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We construct a string-inspired model for the central production of η and η0 mesons in proton-proton
collisions via double Pomeron exchange. Using general symmetry considerations, we construct a low-
energy differential cross section for double glueball exchange in terms of some undetermined coupling
constants and form factors. We extend this model to the Regge regime, replacing the glueball propagators
with Pomeron trajectories and modifying the interaction term by a factor derived from the five-string
scattering amplitude in flat space. We then fix the couplings which remain undetermined, using the Sakai–
Sugimoto framework to model low-energy QCD. Finally, we generate a simulation of the scattering process
at

ffiffiffi
s

p ¼ 29.1 GeV, where double Pomeron exchange should play a role (secondary to double Reggeon
exchange). We focus on the dependence of the scattering cross section on θ34, the angle between the
scattered protons in the transverse plane. The results exhibit a definite deviation from the pure sin2θ34
dependence that arises as a consequence of natural parity violation alone. The amount of deviation is
primarily determined by couplings that come from the Chern–Simons action of the anti-de Sitter/QCD
supergravity dual, which is directly related to the QCD gravitational anomaly, and thus constitutes a
universal part of any five-dimensional string/gravity dual theory of QCD. We argue that this makes the
high-energy central production of pseudoscalar mesons an interesting probe of anti-de Sitter/QCD models.
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I. INTRODUCTION

Over the past ten years, gauge-string duality has found
fruitful application in the realm of strongly coupled systems,
from low-energy QCD to superconductors. The connection
between string theory and QCD is far older, however. It dates
back to the days of Regge theory, when string theories were
constructed in order to describe hadronic spectra and
hadronic scattering at high center-of-mass energy s and
small momentum transfer t (the Regge regime) [1,2]. To
good approximation, the masses of mesons and baryons lie
on linear trajectories—Regge trajectories—with particle spin
J related to the mass m as J ¼ α0 þ α0m2. String theories
generate precisely such a spectrum. Meanwhile, scattering
events at small t should be governed by the exchange of
hadrons. In the Regge regime, hadrons of arbitrarily high
spin contribute to the process, so the entire Regge trajectory
should be taken into account. The mediating hadron can be
replaced by a “Reggeon,”which couples like the lowest state
on the exchanged trajectory. The Veneziano amplitude, now
known to describe the scattering of strings in flat space, was
first proposed as a phenomenological model for the scatter-
ing of hadrons in the Regge limit.
The old idea of treating Reggeons as flat-space strings

captures many qualitative features but fails to accurately
describe the observed Regge trajectories and scattering

processes. It may yet find new life in gauge-string duality,
whereby certain gauge theories (like QCD) are mapped
onto string theories in higher-dimensional curved space-
times. Regge regime hadronic scattering can thus be
translated to the holographic dual, where hadronic scatter-
ing is quite literally string scattering—but in a curved five-
dimensional space.
Consider, for example, the behavior of proton-proton or

proton-antiproton scattering in the Regge regime. Since
the cross sections behave similarly at very large s, the
exchanged object should be insensitive to the charges of the
scattered (anti)protons.1 The exchanged trajectory thus has
vacuum quantum numbers and is known as the Pomeron.
The lightest particle on the Pomeron trajectory is widely
believed to be a JPC ¼ 2þþ glueball.2 Since the Pomeron
consists of even spin glueballs, its holographic dual should
be a closed string [7,8]. The Pomeron was first identified in
a holographic context in Ref. [12] as the Regge trajectory of
string states in an asymptotically anti-de Sitter (aAdS)
space, the lowest state of which is the graviton. This means
that hadron scattering mediated by Pomeron exchange

1At smaller s, the exchange of mesonic trajectories also
contributes.

2Though there are some arguments in the literature that it may
in fact be a vector particle [3–6].
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should be equivalent to closed-string scattering in the
holographic dual. Though such amplitudes are difficult
to calculate exactly, one can model the interactions of the
lowest modes on the Regge trajectories in the supergravity
limit of gauge-string models and then extend the results for
these lowest-energy states to the Regge regime.
Although no known holographic dual model perfectly

reproduces all relevant features of low-energy QCD, several
reasonable toymodels exist. The Sakai–Sugimoto model, for
instance, consists of Nf D8 and D8 branes in the warped
gravitational background generated byNc D4-branes [9] (for
large Nc). The open strings on the D-branes are dual to
mesons, while the closed strings living in the bulk are dual to
glueballs. Despite some important limitations, the masses of
mesons and some glueballs computed in this framework
have been found to match experimental and lattice results
with reasonable accuracy [10,13,14].
It is interesting and important, then, to extend the results

