
Photon-neutrino scattering and the B-mode spectrum of CMB photons

Jafar Khodagholizadeh,1,* Rohoollah Mohammadi,1,2,† and She-Sheng Xue3,‡
1School of Physics, Institute for Research in Fundamental Sciences (IPM),

P.O. Box 19395-5531, Tehran, Iran
2Iran Science and Technology Museum (IRSTM), P.O. Box 11369-14611, Tehran, Iran
3ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy and Physics Department,

University of Rome La Sapienza, Piazzale Aldo Moro 5, I-00185 Rome, Italy
(Received 26 June 2014; published 11 November 2014)

On the basis of the quantum Boltzmann equation governing the time evolution of the density matrix of
polarized cosmic microwave background (CMB) photons in the primordial scalar perturbations of metric,
we calculate the B-mode spectrum of polarized CMB photons contributed from the scattering of CMB
photons and cosmic neutrino background neutrinos. We show that such a contribution to the B-mode
spectrum is negligible for small l; however, it is made significantly larger for 50 < l < 200 by plotting our
results together with the BICEP2 data. Our study and results imply that in order to theoretically better
understand the origin of the observed B-mode spectrum of polarized CMB photons (r parameter), it should
be necessary to study the relevant and dominated processes in both tensor and scalar perturbations.
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I. INTRODUCTION

It is known that in the inflation cosmology, the power-
law spectrum of either metric scalar perturbation PSðkÞ ¼
ASðk=k0ÞnS−1 or tensor perturbation PTðkÞ ¼ ATðk=k0ÞnT
has been produced in the inflationary era of the early
universe [1], where AS and AT are the amplitudes of scalar
and tensor perturbations, and nS;T are their spectral indices.
AS and nS have been determined through the measurements
of microwave background temperature anisotropy [2–4].
The amplitude of metric tensor perturbation is character-
ized by the tensor-scalar ratio r ¼ PT=PS, relating to the
B-mode spectrum of polarized cosmic microwave back-
ground (CMB) photons imprinted by the metric tensor
perturbations of primordial gravitational waves. The
BICEP2 Collaboration recently reported r ¼ 0.20þ0.07

−0.05
[5]. If this report is verified, it is regarded as an important
result that may reveal the existence of metric tensor
perturbations in the inflationary era of the early universe.
However, there are alternative explanations of the

BICEP2data—whether theBICEP2data could be explained
by the vector and tensor modes from primordial magnetic
fields [6]. Some authors speculate that the BICEP2 observed
B-mode polarization is the result of a primordial Faraday
rotation of the E-mode polarization [7,8]. In this article,
using the result of the photon polarization generated by the
photon-neutrino scattering [9], we investigate the possible
contribution to the observed B-mode spectrum by consid-
ering the interaction between CMB photons and cosmic
neutrino background (CNB) in the background of scalar
perturbations, without tensor perturbations. In order to

quantitatively calculate such a contribution in the scalar
perturbation, we solve the quantum Boltzmann equation for
the time evolution of the matrix density (Stokes parameters)
of polarized CMB photons which are involved in the
Compton and photon-neutrino scattering as the collision
terms of the quantum Boltzmann equation. Our result is
shown together with the BICEP2 data and its implication on
the interpretation of the BICEP2 data is discussed.

II. THE PHOTON POLARIZATION FROM
COMPTON AND PHOTON-NEUTRINO

SCATTERING

The linear and circular polarizations of an ensemble of
photons can be described by the density operator

ρ̂ij ¼
1

trðρ̂Þ
Z

d3k
ð2πÞ3 ρijðkÞDijðkÞ;

