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The spectrum of electrons from muons decaying in an atomic bound state is significantly modified by
their interaction with the nucleus. Somewhat unexpectedly, its first measurement, at the Canadian
laboratory TRIUMF, differed from basic theory. We show, using a combination of techniques developed in
atomic, nuclear, and high-energy physics, that radiative corrections eliminate the discrepancy. In addition to
solving that outstanding problem, our more precise predictions are potentially useful for interpreting future
high-statistics muon experiments that aim to search for exotic interactions at 10−16 sensitivity.
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Muons are very special elementary particles. They
exhibit essentially the same electroweak interactions as
electrons; however, their much larger mass (mμ ≃ 207me)
endows them with some important features. Most note-
worthy is the free muon decay rate which stems from its
decay mode μ → eν̄eνμ. The differential decay rate as a
function of the electron energy [1,2] (neglecting m2

e=m2
μ

and Oðα2Þ effects [3]) is given by
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where α ¼ 1=137.035999173ð35Þ [4], GF is the Fermi
constant, and fðxÞ represents rather large, complicated
radiative corrections that can significantly modify the
electron spectrum. The function fðxÞ is explicitly given by
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The first term in the equation above is enhanced by the
large logarithm lnðmμ

me
Þ. These large corrections vanish when

integrated over the electron energy, as expected, due to the
Kinoshita-Lee-Nauenberg (KLN) theorem [5,6].
The experimental lifetime of a μþ stopped in matter,

τμ ¼ 2.1969803ð22Þ × 10−6 s (the most precise lifetime
measurement for any unstable state [7]) determines the
strength of weak interactions quantified by GF ¼
1.1663788ð7Þ × 10−5 GeV−2. Comparing it with the
fine-structure constant and other high-precision electro-
weak observables, led to predictions for the top-quark and
Higgs-scalar masses, before their discovery.
What happens when a μ−, rather than a μþ, is slowed

down in matter? In vacuum the μþ and μ− lifetimes must be
the same [8]; but in matter, their decays can appear quite
different. As the μ− loses energy and starts to come to rest,
it gets bound to nuclei of charge Z due to their attractive
Coulomb potential. The μ− quickly cascades down to the
lowest 1S atomic orbital, where it remains in a quantum
wave function with a momentum distribution for which its
average velocity is hβi≃ Zα. The decreased energy of the
bound muon causes the decay-in-orbit (DIO) rate to slow
down. In addition, the electron produced in the decay feels
the same binding interaction, which increases its wave
function near the decay region, and thus the decay
probability. Interestingly, these two effects approximately
cancel [9,10] due to electromagnetic gauge invariance, and
the difference between the overall decay rates of free and
bound μ− is mainly due to the time dilation resulting from
the bound muon’s motion. (In matter, a μ− can also undergo
capture, μp → νμn, which changes its effective lifetime
[11,12]. We do not discuss that process here.)
While Coulombic interactions with the nucleus do not

significantly modify the overall DIO rate (about a 0.5%
reduction from time dilation), they do make important
changes to the spectrum of decay electrons.
As a result of the muon’s velocity distribution, the

spectrum in Eq. (1) is Doppler shifted and smeared.
These effects render the radiative corrections embodied
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in fðxÞ quite complicated. Although, as mentioned before,
radiative corrections to the electron energy spectrum of a
free muon decay are completely known up to second order
in perturbation theory [2,3], no analysis of radiative
corrections for a bound muon decay has been performed
up to now. Methods traditionally used to calculate the DIO
spectrum can not be simply extended to allow for the
inclusion of radiative corrections.
In addition to the above effects, nuclear-recoil on DIO

leads to a very small high-energy tail in the spectrum,
extending all the way to electron energies Ee ∼mμ, well
above the Ee ∼mμ=2 end-point energy of free muon decay
at rest. Although tiny, the DIO events near Ee ∼mμ are an
important background to searches for coherent μ − e
conversion experiments that will probe for new exotic
interactions at 10−16 sensitivity, four orders of magnitude
beyond current bounds [13,14]. A precise understanding
of DIO, not only the very-high-energy tail, but the entire
electron spectrum,will be important for calibrating and fully
exploiting the intended sensitivity of those experiments.
Leading-order, i.e. excluding radiative corrections, theo-