of low-energy holographic duals to modeling the scattering
processes of baryons and mesons in the Regge limit.
Glueball scattering (in the Regge limit and beyond) was
studied in Ref. [11]. Meanwhile, Ref. [17] proposed a more
phenomenological approach for studying proton-(anti)pro-
ton scattering holographically, relying on the assumption
that string scattering in weakly curved backgrounds should
roughly take the same form as flat-space string scattering.
First, Ref. [17] computed the amplitude for holographic
proton-proton scattering via spin-2 glueball exchange from
the supergravity limit of the Sakai–Sugimoto model. They
then used the structure of the flat-space Virasoro–Shapiro
amplitude to model the full Pomeron propagator and
substituted this propagator for the glueball propagators
in the proton-proton scattering amplitude. We call this
procedure “Reggeizing” the amplitude—in other words,
extending the low-energy result to the Regge regime. The
slope and intercept of the Pomeron trajectory were left as
free parameters in this procedure, as these should differ
from their flat-space values. The result of Ref. [17]’s
procedure was a phenomenological model for high-energy
scattering which could be directly compared with data.
In this work, we use similar techniques to model the

double-Pomeron-mediated central production of η and η0
mesons in Regge-regime proton-proton scattering. We begin
by determining the differential cross section for the central
production of a pseudoscalar meson via the exchange of
spin-2 particles. This process violates natural parity. In
anti-de Sitter (AdS)/QCD, natural-parity-violating couplings
arise from bulk Chern–Simons terms present in all D-brane
constructions which yield QCD in the low-energy limit.
These terms are responsible for reproducing the gravita-
tional (and chiral) anomalies of QCD.3 Since the coefficients

of these terms are fully fixed—from supergravity and field
theory—their inclusion in an AdS/QCD model does not
increase the number of free parameters, and is furthermore
relatively model independent.
After computing the low-energy amplitude, we use

the form of a five (closed) string amplitude to motivate
the “Reggeization” of the process. This does not lead
to the same prediction as separately Reggeizing each
glueball propagator, as was done in Ref. [18]. Our
treatment is based on an analysis of central production
of particles by double Pomeron exchange in the string
dual [19,20], where it was demonstrated that the
behavior of the scattering amplitude depends on the
mass of the centrally produced particle. We will see that
the relatively light mass of the pseudoscalar meson we
are considering strongly affects how the glueball propa-
gators should be Reggeized. We finish by generating a
Monte Carlo simulation of η=η0 central production atffiffiffi
s

p ¼ 29.1 GeV. We choose this energy to facilitate
comparison with the WA-102 experiment [25]. It is
important to note that double Pomeron exchange only
accounts for a small part of η and η0 production in this
regime, with significant contributions coming from
double Reggeon exchange. However, double Pomeron
exchange dominates at much higher energies, and there
our model, as it stands, should represent a reasonable
approximation.
The central ingredients of our construction yield clear

experimental signatures to distinguish them from other
approaches, thus providing a powerful check of its
underlying principles. First of all, treating the Pomeron
as a trajectory of even spin glueballs implies a particular
class of couplings, which would not be present if the
lowest state were a vectorlike particle. The effects of this
distinction are apparent in the form of the differential
cross sections.
In addition, because the Pomeron should be flavor

neutral, the Pomeron-Pomeron-pseudoscalar interaction
exclusively involves the flavor singlet pseudoscalar meson,
which we will call η0. The couplings to η and η0 mesons are
generated using the mixing angle with the flavor singlet. As
pions can only be centrally produced by exchanging two
mesonic Regge trajectories (Reggeons), the sole production
of η and η0 becomes a unique signature for double Pomeron
processes.
Furthermore, the coefficient of the bulk gauge-gravity

Chern–Simons term which generates our coupling is
uniquely fixed by requiring consistency of the supergravity
theory on one side of the duality and by the gravitational
anomaly on the other. This makes our predictions relatively
model independent, though explicit predictions for the
glueball-glueball-meson couplings do require us to choose
a particular holographic QCD dual.
Finally, the Reggeization procedure based on the five-

string amplitude has a clear experimental signature distinct

3Recall that gauge-gravity duality equates the classical super-
gravity theory in curved space with the fully quantum flat-space
field theory (at large ’t Hooft coupling and large NC).

