factor of 2 only results in a
mass shift of the ϕmeson peak of at most 1 MeVat nuclear
matter density. As explained in the introduction, we do not
assume any value for the strange sigma term mshNjs̄sjNi,
but treat it as a free parameter.
Let us here also make a few comments on the derivation

of Eq. (11). One might wonder where the term containing
the (light quark) sigma term 2mqhNjq̄qjNi comes from,
even though we are considering a correlator of an inter-
polating field constructed from only strange quarks. This
term arises from the density dependence of the gluon
condensate, which to leading order in ρ is proportional to
the nucleon mass in the chiral limit [52,53]: hαsπ G2iρ ¼
hαsπ G2iρ¼0 − 8

9
ðMN − σπN − σsNÞρ.

Furthermore, it is also worth mentioning that the
derivation of the twist-2 gluonic operator term is somewhat
nontrivial as it can only be systematically obtained by
taking into account the concept on non-normal ordered
operators and their expectation values with respect to the
nuclear matter ground state, as only for these the OPE is
generally well defined in the chiral limit [54]. This
procedure corresponds to subtracting out the soft contri-
butions of perturbative quark propagators with attached
gluon lines. A detailed account of how the related actual
calculations can be done has been given recently in [55] for
the case of heavy–light quark pseudoscalar mesons and we
here have followed the method put forward in that
publication to obtain this twist-2 gluonic operator term
of dimension four. For details, we thus refer the reader to
[55] and the references cited therein.2

III. ANALYSIS RESULTS OF THE SUM RULES
IN VACUUM AND FINITE DENSITY

A. MEM test analysis of mock data

Before directly analyzing the OPE of the previous
section, we here at first will discuss the results of some
test analysis of artificial mock data. This sort of test is
important for confirming what properties of the spectral
function MEM is able to reproduce and thus for getting an
idea on the systematic error of this approach. For details of
MEM, we refer the reader to [56,57], and for practical

2Let us, however, state here that we could not reproduce one
small part of the formulas given in [55]. Specifically, we got
log μ2

m2
q
− 1

2
instead of log μ2

m2
q
− 1

3
in a factor appearing in the last

term of Eq. (56) of [55]. We will in this study use our own result,
but note that this disagreement only has a very small numerical
effect on the OPE.
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details specific to the application of MEM to QCD sum
rules, to [21,58].
First, we show the result of the mock data analysis of

a spectral function resembling the one of the ϕ meson
channel in the vacuum. For this, we use a realistic input
spectral function, which has been fitted to experimental
data in [59], create mock OPE data by substituting this
spectral function into the right-hand side of Eq. (5), and
then analyze these mock data with MEM. The analyzed
Borel mass region is taken to be the same as for the OPE
data analysis of the following subsection. Specifically,
we take Mmin ¼ 0.56 GeV for the lower boundary, which
is determined from the convergence criterion of the OPE,
which demands that the highest order OPE term should be
smaller than 10% of the leading perturbative term of
dimension zero. For the upper boundary, we use Mmax ¼
1.10 GeV. This rather small value for Mmax is taken to
suppress the continuum contributions to the sum rules. The
result AoutðωÞ is plotted in Fig. 2, in which the input
spectral function AinðωÞ and the employed default model
(which is an input of the MEM analysis [56,57]) are also
shown for comparison. We evaluate the peak position by
taking the average of ω over the peak region, which is
defined as the interval for which the spectral function takes
values above half of the maximum peak height. We will use
the same prescription for the rest of this paper. This then
leads to a value lying 44 MeV above the input peak
position, which gives an idea of the quantitative accuracy
of MEM for this particular quantity. We will, however, see
below that when considering mass shifts, the precision will
be considerably improved. It is furthermore understood
from Fig. 2 that the output ϕ peak is strongly broadened
due to artificial MEM effects, which indicates that
obtaining meaningful information on the width of the ϕ
meson at finite density from our MEM approach will be a
rather difficult task. We thus in the following concentrate
our efforts only on the mass shift.
To test the quantitative ability of MEM to reproduce such