retical predictions for the muon DIO spectrum, properly
incorporating the effects of the Coulomb field of the
nucleus on the muon decay, as well as the finite nuclear
size, have been known for some time [15–17]. TWIST, an
experimental muon decay program at TRIUMF, has
provided the first precision test of those expectations for
a wide range of DIO electrons with energies 18–70 MeV
[18] using an aluminium stopping target. Although general
agreement was found between the TWIST measurements
[18] and theory [15–17], significant deviations were
observed throughout the examined spectrum, particularly
in the region around the free decay end point
(Ee ∼mμ=2 ∼ 52 MeV) and at low energies 18–25 MeV.
As mentioned above, quantum electrodynamics (QED)

corrections were ignored in Refs. [15–17]. Remarkably, the
TWIST measurements seem to be precise enough to be
sensitive to these subtle effects. Indeed, the TWIST
Collaboration noted the need for but lack of suitable
radiative corrections for their analysis. In this paper we
provide a proper computation of radiative corrections for
DIO in the aforementioned energy regions.
Why has it taken five years since the completion

of the TWIST experiment for theory to catch up? The
challenge is in evaluating radiative effects for bound
particles, whose interaction with the nucleus cannot be
treated as a perturbation.
However, a similar problem has been solved in quantum

chromodynamics (QCD), in the context of heavy-quark
decays, already 20 years ago. Interestingly, it was noted that
the necessary theoretical framework had existed in yet
another area, the formalism of deep-inelastic lepton
scattering on nuclei; in his 1995 lectures Shifman wrote
“I see absolutely no reasons why the corresponding theory
was worked out only recently and not 20 years ago” [19].

Our goal in this paper is to complete this cycle of
theoretical developments by applying the main ideas to
what should be a simpler case, namely QED. Toward that
end, we derive a shape function that can be convoluted with
the radiatively corrected free decay spectrum to approxi-
mate the effects of atomic binding. The range of validity for
that prescription should extend from roughlymμ=2 (the free
muon decay end point [1]) down to much lower energies,
regions where spectral discrepancies have been uncovered
by the TWIST Collaboration. Explaining those differences
was, indeed, a major motivation for this work. Events with
higher energy, resulting from nuclear-recoil effects are very
rare, but extremely important near the DIO end point ∼mμ

where they are a background to searches for “new physics”
via coherent μ − e conversion in atoms [20]. Incorporating
radiative corrections in that region is not covered by our
new method and is beyond the scope of this paper.
Following Schwinger’s approach [21] to bound states,

we calculate the muon-energy shift due to the field of
the nucleus as an average value of the mass operator in the
1S state. The optical theorem relates its imaginary part to
the muon decay rate. Denoting the sum of momenta of
the neutrinos by q we have

dΓ ¼ G2
F

E1S
ImðTαβÞWαβ d4q

ð2πÞ3 ; ð3Þ

where Wαβ is the neutrino tensor, and where we can
formally write the charged particle tensor as (we use
Schwinger’s notation [21] and neglect the electron mass)

Tαβ ¼
�
1S

����γα 1

Π − q
γβ
����1S

�
: ð4Þ

We treat the nucleus as a static source of the electric field.
Recoil-energy effects can be neglected for the range of
electron energies considered here, since the recoil energy is

δErec ∼
m2

μðZαÞ2
2mN

, with mN denoting the nucleus mass. (In the
high-energy region of the spectrum, recoil-energy effects
are not suppressed by ðZαÞ2, modify the maximum allowed
electron energy, and cannot be neglected [20].)
The Dirac wave function, describing the 1S state of the

muon, can be approximated in the leading Zα order by its
large components [22]. To separate the muon motion inside
the atom from the motion of the whole system, we rewrite
the covariant derivative as Π ¼ mμvþ π, where v is the
four-velocity of the muonic atom (v is timelike and v2 ¼ 1)
and π describes the residual motion of the bound muon;
spatial components of π are of order mμZα, and
½πα; πβ� ¼ ieFαβ. We now expand the spectrum in the
region where Q2 ¼ ðmμv − qÞ2 ≈m2

μZα (in the decay of
a free muon, Q would be the four-momentum of the
electron; this condition requires the produced electron to
be almost on-shell). Keeping only the leading corrections in
Zα we get
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Tαβ ¼
�
1S