ANDERSON et al. PHYSICAL REVIEW D 90, 086010 (2014)

086010-2



from the naive Reggeization of individual graviton propa-
gators. All of this suggests that comparison to experiment,
either by supplementing these calculations with those for
double Reggeon exchange or by considering experiments
run at higher center-of-mass energy, may yield significant
new insights.4

The body of this work begins in Sec. II, where we
calculate the cross section for central production of η or η0
via t-channel glueball exchange in the Regge limit. In
Sec. III we discuss the five-string flat-space amplitude and
describe the Reggeization of our differential cross section.
In Sec. IV we compute the necessary low-energy couplings
in the Sakai–Sugimoto model. In Sec. V, we present the
results of a Monte Carlo simulation for our model. Finally,
we discuss the results and suggest some future work in
Sec. VI. A detailed description of the kinematics and phase
space of 2 → 3 scattering in the Regge limit is provided in
the Appendix.

II. FEYNMAN AMPLITUDE AND THE
CROSS SECTION

In the Regge limit, production of η and η0 mesons in
proton-proton scattering is dominated by processes involv-
ing the t-channel exchange of Pomerons. We begin by
reviewing the kinematics and phase space of 2 → 3
scattering and the implications of the Regge limit for this
process. We then compute the amplitude and cross section
for producing η or η0 mesons via t-channel double glueball
exchange in proton-proton scattering. Because the glueball
is flavor neutral, it only couples to the flavor singlet in the
pseudoscalar meson nonet. We therefore use the mixing
angle to determine the relationship between η and η0
production.

A. Kinematics and phase space of 2 → 3 scattering
in the Regge limit

Consider a 2 → 3 central production process: there are
two incoming protons with momenta p1 and p2, two
outgoing protons with momenta p3 and p4, and one
outgoing pseudoscalar meson with momentum p5, shown
in Fig. 1. The mass-shell conditions (with a mostly plus
metric) are

p2
1 ¼ p2

2 ¼ p2
3 ¼ p2

4 ¼ −m2
p; p2

5 ¼ −m2
5; ð1Þ

where mp is the mass of the proton and m5 is the mass of
either the η or the η0 particle. In addition, conservation of
four-momentum yields

p1 þ p2 ¼ p3 þ p4 þ p5: ð2Þ

To make calculations more convenient, we can define five
Mandelstam variables,

s ¼ −ðp1 þ p2Þ2; t1 ¼ −ðp1 − p3Þ2;
t2 ¼ −ðp2 − p4Þ2; s1 ¼ −ðp3 þ p5Þ2;
s2 ¼ −ðp4 þ p5Þ2:

ð3Þ

We will assume the initial protons’ momenta are equal and
opposite, aligned along the z axis, so that we can write the
five four-momenta as

p1 ¼ ðE; 0; 0; pÞ; p2 ¼ ðE; 0; 0;−pÞ;
p3 ¼ ðE3;q3; p3zÞ; p4 ¼ ðE4;q4; p4zÞ;
p5 ¼ ðE5;q5; p5zÞ:

ð4Þ

There are five independent kinematic variables determining
the outgoing particles’ momenta. However, the azimuthal
symmetry of the initial states ensures that the final states
will only depend on four. We will use t1 and t2 as two of
these variables. A third will be the angle θ34 between the
transverse portions of momentum for the outgoing protons,
defined as

q3 ¼ ðq3 cosθ3; q3 sinθ3Þ; q4 ¼ ðq4 cosθ4; q4 sinθ4Þ;
θ34 ¼ θ4 − θ3: ð5Þ

The fourth will be xF, the difference between the fractions
of initial longitudinal momentum carried by the outgoing
protons, defined as

p3z ¼ x1p; p4z ¼ −x2p; xF ¼ x1 − x2: ð6Þ

In the Regge limit, where the center-of-mass energy is large
and the scattering angles of the two protons are small, we
will have s ≫ s1, s2 ≫ t1, t2, m2 (where m could be the
mass of any of the particles involved). We also assume that
the quantity

μ ¼ s1s2
s

ð7Þ

FIG. 1. The kinematics of 2 → 3 central production.