a mass shift and how a possible broadening of the peak will

influence the result, we will as a next step study several
kinds of mock data, which include mass shifted peaks with
various degrees of broadening. A few representative results
are shown in Fig. 3, where input mass shifts are compared
with their MEM outputs. As one can observe from this plot,
the mass shifts are mostly reproduced well, the error only
being a few MeV. It is however also seen that the mass shift
is underestimated especially for large positive mass shifts.
We will take this effect into account when extracting the ϕ
meson mass shift from the actual OPE data. We furthermore
note that broadening somewhat decreases the MEM output
mass, which introduces some uncertainty into our results.
We have also investigated the effect of a possible

dependence of the continuum on the density. Even though
we do not have any detailed knowledge on the behavior of
the continuum in dense matter, we can make a crude
estimate by assuming that it is dominated by freely
propagating kaons with properties modified by the back-
ground density. It is known from effective models based on
chiral symmetry that the kaons on the average receive a
negative mass shift of below 50 MeV at nuclear matter
density [60,61], which can be translated into a shift
(of below 100 MeV) of the continuum towards smaller
energies. We have also considered the possibility of the
continuum becoming smoothed out due to density effects
and have allowed the gradient of the continuum to decrease
up to 10%. Including these modifications into our analysis
has again an effect of at most a few MeV on the peak
position of the ϕ meson and hence leads to a further
systematic uncertainty. Let us furthermore stress here that
the assumptions on the behavior of the continuum men-
tioned above are only used to generate mock data for the
MEM test analysis presented here. In the MEM analysis of
the real OPE data of the next section, no assumptions are
made on the actual behavior of the continuum.
All the effects discussed in the last two paragraphs will

be taken into account when evaluating the error of our final
results.
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FIG. 2 (color). Result of the MEM analysis of mock data
(AoutðωÞ) is plotted as a red line. The mock data were constructed
from AinðωÞ, which is shown by the blue line.
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B. MEM analysis of OPE data in vacuum
and at finite density

After the investigation of mock data of the last section,
we are now in a position to study the actual OPE and to give
an accurate interpretation of the obtained results.
Let us start with the spectral function in vacuum, for

which we analyze the OPE data of Eqs. (7)–(9). The result
closely resembles the one of Fig. 2 and we thus do not show
it here. For the peak position (mϕ), we get a value of
1.075 GeV, which lies 56 MeV above the experimental
value of 1.019 GeV. Note that we have deliberately chosen
a rather small value for the strange quark condensate to get
this mass. This is done in purpose of starting the analysis
from a spectral function in the vacuum that is as realistic as
possible, as higher quark condensate values would lead to
an even larger mϕ.
Next, we proceed to the main subject of interest of this

paper, the behavior of the ϕ meson at finite density. As a
first example, we choose two values of the strange sigma
term, provided by recent lattice QCD calculations [10,12],
for which we have intentionally chosen results that lie on
the lower and upper range of the values reported during the
past few years. They will therefore provide a lower and
upper limit for the mass shift of the ϕ meson, based on
these lattice results. The behavior of the ϕ meson mass as a
function of density is shown in the upper plot of Fig. 4,
where it is seen that the ϕ meson mass shift at nuclear
matter density lies roughly in the range of þ10 MeV∼
−10 MeV.
This result is especially interesting in view of the fact that

earlier sum rule studies have all [22–25,27,31,32] obtained
a negative mass shift at nuclear matter density, while here
we get both the possibility of a positive and negative mass
shift, depending on the value of σsN . The reason for this
discrepancy is twofold. First, the recent lattice QCD values
of the strange sigma term are much smaller than those that
had been used until about a decade ago, which significantly
reduces the contribution of this term to the OPE of Eq. (12).
Furthermore, the twist-2 gluonic term of dimension four,
which was not considered in these works, has turned out to
have quite a large effect, leading to a further increase of
the mass. Hence, the situation is now quite different from
what it used to be and it is at present not even clear whether
there will be a positive, negative, or any mass shift at all at
nuclear matter density.
In this context, let us mention the works using hadronic

models with phenomenologically determined effective
Lagrangians [27,62–64], which at normal nuclear matter
density get a small but negative mass shift of below
10 MeV and a width about an order of magnitude larger
than the vacuum value. As can be observed in Fig. 4, this is
consistent with our QCD sum rule result and some of the
recent lattice QCD computation ranges of σsN , but would
exclude too-small values of the strange sigma term, for
which the mass shift is positive.

