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We discuss how the CP-violating phase δ and the mixing angle θ23 can be measured precisely in an
environment where there are strong correlations between them. This is achieved by paying special attention
to the mutual roles and the interplay between the appearance and the disappearance channels in long-
baseline neutrino oscillation experiments. We analyze and clarify the general structure of the θ23 − θ13 − δ
degeneracy for both the appearance and disappearance channels in a more complete fashion than what has
previously been discussed in the literature. A full understanding of this degeneracy is of vital importance if
θ23 is close to maximal mixing. The relative importance between the appearance and disappearance
channels depends upon the particular setup and how close to maximal mixing nature has chosen the value
for θ23. For facilities that operate with a narrow band beam or a wideband beam centered on the first
oscillation extremum, the contribution of the disappearance channel depends critically on the systematic
uncertainties assumed for this channel, whereas for facilities that operate at energies above the first
oscillation extremum or at the second oscillation extremum, the appearance channels dominate. On the
other hand, for δ we find that the disappearance channel usually improves the sensitivity, modestly for
facilities around the first oscillation extremum and more significantly for facilities operating at an energy
above the first oscillation extremum, especially near δ ∼�π=2.
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I. INTRODUCTION

The three flavor mixing angles in the lepton sector are all
measured now, and the next step is to measure the CP-
violating phase δ [1]. It would be the last step, aside from
determination of the neutrino mass hierarchy, to complete
our understanding of lepton mixing in the standard three-
generation scheme. Lepton CP violation is one of the
indispensable ingredients for leptogenesis [2] which could
explain baryon number asymmetry in the Universe.
At the same time, neutrino physics is entering the

precision era. Precision will help successful model building
in the leptonic sector, which eventually should lead to the
resolution of the so-called flavor puzzle. Fortunately, θ13
will be soon determined accurately by the Daya Bay and
the other reactor experiments [3–5], which is free from the
uncertainties on θ23 and δ [6]. Given the high accuracy of
θ12 measurement by the solar [7] (see also, e.g., [8] for a
review on results from solar oscillation experiments) and
the KamLAND [9] experiments, which may be even more
improved at the JUNO [10] or RENO-50 [11] experiments,
θ23 will be the least precisely known mixing angle. Then,
the uncertainty of θ23 could be one of the dominant sources

of uncertainty for the measurement of δ, in addition to
statistical and systematic ones.
Up to now, it is generally assumed that θ23 will mainly be

determined through νμ disappearance measurements, and δ
is to be measured by νe and ν̄e appearance measurements,
possibly simultaneously with θ13, or with a given measured
value of θ13 by reactor experiments. However, it turns out
that the problem of determining θ23 and δ simultaneously is
not that simple.
If θ23 is close to maximal mixing, i.e., sin2 2θ23 ≳ 0.96

(a value to which the experimental results seem to be
converging), the determination of sin2 θ23 will be difficult,
because the two allowed regions for θ23 (the true solution
and one clone) merge together [12]. As a result, the final
allowed region for sin2 θ23 will span both the first and
second octants of θ23. It was shown that the νe and ν̄e
appearance measurements by themselves, no matter how
accurate, produce a continuous “tusk-shaped” degeneracy
line, parameterized by the value of δ, in sin2θ13–sin2θ23
space [6]. Though the three-dimensional θ23 − θ13 − δ
parameter space is squeezed by the reactor measurement
of θ13 (yet with finite resolution), we still have to deal with
the problem of determining θ23 and δ simultaneously [13].
We will see that it suffers from a parameter degeneracy
involving θ23, θ13, and δ.
We utilize the following four experimental setups to

illuminate the characteristic features of this degeneracy:
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(i) T2HK [14] for a representative case of setups
whose neutrino spectrum is peaked near the first
vacuum oscillation maximum (VOM), such that Δ31≡
ðm2

3 −m2
1ÞL=4E ¼ �π=2, where L is the distance to the

detector and E is the neutrino energy, (ii) LBNE [15] for a
representative case of setups with wideband neutrino beams
around jΔ31j ∼ ð2� 1Þπ=4, (iii) neutrino factory (NF)
[16,17] for a representative case of setups at higher energies
than VOM, jΔ31j ∼ π=4, and at long baseline with a sizable
matter effect, and (iv) ESSνSB [18,19] for a representative
case of setups with the neutrino spectrum peaked near the
second VOM, jΔ31j ¼ 3π=2.
The paper is structured as follows. First, we aim at

illuminating the structure of the parameter degeneracy in
the three-dimensional θ23 − θ13 − δ space, which will be
denoted as the general θ23 − θ13 − δ degeneracy. Despite
that the intrinsic θ13-δ degeneracy [20] (and to less extent
the intrinsic θ23-δ one [13]) multiplied with the discrete θ23
octant degeneracy [21] (see also [22]) has been discussed
extensively in the literature, to our knowledge, its full
structure has never been addressed in a complete fashion. A
detailed discussion of this degeneracy will be presented in
Sec. II. Then, in the rest of the paper, we study how well θ23
and δ can be measured at future neutrino oscillation
facilities, focusing in particular on the relative importance
of νμ disappearance vs νμ → νe (ν̄μ → ν̄e) appearance
measurements1 for a precise determination of sin2 θ23
and δ. This will be discussed in Secs. IVand V, respectively.
Finally, we summarize our results and present our con-
clusions in Sec. VI.

II. GENERAL θ23 − θ13 − δ DEGENERACY OF
THE APPEARANCE AND

DISAPPEARANCE CHANNELS

Here, we discuss the general structure of degeneracy
involving θ23, θ13, and δ which is encountered in the
measurement of these parameters. Our aim in this section is
to illuminate the nature of this parameter degeneracy but
not to go deeply into discussing how it can be resolved.
However, we do expect that our discussion will be useful to
formulate the resolution of this degeneracy. While our
discussions in this section are meant to be pedagogical in
nature, many of the features of this general θ23 − θ13 − δ
degeneracy are entirely new. Clues toward formulating the
general θ23 − θ13 − δ degeneracy have been given by many
authors but within various approximations. For example, a
formal degeneracy equation has been written down by
Donini, Meloni, and Rigolin [23] under the θ23↔π=2 − θ23
approximation and by Chatterjee et al. [24] under restric-
tion to a part of the three-dimensional manifold. However,

the full analytical structure of these degeneracies has not
been revealed in a manner which is as general as that
presented in this paper, nor have they ever been analyzed,
imposing a clear discrimination between the degeneracies
of the appearance and disappearance channels.
For the sake of simplicity, we will assume throughout

this paper that the neutrino mass hierarchy is known to be
the normal hierarchy. In the case of unknown mass
hierarchy, the number of allowed solutions would be
doubled, since the clone solutions would also appear for
the wrong mass hierarchy [25]. The extension can be done
in a straightforward manner. Finally, the inclusion of matter
effects complicates the discussion without adding too much
to the understanding. Therefore we will turn them off in the
rest of this section.

A. Observables and overview

In this paper, we consider the following four observables
in discussing the determination of θ23, θ13, and δ:
(1) Pμeðθ23; θ13; δÞ and P̄μeðθ23; θ13; δÞ.—the appear-

ance oscillation probabilities2 for νμ → νe and
ν̄μ → ν̄e, respectively. For these probabilities there
is a continuous degeneracy in the three variables θ23,
θ13, and δ. We will refer to this degeneracy as the
“θ23 − θ13 − δ appearance degeneracy.”

(2) Pμμðθ23; θ13Þ.—the disappearance oscillation prob-
ability for νμ → νμ. For this probability there is a
continuous degeneracy in the two variables θ23 and
θ13. We will refer to this degeneracy as the
“θ23 − θ13 disappearance degeneracy.”

(3) P̄eeðθ13Þ.—the disappearance oscillation probability
for ν̄e → ν̄e. There is no degeneracy in this channel,
since cos2 θ13 is not small and therefore θ13 is
determined unambiguously. [See the discussion after
Eq. (3).]