4Measuring the exclusive production of pseudoscalar mesons
at the multi-TeV scale would be very difficult, though perhaps not
impossible.
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remains fixed in the Regge limit, and of magnitude
comparable to t1, t2 or m2 for any of the involved masses.5

In Appendix A, we analyze the kinematics and phase space
in the Regge limit. We find that the phase space is
dominated by the region near xF ¼ 0 and that we can
write the total cross section as

σ ≈
1

4ð4πÞ4s2
Z

hjAj2i ln
�
s
μ

�
dθ34dt1dt2; ð8Þ

where the spin-averaged amplitude squared hjAj2i is
evaluated in the Regge limit at xF ¼ 0. In this limit, we
also have

μ ≈m2
5 − t1 − t2 þ 2

ffiffiffiffiffiffiffi
t1t2

p
cos θ34; s1 ≈ s2 ≈

ffiffiffiffiffi
sμ

p
;

q3 ≈
ffiffiffiffiffiffiffi
−t1

p
; q4 ≈

ffiffiffiffiffiffiffi
−t2

p
: ð9Þ

B. Feynman amplitude

The Feynman diagram we need to compute is shown in
Fig. 2. It involves the propagator for the glueball, a massive
spin-2 object (see e.g. Ref. [21]),

DμρνσðkÞ ¼
idμρνσðkÞ
k2 þm2

g
; ð10Þ

with

dμρνσðkÞ ¼
1

2
ðημνηρσ þ ημσηρνÞ

þ 1

2m2
g
ðkμkσηρν þ kμkνηρσ þ kρkσημν þ kρkνημσÞ

þ 1

24

��
k2

m2
g

�
2

þ 3

�
k2

m2
g

�
− 6

�
ημρηνσ

−
ðk2 þ 3m2

gÞ
6m4

g
ðkμkρηνσ þ kνkσημρÞ þ

2kμkρkνkσ
3m4

g
;

ð11Þ

where k could be either k1 or k2 and mg is the mass of the
glueball. We will see that, due to the structure of the
vertices, only the first term in this expression contributes.
We also need two vertices: a proton-proton-glueball vertex
and a glueball-glueball-pseudoscalar vertex.
We assume that the glueball couples primarily to the

stress-energy tensor of the protons, as inspired by the idea
of tensor meson dominance [22,23]. In this case, the
proton-proton-glueball vertex can be written as

Γμρ ¼ λP

�
AðtÞ
2

ðγμPρ þ γρPμÞ

þ BðtÞ
8mp

ðPμ½γρ; γν� þ Pρ½γμ; γν�Þkν

−
CðtÞ
mp

ðημρtþ kμkρÞ
�
; ð12Þ

with k ¼ p − q and P ¼ ðpþ qÞ=2. The form factors A, B,
C are then derived from the energy-momentum tensor,
which implies that Að0Þ ¼ 1 and Bð0Þ ¼ 0 [24]. In our
amplitude, the term proportional to CðtÞwill not contribute;
it vanishes when contracted through the glueball propagator
with the natural-parity-violating central vertex. We also
drop terms proportional to BðtÞ, as BðtÞ is small and slowly
varying near t ¼ 0, where the amplitude is largest. This is
supported by calculations in the Sakai–Sugimoto model, as
discussed in Ref. [17].
Meanwhile, the glueball-glueball-pseudoscalar vertex is

Vαϵβϕ ¼ ½G1ðt1; t2Þηϵϕ þG2ðt1; t2Þkϵ2kϕ1 �εαβγδk1γk2δ; ð13Þ

with

k1 ¼ p1 − p3; k2 ¼ p2 − p4: ð14Þ
The structures appearing here are the only ones allowed
by the symmetries of the strong force: parity and charge
conjugation in addition to Lorentz symmetry. Note the
presence of the natural-parity-violating epsilon tensor,
which on the gravity side of the duality arises from the
Chern–Simons interaction. We will eventually take the
as-yet-arbitrary factors G1 and G2 from the Sakai–
Sugimoto model, along with the coupling constant λP
and the form factor AðtÞ of the proton-proton-glueball
vertex.
The full amplitude for central production of pseudosca-

lars in double glueball exchange processes is thus

A ¼ ðū3Γμρu1ÞDμραϵVαϵβϕDνσβϕðū4Γνσu2Þ: ð15Þ

FIG. 2. The Feynman amplitude for the central production
process.

