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We consider the model suggested by Wang and Unruh [Phys. Rev. D 89, 085009 (2014)] for the
1þ 1-dimensional mirror moving in the quantum vacuum. We consider the relation of this model to the
problem of the polaron—the electron moving in the vacuum of the quantum field of phonons. We introduce
the field-theoretical model of such a mirror. It contains the multicomponent spinor field interacting with
the scalar field. We discuss the source of the logarithmic divergence in the mirror mass and its relation to the
problem of the divergencies in vacuum energy.
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I. INTRODUCTION

The authors of [1] consider the mirror with an internal
harmonic oscillator coupled to a scalar field in 1þ 1
dimensions. It is found that the effective mass (the rest
energy) of such a composite mirror is infinite (logarithmi-
cally divergent) due to the vacuum fluctuations of the scalar
field. This system is considered in [1] as the counter
example to the generally accepted statement that the
vacuum energy matters only when taking gravity into
account (otherwise one can only measure the energy
differences). It is argued that in the given system the
infinities like that of the vacuum energy do matter.
First of all, we disagree with the above-mentioned

generally accepted statement. In condensed matter physics
the vacuum energy density participates in the thermody-
namics of the system together with the energy density of
matter. That is why we expect that the vacuum energy
density matters both in the Universe with gravity and in the
Universe without gravity (see the latter case in Ref. [2]).
When one tries to calculate the vacuum energy density or
the ground state energy density of condensed matter
systems summing the energies of fluctuations, one obtains
the divergent sum with the ultraviolet (UV) cutoff deter-
mined by the high-energy scale. In particle physics such
estimate suggests a huge value of the cosmological con-
stant. However, the condensed matter systems, where the
microscopic physics (the analog of the trans-Planckian
physics) is known, demonstrate that the divergent high-
energy contributions from zero point energies of quantum
field are cancelled by the microscopic (trans-Planckian)
degrees of freedom due to the thermodynamic identities.
If the same pattern is applicable to particle physics, and to
the Universe as a whole, then we are to treat the overall
volume of the Universe as variable. The variation over
volume demonstrates that the equilibrium is achieved when

the thermodynamic potential vanishes, which is equal to the
cosmological constant (see [3] and recent review [4]).
Within this approach it is natural to assume that we live
near the equilibrium. Therefore, the total vacuum energy
density with all contributions taken into account should
be very close to zero. This provides the cancellation of the
main UV divergent terms in the known low energy theory
by something coming from the unknown high energy
theory. As a result only a small fraction of the vacuum
energy density remains that is comparable with the
observed value of the cosmological constant. This cosmo-
logical constant gives rise to the accelerated expansion of
the Universe. The latter expansion should be understood as
the small deviation of the Unverse from equilibrium.
Next, we analyze the model discussed in Ref. [1].

This model operates with the massive oscillator moving
along its world line and interacting with the scalar field.
The world line fluctuates, and its fluctuations are to be
defined in accordance with the action functional of the
moving oscillator. We reformulate this model in a standard
way in terms of the quantum field of the moving oscillator.
This allows to calculate the renormalization of mass for the
given object due to the interaction with the scalar field
using the standard perturbation theory. The obtained
infinity is the result of the unrealistic approximation made
in the model: the mirror is assumed to be infinitely thin and
is approximated by the δ-function. The finite thickness R of
any realistic mirror provides the physical UV cutoff to the
logarithmically divergent integral, EUV ∼ ℏc=R. In many
respects the mirror moving in the quantum vacuum is
similar to the impurity moving in the condensed matter
“vacuum,” such as the Fröhlich polaron (electron moving in
the vacuum of the phonon quantum field; see review [5]),
the Bose polaron (impurity moving in a Bose-Einstein
condensate; see Ref. [6] and references therein), a polaron
in fermionic “vacuum” (see recent review [7]), and a
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gravitational polaron (see Ref. [8]), etc. However, the
model discussed in Ref. [1] has a peculiar property: the
interaction between the oscillator and the scalar field is
proportional to the time derivative. This is the source of
the logarithmically divergent positive contribution to the
polaron energy, which adds to the regular negative con-
tribution in the conventional polaron problem and thus
reverses the sign of the correction to the mirror mass.