In this section, we restrict ourselves to the analytic
treatment of the degeneracy assuming measurements of the
above observables for a fixed neutrino energy E. Since
there are four equations for the three variables, the system
is, in general, overconstrained, and, in principle, there is no
degeneracy if each measurement is precise enough except
at possible isolated values of the neutrino energy. However,
degeneracies may appear if the measurements are not
accurate enough.
Let us start by discussing what has been addressed in the

literature up to now regarding the degeneracies associated
with θ23 − θ13 − δ.
(a) If a νμ disappearance measurement of sin2 2θ23 is

sufficiently accurate to determine θ23 (up to its octant),
then a set of νe and ν̄e appearance measurements

1Here, and in the rest of this work, we denote the appearance
channels for the superbeam experiments with the implicit under-
standing that for the neutrino factory or beta beam experiments
the appearance channels are νe → νμ and its CP conjugate.

2Here only the variables which have an important effect in our
discussion are shown as arguments of the oscillation probabil-
ities. Explicit expressions for the oscillation probabilities will be
given below.
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would give two allowed solutions for (θ13, δ): the true
solution and a degenerate one, which has been referred
to as “θ13 intrinsic degeneracy” [20]. Moreover, one
would get two solutions for each value of θ23; thus,
this degeneracy is fourfold (eightfold if we consider
that the sign of Δm2

31 is unknown).
(b) If the accuracy in determining sin2 θ13 overwhelms

that of sin2 θ23, which is more or less the case after the
reactor measurement of θ13, a set of νe and ν̄e
appearance measurements would give two allowed
solutions for (θ23, δ): the true solution and a degen-
erate one, which has been referred to as the “θ23
intrinsic degeneracy” [13]. In this case, the degeneracy
is twofold excluding the ambiguity of the mass
hierarchy.

In the first case, (a) above, the resultant fourfold degeneracy
has been described as a direct product of the θ13 intrinsic
and the θ23 octant degeneracies, whereas the second case
(b) is a θ23 intrinsic degeneracy which could, in principle,
be resolved by an accurate determination of sin2 θ23 from a
νμ disappearance experiment. However, if θ23 is near

maximal mixing (∼ π
4
), this is challenging due to the

Jacobian involved in translating the measured variable
sin2 2θ to sin2 θ.
The general θ23 − θ13 − δ degeneracy we discuss here

is best considered to be made up of two separate
degeneracies: one associated with the appearance channels,
the θ23 − θ13 − δ appearance degeneracy, and the second
associated with the νμ disappearance channel, the θ23 − θ13
disappearance degeneracy. Both these degeneracies are
continuous in the associated variables and will be illumi-
nated in more detail in the following subsections.

B. Appearance channels and the θ23 − θ13 − δ
appearance degeneracy

We start by describing the νe and ν̄e appearance
measurements to understand the structure of θ23 − θ13 −
δ appearance degeneracy. We will show that both the θ23
and the θ13 intrinsic degeneracies can be identified as
particular projections of this appearance degeneracy.
The νe and ν̄e appearance oscillation probabilities can be

written as

Pðνμ → νeÞ ¼ ðs23 sin 2θ13Þ2A2
⊕ þ 2ϵðs23 sin 2θ13Þðc23c13ÞA⊕A⊙ cos ðδþ Δ31Þ þ ϵ2ðc23c13Þ2A2⊙;

Pðν̄μ → ν̄eÞ ¼ ðs23 sin 2θ13Þ2Ā2
⊕ þ 2ϵðs23 sin 2θ13Þðc23c13ÞĀ⊕A⊙ cos ðδ − Δ31Þ þ ϵ2ðc23c13Þ2A2⊙; ð1Þ

where Δij ≡ Δm2
ijL

4E and ϵ≡ Δm2
21

Δm2
31

≃ 0.03. The A functions

in (1) are defined3 as

A⊕ ≡
�

Δm2
31

Δm2
31 − a

�
sin

�ðΔm2
31 − aÞL
4E

�
;

Ā⊕ ≡
�

Δm2
31

Δm2
31 þ a

�
sin

�ðΔm2
31 þ aÞL
4E

�
;

A⊙ ≡ sin 2θ12

�
Δm2

31

a

�
sin

�
aL
4E

�
¼ Ā⊙: ð2Þ

Here, a ¼ 2
ffiffiffi
2

p
GFNeE, whereGF is the Fermi constant,Ne

is the electron density in matter, and E is the neutrino
energy.

1. The appearance degeneracy and the relationship
to the intrinsic degeneracies

If we solve Eq. (1) for θ23 and θ13 by eliminating δ at a
given neutrino energy E and a baseline L, a curve on the
sin2 θ13 vs sin2 θ23 plane results. An example of such a
curve is drawn in vacuum in the left panel of Fig. 1 by
varying δ for a setup with L ¼ 295 km and a neutrino
energy of 1 GeV. That is, if we set up the problem so that
we obtain solutions for θ23 and θ13 by measurement of

P≡ Pðνμ → νeÞ and P̄≡ Pðν̄μ → ν̄eÞ at a certain value of
energy, we have solutions on any points on the curve; the
degeneracy is continuous. In other words, because of the
freedom of adjusting θ13 and θ23 to reproduce the meas-
urement points (P, P̄), the solutions are in fact not only at
the discrete points but on a continuous line parameterized
by δ, e.g., θ23 expressed as a function of θ13 as in the left
panel of Fig. 1. The correlation between θ13 and θ23, which
has been noticed in simulation studies since early times,
e.g., in [26], seems to reflect at least partly the effect of the
tusk-shaped correlation displayed in the left panel of Fig. 1.
To reveal the features of the appearance degeneracy and

to understand its relationship to the θ23 and θ13 intrinsic
degeneracies, let us do the following exercise. Suppose that
the true values of the parameters are at sin2 θ23 ¼ 0.4,
sin2 θ13 ¼ 0.02, and δ ¼ 40° as indicated by the black star
in the left panel of Fig. 1. If we know θ13 exactly, we have a
clone solution at sin2 θð2Þ23 ¼ 0.5, sin2 θð2Þ13 ¼ 0.02, and
δð2Þ ¼ 140°, as indicated by the blue star. This is nothing
but an example of the θ23 intrinsic degeneracy. Notice that
δð2Þ ¼ π − δ as it should be in vacuum, whereas if we know
θ23 exactly, we have the third solution shown by the red star
in Fig. 1 at sin2 θð3Þ23 ¼ 0.4, sin2 θð3Þ13 ¼ 0.0255, and
δð3Þ ¼ 146°, an example of the θ13 intrinsic degeneracy.
A similar description of how appearance and disappearance
measurements can solve the θ23 disappearance “octant”
degeneracy with figures like the one in the left panel of
Fig. 1 appeared in [6,27].3Our definition of the A functions differs from that of Ref. [13].
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The fact that each degenerate solution is able to
reproduce the measured quantities (P ≈ 0.02 and P̄ ≈
0.025 in this particular case) can be easily seen if we
use the biprobability plot in P − P̄ space [25]. In the right
panel of Fig. 1, the three biprobability ellipses correspond-
ing to the three degenerate solutions (the true point and two
fake clones) are drawn by using the same color as used in
the left panel.4

2. θ23 − θ13 − δ appearance degeneracy is fragile

It has been recognized that the θ13 and the θ23 intrinsic
degeneracies are “fragile” in the sense that the position of
the fake solutions is energy dependent so that spectrum
measurements can be used to rule them out. It is worth
noting that this fragility continues to be true for the θ23 −
θ13 − δ appearance degeneracy. In Fig. 2, the position of the
appearance degeneracy is shown for different values of
L=E. As can be seen, the position of the appearance
degeneracies changes as the value of L=E is varied.
However, there is one common solution for all four values

L=E of the experiment, which is of course the unique true
solution. Thus, spectral information will be particularly
valuable for eliminating the fake solutions provided there is
ample statistics in each of the energy bins. This may be
contrasted to the feature of disappearance “octant” degen-
eracy (see Sec. II C) for which the clone solution is L=E
independent.
To close this subsection, we emphasize that the θ23 −

θ13 − δ appearance degeneracy, for the three parameters
θ23, θ13, and δ, is a continuous degeneracy of the combined
νe and ν̄e appearance probabilities only.