5In the literature this parameter is generally known as η; we
have renamed it to avoid confusion with the η and η0 mesons.
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Using the Dirac equation along with the structures of the propagator and vertices [and dropping terms proportional to BðtÞ],
we can rewrite this as

A ¼ λ2PAðt1ÞAðt2Þ½G1ðt1; t2Þηϵϕ þ G2ðt1; t2Þkϵ2kϕ1 �εαβγδk1γk2δ
4ðt1 −m2

gÞðt2 −m2
gÞ

½ū3ðγαP1ϵ þ γϵP1αÞu1�½ū4ðγβP2ϕ þ γϕP2βÞu2�; ð16Þ

with

P1 ¼
p1 þ p3

2
; P2 ¼

p2 þ p4

2
: ð17Þ

C. Differential cross section

To find the differential cross section, we now compute hjAj2i, averaging over spins for the incoming protons and
summing over the spins of the outgoing protons. We find

hjAj2i ¼ 1

4

X
spins

jAj2

¼ 16λ4PAðt1Þ2Aðt2Þ2½G1ðt1; t2Þηϵϕ þ G2ðt1; t2Þkϵ2kϕ1 �½G1ðt1; t2Þηef þ G2ðt1; t2Þke2kf1 �εαβγδεabcdk1γk2δk1ck2d
ðt1 −m2

gÞ2ðt2 −m2
gÞ2

×

�
P1αP1ϵP1aP1e −

1

16
ðt1ηαaP1ϵP1e þ t1ηαeP1ϵP1a þ t1ηϵaP1αP1e þ ðt1ηϵe þ k1ϵk1eÞP1αP1aÞ

�

×

�
P2βP2ϕP2bP2f −

1

16
ðt2ηβbP2ϕP2f þ t2ηβfP2ϕP2b þ t2ηϕbP2βP2f þ ðt2ηϕf þ k2ϕk2fÞP2βP2bÞ

�
: ð18Þ

The last two kinematic multiplicative terms come from
expanding the traces over gamma matrices associated with
the proton-proton-glueball vertices. In each one, only the
first term (proportional to P4

1;2) contributes in the Regge
limit. This allows for great simplification, leaving us with

hjAj2i

¼ λ4PAðt1Þ2Aðt2Þ2s4t1t2ð2G1½t1; t2�− μG2½t1; t2�Þ2sin2θ34
4ðt1 −m2

gÞ2ðt2 −m2
gÞ2

:

ð19Þ

Combining this result with the expression for the total cross
section in Eq. (8) yields the differential cross section

dσ
dt1dt2dθ34

¼
�
λP
8π

�
4

ln

�
s
μ

�

×
Aðt1Þ2Aðt2Þ2s2t1t2ð2G1½t1; t2�− μG2½t1; t2�Þ2sin2θ34

ðt1 −m2
gÞ2ðt2 −m2

gÞ2
:

ð20Þ

Perhaps the most interesting aspect of this result is the
dependence on the angle θ34. The factor of sin2 θ34 arises

directly from the contraction with the epsilon tensor and
is therefore a simple consequence of breaking natural
parity. However, there is an additional possible depend-
ence on θ34 in the factor μ, which arises from the vertex
structure. At lower energies this process should be
dominated by the double exchange of vector particles,
where this additional structure does not occur. Lower-
energy data, such as that of the WA102 collaboration atffiffiffi
s

p ¼ 29.1 GeV, show no evidence of any angular
dependence other than the overall sin2θ34 [25,26], which
is consistent with the idea that at these energies we
expect the exchange of Reggeons to play a larger role in
the process. At higher energies, the amount that the
sin2 θ34 dependence is modified will be determined by
the relative values of G1 and G2, which we will compute
using the Sakai–Sugimoto model in Sec. IV.
Finally, we need to relate this expression to the pro-

duction of η and η0 mesons. The glueballs are flavor neutral
and thus should only couple to the flavor singlet pseudo-
scalar η0. This is a linear combination of η and η0, using the
mixing angle θ ¼ −15.2°� 0.5°:

jη0i ¼ − sin θjηi þ cos θjη0i: ð21Þ

Equation (20) gives the result for production of η0, and
therefore the results for the production of η and η0 should be
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dση
dt1dt2dθ34

¼ sin2θ

�
λP
8π

�
4

ln

�
s
μ

�
Aðt1Þ2Aðt2Þ2s2t1t2ð2G1½t1; t2� − μG2½t1; t2�Þ2sin2θ34

ðt1 −m2
gÞ2ðt2 −m2

gÞ2
ð22Þ

and

dση0

dt1dt2dθ34
¼ cos2θ

�
λP
8π

�
4

ln

�
s
μ

�
Aðt1Þ2Aðt2Þ2s2t1t2ð2G1½t1; t2� − μG2½t1; t2�Þ2sin2θ34

ðt1 −m2
gÞ2ðt2 −m2

gÞ2
: ð23Þ

The overall factor of sin2θ or cos2 θ is not the only way that
the production of η differs from the production of η0; the
differing masses of the η and η0 mesons also play a role, as
we shall see more clearly once we have properly Reggeized
the propagators and computed the factors G1 and G2.