ρ̂ijðkÞ ¼
1

2

�
I þQ U − iV

U þ iV I −Q

�
; ð1Þ

where ρijðkÞ represents the density matrix in terms of the
Stokes parameters I, Q, U, and V in the 2 × 2 polarization
space (i; j) of one photon of energy-momentum “k.” The
number operator DijðkÞ ¼ a†i ðkÞajðkÞ and its expectation
value

hDijðkÞi≡ tr½ρ̂ijDijðkÞ� ¼ ð2πÞ3δ3ð0Þð2k0ÞρijðkÞ: ð2Þ
The time evolution of the number operatorDijðkÞ obeys the
Heisenberg equation

d
dt

DijðkÞ ¼ i½HI;DijðkÞ�; ð3Þ

whereHI is an interacting Hamiltonian. Using Eqs. (1), (2),
and (3), one obtains the time evolution of ρijðkÞ, quantum
Boltzmann equation [10],
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ð2πÞ3δ3ð0Þð2k0Þ dρijðkÞ
dt

¼ ih½HIðtÞ; DijðkÞ�i

−
1

2

Z
dth½HIðtÞ; ½HIð0Þ; DijðkÞ��i; ð4Þ

where HIðtÞ is the interacting Hamiltonian. On the right-
hand side of Eq. (4), the first and second terms respectively
represent the forward scattering and higher order colli-
sion terms.
There are a lot of papers which investigate the effects

of the Compton scattering on the anisotropy and polarization
of CMB (see for example [10–12]). In this article, we
attempt to study the CMB photon polarization by consid-
ering the contribution of the photon-neutrino scattering to the
polarization density matrix of photons obtained recently [9]

2k0
dρij
dt

¼ −
ffiffiffi
2

p

6π
αGF

Z
dq½ρs0jðkÞδis − ρisðkÞδjs0 �fνðx; qÞ

× ðq2ϵs0 · ϵs þ 2q · ϵs0q · ϵs − εμνρσϵ
μ
sϵνs0k

ρqσÞ;
ð5Þ

where dq ¼ ð2EνÞ−1d3q=ð2πÞ3 is the integration over the
neutrino four-momentum (q0 ¼ Eν ≈ jqj) with the distribu-
tion function fνðx; qÞ, and the polarization four-vectors
ϵiμðkÞ and their indices i; j; s; s0 ¼ 1; 2, represent two
transverse polarizations of the photon k0 ¼ jkj. GF and α
are Fermi the coupling constant and electromagnetic fine-
structure constant.
Note that we consider massive neutrino (mν) in our

calculations. Here we only calculate the leading order
contribution to the polarization density matrix, i.e., the
forward scattering term in the rhs of Eq. (4), which does not
depend on neutrino masses. The next-leading contribution
from higher order collision terms in the rhs of Eq. (4)
depends on neutrino masses; see for example Ref. [13]. In
order for readers’ convenience, we give a brief clarification
in the following of how our approximate calculations are
done by using Eq. (4).
The scattering rate of photon-neutrino energy-

momentum states is indeed very small due to their cross
section of about ðαGFÞ2; see Ref. [13]. However, in our
case the time evaluation (4) of the Stokes parameters ρij can
be simply written as

dρij
dt

¼ i½H0; ρij� þ
1

2

Z
dt½H0; ½H0; ρij��: ð6Þ

It has been discussed in Ref. [9] that the amplitude of
forward scattering ½H0; ρij�, which affects only photon
polarizations without changing photon momenta, is of
the order of H0 or ðαGFÞ. In other words, the rate of
generation of polarization due to the forward scattering
amplitude of photon-neutrino interaction cannot simply be
neglected. This is the main result of this article and will be

shown in detail. Whereas the high order terms ½H0;
½Ho; ρij�� for the scattering cross section of photon-neutrino
energy-momentum states is of the order of ðαGFÞ2, which
is thus negligible in comparison with the forward scattering
amplitude.
As discussed in previous points, the leading forward

scattering ðαGFÞ of CMB photons and CNB neutrinos
which we considered only affects the polarizations of
photons. This leading contribution neither depends on
neutrino masses nor changes the direction of photon
propagation (momentum); thus, it does not change the
anisotropy of CMB photons. Therefore, our calculations
do meet other cosmological constraints. However the next-
leading order contribution ðαGFÞ2 that could matter is very
small and negligible.
Using the Stokes parameters in Eq. (1), the total intensity