C. Disappearance channels and the θ23 − θ13
disappearance degeneracy

In this short subsection, we summarize the degeneracy
issues for both the νμ and νe disappearance channels. Much
of what is contained here already exists in the literature in a
scattered way (see, e.g., Ref. [28] for a detailed discussion
of the νμ disappearance degeneracy in the case of large θ13);
we include it here so that the reader and the authors are on
the same page and to set the notation that we will use
throughout this paper.
Reactor electron antineutrino disappearance experiments

with baselines appropriate to observer atmospheric
oscillations, such as the Daya Bay [3], RENO [5], and
Double Chooz [4] experiments, have values of L=E∼
0.5 km=MeV. They measure the oscillation probability
Pðν̄e → ν̄eÞ:

Pðν̄e → ν̄eÞ ¼ 1 − sin22θ13sin2
�
Δm2

eeL
4E

�
þOðΔ2

21Þ; ð3Þ

FIG. 1 (color online). Left panel: Set of points in the sin2θ13-sin2θ23 plane which simultaneously give Pðνμ → νeÞ ≈ 0.02 and
Pðν̄μ → ν̄eÞ ≈ 0.025 in vacuum, for Eν ¼ 1 GeV and L ¼ 295 km. Each point in the curve corresponds to a different value of δ. Larger
stars on the curve mark the points corresponding to the θ23 and θ13 intrinsic degeneracy solutions. Small stars indicate values of δ in steps
of 10°, from 40° to 140°. Notice the accumulation of points δ ¼ 80°, 90°, and 100° near the tip of the tusk. Right panel: The biprobability
plot in Pðνμ → νeÞ vs Pðν̄μ → ν̄eÞ space. The points with large stars on the curve in the left panel correspond to the ellipses with the same
color in the right panel. The dotted curve is the smallest ellipse that can be drawn through these points.

4The reader may wonder about the meaning of the dotted
ellipse in the right panel of Fig. 1. It is the special case with the
smallest size of the ellipse. There is a unique way to draw the
minimum size ellipse passing through the measurement point
(P, P̄). Namely, it is to place the ellipse so that its edge just
touches the point (P, P̄) as marked by the cross in the right panel
of Fig. 1. Since the upper-left edge of the ellipse always
corresponds to δ ¼ 90°, the solution must correspond to this
value of δ. Since this ellipse is unique by definition, there is no
degeneracy in this case. Therefore, the point δ ¼ 90° must be at
the tip of the tusk, as shown by the red star in the left panel of
Fig. 1.
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where Δm2
ee is the electron neutrino weighted average

of Δm2
31 and Δm2

32 [29]. In principle, there is an octant
degeneracy here for θ13, since the measurement of sin2 2θ13
does not allow one to distinguish θ13 from π=2 − θ13.
However, the Super-Kamiokande (Super-K) atmospheric
neutrino results [30] (jUμ3j2 ¼ cos2θ13sin2θ23≈1=2) imply
that θ13 is relatively small (and therefore in the first
octant). This results in an unambiguous, precise measure-
ment of θ13:

sin2θ13 ≈ 0.023: ð4Þ

For the muon neutrino disappearance experiments at
the atmospheric baseline divided by neutrino energy,
L=E ∼ 500 km=GeV, such as K2K [31], MINOS [32],
T2K [33], and NOνA [34], the muon neutrino survival
probability is given by

Pðνμ → νμÞ ¼ 1 − sin22θμμsin2
�
Δm2

μμL

4E

�
þOðΔ2

21Þ; ð5Þ

where Δm2
μμ is the muon neutrino weighted average of

Δm2
31 and Δm2

32 [29], and

sin22θμμ ≡ 4jUμ3j2ð1 − jUμ3j2Þ
¼ 4cos2θ13sin2θ23ð1 − cos2θ13sin2θ23Þ: ð6Þ

Matter effects are very small in this channel (except maybe
for some neutrino factory setups), and are ignored here.
For relatively small values of θ13, the fate of the

determination of sin2 θ23 depends very much on how close
θ23 is to the maximal value. In Fig. 3, we have plotted the χ2

of sin2 2θμμ as a function of sin2 θ23 assuming an uncertainty
of 1.4% for the labeled various central values for sin2 2θμμ.
Using this uncertainty, the two regions start to merge when
sin22θμμ > 0.96 and the determination of sin2 θ23 from the
νμ disappearance measurements is significantly degraded. It
should be noted that the merged region displayed in the two
rightmost panels in Fig. 3 is very similar to that can be seen in
the global fits, Refs. [35–37]. (The critical value which
separates the two regions, of course, will depend on the
actual accuracy of the measurement.)
A measurement of sin2 2θμμ gives two distinct values of

sin2 θ23 given by [28]

sin2θð1Þ23 ¼ sin2θμμ=cos2θ13 ≈ sin2θμμð1þ sin2θ13Þ;
sin2θð2Þ23 ¼ cos2θμμ=cos2θ13 ≈ cos2θμμð1þ sin2θ13Þ; ð7Þ

using the convention that θμμ ≤ π
4
, i.e., sin2 θμμ ≤ 1

2
. Note

that θð2Þ23 is always in the second octant, and, for nearly all
values of θμμ, θ

ð1Þ
23 is in the first octant. However, if

sin2θμμ >
1

2
cos2θ13;

then θð1Þ23 is also in the second octant. This new feature of
the θ23 “octant” degeneracy occurs only if θ23 is very close
to maximal and for the observed nonzero value of θ13.
For sin22θ23 ≃ sin22θμμ ≳ 0.96, the two allowed regions

of sin2 θ23 merge to a unique one which is extended to both
the first and the second octants of θ23. Exactly where this
occurs depends on the systematic errors used in the
disappearance measurement. An example is shown in the
right panel of Fig. 3. In this merged region, information on
the value of sin2 θ23 from the appearance channels will be
particularly useful.
What is currently known about sin2 2θμμ? The recent νμ

disappearance measurement by T2K reported sin2 2θμμ ≳
0.97 at 90% C.L. [1 degree of freedom (DOF)] [33,38].
Thus, it appears that nature has chosen to live in this
merged region, on which we focus in the following
discussion.
To close this subsection, we emphasize that this θ23 −

θ13 disappearance degeneracy (or “octant” degeneracy), for

FIG. 2 (color online). The appearance measurement degeneracy
for four different neutrino energies, from left to right, 0.50, ∼0.6,
0.80, and 1.00 GeV using a baseline of 295 km. The true input
value (black cross) corresponds to sin2 θ23 ¼ 0.45, sin2 θ13 ¼
0.020, and δ ¼ 30°. The black curve for E ∼ 0.6ð0.58Þ GeV is
special, because it corresponds to the VOM for this baseline,
Δ31 ¼ π=2. Therefore, the biprobability ellipses are squashed to a
line, and the degeneracy folds over upon itself. This figure clearly
shows that this degeneracy is fragile in the sense of being
dependent on L=E. The vertical blue line is given by
sin2 θ13 ¼ 0.020, and the, almost horizontal, red lines show
the solutions corresponding to sin2 2θμμ ¼ 0.986; see the next
subsection. Note that the appearance degeneracy line for an
energy of 1.0 GeV passes through both intersection points of the
fixed sin2 θ13 and fixed sin2 2θμμ constraints.
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the two parameters θ23 and θ13, is a continuous degeneracy
of the νμ disappearance probability only.