III. REGGEIZING THE PROPAGATORS

In the high energy limit we Reggeize the glueball
propagators appearing in the differential cross section:
we replace them with Pomeron propagators. We use a
form motivated by the fact that Pomerons are dual to closed
strings. In Ref. [17], the amplitude for four-string scattering
in flat-space bosonic string theory was considered, assum-
ing that the amplitude in the curved space dual to QCD
retains the general structure of the flat-space amplitude, but
with values for parameters such as the trajectory’s slope and
intercept allowed to vary. We begin by reviewing that
treatment and then discuss the “naive” Reggeization of the
central production process, assuming we separately
Reggeize each of the propagators. We then examine the
behavior of the five-tachyon amplitude in bosonic string
theory, as developed in Ref. [19]. Finally, we propose a
modification of the naive Reggeization procedure moti-
vated by the five-string amplitude.
This procedure relies crucially on the assumption that the

curved space string scattering process involves amplitudes
which essentially have the same form as flat-space ampli-
tudes, with the entire effect of space-time curvature and extra
dimensions encapsulated in the Regge trajectory parameters,
which are left arbitrary. This is clearly an approximation; for
instance, it has been shown that long spinning strings receive
corrections to their Regge trajectories which are not linear in
J [15,16]. However, for weak space-time curvatures and
scattering processes essentially localized at a single radial
position in the holographic space, the assumption should be
sufficient to create a reasonable model.

A. Review of elastic proton-proton scattering

The starting point in analyzing proton-proton scattering
in Ref. [17] is the crossing-symmetric Virasoro–Shapiro
amplitude,

A¼ 2πC
Γ½−aðtÞ�Γ½−aðuÞ�Γ½−aðsÞ�

Γ½−aðsÞ− aðtÞ�Γ½−aðsÞ− aðuÞ�Γ½−aðtÞ− aðsÞ� ;

ð24Þ

as given in Ref. [27]. This is the expression for the
scattering of four closed-string tachyons, but it can be
modified to account for the external particles having
nonzero spin through the inclusion of a kinematic prefactor
with no poles or zeroes. Such a modification has no effect
on the procedure of Reggeization, so we ignore it in what
follows.
In bosonic string theory in flat space, we take aðxÞ ¼

1þ α0x
4
, so that the mass of the tachyon is m2

T ¼ − 4
α0. When

we use this as an Ansatz for glueball exchange in four-
proton scattering, we assume aðxÞ is a linear function
related to the glueball trajectory αcðxÞ ¼ αcð0Þ þ α0cx by

2þ 2aðxÞ ¼ αcðxÞ; ð25Þ

so that the lowest element on the trajectory [corresponding
to aðxÞ ¼ 0] is a spin-2 glueball with mass

m2
g ¼

2 − αcð0Þ
α0c

: ð26Þ

In replacing the dependence on uwith dependence on s and
t, a mass-shell parameter χ is introduced so that

aðsÞ þ aðtÞ þ aðuÞ≡ χ ¼ α0c
2
½4m2

p − 3m2
g�: ð27Þ

By then comparing the lowest t-channel pole with the
Regge limit of this expansion, we obtain the proposed
replacement in the Regge limit:

1

t −m2
g
⇒

α0cΓ½−χ�Γ½1 − αcðtÞ
2
�

2Γ½αcðtÞ
2

− 1 − χ�

�
−
iα0cs
2

�
αcðtÞ−2

: ð28Þ

The net effect of what we have done in moving from the
bosonic string theory result to the proposed Reggeization of
the glueball propagator is to introduce the factor χ (which in
bosonic string theory in flat space would be equal to −1)
and replace the bosonic trajectory aðxÞ ¼ 1þ α0x

4
with the

glueball trajectory, according to Eq. (25). This procedure
(and what follows in the analysis of the five-string
amplitude) has limitations. However, it has the advantage
of maintaining important features such as the crossing
symmetry and general Regge behavior of the Virasoro–
Shapiro amplitude, while allowing for some phenomeno-
logically motivated adjustments.
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B. Naive Reggeization

