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We compute nonperturbative gluon spectral functions at finite temperature in quenched QCD with the
maximum entropy method. We also provide a closed loop equation for the spectral function of the energy-
momentum tensor in terms of the gluon spectral function. This setup is then used for computing the shear
viscosity over entropy ratio η=s in a temperature range from about 0.4Tc to 4.5Tc. The ratio η=s has a
minimum at about 1.25Tc with the value of about 0.115. We also discuss extensions of the present results
to QCD.
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I. INTRODUCTION

Heavy-ion collisions at RHIC (Brookhaven) revealed
about a decade ago, that the quark-gluon-plasma (QGP) is
well-described by hydrodynamics [1]. It was also suggested
that the QGP might be close to exhibit perfect fluidity
signaled by a (almost) vanishing viscosity over entropy
ratio η=s. Since then, many efforts have been made to
increase the insight into the dynamics of the hot plasma, for
a review see [2].
The ratio η=s has been conjectured to satisfy a universal

lower bound Kovtun-Son-Starinet bound (KSS-bound) of
1=4π derived within the AdS-CFT correspondence [3].
Such a minimum can already be motivated within a
quasiparticle picture: there, shear viscosity relates to a
cross section, while the entropy density encodes the phase
space volume of the quasiparticle. In the quasiparticle
picture both quantities are related and their ratio is bounded
from below.
Measurements of the elliptic flow variable v2 at RHIC

and CERN indeed indicate a shear viscosity to entropy ratio
for the QGP which is of the order of the AdS-CFT bound
[4,5]. In turn, theoretical approaches to this quantity have to
face the problem that perturbation theory is not applicable
in the vicinity of the confinement-deconfinement transition
temperature, and for a strongly correlated plasma.
Transport coefficients can be obtained from the spectral

function of the energy-momentum tensor via the Kubo
relations [6]. However, most nonperturbative methods such
as lattice QCD and functional continuummethods are so far
limited to the computation of Euclidean correlation func-
tions of the energy-momentum tensor, see e.g. [7–10] for
lattice results. The related spectral function is then obtained
via an integral equation. The latter has to be inverted from a
discrete set of points, or more generally from numerical
data, for example with the maximum entropy method
(MEM), e.g. [11] or the Tikhonov regularization, e.g.

[12]. So far, the resulting spectral functions ρðω; ~pÞ are
subject to large statistical as well as systematical errors.
In principle, MEM and similar inversion methods are

powerful tools for providing reliable spectral functions, but
this requires accurate initial Euclidean correlation functions
and some knowledge about their real-time asymptotics and
complex structure. Whether such a situation applies directly
to the correlation function of the energy-momentum tensor is
difficult to answer and is part of the systematic error.
In the present work we apply MEM for the computation

of the gluon spectral functions in Landau gauge Yang–Mills
theory at finite temperature from Euclidean propagators
obtained from Functional Renormalization Group (FRG)
calculations [13]. It is well known that the gluon spectral
function exhibits positivity violation, e.g. [14], and we
implement an adjustment of MEM for nonpositive functions.
We provide gluonic spectral functions for 0.4Tc ≲ T≲
4.5Tc. Moreover, the zero temperature extrapolation of
our results agrees well with the direct T ¼ 0 computation
with Dyson–Schwinger equations in [15].
The gluon spectral functions are then used to compute

the viscosity over entropy ratio in this temperature range
from a compact closed expression of the spectral function
of the energy-momentum tensor in terms of gluon propa-
gators and classical and full vertices.

II. MAXIMUM ENTROPY METHOD

The spectral function ρðω; ~pÞ is related to the Euclidean
propagator Gðiωn; ~pÞ via the integral equation

Gðτ; ~pÞ ¼
Z

∞

0

dω
2π

KTðτ;ωÞρðω; ~pÞ; ð1Þ

with

KTðτ;ωÞ ¼ ð1þ nðωÞÞe−ωτ þ nðωÞeωτ; ð2Þ
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with thermal distribution nðωÞ ¼ 1=ðeω=T − 1Þ. In (1),
Gðτ; ~pÞ denotes the Fourier transform of the Euclidean
propagator Gðiωn; ~pÞ in a slight abuse of notation.
The inversion of (1) is not unique, and it is necessary to

include information on the general shape of the spectral
function. That is achieved by introducing a positive model
function mðω; ~pÞ, containing all available information on
the asymptotic behavior (shape) of ρðω; ~pÞ. In practice
mðω; ~pÞ encodes the correct UV behavior known from
perturbation theory. MEM minimizes the quantity Qð~pÞ ¼
Lð~pÞ − αSð~pÞ with