As explained in the introduction, we do not choose
any specific value of the strange sigma term, but study the
modification of the ϕmeson more generally as a function of
this parameter. The result of this investigation is given in
the lower plot of Fig. 4, where the ϕ meson mass at nuclear
matter density is shown as a function of σsN . Here, the
error band includes the uncertainties of As

2, As
4, Ag

2,
2mqhNjq̄qjNi, κN , and of the twist-4 terms of dimension
six. Furthermore, the systematic errors of the MEM
analysis stemming from the possible broadening of the
ϕ meson peak and the modification of the continuum,
discussed at the end of Sec. III A, are also taken into
account. Figure 4 clearly demonstrates that there is an
(almost) linear relationship between the ϕmeson mass shift
and σsN . Altogether, the result of Fig. 4 can most simply be
fitted by a constant plus a term linear in σsN:

mϕðρÞ
mϕð0Þ

− 1 ¼
�
b0 − b1

�
σsN

1 MeV

��
ρ

ρ0
; ð13Þ

with ρ0 representing the normal nuclear matter density.
Our fit gives b0 ¼ ð1.00� 0.34Þ × 10−2 and b1 ¼ ð2.86�
0.48Þ × 10−4, which means that the mass shift changes its
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FIG. 4 (color online). (Upper plot): Peak position of ϕmeson as
a function of the density ρ, for value ranges of the strange sigma
term σsN , obtained from the MILC [10] and JLQCD [12] lattice
QCD collaborations. The σsN values are 61� 9 MeV for MILC
and 8� 21 MeV for JLQCD. (Lower plot): Peak positions of the
ϕ meson at nuclear matter density ρ0 as a function of
σNs ¼ mshNjs̄sjNi. For both plots, the peak positions are given
relative to the ϕ mass in vacuum.
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sign at a σsN=1 MeV value of b0=b1 ¼ 34.9� 13.1. Using
the variable y instead of σsN , we get 0.174� 0.040 for the
slope parameter (which corresponds to C=y in [22], where a
value of 0.15� 0.045 was obtained) with the sign of the
mass shift switching at y ¼ ð5.74� 2.34Þ × 10−2.

IV. DISCUSSION

Let us try to understand the result of Fig. 4 by looking at
the OPE of Eqs. (10)–(12) a bit more closely. From our
discussion of the OPE in vacuum [Eqs. (7)–(9); see also
Fig. 1], we know that the properties of the ϕ meson are
essentially determined by the OPE terms up to dimension
four. As the dimension-zero and -two terms do not have
any density dependence, one can therefore expect that the
finite density contributions to the dimension-four terms
will control the modification of the ϕ peak. These terms of
linear order in ρ have the following form:

−
2

27

�
1þ 7

6

αs
π

�
MN þ 56

27
ms

�
1þ 61

168

αs
π

�
hNjs̄sjNi

þ 4

27
mq

�
1þ 7

6

αs
π

�
hNjq̄qjNi þ

�
1 −

5

9

αs
π

�
As
2MN

−
7

12

αs
π
Ag
2MN: ð14Þ

Written down numerically, this gives

−82.5 MeVþ 2.19σsN þ 3.95 MeVþ 37.7 MeV

− 31.3 MeV ¼ 2.19

��
σsN

1 MeV

�
− 32.9

�
MeV: ð15Þ

Here, a positive coefficient results in a negative mass shift
and vice versa. Therefore, it is easily understood from the
numbers above that for small values of σsN a positive mass
shift is observed, which turns into a negative one at around
σsN ¼ 32.9 MeV. This quite accurately describes the sit-
uation observed in Fig. 4 and shows that it is indeed the
dimension-four terms that almost completely determine the
ϕ meson mass shift at finite density.
Another important point that needs some discussion is