D. Features of the general θ23 − θ13 − δ
continuous degeneracy

In the merged region sin2 2θμμ ≳ 0.96, we face two
kinds of continuous degeneracies: the θ23 − θ13 − δ
appearance degeneracy and the θ23 − θ13 disappearance
degeneracy. In this subsection, we discuss some of the
interesting features of these degeneracies and their
intersection.5

In Fig. 4, the allowed regions in the sin2 θ23 − sin2 θ13
plane are shown for 2σ C.L. (2 DOF). The vertical blue
band comes from the ν̄e disappearance measurement, the
almost horizontal red band corresponds to the merged first
and second octant solutions for the νμ disappearance
measurements, and the dotted black band is the νμ → νe
and ν̄μ → ν̄e appearance measurements. In all cases, the
uncertainties on the measurement are assumed to be of
1.4% and are implemented as in Ref. [13]. This figure
clearly shows the continuous degeneracy in the sin2 θ23 vs
sin2 θ13 plane associated with the appearance and disap-
pearance probabilities, as well as the overlapping regions

FIG. 3 (color online). Left panel: Contours for the χ2 distribution in the sin22θμμ-sin2θ23 plane, where χ2≡
ð4 cos2 θ13 sin2 θ23ð1 − cos2 θ13 sin2 θ23Þ − sin2 2θμμÞ2=ðσμμ sin2 2θμμÞ2, sin2 θ13 ¼ 0.023, and σμμ ¼ 1.4%. Right panel: Contours
for the same χ2 in the sin2 θ13 and sin2 θ23 plane, for different values of sin2 2θμμ as indicated in each subpanel. With the assumed
uncertainty, there are two distinct allowed bands for sin2 θ23 for values of sin2 2θμμ < 0.96, whereas the two bands start to merge for
sin2 2θμμ > 0.96. Note the small upward shift with respect to the line sin2 θ23 ¼ 0.5 caused by the nonzero value of sin2 θ13. In both
panels, the different lines correspond to different confidence levels as indicated in the legend. Note that the left panel corresponds to 1
DOF, while the right panel is obtained for 2 DOF.

FIG. 4 (color online). Allowed confidence regions in the
sin2θ13-sin2θ23 plane at the 2σ C.L. (2 DOF), using different
oscillation channels, for an experiment with a baseline of
295 km and a (monochromatic) neutrino energy of 0.8 GeV
(i.e., Δ31 ∼ 3π=8). The allowed region for the appearance νμ →
νe and ν̄μ → ν̄e measurements is given by the dotted black
bands. The vertical blue and (almost) horizontal red bands
indicate the regions allowed by the νe and νμ disappearance
measurements constraints on sin2 2θ13 and sin2 2θμμ. Finally, the
solid black ellipses are the overlap regions for these three types of
measurements.

5We note that the previous discussions of the relationship
between the appearance and disappearance degeneracies, for
example, in [6,27], did not address the continuous nature of the
disappearance degeneracy.
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between them. One of these overlapping regions is the true
solution, while the other region is fake and will move as we
vary the neutrino energy.6

The assumed true input values for the oscillation
parameters in this case are

sin2θ23¼ 0.45; sin2θ13¼ 0.020; and δ¼ 30°: ð8Þ

This is represented in this figure by the black solid
lines with the red cross in the center. The other region
which also satisfies all the measurements is located at a
larger value of sin2 θ23. Its exact position will depend on the
value of L=E for the experiment, and it will be located at a
value of δð2Þ ¼ π − δ. This second solution will move up
and down within the vertical blue band between the two
sets of horizontal red lines depending on the neutrino
energy, as it was shown in Fig. 2. Thus, spectral informa-
tion would be very powerful in removing this degeneracy,
provided the statistics is sufficient in several well-defined
energy bins.

III. EXPERIMENTAL SETUPS

Four experimental setups are considered in this work.
We believe these are representative of four different types
of neutrino oscillation experiments, according to their
values of L=E. As it stands, the nature of the four settings
to be examined is not intended for a performance com-
parison between the different setups but to illuminate
their characteristic features based on different physical
principles.
(1) Narrow band beams operating at the first VOM,

Δ31 ∼ π=2.—The beam is aimed to the detector at an
off-axis location, so that the flux is very narrow in
energy, centered around the first VOM. This is the
case of T2K [39] and NOνA [34], for instance. In
this work, we will consider an upgrade of T2K,
which is usually referred to as T2HK [14]. It will use
the same beam line as T2K uses, aiming instead at a
560 kt fiducial volume water Čerenkov detector
Hyper-Kamiokande (Hyper-K) to be placed at the
same distance (295 km) and off-axis angle (2.5°) as
Super-K.

(2) Wideband beams operating around the first VOM,
i.e., Δ31 ∼ ð2� 1Þπ=4.—These experiments are per-
formed on axis. Therefore, the beam flux is much

wider than in the previous case, and as a conse-
quence they observe not only the first VOM but also
some regions above and below it. The main advan-
tage of this type of experiment is that the oscillation
pattern is much better reconstructed and the statistics
is much larger since the detector is placed on axis.
Examples of this type of experiment are LBNE
[15,40,41] and LBNO [42]. In this work, we will
consider the LBNE experiment, which consists of a
1.2 MW beam and a 34 kt liquid argon (LAr)
detector placed underground, at a baseline of
1300 km from the source.

(3) Neutrino beams operating below VOM, i.e.,
Δ31 < π=2.—The NF setups traditionally consid-
ered in the literature would operate in this
regime; see, for instance, Ref. [43]. More recently,
lower energy versions have also been proposed;
see, for instance, [16,44,45], which operate in a
regime much closer to the first VOM. In this work,
we will consider a NF setup operating below
VOM, such as the IDS-NF setup [17], with a
baseline of 2000 km and a parent muon neutrino
energy of Eμ ¼ 10 GeV [16]. For this setup, we
consider a 100 kt magnetized iron neutrino detec-
tor (MIND).

(4) Neutrino beams operating at the second VOM, i.e.,
Δ31 ¼ 3π=2.—This is the case of the recently
proposed ESSνSB facility in Europe [18,19]. At
the second VOM, the size of the δ-dependent
interference term between the atmospheric and the
solar terms is a factor of ∼3 larger than that at the
first VOM, which would lead to higher sensitivity to
δ. The favorable feature is utilized in this and in the
earlier proposals, e.g., in [46–49]. Here, we consider
one of the setups within the ESSνSB proposal,
which consists of a 500 kt fiducial mass water
Čerenkov detector placed at 540 km from the source.
As for the beam, we will consider a 5 MW beam
produced by using 2.5 GeV protons.

Table I summarizes the main features of the setups
considered in this work. The different columns indicate the
baseline, neutrino flux peak, beam power per year (or
number of useful muon decays, in the case of the IDS-NF),
detector size, and data-taking period for neutrinos and
antineutrinos. Technical details used to simulate each
setup, as well as the number of events for each oscillation
channel, can be found in Appendix A, together with a
brief explanation of the χ2 implementation, the inclusion of
systematic errors in our analysis, the values of the oscil-
lation parameters, and the marginalization procedure.

IV. APPEARANCE AND DISAPPEARANCE
MEASUREMENTS OF θ23

Given the understanding of mutual roles played by the νe
appearance and the νμ disappearance channels in resolving

6These two solutions, which stem from the appearance
degeneracy, could have been misunderstood as a consequence
of the disappearance “octant” degeneracy, if the appearance and
disappearance channels are analyzed simultaneously to obtain the
allowed regions. This can be understood from Fig. 2 as well. It
can be seen in Fig. 2 that, at sin2 θ13 ¼ 0.02, the appearance
degeneracy curve with E ¼ 1.0 GeV has two allowed solutions
for sin2 θ23: the true one (indicated by a black cross), plus an
appearance clone solution which overlaps with the disappearance
(octant) clone. However, such an overlap occurs only for isolated
values of the neutrino energy.
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the general θ23 − θ13 − δ degeneracy, we now discuss more
closely their relative importance in accurate measurement
of θ23 and how it depends on the systematic errors. The
answer to this question depends on the particular setup
under consideration. Therefore, we focus on the two typical
cases T2HK/LBNE and IDS-NF in Secs. IVA and IV B,
respectively. Wewill also comment briefly on the results for
the ESSνSB experiment. In Sec. IV C, we discuss the
relationship between errors of sin2 θ23 and sin δ using the
appearance measurement only.
We note that the issue of the mutual role by the

appearance and disappearance channels for θ23 determi-
nation has been addressed, e.g., in [50–52]. More generally,
the sensitivity to θ23 has been discussed, though from a
somewhat different point of view, by many authors. The
analyses from early to recent times include, for example,
Refs. [12,24,27,53–60].
Finally, some remarks should be given at this point about