����γα Q
Q2 þ 2π ·Q

γβ
����1S

�
: ð5Þ

We exploit the lightness of the electron and decompose Q
using a lightlike vector n, Q ¼ v ·Qnþ δQ with n2 ¼ 0,
n · v ¼ 1 [23]. As long as Ee ≫ mμZα, we can neglect the
term π · δQ,

1

π
ImðTαβÞ ¼ mμ

2
Tr½γαQγβð1þ vÞ�

×
Z

dλsðλÞδðQ2 þ 2λv ·QÞ; ð6Þ

where sðλÞ is a QED analog of the shape function [23–26]
that in our case can be explicitly evaluated using the muon’s
Schrödinger wave function ψðxÞ,

sðλÞ ¼
Z

d3xψ⋆ðxÞδðλ − n · πÞψðxÞ: ð7Þ

Great simplification can be achieved through a judicious
choice of the electromagnetic gauge, reducing the effect of
the Coulomb interaction on the electron. In the light-cone
gauge, n · A ¼ 0, we have

sðλÞ ¼
Z

d3k
ð2πÞ3 ψ

⋆
g ð~kÞδðλþ ~n · ~kÞψgð~kÞ; ð8Þ

where ψgð~kÞ is the muon wave function in momentum
space calculated in the light-cone gauge. Neglecting terms
quadratic in the smearing variable λ, the delta function in
Eq. (6), describing the electron’s on-shell condition, can be
rewritten as

δðQ2 þ 2λv ·QÞ≃ δðq2 − ~m2 þ 2 ~m ~EÞ; ð9Þ
with ~E ¼ Ee þ λþ ðZαÞ2mμ

2
and ~m ¼ mμ þ λ. Note that in

the free muon decay, the on-shell condition for the electron
is q2 −m2

μ þ 2mμEe ¼ 0. The muon mass and the electron
energy can be replaced by ~m and ~E also in the matrix
element in front of the delta function, since this introduces a
change of higher order in Zα, beyond our target accuracy.
Within that accuracy, the radiative corrections can be

included by substituting a matrix element squared includ-
ing virtual and real radiation for the tree-level expression in
front of the integral in Eq. (6). As a result, the expression
for the DIO spectrum becomes a convolution of the shape
function with the spectrum of the free-muon decay, in a
form familiar from heavy-quark physics [27],

dΓ
dEe

¼
Z

dλsðλÞ dΓfree

dz
dz
dEe

����
z→zðλÞ

; ð10Þ

where dΓfree
dz denotes the differential decay rate of a free

muon, including radiative corrections, with a daughter
electron carrying energy Ee ¼ zmμ=2, and

zðλÞ ¼ 2ðEe þ λÞ þ ðZαÞ2mμ

mμ þ λ
: ð11Þ

Note that we have kept a term quadratic in Zα, arising from

the binding energy of the muon, E1S ≈mμð1 − ðZαÞ2
2
Þ. This

term shifts the spectrum, since the maximum energy of the
electron is E1S rather than mμ. Around mμ=2, the derivative
of the spectrum with respect to the energy behaves like 1

Zα,
so we need to have the quadratic term in order to obtain the
result correct to OðZαÞ.
Eq. (10) is noteworthy in several respects. First, the final

state characterized by the observed value of Ee arises from
a superposition of contributions: the energy of the electron
is modified by the motion of the muon and by the decay
electron’s interaction with the nuclear field. The probability
of observing Ee should involve a square of the sum of
probability amplitudes; but the leading binding correction
results in the sum of probabilities.
Second, in our present QED analysis, the shape function

is derived from first principles. This is in contrast to
QCD, where it was introduced [23–26]. There, because
of strong interactions, the shape function cannot be
computed. Instead it has to be modelled, and constrained
from experimental data.
Finally, the decay spectrum dΓfree=dz refers to a free

electron, although we know that its interaction with the
nucleus must be accounted for. Information about this
interaction is encoded in sðλÞ. This is possible thanks to
gauge invariance. The light-cone gauge enables us to
approximately treat the electron as a free particle.
As previously remarked, our analysis closely resembles,