The naive Reggeization of the 2 → 3 scattering process
would involve simply replacing the two glueball propa-
gators in our amplitude according to Eq. (28). The result
would be

1

ðt1 −m2
gÞðt2 −m2

gÞ

⇒

�
α0c
2

�
2

Γ½−χ�2
�
−
iα0cs1
2

�
αcðt1Þ−2�

−
iα0cs2
2

�
αcðt2Þ−2

×
Γ½1 − αcðt1Þ

2
�Γ½1 − αcðt2Þ

2
�

Γ½αcðt1Þ
2

− 1 − χ�Γ½αcðt2Þ
2

− 1 − χ�
: ð29Þ

To insert this into the differential cross section, we must
compute its magnitude squared. At the same time, we will
make the Regge limit approximation s1 ≈ s2 ≈

ffiffiffiffiffi
sμ

p
. This

gives

1

ðt1 −m2
gÞ2ðt2 −m2

gÞ2

⇒
Γ½−χ�4
s4

�
2

α0cμ

�
4
�
α02c sμ
4

�
αcðt1Þþαcðt2Þ

×
Γ½1 − αcðt1Þ

2
�2Γ½1 − αcðt2Þ

2
�2

Γ½αcðt1Þ
2

− 1 − χ�2Γ½αcðt2Þ
2

− 1 − χ�2
: ð30Þ

It is interesting to note that this expression has a
significant dependence on the kinematic parameter μ.
This would be in addition to the dependence that arises
from the structure of the coupling. Phenomenologically,
this would complicate an experimental signature associated
with the angular (θ34) dependence of the scattering cross
section. It would also affect the ratio of the production of η
to η0 mesons (through dependence on the mass of the
centrally produced meson), which would otherwise be
governed almost entirely by the mixing angle.

C. Five-tachyon string amplitude in the Regge limit

Naive Reggeization does not take into account the fact
that in the dual picture we should be looking at a five-string
scattering amplitude. In bosonic string theory in flat space,
the five closed-string tachyon amplitude can be written

A ¼ C
Z

d2ud2vjuj−2aðt1Þ−2jvj−2aðt2Þ−2j1 − uj−2aðs1Þ−2

× j1 − uvj2aðs1Þþ2aðs2Þ−2aðsÞ−2; ð31Þ
where aðxÞ ¼ 1þ α0x

4
is the bosonic closed-string Regge

trajectory (again).6 This can be approximated in the Regge

regime in two different limits: α
0μ
4
large and α0μ

4
small [19]. In

the former scenario, we obtain

A ≈ 4π2C

�
−
iα0s1
4

�
2aðt1Þ�

−
iα0s2
4

�
2aðt2Þ

×
Γ½−aðt1Þ�Γ½−aðt2Þ�

Γ½aðt1Þ þ 1�Γ½aðt2Þ þ 1� : ð32Þ

This is essentially just the product of two separate Reggeized
propagators, which suggests “naive Reggeization.” On the
other hand, if we assume α0μ

4
is small, we obtain

A ≈ −4π2C
��

s
s2

�
2aðt1Þ�−iα0s2

4

�
2aðt2Þ

×
Γ½−aðt1Þ�Γ½aðt1Þ − aðt2Þ�

Γ½1þ aðt1Þ�Γ½1þ aðt2Þ − aðt1Þ�

þ
�
s
s1

�
2aðt2Þ�−iα0s1

4

�
2aðt1Þ

×
Γ½−aðt2Þ�Γ½aðt2Þ − aðt1Þ�

Γ½1þ aðt1Þ�Γ½1þ aðt1Þ − aðt2Þ�
�
: ð33Þ

This expression is somewhat more complicated than the
naive result. The value of μ, given in Eq. (7), is primarily
determined by the mass of the centrally produced meson:
μ ∼m2

5. Based on fitting to proton-proton scattering in

Ref. [17], we also know α0c ¼ 0.3 GeV−2. This gives α0cμ
2
∼

0.05 for central production of the η meson and α0cμ
2
∼ 0.14

for central production of the η0 meson. It is clearly more
reasonable to use the approximation that α

0
cμ
2
is small, which

is not consistent with naive Reggeization. We will therefore
use the form of the five-string amplitude as a guide to create
a modified Reggeization scheme for the glueball propa-
gators in central production processes.