global fits to neutrino oscillation data. Global fits may also
be able to determine the values of θ23 and δ; see Refs. [35–
37] for recent results and detailed discussions on the topic.
In principle, this could be achievable from the combination
of reactors and neutrino beam data alone. However, such a
combination is not precise enough yet, and both octants for
θ23 are currently allowed. Atmospheric neutrino data may
be able to lift this degeneracy, although they are not precise
enough yet to give a significant determination of the octant
for θ23. Finally, the combination of reactor and neutrino
beam experimental data may be able to provide a signifi-
cant hint for the value of δ. From the combination of
reactors and T2K neutrino data, global fits already get a
hint for δ ∼ 1.5π (although with a low statistical signifi-
cance yet). It should be taken into account, though, that a
determination of the value of δ from global fits using the
current generation of experiments may be possible only for
particular combinations of θ23, the neutrino mass ordering,
and the value of δ itself. Therefore, a deep understanding of

the possible ways to lift these degeneracies through the
combination of appearance and disappearance data is
necessary in order to optimize future neutrino facilities
towards a simultaneous determination of θ23 and δ. This is
the main purpose of the present work.

A. Relative importance of appearance and
disappearance channels for facilities sitting

at the first VOM: T2HK and LBNE

In this subsection, we discuss the precision that can be
achieved for a measurement of sin2 θ23 with the disappear-
ance and/or the appearance channels for facilities sitting at
the first VOM and discuss their dependence with the
systematic errors. The results of the analyses are presented
in Figs. 5 and 6 for the T2HK and LBNE setups,
respectively. In both figures, we show the precision
attainable for a measurement of sin2 θ23 as a function of
the true value of sin2 θ23 itself, where the left and right
panels show the results under different assumptions for the
systematic errors. In the left panel, we use our default
values (∼5%–10%), while more conservative values are
assumed for the right panel (∼10%–15%). See Appendix A
for a more precise specification of the systematic errors and
the way these are implemented in our analysis.7

TABLE I. Main features of the experimental setups simulated in this work. The different columns indicate the distance to the detector,
the detector technology, its mass, the beam power (or the number of useful muon decays per year in the case of the IDS-NF), the energy
at which the neutrino flux peaks, and the running time (in units of 107 s) for ν and ν̄ modes. Here, LAr stands for liquid argon, WC for
water Čerenkov, and MIND for magnetized iron neutrino detector. Note also that in the case of the IDS-NF the energies for the flux peak
for both νe and ν̄μ (in parenthesis) are separately indicated, since they are different. For the number of events in each oscillation channel,
see Table II.

L (km) Detector (kt) Beam power Ep (GeV) Flux peak ðtν; tν̄Þa×107 s
LBNE 1300 LAr - 34 1.2 MW 120 3 GeV (8.25, 8.25)
T2HK 295 WC - 560 0.75 MW 30 0.6 GeV (3, 7)
ESSνSB 540 WC - 500 5 MW 2.5 0.3 GeV (3.4, 13.6)
IDS-NF 2000 MIND - 100 1021 μ�=107 s NA 6 (9) GeV (10, 10)b

aNote that each experiment assumes a different number of operating seconds per calendar year. LBNE and ESSνSB assume ∼1.7 ×
107 operating s=y, while T2HK and IDS-NF assume 1.0 × 107 operating s=y. This implies that the running time for all the experiments
considered in this work is expected to be 10 calendar years.

bWhile for conventional beams the running time is split between neutrino (πþ-focusing) and antineutrino (π−-focusing) modes, the
IDS-NF setup assumes that both μþ and μ− would run at the same time in the decay ring. The total number of muon decays per year
would be equally split between the two polarities in this case.

7The size of the expected systematic errors for future neutrino
oscillation experiments can be a controversial subject and is
currently under study. For T2HK we have used the systematic
uncertainties based on the HK letter of intent (LoI) [14], and for
LBNE they fall approximately within the same ballpark as those
considered by the Collaboration (see, e.g., Ref. [15]). We note
that the systematic errors for νe appearance measurement
currently examined by the Hyper-K working group [61] are
more optimistic than our default values. In this case, the
appearance sensitivity (solid line) in the left panel in Fig. 5
would supersede the disappearance one around sin2 θ23 ∼ 0.49
and sin2 θ23 ∼ 0.54, recovering region II.
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As can be seen from the figures, not only the absolute
sensitivity to sin2 θ23 but also the relative importance of νe
appearance and νμ disappearance measurement on the
determination of θ23 depend very much on the size of
the systematic errors. It is notable that not only this feature
but also the absolute sensitivities to sin2 θ23 (for our default
systematic errors) are very similar between the T2HK and
LBNE setups, despite their very different beam profiles and
detector technologies. Yet, one observes that the LBNE
setup would be more robust against the increase of
systematic errors, probably because of its wideband beam.8

The very different dependence of the results is also quite
noticeable for the different oscillation channels with the
true value of θ23. The results obtained through the appear-
ance channels present very little dependence with this
parameter for both LBNE and T2HK. On the other hand,
the disappearance results present a very particular shape,
with two very sharp peaks. This is due to the disappearance
degeneracy (see Sec. II): For values of θ23 close to maximal
mixing the two solutions merge, and the size of the
confidence region is consequently worsened; the “valley”
in the middle of the two peaks corresponds to the point
where the two solutions lie exactly one on top of the other,
and therefore the precision is slightly improved. We can
identify, generically, the following three regions with
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FIG. 5 (color online). Expected precision for sin2 θ23 at 1σ (1 DOF) as a function of the true value of sin2 θ23 for the T2HK setup. The
left and the right panels correspond to our reference (∼5%–10%) and conservative (∼10%–15%) sets of systematic errors, respectively.
See Appendix A for more precise specification of the reference errors. The true value of δ is taken as 80°.
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FIG. 6 (color online). The same as in Fig. 5, but for the LBNE setup.

8Similar conclusions were obtained in Ref. [62] for different
observables.
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different characteristics. We note, however, that the exact
locations of the boundaries between regions depend on the
systematic and the statistical errors.
Region I.—In the two regions where sin2 θ23 ≲ 0.46 or
sin2 θ23 ≳ 0.55, the νμ disappearance measurement has the
leading power to determine sin2 θ23 very accurately, apart
from the disappearance “octant” degeneracy.
Region II.—In a limited region inside 0.46≲ sin2 θ23≲
0.55, excluding a small region around sin2 θ23 ¼ 0.5, the
νe appearance measurement can constrain sin2 θ23 better
than the disappearance one. For particular combinations
of the systematic errors in the appearance and
disappearance channels, this region may be absent, though
(see, for instance, the left panel in Fig. 5). The precise
boundaries of this region with regions I and III (see below)
depend very much on the size of the systematic errors, as one
can see from Fig. 5.
Region III.—For values of sin2 θ23 very close to
maximal, a third region appears, in which the disappear-
ance measurement again supersedes the appearance
measurement. As explained above, this is due to over-
lapping of the two clones when they are very close to
maximal mixing.
Overall, one can see from Figs. 5 and 6 that νe appearance
and νμ disappearance measurements cooperate to
determine sin2 θ23 very accurately, with a 1σ uncertainty
0.02–0.03, or ∼5% level, which is comparable to the
possible ultimate accuracy for sin2 θ13 expected from
reactor experiments. If θ23 is in region I, the error may
be even smaller. We note, however, that regions II and III
are the ones to which the experimental results seem to be
converging [33].