and uses the techniques employed for, the studies of heavy-
quark decays. Separation of disparate physical scales is at
the basis of the heavy-quark expansions employed there.
Therefore, it is worth noticing the corresponding energy
scales which need to be taken into account when consid-
ering muon DIO. As is manifest from the derivations
presented above, the essential idea is, like in heavy-quark
systems, the separation of bound-state energy scales from a
hard energy scale, given by mμ. The typical bound-state
momentum in a muonic atom is given by mμZα. Therefore,
the expansion parameter in our computation is given by
ðmμZαÞ=mμ ¼ Zα, which plays a role analogous to
ΛQCD=mQ in heavy quark effective theory (where ΛQCD
is the QCD scale, andmQ the heavy-quark mass). However,
this separation of bound-state effects from the hard scale is
no longer possible in the high-energy region of the DIO
spectrum, Ee ∼mμ. In this region, in order to produce an
on-shell electron in the final state, hard photons need to be
exchanged between the muon (or the electron) and the
nucleus. Our formalism is therefore expected to work in the
energy region Ee < ðmμ=2Þ þmμZα. A proper treatment
of the higher-energy part of the electron spectrum is beyond
the scope of this work. Note also that the convolution
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formula Eq. (10) allows us to calculate only the dominant
corrections; i.e., it does not include all corrections of order
ðZαÞ2, and beyond. These sub-leading effects would
appear as additional, parametrically suppressed, shape
functions. Subleading shape functions have been inves-
tigated to some extent in the context of heavy-quark
decays, see e.g. Ref. [28], and their study is quite
involved. The difficulty in treating and estimating the
size of these subleading effects in heavy-quark systems is
mainly due to the fact that shape functions encode
nonperturbative effects in the QCD case. In our QED
case the shape function can be derived from first princi-
ples, and it is easier to estimate the size of the neglected
subleading terms. To do that, we can (i) recompute the
shape function by extracting it from a (fictitious) two-body
bound decay of the muon, which, without considering
radiative corrections, can be computed exactly along the
lines of Ref. [29]. This provides a shape function which
coincides with our previous computation at order Zα but
contains different higher-order terms. (ii) Compare the
muon DIO spectrum computed exactly but without radi-
ative corrections, i.e. along the lines of Ref. [20], with the
spectrum computed with our convolution formula using
the Born-level free decay rate. The difference between the
two spectra is due to neglected OððZαÞ2Þ terms in our
shape function. We have performed both checks, and
found that indeed the effect of higher-order terms is
always of order ðZαÞ2=2, and is never larger than 1%.
This explicitly shows that we can safely neglect sublead-
ing shape functions to describe the available experimental
data. The complete order ðZαÞ2 corrections to DIO can, in
principle, be incorporated by combining the more exact
Coulombic treatment in Ref. [20] with the shape function
approach to ordinary radiative corrections described in this
work. The added effect is expected to be relatively small
for Al with Z ¼ 13, but could become important for much
larger Z.
We also mention that finite-nuclear-size effects are more

important in muonic atoms than in usual electronic atoms.
The muon, because of its relatively large mass, spends more
of its time close to the nucleus. We take into account the
finite size of the nucleus when comparing our results with
experimental data, and calculate the muon wave function
numerically for an assumed model of charge distribution
inside the nucleus. More concretely, we calculate the muon
wave function as in Refs. [20,29,30], using a two-parameter
Fermi charge distribution:

ϱðrÞ ¼ ϱ0

1þ e
r−r0
a

: ð12Þ

In the numerical evaluation we have focused on aluminium,
Z ¼ 13, r0 ¼ 2.84 fm and a ¼ 0.569 fm [31], the target
used in the TWIST experiment [18] and considered as the

muon stopping material for the μ − e conversion searches at
Fermilab and J-PARC [13,14]. Including binding energy,
EAl
1S ≈mμ − 0.5 MeV. Fig. 1 shows the function sðλÞ

calculated, using Eq. (8). As expected, the main support
of this function comes from the region �Zαmμ around 0,
determined by the main support of the muon wave function
in momentum space. We also note that uncertainties in the
modeling of finite-nuclear-size effects were analyzed in
Ref. [20]; they are not larger than our target accuracy in the
present analysis, and can be safely neglected for our
purposes here.
The normalization of the spectrum is very important

when comparing theoretical calculations with data. The
TWIST data, in addition to statistical errors, also has an
energy scale uncertainty of �0.2%. We include it to
improve the agreement between data and our calculation
by expressing the spectrum as a function p of two fit
parameters N and a,

pðN; aÞ ¼ N
dΓðaζÞ
dζ

: ð13Þ

The parameter a accounts for both experimental and
theoretical energy scale uncertainties. Its fitted value,
a ≈ 1.0015, differs from unity within the error range
claimed by TWIST, i.e. �2 × 10−3.
Figure 2 compares TWIST experimental data, obtained

from the decay of muons bound in aluminum with
theoretical spectra (free, lowest-order bound and including
radiative corrections). We see that radiative corrections
[obtained via Eq. (10)] bring theory and experiment
into good agreement. The improvement is further demon-
strated in Fig. 3 which highlights the difference between
theory and experiment, with and without radiative correc-
tions. The rather sizable radiative corrections (as large as
6%) rearrange the spectrum, but tend to cancel in the
total decay rate. We note that improved agreement for