I, linear polarizations intensities Q and U, as well as the V
indicating the difference between left- and right-circular
polarizations intensities, we consider both the Compton
and photon-neutrino scattering and write Eq. (4) as follows:

dI
dt

¼ CI
eγ

d
dt

ðQ� iUÞ ¼ C�
eγ∓i_κ�ðQ� iUÞ þOðVÞ

dV
dt

¼ CV
eγ þ _κQQþ _κUU; ð7Þ

here CI
eγ, C�

eγ, and CV
eγ respectively indicate the contribu-

tions from the Compton scattering to the time evaluation of
I, Q� iU, and V parameters; their expressions can be
found from the literature for example [10–12]. Whereas the
contributions from the photon-neutrino scattering (5) are
given by

_κ� ¼ −
ffiffiffi
2

p

6πk0
αGF

Z
dqfνðx; qÞ × ðεμνρσϵμ2ϵν1kρqσÞ

_κQ ¼ −
ffiffiffi
2

p

3πk0
αGFnνhvαqβiϵα2ϵβ1

_κU ¼ −
ffiffiffi
2

p

6πk0
αGFnνðhvαqβiϵα1ϵβ1 − hvαqβiϵα2ϵβ2Þ; ð8Þ

where we define the neutrino average velocity

hvαi ¼
1

nν

Z
d3q
ð2πÞ3

qα
q0

fνðx; qÞ;

hvαqβi ¼
1

nν

Z
d3q
ð2πÞ3

qα
q0

qβfνðx; qÞ; ð9Þ

where the neutrino number density nνðxÞ ¼
R
d3q=

ð2πÞ3fνðx; qÞ and energy density ϵνðxÞ ¼
R
d3q=ð2πÞ3

q0fνðx; qÞ. In the second equation of Eq. (7), we will
neglect the small contribution OðVÞ from the circular
polarization. In Eq. (8), the first equation _κ� yields
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_κ� ¼
ffiffiffi
2

p

6πk0
αGF

Z
dqfνðx; qÞ × ½q0k · ðϵ1 × ϵ2Þ

þ k0q · ðϵ1 × ϵ2Þ�

¼
ffiffiffi
2

p

6π
αGF nν

2
½1þ hvi · ðϵ1 × ϵ2Þ� ≈

ffiffiffi
2

p

6π
αGF nν

2
; ð10Þ

where k · ðϵ1 × ϵ2Þ ¼ jkj. In this article, we apply
Eqs. (7)–(10) to the case of photons scattering with
CNB, whose average velocities (9) are small, and will
be discussed in the next section. As a result of the lead-
ing order approximation, the dominated contribution of
photon-neutrino scattering to photon polarization comes
from the first term of Eq. (10).

III. CNB NEUTRINO DISTRIBUTION FUNCTION
AND AVERAGE VELOCITY

We discuss the CNB neutrino distribution function
fνðx; qÞ and average velocity hvi by using the
Boltzmann equation for massive neutrinos [14,15]. It is
convenient to write the phase space distribution of neutrino
fνðx; qÞ as a zeroth-order distribution fν0ðx; qÞ plus a
perturbation Ψðx; qÞ as the following:

fνðx; qÞ ¼ fν0ðx; qÞ½1þΨðx; qÞ�; ð11Þ
where ~q ¼ qn̂, and n̂ indicates the direction of neutrino
velocity. This phase space distribution evolves according to
the collisionless Boltzmann equation which is given as the
following in terms of our variables ð~x; q; n̂; τÞ:
∂Ψ
∂τ þ i

q
εν
ð ~K:n̂ÞΨþ d ln fν0

d lnðqÞ
�
_ϕ − i

εν
q
ð ~K:n̂Þψ

�
¼ 0; ð12Þ

where ~K (wave number) is the Fourier conjugate of ~X;
the collision terms on the rhs of the above equation are
neglected due to the weak interactions of neutrinos and two
scalar potentials, ϕ and ψ , that characterize the metric
perturbations,

ds2 ¼ a2ðτÞf−ð1þ 2ψÞdτ2 þ ð1þ 2φÞdxidxig: ð13Þ
Notice, Eq. (12) shows that the Boltzmann equation depends
on the direction n̂ of the neutrino momentum only through
its angle with ~K, i.e., ðμ0 ¼ K̂ · n̂Þ. The conformal
Newtonian gauge (also known as the longitudinal gauge)
advocated in Ref. [16] is a particularly simple gauge to use
for the scalar mode of metric perturbations, and we neglect
the tensor perturbations here. By considering the collision-
less Boltzmann equation (12) and expanding the angular
dependence of the perturbation Ψ in a series of Legendre
polynomials Plðμ0Þ we have the following:

Ψð ~K; q; μ0; τÞ ¼
X
l¼0

ð−iÞlð2lþ 1ÞΨlð ~K; τÞPlðμ0Þ: ð14Þ

In addition, in the following calculations, we select that
K̂ and ẑ are in the same direction; the components of the

photon momentum k and the neutrino momentum q are
the following:

k̂ ¼ fcos θ; sin θ cosϕk; sin θ sinϕkg;
q̂ ¼ fcos θ0; sin θ0 cosϕq; sin θ0 sinϕqg: ð15Þ

In this case we have for the second term of Eq. (10):Z
q2dq

q
εν
fν0ðqÞ

Z
dΩðq̂ · k̂ÞΨðμ0Þ

¼
Z

q2dq
q
εν
fν0ðqÞΨ1 ≅ nνμhvi: ð16Þ

The time evaluation of Ψl is given

_Ψ0 ¼ −
qK
εν

Ψ1 − _φ
d ln fν0
d ln q

;

_Ψ1 ¼
qK
3εν

ðΨ0 − 2Ψ2Þ þ
ενK
3q

d ln fν0
d ln q

;

_Ψl ¼
qK

ð2lþ 1Þεν
ðlΨl−1 − ðlþ 1ÞΨlþ1Þ: ð17Þ

Notice that hvi ∝ Ψ1 and Ψl ≤ Ψ ∼ ΔT
T jν for CNB neu-

trinos. As a result, the second term on the rhs of Eq. (10)
depends on the neutrino average velocity hvi ∝ Ψ1, being
proportional to the first perturbation of neutrino distribution
function. Therefore, we can neglect this term.

IV. TIME EVOLUTION OF POLARIZED
CMB PHOTONS

In this section, we focus on the linear polarization of
CMB (E- and B-modes) due to the Compton and photon-
neutrino (CNB) scattering in company with primordial
scalar perturbations only. As usual, the CMB radiation
transfer in the conformal time η is described by the
multipole moments of temperature (I) and polarization (P)

ΔI;Pðη; K; μÞ ¼
X∞
l¼0

ð2lþ 1Þð−iÞlΔl
I;Pðη; KÞPlðμÞ;

where μ ¼ n̂ · K̂ ¼ cos θ, θ is the angle between the CMB
photon direction n̂ ¼ k=jkj and the wave vectors K of
Fourier modes of scalar perturbations, and PlðμÞ is the
Legendre polynomial of rank l. We adopt the following
Boltzmann equation obeyed by ΔI;Pðη; K; μÞ, and expand
the primordial scalar perturbations ðSÞ of the metric field in
Fourier modes characterized by the wave vector K. For a
given Fourier mode, one can select a coordinate system
where K∥ẑ and ðê1; ê2Þ ¼ ðêθ; êϕÞ. For each plane wave,
the scattering can be described as the transport through a
plane parallel medium [17,18], and Boltzmann equations are