Lð~pÞ ¼ 1

2

Z β
2

0

dτ
σ2ðτ; ~pÞ ðGðτ; ~pÞ −Gρðτ; ~pÞÞ2; ð3Þ

and

Sð~pÞ ¼
Z

∞

0

dω

�
ρðω; ~pÞ−mðω; ~pÞ− ρðω; ~pÞ log ρðω; ~pÞ

mðω; ~pÞ
�
:

ð4Þ

Here σðτ; ~pÞ encodes the uncertainties of the input corre-
lator. In (3) Gρðτ; ~pÞ denotes the propagator calculated
from the MEM spectral function via (1). The likelihood
term (3) and the entropy term (4) of Shannon-Jaynes type
[16] are related by the weight parameter α. The weight
parameter regulates the relative importance of the model
with respect to the correlator, and can be integrated out,
see e.g. [11].
For positive model functions, the MEM ansatz for the

spectral function is intrinsically positive. However, the
gluon spectral functions ρðω; ~pÞ show positivity violation
for large frequencies and sufficiently low momenta. This
property relates to the fact that the gluon is no asymptotic
state, and is taken into account by parametrizing the
spectral functions as a difference of two positive model
functions: ρðω; ~pÞ ¼ ρsðω; ~pÞ − sðω; ~pÞ. Such splittings
have been also used for, e.g., quark spectral functions,
for recent work see [17]. The shift function sðω; ~pÞ should
allow for a finite violation of positivity, i.e. no poles and
essential singularities. The propagator corresponding to
ρsðω; ~pÞ is

Gsðτ; ~pÞ ¼ Gðτ; ~pÞ þ ΔGðτ; ~pÞ ð5Þ

where

ΔGðτ; ~pÞ ¼
Z

∞

0

dω
2π

KTðτ;ωÞsðω; ~pÞ: ð6Þ

The finiteness of the integral (6) is guaranteed by the
known, perturbative, asymptotic behavior of ρðω; ~pÞ. For
the present calculations, a temperature depend ω0 is
chosen, such that the model function is constant for ω≤ω0

and decays to zero above ω0 with the correct asymptotics

[18]. The shift function is identical to the model function
apart from the low frequency region, where the shift
function is exponentially suppressed.

III. VISCOSITY

One of the main goals of the present work is the
computation of the viscosity over entropy ratio η=s as a
function of temperature in the vicinity of the phase
transition temperature. With the Kubo relation the shear
viscosity η is computed from the slope of the spectral
function ρππ of the spatial, traceless part of the energy-
momentum tensor πij at vanishing frequency,

η ¼ lim
ω→0

1

20

ρππðω; ~0Þ
ω

; ð7Þ

with

ρππðω; ~pÞ ¼
Z

dx0
2π

Z
d3x
ð2πÞ3 e

−iωx0þi~p ~xh½πijðxÞ; πijð0Þ�i:

ð8Þ
For the computation of (8) we use that general correlation
functions can be written in terms of propagators and field
derivatives, see e.g. [19],

hπij½A�πij½A�i ¼ πij

�
GAϕi

·
δ

δϕ̄i
þ Ā

�
πij

�
GAϕi

·
δ

δϕ̄i
þ Ā

�
;

ð9Þ
where ϕ ¼ ðA;C; C̄Þ stands for the expectation values of
the fields, e.g. Ā ¼ hAi, and Gϕiϕj

¼ hϕiϕji − hϕiihϕji is
the propagator of the respective fields.
Equation (9) consists of a finite number of connected

diagrams in full propagators. The one-particle irreducible
diagrams can be divided into two classes. The first class
consists of one- to three-loop diagrams with gluon propa-
gators that simply connect one πij with the other, see
Fig. 1(a). The second class consists of diagrams that can be
interpreted as effective vertex corrections of the first class.
A simple example is depicted in Fig. 1(b), the full
diagrammatics will be discussed elsewhere [20].
In the present work we concentrate on temperatures of

the order of Tc. In [21] it has been discussed that higher
loop corrections in such an expansion in full propagators
and full and classical vertices can be minimized within an
optimized renormalization group scheme (RG-scheme) for
temperatures about Tc. Note, that even though this argu-
ment has been put forward in the context of the Polyakov
loop potential, it has been applied to the effective action,
that generates all correlation functions. Indeed, the explicit
computation confirms that higher loop orders in Fig. 1 are
suppressed at these temperatures [20]. Accordingly, the
weighted difference of the full computation of the Polyakov
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loop potential and the one loop computation in full
propagators can be used as an estimate for the systematic
error.
In conclusion, for temperatures about Tc we can restrict

ourselves to the one-loop contribution in Fig. 1(a). Note
also, that connected contributions are of higher order
and hence are dropped in the present computation. In this
approximation the spectral function ρππ reads