B. Appearance vs disappearance channels in
neutrino factory setting

The relative importance of appearance and disappear-
ance channels in the determination of θ23 is quite different
for the IDS-NF setup. As shown in Fig. 7, region III does
not exist in this case, while region II is quite wide:
0.44≲ sin2 θ23 ≲ 0.59. Since the setting we consider for
the neutrino factory is off VOM, the disappearance meas-
urement is not as powerful as for facilities sitting at the first
VOM like T2HK or LBNE. Also, note that the general
features shown in Fig. 7 are rather robust against variation
of the systematic errors in the disappearance channel within
a reasonable range, since for the NF this channel is mainly
limited by being off peak.
Finally, we have also examined the ESSνSB setting

with a baseline of 540 km. Unfortunately, neither the
disappearance nor the appearance measurement have suf-
ficient statistics to determine sin2 θ23 with a comparable
accuracy to any of the other settings discussed above. For
example, the appearance-only measurement can reach only
up to Δðsin2 θ23Þ ∼ 0.07 at sin2 θ23 ¼ 0.5 for various input
values of δ.

C. Accuracy of measurements: sin2 θ23 vs sin δ

Starting from simple analytical considerations, a simple
expression relating the precision achievable for sin2 θ23 and
sin δ using only the appearance channel at the first VOM
was derived in Ref. [13]:

Δðsin2θ23Þ≃ 1

6
Δðsin δÞ: ð9Þ

We have confirmed that this relation holds reasonably
well when both observables are computed within the
same experimental setup sitting near the VOM. The
results are shown in Fig. 8 for the case of the T2HK
setup. In this figure, the uncertainty on sin δ is compared
to the uncertainty on sin2 θ23 multiplied by a factor
of 6. Results are shown as a function of the value
of δ itself, for sin2 θ23 ¼ 0.50. As can be seen from
the figure, the agreement between the two curves is quite
good, and they show a similar dependence with the value
of δ itself, with the sole exception of the regions close
to �π=2.
The reason for the disagreement in these two regions can

be partially explained by taking into account that the
function sin δ in these regions has an upper limit, while
this is not the case for sin2 θ23 in the region under
consideration (i.e., around maximal mixing). Therefore,
one should expect the confidence interval in this region to
be reduced by approximately a factor of 2 for sin δ. It is also
related to the Jacobian involved in the measurement of
sin δ, as partially discussed in Ref. [63]. The precision on
sin δ can be computed by doing a Taylor expansion by
ΔðδÞ, the uncertainty on δ. To first order in the expansion, it
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FIG. 7 (color online). The same as the left panel in Fig. 5, but
for the IDS-NF setup. All lines correspond to the assumed
uncertainty for this parameter in our default scenario (30%),
while the blue band shows the impact on the result for the
disappearance channels if the systematic error on the ντ cross
section is varied between 20% and 40%.
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gives Δðsin δÞ ¼ cos δΔðδÞ, which implies that Δðsin δÞ
should vanish at δ ¼ � π

2
. When higher order terms are

included in the Taylor expansion, however, a nonvanishing
result is obtained, in agreement with the minima for the
dashed curve in Fig. 8.
We have also examined whether the relation holds for

different values of θ23. The qualitative features of the

results are quite similar, but the difference between the solid
blue and the dashed red curves in Fig. 8 becomes larger: It
increases by approximately a factor of ∼3 at δ ¼ 0 when
θ23 is varied from sin2 θ23 ¼ 0.40 to sin2 θ23 ¼ 0.60, while
they are more similar near the dips (δ ∼�π=2).

V. DETERMINATION OF δ

Let us now explore what the impact is due to the
combination of different channels on the determination
of δ. Figure 9 shows the expected precision for a meas-
urement of δ for the T2HK (LBNE) experiment in the left
(right) panel, as a function of the value of δ itself. Results
are shown at 1σ C.L., for 1 DOF. As one can see, the
addition of the disappearance channels is helping to get a
better determination of δ, especially in the regions around
δ ¼ �π=2, as was already pointed out in Refs. [51,63].
This effect comes mainly through a better determination of
the squared mass splitting in the νμ disappearance channels,
which can be understood from the fact that δ and Δm2

31

appear together in the appearance oscillation probability;
see Eq. (1).
The left panel in Fig. 10 shows similar results for the

IDS-NF setup. The improvement on the determination of δ
after the addition of disappearance channel data is remark-
able for this setup. In the right panel in the same figure, we
show the confidence regions at 1σ (2 DOF) projected in the
sin2 θ23 − δ plane. Results are shown for the appearance
channels alone (red region, solid line), disappearance
channels alone (blue region, dotted line), and for the
combination of appearance and disappearance channels
(green region, dashed line). From this panel, it can be
clearly seen how the measurement of θ23 is coming mainly
from the appearance channel for this setup, while the
accurate determination of δ stems from the combination
between appearance and disappearance data.
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FIG. 8 (color online). Comparison between the precision
achievable for sin2 θ23 and the precision achievable for sin δ
for the T2HK setup. The solid line shows the error on sin2 θ23
multiplied by a factor of 6, while the dashed lines show the error
on sin δ as obtained directly from a simulation. The agreement
between the two curves is noticeable in most of the δ parameter
space, as predicted by Eq. (9), which was derived from simple
analytical considerations in Ref. [13] for facilities sitting at the
first VOM. It should be noted that in this figure the full size of the
confidence interval is plotted in both cases, unlike for the rest of
the figures in this paper, where we show half of the size of the full
confidence interval.
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FIG. 9 (color online). Precision on δ (at 1σ, for 1 DOF) as a function of the value of δ itself, for T2HK in the left panel and for LBNE in
the right panel. Solid lines show the results using the appearance channels only, while dashed lines show the results from the
combination of appearance and disappearance data.
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The last case under study in this section is the case of
ESSνSB, for which the situation is very different from all
the previous cases: The much smaller number of events at
this facility would not allow one to determine Δm2

31 very
precisely. Therefore, it is expected a priori that for facilities
operating at the second VOM the addition of disappearance
data would be of little help in improving the accuracy of a

measurement of δ. This is confirmed by the results shown
in the left panel of Fig. 11, the precision for δ obtained from
appearance data alone (solid lines) and in combination with
disappearance data (dashed lines). It is remarkable that, in
spite of a factor of ∼50 smaller number of appearance
events in the ESSνSB than in IDS-NF (see Table II) setups,
the sensitivity to δ using only the appearance channel data
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FIG. 10 (color online). Left panel: Expected precision on δ (at 1σ, for 1 DOF) as a function of the value of δ itself, for the IDS-NF
setup. Solid and dashed lines indicate the results obtained from the appearance results alone and from the combination between
appearance and disappearance data, respectively. Right panel: Confidence regions in the sin2 θ23 − δ plane (at 1σ, for 2 DOF), for a
particular set of true values and for different combinations of oscillation channels, as indicated in the legend. Results in both panels
correspond to the IDS-NF setup as defined in Sec. III. It should be pointed out that the “hole” in the confidence region obtained for the
disappearance channels vanishes just above the 1σ C.L.
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FIG. 11 (color online). Left panel: Expected precision on δ (at 1σ, for 1 DOF) as a function of the value of δ itself for the ESSνSB
setup. Solid and dashed lines indicate the results obtained from the appearance results alone and from the combination between
appearance and disappearance data, respectively. Right panel: Confidence regions in the sin2 θ23 − δ plane (at 1σ, for 2 DOF), for a
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include data from both appearance and disappearance channels.
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is comparable with each other. It is the power of placing the
detector at the second VOM where the dependence of the
oscillation probability with δ is larger by a factor of 3 than
that at the first VOM. It leads to an extremely good CP-
violation sensitivity as well as a very accurate determi-
nation of the value of δ and a reduced dependence on
systematic errors; see Refs. [19,46,48,49].
Finally, in the right panel of Fig. 11, we show the

confidence regions in the sin2 θ23 − δ plane at 1σ (2 DOF)
that would be obtained from the combination of appearance
and disappearance data for the four facilities under study.
The true values for sin2 θ23 and δ are indicated by the black
dot. In all cases, our default values have been used for the
systematic uncertainties; see Appendix A. The first thing
that can be noticed from this plot is the very different shape
of the confidence regions for the different oscillation
facilities. The ESSνSB allowed region (dashed blue line)
is rather wide in the sin2 θ23 axis, while it gives extremely
good sensitivity to δ. The T2HK (solid yellow line) and
LBNE (dot-dashed red line) regions are narrower along the
sin2 θ23 axis due to the disappearance constraint, but the
measurement of δ would be less accurate. From the shape
of the confidence region, it can also be observed that the
disappearance degeneracy is affecting the determination of
sin2 θ23. Finally, the IDS-NF setup (dotted green line)
enables the most precise measurement of both θ23 and δ
due to a synergetic combination of appearance and dis-
appearance measurements.