II. NONRELATIVISTIC MOVING OSCILLATOR

A. Fröhlich-like description of moving oscillator

Throughout the text we adopt the system of units
with c ¼ ℏ ¼ 1.
In this section we assume that the thickness of the mirror

exceeds its Compton length, R ≫ 1=M, where M is the
bare mass of the mirror. The classical action for the mirror
interacting with the oscillator bound to the mirror and with
the massless scalar field can be written in the following
form (see Eq. (A1) of Ref. [1]):

S ¼ M
2

Z
dt_y2ðtÞ þ 1

2

Z
dxdt½ð∂tϕÞ2 − ð∂xϕÞ2�

þ 1

2

Z
dtð _q2ðtÞ −Ω2q2ðtÞ − 2ϵ _qðtÞϕðy½t�; tÞÞ: ð1Þ

Here yðtÞ is the coordinate of a mirror, qðtÞ is the variable
of the oscillator, and ϕðx; tÞ is the 1þ 1-dimensional scalar
field. Here for simplicity we assume that the bare mass M
of the mirror is much larger than the ultraviolet cutoff, so
that its motion can be considered in the nonrelativistic
approximation.
The problem of the mirror moving in the quantum

vacuum is in many respects similar to the polaron problem
in condensed matter: a single particle interacting with the
quantum field of phonons or another bosonic field. As
distinct from the conventional polaron problem, in the
mirror problem in Ref. [1] the interaction with the scalar
field is mediated by the oscillator. The quantization of the
classical action Eq. (1) gives rise to the following polar-
oniclike Hamiltonian:

H ¼ −
∇2

2M
þΩ

�
bþbþ 1

2

�
þ
X
q

ωðqÞcþq cqþ ð2Þ

þ ϵ
X
q

ffiffiffiffi
Ω

p

2
ffiffiffiffiffiffiffiffiffiffi
ωðqÞp ðb − bþÞðcq þ cþ−qÞieiqxþ ð3Þ

þ
X
q;q0

ϵ2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðqÞωðq0Þp ðcq þ cþ−qÞðcþq0 þ c−q0 Þ

× eiðq−q0Þx: ð4Þ

Here bþ ¼ ffiffiffiffiffiffiffiffiffi
Ω=2

p ðq − 1
Ω ∂qÞ is the creation operator for

the oscillator quanta; the second order in the ϵ term in

Eq. (4) is 1
2
ϵ2ϕ2. It appears due to the transformation

H ¼ L − _q∂L=∂ _q from the Lagrangian description in
terms of velocity _q to the Hamiltonian description in terms
of momentum p ¼ _q − ϵϕ ¼ −i∂q.

B. Effective mass of the mirror

In case of a mirror one has two ϵ2 contributions: from
the second-order perturbation theory in Eq. (3) with Vq ¼
ϵ

ffiffiffi
Ω

p

2
ffiffiffiffiffiffiffi
ωðqÞ

p ðb − bþÞ,

ΔE1 ¼ −
X
q

hVþ
q Vqi

Ωþ ωðqÞ þ q2

2M

¼ −
ϵ2Ω
4π

Z
∞

0

dq
ωðqÞ

1

Ωþ ωðqÞ þ q2

2M

; ð5Þ

and from the first-order perturbation theory for perturbation
in Eq. (4):

ΔE2 ¼
1

2
ϵ2hϕ2i ¼ ϵ2

4π

Z
∞

0

dq
ωðqÞ : ð6Þ

The negative term Eq. (5) corresponds to the conventional
correction to the polaronic energy, but now the excited
state includes also the first excited level of the oscillator.
The positive term Eq. (6) follows from the dependence of
the interaction on the time derivative _q.
Thus the total mass of the mirror in the second-order

approximation in ϵ is

Meff ¼ M þ Ω
2
þ ϵ2

Z
∞

0

dq
4πωðqÞ

 
1 −

Ω
Ωþ ωðqÞ þ q2

2M

!

ð7Þ
In case of a large bare mass of mirrorM ≫ Ω ≫ ϵ2 and for
ωðqÞ ¼ q, the effective mass of the mirror is:

Meff ¼ M þ Ω
2
þ ϵ2

4π
ln
EUV

Ω
; ð8Þ

where EUV is the UV cutoff. We consider the relativistic
spectrum ωðqÞ ¼ q of the scalar field, but the nonrelativ-
istic limit for the mirror, i.e., the condition q2=2M ≪
q ≪ M. This means that Eq. (8) is valid if