how our results can be understood in the context of the
previous experimental studies on the ϕ meson at finite
density. The E325 experiment at KEK has observed a
significant excess on the lower mass side of the dilepton
spectrum of slowly moving ϕ mesons produced in 12 GeV
pþ A reactions, and extracted a negative mass shift of the
ϕ of 35� 7 MeV at nuclear matter density [36]. In view of
the results given in this paper, this finding is somewhat
puzzling as such a large negative mass shift would
correspond to values of σsN larger than 100 MeV (see
Fig. 4), which seems to be in contradiction with recent
lattice data [4–20], which suggest that σsN should at least be
smaller than 70 MeV. Furthermore, let us mention here that,
according to [29], finite momentum effects will at the upper

boundary of the lowest momentum bin of the E325
experiment (βγ < 1.25) lead to a further positive mass
shift of 3 MeV for the transverse and 7 MeV for the
longitudinal component of the ϕ meson, and hence are not
expected to help resolve the above discrepancy. On the
contrary, they even lead to a further increase of the mass
and therefore presumably will only worsen the situation.
The E16 experiment, to be performed at the J-PARC

facility, will measure the ϕ meson in nuclear matter with
much better statistics than in E325 and will thus hopefully
provide much more precise information on the modification
of the ϕ meson spectrum [65]. First of all, it will certainly
be very interesting to see whether the result of the E325
experiment can be reproduced and what mass shift value
will be extracted from the experimental data.
Related to the above topic, it is of course important to ask

whether the sum rule approach could be missing some
important effects and thus not be accurate enough to make
precise statements on the behavior of the ϕmeson spectrum
at finite density. Here, we want to stress once again that the
OPE of this channel is relatively well determined because
all important terms appear at dimension four or lower. This,
however, of course does not fully exclude the possibility of
some so-far neglected contributions quantitatively modi-
fying our results in some way. Such higher order terms
include condensates of higher dimension, further αs cor-
rections, and terms beyond the linear density approxima-
tion. Among these, the terms of higher order in ρ are
presumably the most dangerous ones, as it is for instance
known from in-medium chiral perturbation theory that
the light quark condensate and finite density deviates about
5–7% from the linear behavior [66,67]. Such a deviation
could also exist for the strange quark condensate, which
would modify our results accordingly. Therefore, for
making our conclusions more solid, it would be desirable
to take such kinds of contributions into account. We are
planing to tackle this task in a future publication.

V. CONCLUSION

We have studied the behavior of the ϕ meson in cold
(T ¼ 0) matter of finite baryonic density. This has been
done with the help of a QCD sum rule approach, in which
the finite density effects can be treated as modifications of
the condensates of the QCD ground state, and thus provides
a relation between the conversion of the ϕ meson spectrum
and the change of the various order parameters of QCD. We
have pointed out that, in the case of the ϕ meson, there is a
strong correlation between the mass shift and the strange
sigma term σsN (shown in Fig. 4). This correlation emerges
because of the specific properties of the ϕ meson channel.
First, it is known that the ϕ meson remains relatively
narrow even at nuclear matter density [35] and its broad-
ening thus does not introduce a large uncertainty into the
calculation. We have checked this point explicitly using a
mock data MEM analysis and found that this uncertainty is
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only as large as a few MeV in terms of the ϕ meson mass
shift (see Fig. 2). Second, the density dependence of the
relevant terms of the OPE is well understood, the only
unknown parameter being σsN , and the uncertainty due to
not well constrained higher order contributions (such as the
four-quark condensates) is sufficiently small.
Some more work still remains to be done in the future.

As a first point, it would be important to test the stability
of our results by including more higher order terms,
especially those that go beyond leading order in density.
It might also be possible to improve the MEM extraction
of the spectral function with a recently proposed formu-
lation of QCD sum rules on the complex Borel plane [68].
Furthermore, it would be interesting to confirm the earlier
works on the ϕ spectrum at finite momentum [29,30], to
study the constraints provided by the sum rules on the

finite momentum spectrum in detail, and to make pre-
dictions for the experimental measurements planned to be
performed in the E16 experiment at J-PARC, at which the
ϕ spectrum at both zero and finite three-momentum will
be measured [65].
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