VI. SUMMARY AND CONCLUSIONS

Toward the completion of our understanding of the
lepton flavor mixing, the right question to pose now is
how to determine θ23 and the CP-violating phase δ at the
same time and how their measurements are correlated. In
this paper, we have addressed these questions. We did
it in the context of four particular setups for proposed
future facilities: T2HK, LBNE, IDS-NF, and ESSνSB.
Throughout the paper, we paid special attention to the
interplay between the νμ → νe and ν̄μ → ν̄e appearance
channels (or their T-conjugate channels for IDS-NF) and
the νμ and ν̄μ disappearance channels.
In the first part of this paper, we have analyzed structure

of the parameter degeneracy which we would encounter in

attempting a simultaneous measurement of δ and θ23.
Despite the large number of previous works in the literature
devoted to study degeneracies in neutrino oscillations, we
found that the θ23 − θ13 − δ degeneracy has not been
discussed in a general framework, which is mandatory if
θ23 is close to maximal, as indicated by the recent
measurements. We found that the general degeneracy boils
down to the appearance and disappearance degeneracies.
The former is a generalization of the θ13 and θ23 intrinsic
degeneracies, whereas the latter is a generalization of what
is usually called the θ23 octant degeneracy. Moreover, if θ23
is near maximal, the θ23 disappearance degeneracies join
into a single region, aggravating the problem. We have
discussed its characteristic features and illustrated some
properties which are useful for its resolution in Sec. II.
In the second part of this work, we have discussed the

issue of appearance vs disappearance measurement towards
the determination of θ23 and δ and, more importantly, the
interplay between them. Let us start with the measurement
of θ23 by noting some of its generic features.

(i) The precision on θ23 obtained from the νμ disap-
pearance channels alone generally shows a strong
dependence on the size of the systematic errors. This
is because the measurement is systematics domi-
nated due to the high statistics. The error on sin2 θ23
always has a strong dependence on θ23 as well. It
develops a “bowler hat” structure in the region near
the maximal θ23, which stems mainly from the
merging clone effect, as we discussed in Sec. II.
We find that, if θ23 is far from maximal (in region I
as defined in Sec. IV), the disappearance measure-
ment always surpasses the appearance one in accu-
racy of determining sin2 θ23.

(ii) On the other hand, the precision on θ23 obtained
from the νe and ν̄e appearance measurement alone
has a much weaker dependence on θ23 without
suffering from the merging clone issue. The error
is also less dependent on the size of systematic
errors, since these channels are mostly limited by
statistics instead.

We have studied the interplay between the appearance
and disappearance oscillation channels at four particular
setups: T2HK, LBNE, IDS-NF, and ESSνSB. Their main
features are summarized in Sec. III, while a more detailed

TABLE II. Number of events for the four setups considered in this work. The number of events for the signal or background
component are given separately for each oscillation channel within a given setup, and detector efficiencies have already been accounted
for. These event rates correspond to the following set of oscillation parameters: θ12 ¼ 32°, θ13 ¼ 9°, θ23 ¼ 45°,
Δm2

21 ¼ 7.6 × 10−5 eV2, and Δm2
31 ¼ 2.45 × 10−3 eV2 (normal ordering of neutrino masses).

Energy range ν app. ν̄ app. ν dis. ν̄ dis.

LBNE 0.5–8.0 GeV 1095=314 324=208 7340=82 3873=27
T2HK 0.4–1.2 GeV 3984=1705 2161=1928 26237=716 19232=735
ESSνSB 0.1–1.0 GeV 270=85 244=82 6198=113 4128=79
IDS-NF 0.1–9.0 GeV 20241=476 5257=269 171133=7370 106077=3279
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description of the experimental setups can be found in
Appendix A. The expected numbers of events in each
channel for all the facilities are summarized in Table II. We
observe the following.

(i) T2HK/LBNE.—Both of these facilities have values
of L=E very close to the first VOM. For both setups,
the relative importance between the appearance and
the disappearance channels for a precise determi-
nation of θ23 depends on the size of systematic
errors. With reasonable estimates for the systematic
uncertainties, we find that (i) if sin2 θ23 ≃ 0.5, the
disappearance measurement gives slightly better
sensitivity to sin2 θ23 than appearance; (ii) for values
of θ23 close to sin2 θ23 ≃ 0.49 and 0.55, typically,
the appearance measurement is more powerful than
disappearance in most cases. Despite their very
different experimental setups, we find that both
the expected accuracies as well as the features
due to the interplay between the appearance and
disappearance channels are very similar.

(ii) IDS-NF.—This setup would operate at an energy
well above the first VOM. For values of sin2 θ23 such
that 0.45≲ sin2 θ23 ≲ 0.56, the accuracy in the
determination of θ23 comes mainly from the appear-
ance channels alone, while outside the mentioned
interval the measurement is mainly driven by the
disappearance channels. In particular, the precision
for sin2 θ23 in the region very close to maximal
mixing is worse than the one obtained through the
appearance measurement by a factor of up to 3–4. It
has to do with the fact that the value of L=E for the
IDS-NF setup considered here turns out to be rather
far from the oscillation maximum. Also, the dis-
appearance measurement is largely affected by the
systematic uncertainties on the τ backgrounds. We
have found that the above result holds as long as the
systematic errors associated to the ντ charged-
current cross section remain above the 20%.

(iii) ESSνSB.—At the second VOM, the situation is
quite different. In this case, the value of L=E is tuned
to maximize the impact of the interference term in
the oscillation probability in order to obtain a better
sensitivity to CP violation. The price to pay is that
the sensitivity to θ23 is reduced, since it would
mainly come from the precision measurement of the
leading order term in the probability (for which a
large number of events is needed).

We have studied the interplay of the different oscillation
channels also on the determination of the CP phase δ.
Adding the disappearance channel generally improves the
sensitivity to δ, with the sole exception of ESSνSB. The
improvement is always largest near δ ∼�π=2. All the
setups benefit from the addition of disappearance data
mainly by a better determination of Δm2

31, which allows
cleaner discrimination of the effect of δ in the appearance

channels. The size of the effect depends on various factors
such as the number of events in the disappearance channels
and the way the systematic errors are implemented, and
hence it varies with the settings.
For both the T2HK and LBNE setups considered in this

work, we find that this effect is present to a similar degree,
but more prominently for LBNE in particular outside the
region δ ∼�π=2. In the case of the IDS-NF setup, a great
improvement is observed for the precision on δ as well,
especially at around δ ¼ �π=2. It is evident from the right
panel of Fig. 10 that the sensitivity to δ by the disappear-
ance data itself is not impressive at all. Therefore, such a
significant effect on sensitivity to δ must come from the
synergy effect between the disappearance and appearance
channels in the IDS-NF setup.
In the case of ESSνSB, the situation is completely

different. It is the unique case that essentially no improve-
ment on the sensitivity to δ is achieved by adding the
disappearance channel data. Yet, the precision in regions
around δ ∼ 0 and �π is remarkable, a high sensitivity that
can be competed with only by IDS-NF. On the other hand,
the accuracy of δ determination at around δ ∼�π=2
would be comparable to those of T2HK and LBNE. See
Figs. 9–11. It is worth mentioning that the comparable
sensitivities to δ expected for the ESSνSB and IDS-NF
setups using only appearance data are achieved with a
much smaller number of events (by a factor of ∼50) at the
former, indicating the power of the detector at the
second VOM.
In conclusion, we hope that the discussions given in this

paper are useful to understand the physics behind the future
precision measurement of θ23 and δ and that we will see
some of the facilities described here realized in the near
future.
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APPENDIX A: SIMULATION DETAILS