d
dη

ΔðSÞ
I þ iKμΔðSÞ

I þ 4½ _ψ − iKμφ�

¼ _τ

�
−ΔðSÞ

I þ Δ0ðSÞ
I þ iμvb þ

1

2
P2ðμÞΠ

�
ð18Þ
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d
dη

Δ�ðSÞ
P þ iKμΔ�ðSÞ

P ¼ _τ

�
−Δ�ðSÞ

P −
1

2
½1 − P2ðμÞ�Π

�

∓iaðηÞ_κ�Δ�ðSÞ
P ; ð19Þ

where the opacity _τ≡ dτ=dη, the normalized scaling factor

aðηÞjη0 ¼ 1 at the present time η0, Π≡ Δ2ðSÞ
I þ Δ2ðSÞ

P þ
Δ0ðSÞ

P , and the polarization anisotropy is defined by

Δ�ðSÞ
P ¼ QðSÞ � iUðSÞ: ð20Þ

In the rhs of Eqs. (18) and (19), the scattering parts are
determined by the Compton and photon-neutrino scattering
terms in Eq. (7), in particular, the contribution of photon-
neutrino (CNB) scattering to CMB polarization comes from
the _κ� terms in Eq. (7). The temperature anisotropy ΔS

I
depends on the metric perturbations φ and ψ and baryon
velocity term vb in Eq. (18). Equation (19) for the polari-
zation anisotropy can be written as follows:

d
dη

½Δ�ðSÞ
P eiKμη�i~κðη;μÞþ~τðηÞ�

¼ −eiKμη�i~κðηÞþ~τðηÞ
�
1

2
_τ½1 − P2ðμÞ�Π

�
; ð21Þ

where

~κðη; μÞ≡
Z

η

0

dηaðηÞ_κ�; ~τðηÞ≡
Z

η

0

dη_τ: ð22Þ

With the initial conditionΔ�ðSÞ
P ð0; K; μÞ ¼ 0, the integration

of Eq. (21) along the line of sight up to the present time η0
yields [19]

Δ�ðSÞ
P ðη0; K; μÞ ¼ 3

4
ð1 − μ2Þ

Z
η0

0

dηeixμ�iκðηÞ−τ _τΠðη; KÞ;

ð23Þ

where x ¼ Kðη0 − ηÞ and

κðηÞ ¼
Z

η0

η
dηaðηÞ_κ�ðηÞ: ð24Þ

These are analogous to the optical depth τðηÞ with respect to
the Compton scattering

_τ ¼ anexeσT; τðηÞ ¼
Z

η0

η
_τðηÞdη; ð25Þ

where ne is the electron density, xe is the ionization fraction,
and σT is the Thomson cross section.

V. THE B-MODE POWER SPECTRUM OF
POLARIZED CMB PHOTONS

One can separate the CMB polarization Δ�ðSÞ
P ðη0; K; μÞ

into the divergence-free part [B mode ΔðSÞ
B ] and curl-free

part [E mode ΔðSÞ
E ] as the following [12]:

ΔðSÞ
E ðη0;K;μÞ≡−

1

2
½ð̄2ΔþðSÞ

P ðη0;K;μÞ þ ð2Δ−ðSÞ
P ðη0;K;μÞ�

ð26Þ

ΔðSÞ
B ðη0; K; μÞ≡ i

2
½ð̄2ΔþðSÞ

P ðη0; K; μÞ − ð2Δ−ðSÞ
P ðη0; K; μÞ�;

ð27Þ

where ð and ð̄ are spin raising and lowering operators,
respectively, and one assumes scalar perturbations to be
axially symmetric around K so that

ð̄2Δ�ðSÞ
P ðη0; K; μÞ ¼ ∂2

μ½ð1 − μ2ÞΔ�ðSÞ
P ðη0; K; μÞ�; ð28Þ

where ∂μ ¼ ∂=∂μ. From Eqs. (23) and (28), we obtain the
E and B modes

ΔðSÞ
E ðη0; K; μÞ ¼ −

3

4

Z
η0

0

dηgðηÞΠðη; KÞ∂2
μ

× ½ð1 − μ2Þ2eixμ cos κðηÞ�; ð29Þ

ΔðSÞ
B ðη0; K; μÞ ¼ 3

4

Z
η0

0

dηgðηÞΠðη; KÞ∂2
μ

× ½ð1 − μ2Þ2eixμ sin κðηÞ�; ð30Þ

where gðηÞ ¼ _τe−τ. Equation (30) shows that the photon-
neutrino scattering (κ ≠ 0) results in the nontrivial B mode