ρππðpÞ ¼ Im

�Z
d4k
ð2πÞ4 π

ð2Þðk; pþ kÞGðpþ kÞ

× πð2Þðpþ k; kÞGðkÞ
�
; ð10Þ

where πð2Þ denotes the two-gluon vertex of the energy-
momentum tensor π, and p ¼ ðω; ~0Þ. For the sake of
brevity we omitted the color and Lorentz indices. The
gluon propagators in Landau gauge at finite temperature
have two separate tensor structures, longitudinal and trans-
verse to the heat bath. For each tensor structure we have a
scalar propagator GL=Tðp2

0; ~p
2Þ. In order to evaluate (10)

we insert the tensor expression forGðpÞ and use the cutting
rules within the real-time formalism for the scalar parts of
the propagators. Finally, we insert the spectral representa-
tion for the propagators. The details will be discussed
in [20] and we only present the results,

ρππðωÞ ¼
2dA
3

Z
d4k
ð2πÞ4 ½nðk

0Þ − nðk0 þ ωÞ�

× fV1ðk;ωÞρTðk0; ~kÞρTðk0 þ ω; ~kÞ
þ V2ðk;ωÞρTðk0; ~kÞρLðk0 þ ω; ~kÞ
þ V3ðk;ωÞρLðk0; ~kÞρLðk0 þ ω; ~kÞg; ð11Þ

with dA ¼ N2
c − 1, and

V1ðk;ω ¼ 0Þ ¼ 7ðk2Þ2 − 10k20~k
2 þ 7k40

V2ðk;ω ¼ 0Þ ¼ 6k20ðk20 − ~k2Þ
V3ðk;ω ¼ 0Þ ¼ 2ðk20 − ~k2Þ2: ð12Þ

The Vi’s are the coefficients in Landau gauge arising from
the vertex contractions. If we apply the present cutting-rule
approach to Coloumb gauge, the coefficients agree with
that obtained in [22] from a Matsubara approach.
Equation (11) has an important feature. When taking the

derivative with respect to ω at ω ¼ 0, the derivative only
hits the thermal distribution function. Thus, the results for
the viscosity are not sensitive to the slope of the gluon
spectral functions at vanishing frequency. Differentiating (8)
with respect to ω at ω ¼ 0 yields

η ¼ −
2dA
3

Z
d4k
ð2πÞ4 n

0ðk0Þ

× fV1ðkÞρ2Tðk0; ~kÞ þ V2ðkÞρTðk0; ~kÞρLðk0; ~kÞ
þ V3ðkÞρ2Lðk0; ~kÞg: ð13Þ

For the computation of the viscosity over entropy ratio η=s
we take the entropy obtained within lattice calculations
in [23].

IV. RESULTS

The results are computed from the Euclidean Yang–Mills
propagators at vanishing frequency ωn ¼ 0 for the longi-
tudinal and transverse gluons for different temperatures
obtained by FRG techniques, [13]. For comparison and
error estimates we also utilize lattice results from [24–26],
see also [27–30]. We have done this comparison for the
temperature regime at about Tc where the respective results
agree well.
In our computations we have approximated the higher

Matsubara modes in the scalar propagatorsGL=T for ωn ≠ 0
with GL=Tðω2

n; ~p2Þ ¼ GL=Tð0;ω2
n þ ~p2Þ. This is a quanti-

tative approximation with a small error margin of < 1%,
see [13], well below the systematic errors in the present
computation to be discussed later.
Figure 2 shows the MEM-results for the transverse gluon

spectral functions for a temperature range from T ¼ 0.79Tc
to T ¼ 3.96Tc. The common features of all calculated
gluonic spectral functions are a broad maximum at
ω=T ≈ 2.0–3.0 and a violation of positivity at low spatial
momenta. At larger momenta, the peak smears out and
approaches the line ω ¼ p, see also Fig. 3 for the transverse
spectral function at T ¼ 1.98Tc. The fact that the (positive)
peak position for fixed ω as a function of p is stationary
for p≲ 6 seems to be due to the negativity of the spectral
function, which inhibits the bending of peak towards the
main diagonal. Hence the gluon spectral functions do not
show the characteristic diagonal structure of quasiparticle

(a)

(b)