The LBNE setup has been simulated following the
Conceptual Design Report (CDR) from October 2012
[41], rescaling the beam power and detector size to the
values listed in Table I. The neutrino fluxes correspond to
120 GeV protons. Data taking is set to a total of 10 years,
equally split between ν and ν̄ modes. Migration matrices
are used to account for the misreconstruction of neutral
current events as charged current events at lower energies.
The signal and the rest of the backgrounds are smeared in
energy according to a Gaussian with σðEÞ ¼ 0.15 ×

ffiffiffiffi
E

p
for electron neutrinos and σðEÞ ¼ 0.20 ×

ffiffiffiffi
E

p
for muon

neutrinos.
The T2HK setup has been simulated as in Ref. [62]. For

this setup, both signal and backgrounds are reconstructed
by using the migration matrices from Ref. [64]. The beam
power is set to 750 kW, and data taking is 10 years,
divided between ν and ν̄ modes as indicated in Table I.
Signal and background efficiencies have been adjusted to
reproduce the number of events in the HK LoI [14].9 We
have checked that our results for T2HK are roughly
consistent with those in Refs. [14,61]. We have also
checked that, for a reduced statistics, the results are
roughly consistent with those reported by the T2K
Collaboration for the determination of sin2 θ23; see
Ref. [33].
Regarding the ESSνSB, several possible configurations

are currently under consideration. Here, we consider a
setup in which the neutrino flux is produced from 2.5 GeV
protons and with a baseline accurately set to the second
oscillation peak. This setup is simulated as in Refs. [18,19].
The detector response is simulated by using the migration
matrices from Ref. [65], which have been obtained for the
MEMPHYS detector [66].
Finally, the IDS-NF setup considered here has been

optimized for the large θ13 scenario; see Ref. [16].
This setup uses a MIND detector [67] placed at
2000 km from the source; see Table I. The MIND
response is simulated by using migration matrices for
all signal and background contributions [68]. Backgrounds
coming from τ decays [69,70] have also been included in
the analysis.
Table II shows the expected number of events for the

setups described above. The two numbers in each column
indicate the signal or background expected number of
events, for a given setup and a given oscillation channel.
Detector efficiencies have already been accounted for. In all
cases, the same cross sections as in Ref. [62] have
been used.

APPENDIX B: THE χ 2 AND IMPLEMENTATION
OF SYSTEMATICS UNCERTAINTIES

All results in Secs. IVand V have been obtained by using
GLOBES [71,72]. The implementation of systematics has
been done by using a modified version of GLOBES, as in
Ref. [62]. The χ2 and systematic uncertainties are imple-
mented as follows. For each energy bin i, a contribution to
the χ2 is computed as

χ2i ðθ; ξÞ ¼ 2

�
Tiðθ; ξÞ −Oi þOi ln

Oi

Tiðθ; ξÞÞ
�
; ðB1Þ

where Oi stands for the observed (true) event rates, and

Tiðθ; ξÞ ¼ ½1þ ξϕ;i�sν;iðθÞ þ ½1þ ξbg;ν;i�bν;i
þ ½1þ ξϕ;i þ ξν̄=ν�sν̄;iðθÞ þ ½1þ ξbg;ν̄;i�bν̄;i ðB2Þ

corresponds to the true (fitted) event rates observed in the
ith energy bin for a given oscillation channel. Here, θ
indicates the dependence on the test values for the
oscillation parameters. It should be noted that Oi depends
only on the true values assumed for the oscillation
parameters, while Ti depends on the pair of values we
are testing as well as on the nuisance parameters. ξϕ;i stands
for the nuisance parameter associated to a combination of
flux and cross section uncertainties for the signal. We take
this uncertainty to be correlated between neutrinos and
antineutrinos within the same oscillation channel. ξν̄=ν is a
relative normalization uncertainty included only in the
antineutrino channels, which accounts for the difference
between neutrino and antineutrino cross section uncertain-
ties. Finally, ξbg;ν;i and ξbg;ν̄;i correspond to the background
normalization uncertainties in the neutrino and antineutrino
channels. Note that the normalization uncertainty ξν̄=ν is
correlated among all energy bins; however, the rest of the
nuisance parameters are allowed to vary independently for
each bin during marginalization to account for shape
uncertainties.
The final χ2 needs to be minimized over the nuisance

parameters. It reads

χ2ðθÞ ¼ minξ

�X
i

χ2i ðθ; ξÞ þ
�
ξϕ;i
σϕ

�
2

þ
�
ξν̄=ν
σν̄=ν

�
2

þ
�
ξν;bg;i
σν;bg

�
2

þ
�
ξν̄;bg;i
σν̄;bg

�
2
�
; ðB3Þ

where the three last terms are the pull terms (penalty terms)
associated to the nuisance parameters and the σk are the
prior uncertainties assumed for each systematic error ξk.
Unless otherwise stated, for conventional neutrino beams
we set the priors on the systematic uncertainties to the
following values:

9Note that in the HK LoI the beam power is roughly a factor of
2 larger than the one used in this work. Nevertheless, the running
time considered was a factor of 2 smaller, and therefore the total
number of events should be roughly the same.
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σϕ ¼ 5%; σν̄=ν ¼ 10%; σbg ¼ 10%: ðB4Þ

In some cases we will show how the results change when
σϕ is increased to 15% (see Figs. 5 and 6). We have checked
that this is the prior uncertainty which generally has the
larger impact on the results of our analysis for the LBNE
and T2HK setups.
The IDS-NF, on the other hand, is less affected by

systematic errors: Any beam-related uncertainties will be
small, since the flux can be computed analytically.
Moreover, the availability of both electron and muon
neutrino flavors at the near detector would allow one to
determine their cross sections very precisely. We have
chosen to use the same systematics implementation
[Eqs. (B2) and (B3)] for this facility as for conventional
beam experiments in order to ease the comparison
between different facilities. However, in this case we
assume that the near detector will generally do a better
job canceling systematic uncertainties and therefore
use the following priors:

σϕ¼ 3%; σν̄=ν¼ 5%; σbg¼ 10%; στ ¼ 30%: ðB5Þ

Here, στ refers in particular to the prior uncertainty
associated to the ντ interaction cross section (which affects
the backgrounds coming from τ contamination only
[69,70]), while σbg is used for all the other background
contributions. We have checked that the στ prior uncer-
tainty has the largest impact on the results for the IDS-NF
setup used in this work. Its impact on the results for sin2 θ23
is shown in Fig. 7.
Finally, marginalization is also performed over the

oscillation parameters and the matter density. Unless

otherwise stated, the following true values are assumed
for the solar mixing parameters, θ13 and the atmospheric
mass splitting:

θ12 ¼ 33.2°; Δm2
21 ¼ 7.50 × 10−5 eV2;

θ13 ¼ 9.2°; Δm2
31 ¼ 2.4 × 10−3 eV2ðNHÞ;

while the assumed true values of θ23 and δ will be specified
in each case. NH stands for normal hierarchy, i.e.,
m3 > m1. For each of the parameters which are margin-
alized over, a penalty term is added to the χ2 in Eq. (B3) in
the same way as it was done for the systematic uncertain-
ties, and the global minimum is searched for.
Marginalization is always performed over the oscillation

parameters not shown in each plot, by using Gaussian
priors with the following 1σ errors: 3% for the solar
oscillation parameters; 4% for the atmospheric mass split-
ting; 0.005 for sin2 2θ13, and 0.08 for sin2 2θ23. The values
chosen for the solar and atmospheric mass splitting are in
agreement with the current 1σ errors from global fits; see,
for instance, Refs. [35–37]. For sin2 2θ13 we have used the
precision expected at the end of the running of Daya Bay,
assuming it is limited by their systematic error [73]. For
sin2 2θ23, on the other hand, we use a value which lies
roughly in between the current precision achieved at T2K
and MINOS and the T2K systematic uncertainty for this
parameter; see Refs. [32,74]. Unless otherwise stated, δ is
left completely free during marginalization (i.e., no prior is
assumed for this parameter). Finally, the value of the matter
density is set according to the PREM profile [75,76], and a
2% prior uncertainty is assumed for this parameter.
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