ΔðSÞ
B and the modifications of the E mode ΔðSÞ

E . This agrees
that the Compton scattering only cannot generate B modes
without taking into account the tensor type of metric
perturbations [12,20–22].
Using Eq. (23), we can obtain the value of ΔðSÞ

E;Bðn̂Þ at the
present time η0 and in the direction n̂ by summing over all
their Fourier modes K, analogously to the normal approach
[11,12,19],

ΔðSÞ
E;Bðn̂Þ ¼

Z
d3KξðKÞe∓2iϕK;nΔðSÞ

E;Bðη0; K; μÞ; ð31Þ

where ϕK;n is the angle needed to rotate the K and n̂
dependent basis to a fixed frame in the sky. The random
variable ξðKÞ used to characterize the initial amplitude of
the mode satisfies (see for example [11,12,19])

hξ�ðK1ÞξðK2Þi ¼ PSðKÞδðK1 −K2Þ; ð32Þ
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where PSðKÞ is the initial power spectrum of the scalar
mode perturbation.
As a result, by integrating Eqs. (31) and (32) over the

initial power spectrum of the metric perturbation, we obtain
the power spectrum for E and B modes

CEE;BB
lðSÞ ¼ 1

2lþ 1

ðl − 2Þ!
ðlþ 2Þ!

Z
d3KPSðKÞ

×

����
X
m

Z
dΩY�

lmΔ
ðSÞ
E;Bðη0; K; μÞ

����
2

: ð33Þ

Using identities ∂2
μð1 − μ2Þ2eixμ ≡ ð1þ ∂2

xÞx2eixμ andR
dΩY�

lme
ixμ ¼ ðiÞl ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πð2lþ 1Þp
jlðxÞδm0, we obtain the

polarized CMB power spectrum in multipole moments l,

CEE
lðSÞ ¼ ð4πÞ2 ðlþ 2Þ!

ðl − 2Þ!
Z

d3KPSðKÞ

×

���� 34
Z

η0

0

dηgðηÞΠðη; KÞ jl
x2

cos κðηÞ
����
2

; ð34Þ

CBB
lðSÞ ¼ ð4πÞ2 ðlþ 2Þ!

ðl − 2Þ!
Z

d3KPSðKÞ

×

���� 34
Z

η0

0

dηgðηÞΠðη; KÞ jl
x2

sin κðηÞ
����
2

; ð35Þ

where jlðxÞ is a spherical Bessel function of rank l. The
evolution equations derived for photon and neutrino per-
turbations can be solved numerically once the initial
perturbations are specified. By starting the integration at
early times when a given K-mode is still outside the
horizon Kτ ≪ 1 and implementing a very basic isocurva-
ture and adiabatic initial condition given by [14], the above
quantities (34) and (35) can be estimated. In Fig. 1, we plot
the numerical value CBB

lðSÞ of Eq. (35) together with the

BICEP2 result. It is shown that the contribution of photon-
neutrino (CNB) scattering to the B mode is negligible for
small l; however, it is significantly large for 50 < l < 200.
To order to better understand our results (34) and (35),

we approximately write CEE
lðSÞ and CBB

lðSÞ as follows:

CEE
lðSÞ ≈ C̄EE

lðSÞðcos2κ̄Þ; CBB
lðSÞ ≈ C̄EE

lðSÞðsin2κ̄Þ; ð36Þ

where

C̄EE
lðSÞ ¼ ð4πÞ2 ðlþ 2Þ!

ðl − 2Þ!
Z

d3KPSðKÞ

×

���� 34
Z

η0

0

dηgðηÞΠðη; KÞ jl
x2

����
2

ð37Þ

is the power spectrum of the E-mode polarization contrib-
uted from the Compton scattering in the case of scalar
perturbation [11]. In Eq. (36), the mean value κ̄ of Eq. (24)

is an average from the last scattering time (redshift
zl ≈ 103) to the present time (z0 ¼ 0). Using the matter
dominated Friedmann equation H2=H2