FIG. 1 (color online). Diagrams contributing to the energy-
momentum tensor spectral function. (a) The three different
classes of diagrams: two energy-momentum tensors (double
lines) connected by 2,3,4 full internal gluon propagators. (b)
Examples for effective energy-momentum tensor vertex correc-
tions for the one-loop diagram in (a).
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spectral functions, see Fig. 3. Such a quasiparticle picture
has been used e.g. in [31,32] where the model gluon
spectral functions have sharper peaks with comparable
peak heights.
With increasing temperature the peak broadens slightly

more than linearly in T, while the area under the peak
remains approximately constant. In the limit T → 0 this
would lead to a deltalike peak, as seen in [15]. The
magnitude of the minimum is about 10% of the maximum
of the spectral function.
The dependence of our results on the shift function is

surprisingly small. We have employed different ansätze
and found that only the necessary condition, that the shift
function must be larger in magnitude than the negative
values of the spectral function at the respective point, must
be fulfilled. All other features could be chosen freely as

long as (6) is kept finite. The dependence of the results on
the shift function and the model function is included in the
systematic MEM error, by varying bothω0 and the decay of
the shift function at small frequencies. The longitudinal
spectral functions show no different behavior and differ
only slightly from the transverse spectral functions.
We have calculated the shear viscosity applying the

Kubo relation (7) for the spectral function of the energy-
momentum tensor at vanishing frequency and divided by
the entropy density. In Fig. 4 we show the results as a
function of temperature. The black error bars indicate the
combined systematic error from both MEM computation
and one-loop approximation as discussed above. In the
shaded region only MEM errors are displayed. The error
analysis exhibits a small systematic and statistical error
for temperatures Tc ≤ T ≲ 2Tc. For larger temperature the
one-loop approximation within the optimized RG-scheme
becomes worse and higher order diagrams have to be
included. In turn, for smaller temperatures T ≤ Tc addi-
tionally the accuracy of the spectral functions has to be
increased in order to provide reliable quantitative results.
Moreover, the uncertainty in the relative temperature scales
on the lattice and the functional methods gets important
due to the strong temperature dependence in this regime.
An additional systematic error relates to the systematic
error of the input data. We have also computed the ratio η=s
from the lattice propagators in [24] for temperatures about
Tc and the result varies with about 5%. This error is not
included in the plot in Fig. 4.
The curve in Fig. 4 exhibits a clear minimum at

T ¼ 1.25Tc with a value of η=s ¼ 0.115ð17Þ. This region
is well in the regime with small systematic and statistical
errors. Below the critical temperature we find a steep rise of
η=s toward lower temperatures due to the decrease of the
entropy density. In view of the above error analysis this

FIG. 2 (color online). Thermal dependence of transverse gluon
spectrum.

FIG. 3 (color online). Transverse gluon spectral function
ρðω; ~pÞ for T ¼ 1.98Tc.

FIG. 4 (color online). Viscosity over entropy ratio η=s for
SU(3) gauge theory. The AdS/CFT bound is displayed, as well as
lattice results from [9,33,34]. The black error bars indicate the
combined systematic error from both MEM computation and
one-loop approximation as discussed above. In the shaded region
only MEM errors are displayed.
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should be seen as a qualitative result. Within the present
accuracy we also cannot resolve potential signatures of the
first order phase transition. Our results agree qualitatively
with model computations of η=s, see e.g. [35]. Note also,
that for T ≤ Tc glueballs are expected to be the relevant
degrees of freedom. It would be interesting to see how the
present results fit into a corresponding quasiparticle picture
based on glueballs.

V. CONCLUSIONS

We have computed gluon spectral functions from non-
perturbative, Euclidean propagators in Landau gauge finite
temperature Yang–Mills theory. This has been done with a
modified version of the maximum entropy method that
allows for negative parts in the spectral functions. As
expected the spectral functions show a violation of pos-
itivity. Our results cover the temperature regime 0.4Tc ≲
T ≲ 4.5Tc. We have computed the shear viscosity η from a
closed expression in terms of the gluon spectral function.
With the lattice entropy taken from [23] this leads us to the
viscosity over entropy ratio η=s in the above temperature

range. We find a minimum value of η=s ¼ 0.115ð17Þ at
T ¼ 1.25Tc which is close to, but above the KSS bound of
η=s ¼ 1=ð4πÞ. Interestingly, the results agree within the
errors with previous lattice computations, [9,33]. Given the
very different computational methods, this provides non-
trivial support for the respective results. In [33] a mapping
of Yang–Mills η=s to QCD is proposed for T ¼ 2.3Tc.
Adapting the procedure we propose a minimal η=s for QCD
of 0.18. The present framework is readily extended to full
QCD with dynamical fermions.
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