20 10 0 10 20
0.00

0.02

0.04

0.06

0.08

MeV

s
M

eV
1

FIG. 1 (color online). The function sðλÞ calculated numerically
for the aluminium nucleus. The half-width of the peak is
approximately Zαmμ ≃ 10 MeV. The slight asymmetry reflects
the final state interaction of the electron.
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Ee ≃ 52–54 MeV is due in part to a 0.15 per cent scale shift
in a [see Eq. (13)] when our normalized fit to data
includes radiative corrections. Also, the plot does not
address experimental points above 54 MeV, where our
approximations may start to fail.

For the convenient use of our results, we provide a

simple fit to the spectrum which should be accurate up to

effects of order ðZαÞ2 ≃ 0.01 for aluminium. Introducing a

dimensionless variable ζ ¼ 2Ee
E1S

we find

1

Γ
dΓ
dζ

≈

8>><
>>:

0.076þ 0.024ζ þ 5.92ζ2 − 4.16ζ3 0.4 < ζ < 0.76;

7.12ζ2 − 5.15ζ þ 0.966 lnð1 − ζÞ þ 2.87 0.76 < ζ < 0.92;

ð0.085ζ þ 1.24Þ=ð0.714þ exp ½36.7ðζ − 1Þ�Þ 0.92 < ζ < 1.05:

ð14Þ

The fit is normalized such that Γ ¼ R
2
0

dΓ
dζ. The high-energy

spectrum, including recoil and binding effects is given in
Ref. [20]; however, radiative corrections in that region have
not been included.
In Fig. 4, the solid line describes the OðαÞ corrections to

the lowest order DIO spectrum for a bound muon as a
function of ζ. For comparison, the free muon radiative
corrections are given as a function of x [see Eq. (1)]. In the
lower energy region, accessible to both bound and free
decays, the radiative corrections are similar for the two
cases, with a part of the shift coming from a difference in
the ζ and x variables. Differences are largest, close to the

free muon decay spectrum end point, where a logarithmic
enhancement in the free case (lnð1 − xÞ singularity) is
smeared for the DIO case, as illustrated by the solid
curve.
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FIG. 2 (color online). Theoretical electron-energy spectra for
muon DIO compared with TWIST data (black points) [18].
The solid red (dotted blue) line is the spectrum with (without,
[17,20]) OðαÞ radiative corrections. The green dashed line
represents the spectrum of the free muon decay with radiative
corrections [32]. Near the free muon end point, 52.8 MeV, there
is a large negative QED correction which pushes the dashed line
to zero, and the solid line below the dotted one. In the low-
energy region, magnified in the inset, both radiative (dashed)
and binding (dotted) corrections are positive, leading to an
increase of low-energy electrons. The solid line includes both
effects.
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FIG. 3 (color online). Relative difference between data and the
theory prediction with (circles) and without (crosses) radiative
corrections. The difference between the measured and the
calculated spectrum is normalized to the theoretical spectrum,
appropriate for each case.
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FIG. 4 (color online). Relative leading OðαÞ radiative correc-
tions to the electron spectrum for bound and free muons. The
solid (dashed) line corresponds to the corrections for a bound
(free) muon as a function of the electron energy variable ζ (x).
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In summary, we have derived a new method for approxi-
mating QED radiative corrections to muon DIO rates based
on a formalism developed for heavy-quark weak decays in
QCD. Its general features are in good accord with expect-
ations based on Lorenz and gauge invariance. The radiative
corrections are quite large near the spectral peak and at
low energies, regions where the TWIST experiment had
discovered discrepancies with theory. As a result, our
new improved theoretical spectrum is now in excellent
quantitative agreement with experiment and, where

applicable, can be confidently used in future searches for
exotic new physics.
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