0 ¼ Ω0
Mð1þ zÞ3þ

Ω0
Λ, H0 ≈ 74 km=s=Mpc, Ω0

M ≈ 0.27;Ω0
Λ ≈ 0.73, and

adη ¼ −dz=Hð1þ zÞ, as well as the conservation of the
total neutrino number nν ¼ n0νð1þ zÞ3, we obtain

κðzÞ ¼
Z

η0

η
adη_κ� ¼

ffiffiffi
2

p

12π
αGFn0ν

Z
zl

z
dz0

ð1þ z0Þ2
Hðz0Þ

¼
ffiffiffi
2

p

12π
αGFn0ν

2Hðz0Þ
3Ω0

MH
2
0

����
zl

z

κ̄ ≡ 1

zl − z0

Z
z0

zl

dzκðzÞ ≈ 0.16; ð38Þ

where the present number density of all flavor neutrinos
and antineutrinos n0ν ¼

Pðn0ν þ n0ν̄Þ ≈ 340 cm−3. Actually,
the κ̄ is the mean opacity of CMB photons against the
photon-neutrino (CNB) scattering.
To end this section, we would like to point out that the

B-mode power spectrum CBB
lðSÞ of Eq. (35) is attributed only

to the scalar perturbations and photon-neutrino (CNB)
scattering. This result implies that the B-mode power
spectrum could be contributed by other mechanisms with
scalar perturbations, in addition to the contribution from the
primordial tensor perturbations [11]. Therefore, this is
crucial how to interpret the measurement of r parameter
that is the ratio of the B-mode power spectrum and the
E-mode power spectrum.

VI. SUMMARY

Suppose that the total contribution to the B-mode
polarization of CMB photons comes from the primordial
tensor perturbations (T); one obtains the B-mode power
spectrum [11]
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FIG. 1. The solid line represents CBB ≡ lðlþ 1ÞCBB
lðSÞ=

2π½μK2� due to the primordial scalar perturbations and photon-
neutrino (CNB) scattering. The experiment BICEP2 results (dots
with their error bars) are plotted.
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�
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where PTðKÞ is the initial power spectrum of primordial
tensor perturbations. Based on this assumption, one can
approximately obtain the r parameter r ¼ PT=PS ∝ CBB

lðTÞ=
C̄EE
lðSÞ. Taking into account contribution (34) or (36) of

photon-neutrino (CNB) scattering and assuming the total
observed B-mode power spectrumCBB

lðobÞ given byC
BB
lðobÞ ¼

CBB
lðTÞ þ CBB

lðSÞ, we have

r ¼ PT=PS ∝ ðCBB
lðobÞ − CBB

lðSÞÞ=C̄EE
lðSÞ

≈ CBB
lðTÞ=C̄

EE
lðSÞ − sin2κ̄; ð41Þ

where sin2 κ̄ ∼ κ̄2 ≃ 0.025. This implies that the measured r
parameter would not be completely originated from

primordial tensor perturbations. In addition, there might
be other contributions from either some astrophysical
effects [6,8] or some microscopic effects, for example
the CMB photon-photon scatterings [23,24]. Therefore, it
is important to study possibly significant contributions to
the B-mode power spectrum of polarized CMB photons so
that one can better understand the contribution of primor-
dial tensor perturbations to the r parameter experimentally
measured, r ¼ 0.2 as reported by BICEP2.
In summary, we have studied the quantum Boltzmann

equation governing the time evolution of the density matrix
(Stokes parameters) of polarized CMB photons by con-
sidering both the Compton and photon-neutrino (CNB)
scattering in the background of primordial scalar perturba-
tions. It is shown that in this case the B-mode spectrum of
polarized CMB photons can also be generated without
primordial tensor perturbations. We quantitatively calculate
the generated B-mode spectrum which is related to the
mean opacity κ̄ (38) of CMB photons scattering with
neutrinos (CNB). On the other hand, we compare our
result with the B-mode spectrum generated by the Compton
scattering in the background of primordial tensor pertur-
bations, which seems to be dominated. We generally
discuss the possible implication of our result on the
interpretation of the BICEP2 measurement r ¼ 0.2 in terms
of primordial tensor perturbations.
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