M ≫ EUV ≫ Ω ≫ ϵ2: ð9Þ
Equation (8) coincides with Eq. (111) in Ref. [1] in the limit
Ω ≫ ϵ2 with logarithmic accuracy. The nonlogarithmic
difference of the order of ϵ2 between the results can be
attributed to the fact that we considered the quantum limit
for the oscillator. In Ref. [1] the classical equation for the
oscillator variable has been used, which is more appropriate
in the limit Ω ≪ ϵ2. In this limit Eq. (111) in Ref. [1]
gives Meff ¼ M þ ϵ2

4π ln
EUV
ϵ2
.
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The strong localization of the oscillator in space causes
the UV divergence at k → ∞. To cure this divergence one
should consider the more realistic smeared interaction
ϵUnrðxÞ between the mirror and the scalar field instead
of the sharp interaction ϵδðxÞ in Ref. [1]. The form factor
UnrðxÞ is localized at the finite distances ∼R, which
corresponds to the finite width of the mirror. This will
be done rigorously in Sec. III. As a result we come to
Eq. (8) with the cut off provided by the characteristic length
scale of the potential UnrðxÞ, i.e., EUV ∼ 1=R.

III. RELATIVISTIC MOVING OSCILLATOR

A. Field—theoretical description

Let us start from the action given in [1] for the moving
oscillator with mass M moving along the trajectory y½τ�,
where τ is the proper time. The field—theoretical descrip-
tion for this moving object gives the partition function

Z1¼
Z

Dy½τ�Dq½τ�exp
�
i
Z

dτ

�
−Mþ1

2
_q2ðτÞ−Ω2

2
q2ðτÞ

�

− iϵ
Z

_qðτÞϕðyðτÞÞdτ
�
; ð10Þ

where the integral is over the world trajectory of the particle
y and over the oscillator coordinates q. Let us first work out
the integral over q. We introduce the annihilation operator

a ¼
ffiffiffiffi
Ω
2

r �
qþ 1

Ω
d
dq

�
. ð11Þ

Also we introduce the operators N̂ ¼ aþa and
P̂ ¼ iða − aþÞ, and the dimensionless constant
ϵ̂ ¼ ϵ=

ffiffiffiffiffiffi
2Ω

p
. The standard methods allow to rewrite

Z1 ¼
Z

DyðτÞTrP × exp

�
−i
Z

dτðM

þ ΩðN̂ þ 1=2 − ϵ̂ P̂ϕðyðτÞÞ þ ϵ̂2ϕ2ðyðτÞÞÞ
�
. ð12Þ

Now partition function Z1 describes the particle with the
internal discrete degree of freedom n ¼ 0; 1; 2;…. We
define mass of the moving oscillator at the ground level
j0i: ~M ¼ M þ Ω=2. It takes into account the contribution
of the oscillator with n ¼ 0. The corresponding relativistic
field theory is described by the multicomponent spinor Ψa,
a ¼ 0; 1; 2;…. If the given particle is fermionic, the
corresponding partition function receives the form

Z ¼
Z

DΨ̄ðx; tÞDΨðx; tÞDϕðx; tÞ

× exp

�
i
2

Z
dxdt½ð∂tϕÞ2 − ð∂xϕÞ2�

þ i
Z

dxdtΨ̄½i∂kγ
k − ~M

−ΩðN̂ − ϵ̂ P̂ϕðxÞ þ ϵ̂2ϕ2ðxÞÞ�Ψ
�
: ð13Þ

Here the sum is over k ¼ 0; 1, and γ0 ¼ σ1; γ1 ¼ iσ2. The
Grassmann variable Ψ is multicomponent. In practice we
may consider the K component spinor with K ≫ 1.
Coupling constant in this theory is dimensionless.
Therefore, the divergences are at most logarithmic.
To check that Eq. (10) indeed corresponds to the

second—quantized system with partition function of
Eq. (13) let us come to the latter formulation by an
alternative way. Namely, let us shift the derivative over τ
in the term _qðτÞϕðy½τ�Þ of Eq. (10) to ϕ: _qðτÞϕðy½τ�Þ →
−qðτÞ d

dτ ϕðy½τ�Þ. The second-quantized version of the
theory for this action looks different from that of given
by Eq. (13). It gives the following partition function

Z¼
Z

DΨ̄ðx; tÞDΨðx; tÞDϕðx;tÞ

×exp

�
i
2

Z
dxdt½ð∂tϕÞ2− ð∂xϕÞ2�

þ i
Z

dxdtΨ̄½ði∂k− ϵ̂∂kϕðxÞQ̂Þγk− ~M−ΩN̂�Ψ
�
: ð14Þ

This looks like the system of spinor field in the presence
of a very specific gauge field ϵ̂∂kϕðxÞQ̂. The action does
not contain the interaction term with the second power of
the field ϕ. However, one can prove that this system is
indeed equivalent to that of Eq. (13) using the following
gauge transformation:

ΨðxÞ → eiϵ̂ Q̂ϕðxÞΨðxÞ: ð15Þ

B. Mass of the moving oscillator

Here and below in this subsection we use Euclidean
formulation of the model, i.e., assume that the Wick
rotation is performed. The one-loop perturbation theory
relates the correction to the mass of the moving oscillator
ΔE with the self-energy function ΣðpÞ. Let us calculate this
function using the formulation of Eq. (13). We have
ΣðpÞ ¼ Σð2Þ þ Σð1Þ with

Σð1ÞðpÞ ≈ iϵ̂2Ω
Z

d2k
ð2πÞ2

1

k2
: ð16Þ
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This term corresponds to the one-loop diagram caused by
the term ϵ̂2ΩϕðxÞ2. The diagram originated from the term
ϵ̂2P̂2ϕðxÞϕðyÞ gives

Σð2ÞðpÞ ≈ − ϵ̂2Ω2

Z
d2k
ð2πÞ2

h0jP̂ 1

ðpþ kÞσ − i ~M − iΩN̂
P̂

1

k2
j0i: ð17Þ

Here j0i is the ground state of the oscillator. The
nonrelativistic limit was described in the previous section.
It may be obtained here if we suppose that the UV cutoff
Λ ≪ M. Then integration over k0 gives us the expressions
of Sect. II B with EUV ¼ Λ ¼ 1=R. Here we consider the
opposite limit, when the UV cutoff Λ ≫ M. Since near the
pole pσ − i ~M ∼ ϵ2, we may set p2 ¼ − ~M2 and neglect
the terms proportional to pσ − i ~M as these terms result in
the renormalization of the propagator and do not contribute
to the renormalized mass. The remaining terms are given by

Σ0ðpÞ ≈ iϵ̂2Ω
Z

d2k
ð2πÞ2k2

k2 þ ð2þ Ω
~M
ÞðkpÞ

ðpþ kÞ2 þ ð ~M þΩÞ2 ð18Þ

and are related to the correction to the renormalized mass
of the mirror MR as Σ0ði ~M; 0Þ ¼ iðMR − ~MÞ. The direct
calculation of the integral gives

MR ¼ M þ Ω=2þ ϵ2

4π
log

�
Λ
Ω
ζ

�
Ω

2M þΩ

��
: ð19Þ

Here

ζðxÞ ¼ 1

1þ 1
2x

�
1þ 1

4ðx2 þ xÞ
�

1þx
: ð20Þ

This function varies between 1 and 1=2. Therefore, at
Λ ≫ Ω we estimate

MR ≈ M þΩ=2þ ϵ2

4π
log

Λ
Ω

ð21Þ

for any relation between M and Ω. This coincides with the
nonrelativistic result of Eq. (8). However, in this case we
imply that

1

R
≫ M; Ω ≫ ϵ2: ð22Þ

This means that the thickness of the mirror Rmust be much
smaller than its Compton wavelength.

C. Regularization due to the finite size of the mirror

Let us introduce the form factor Uðt; xÞ to regularize the
UV divergence that comes form the original δ-functional

interaction between mirror and scalar field. The corre-
sponding action is given by

S¼1

2

Z
d2x½ð∂tϕÞ2−ð∂xϕÞ2�

þ
Z

d2xΨ̄½i∂kγ
k− ~M−ΩN̂�Ψ

þΩϵ̂
Z

d2xΨ̄ðxÞP̂ΨðxÞ
Z

d2zUðx−zÞϕðzÞ

−Ωϵ̂2
Z

d2xΨ̄ðxÞΨðxÞ
�Z

d2zUðx−zÞϕðzÞ
�

2

: ð23Þ

The model considered in Ref. [1] is restored in the infinitely
thin limit Uðx; tÞ ¼ δðxÞδðtÞ. One can see, that the effect of
the form factor U may be taken into account via the
renormalization of the scalar field propagator:

1

k2
→ UðkÞ 1

k2
Uð−kÞ: ð24Þ

Here UðkÞ ¼ Uðk0; k1Þ is the Fourier transform of Uðt; xÞ.
The limit of the infinitely thin mirror appears when
UðkÞ ¼ 1. In the nonrelativistic case we should consider
Uðt; xÞ ¼ UnrðxÞδðtÞ and assume, thatUnr is real valued. In
the general case of relativistic-invariant theory the situation
is more involved. The form factor U (that may be complex
valued) should depend on the invariant interval s2 ¼ t2 −
x2 and decreases fast at js2j → ∞.
In nonlocal relativistic quantum field theory the finite

size of the source may be taken into account using the form
factors in momentum space that depend on the invariant p2

(see [9] and references therein). At least for the static
sources of the finite size, such form factors indeed model
the field caused by the charge distributed over the finite
region of space. Below we consider the particular form of
U that is caused by the interaction with an intermediate
auxiliary field θ of mass Λ. A pointlike mirror emits/
absorbs one or two quanta of the field θ. The vertexes for
the emission/absorption of θ are the same as those for the
emission/absorption of ϕ in Eq. (13). The quanta of the
field θ may be transformed to the quanta of the field ϕ. We
know that the exchange by massive particles in field theory
describes the interaction that occurs at finite distances. This
finite distance may be evaluated as R ¼ 1=Λ. That’s why
we consider the exchange by massive particle as the device
for modeling the finite size of the mirror. This leads us to
the interpretation of U as the propagator of θ (up to the
normalization constant) while Eq. (23) is the effective
action of the theory obtained after the field θ is integrated
out. This results in the following form of the function UðkÞ
in momentum space:

UðkÞ ¼ −
Λ2

k2 − Λ2 þ i0
: ð25Þ
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The corresponding function Uðt; xÞ in 1þ 1-dimensional
coordinate space is expressed through the complex—
valued special functions. One can check, that the absolute
value of Uðt; xÞ falls sharply at jt2 − x2jΛ2 → ∞. For the
renormalized mass of the mirror we have

MR ¼ M þ Ω=2

þ ϵ̂2Ω
Z

d2k
ð2πÞ2k2UðkÞUð−kÞ k2 þ ð2þ Ω

~M
ÞðkpÞ

ðpþ kÞ2 þ ð ~M þ ΩÞ2 :

ð26Þ

Here the integral is over the Euclidean 2-momentum a k,
while UðkÞ ¼ 1

1þk2R2 is obtained from Uðk0; k1Þ by ana-
lytical continuation. Then one can easily derive (at
ΩR ≪ 1),

MR ≈ M þΩ=2þ ϵ2

4π
log

1

ΩR
: ð27Þ

IV. CONCLUSION

We suggest the description of the model for the 1þ 1-
dimensional mirror discussed in Ref. [1] that reveals its
analogy to polaron. We consider the field theory that
contains the multicomponent spinor field interacting with
the scalar field. This is the second quantized theory that
describes moving oscillator interacting with the scalar field.
Actually, this model may easily be formulated in the
spacetime of any dimension. Being defined in the 3þ 1-
dimensional spacetime it may have certain applications in
the high-energy physics if it is necessary to describe the
fermionic particle with an infinite (or large) number of
internal energy levels. (For example, in [10] it is suggested,
that such an internal degree of freedom marks the flavor of

the Standard Model fermion.) However, here we restrict
ourselves by the consideration of the 1þ 1-dimensional
case that exactly matches the model of [1]. In this case the
moving oscillator may be considered as a model of the
moving mirror.
We consider the two versions of the second-quantized

theory of the mirror. The two formulations are exactly
equivalent as follows from our analysis. The formulation of
Eq. (13) reveals the analogy with the usual polaron
problem. At the same time the formulation of Eq. (15)
contains the interaction of the mirror with the special gauge
field composed of the scalar excitations. We suppose that
this formulation may be useful for the further applications
of the developed formalism to various problems both in the
high energy physics and in the condensed matter physics.
We demonstrate that in the discussed model there

appears the extra term [Eqs. (6), (16)] in the energy
of the polaron, which is logarithmically divergent. This
extra term reverses the sign of the energy correction as
compared to the negative mass correction in the conven-
tional polaron problem. The obtained infinite value of the
mirror mass is the artifact of the model, which uses the
artificial δ-function potential. The logarithmically diver-
gent integral is regularized by any realistic potential which
provides the natural UV cutoff. In this mirror-polaron
problem, the UV divergence is the physical effect, while
different magnitudes EUV of the UV cutoff reflect differ-
ent physical mechanisms.
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