D. Modified Reggeization

In analogy to the four-string procedure, we propose a
modified form of the Reggeized double glueball propagator
in the small α0cμ

2
limit as

1

ðt1 −m2
gÞðt2 −m2

gÞ

⇒

�
α0c
2

�
2

Γ½−χ�2
�
−
iα0cs
2

�
−2

×

��
s
s2

�
αcðt1Þ�−iα0cs2

2

�
αcðt2Þ

Wðt1; t2Þ

þ
�
s
s1

�
αcðt2Þ�−iα0cs1

2

�
αcðt1Þ

Wðt2; t1Þ
�
; ð34Þ

where we define

6This integral can be computed in closed form. However, we
will be content to take the Regge limit directly from the integral
form.
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Wðt1; t2Þ ¼
Γ½1 − αcðt1Þ

2
�Γ½αcðt1Þ

2
− αcðt2Þ

2
�

Γ½αcðt1Þ
2

− 1 − χ�Γ½αcðt2Þ
2

− αcðt1Þ
2

− χ�
: ð35Þ

Here, we maintain the same ratio of gamma functions, but
we modify the trajectory to be the glueball trajectory. This
creates the correct pole structure. We also introduce factors
of χ according to their appearance in Eq. (28). However, it
is not clear what value χ should assume. The value found in
Eq. (27) may not be appropriate here; if χ arises from mass-
shell relationships between Mandelstam variables, it should
surely depend on the mass of the centrally produced meson.
To determine the Reggeized double propagator formally,
we would need to rewrite the original five-string amplitude
in a form where the appropriate crossing symmetries are
manifest and then rewrite the expression in terms of the five
independent Mandelstam variables fs; s1; s2; t1; t2g, using
appropriate mass-shell relations. Nevertheless, changing
the value of χ mostly rescales the Reggeized double
propagator without significantly affecting its functional
form, provided it is negative and of order Oð1Þ. We will
therefore use the value given in Eq. (27) when simulating
central production in Sec. V.
As before, we now compute the magnitude squared

Reggeized propagators and insert s1 ≈ s2 ≈
ffiffiffiffiffi
sμ

p
, as dic-

tated by the Regge limit. This gives

1

ðt1 −m2
gÞ2ðt2−m2

gÞ2

⇒
Γ½−χ�4
s4

�
α0cs
2

�
αcðt1Þþαcðt2Þ

×

��
α0cμ
2

�
α0cðt2−t1Þ

W2ðt1; t2Þþ
�
α0cμ
2

�
α0cðt1−t2Þ

W2ðt2; t1Þ

þ 2cos

�
πα0cðt1− t2Þ

2

�
Wðt1; t2ÞWðt2; t1Þ

�
: ð36Þ

Again, we will focus on the dependence on the kinematic
factor μ: in this expression it appears only in the form

½α0cμ
2
��α0cðt2−t1Þ. The Reggeization suppresses values of t1 and

t2 that are significantly nonzero, and so this dependence on
μ is very weak, in contrast with what is implied by naive
Reggeization. Therefore, using the modified Reggeization
scheme, we should expect almost all of the θ34 dependence
to come from the structure of the glueball-glueball-
pseudoscalar vertex. Similarly, we do not expect signifi-
cant differences between the production of η vs the
production of η0 to arise from the Reggeized propagators
in this scheme, because there is no strong dependence on
m5. Thus, using a Reggeization motivated by the five-
string amplitude is not only more consistent with string
theoretic models and with the approximate value of α0cμ,
but it also leads to cleaner and more robust predictions for
the scattering behavior, making it easier to identify
experimentally.

IV. LOW-ENERGY COUPLINGS FROM
HOLOGRAPHIC QCD

The general structure of central production processes can
be determined from symmetry considerations and the
assumption that Regge-regime scattering is well modeled
by the exchange of Regge trajectories. However, the precise
structures and values of the couplings are model dependent.
Assuming that the coupling of a full Regge trajectory is
completely determined by the coupling of its lightest state,
we need only determine the coupling of the lightest state on
each trajectory via some low-energy QCD framework—in
this case, holographic QCD.
Holographic QCD (or AdS/QCD) relies on the conjec-

ture that there exists a gauge-string duality between QCD in
four dimensions and a five-dimensional theory of strings in
an aAdS space-time. In the limit of small AdS curvature
and small string coupling, the string theory reduces to
classical supergravity. This corresponds to the limit of
large λ ¼ Ncg2YM and large Nc in the gauge theory. One
can therefore study strongly coupled QCD in the large Nc,
large λ limit using solutions to the classical supergravity
equations of motion in aAdS space.
While the original AdS/CFT correspondence dealt with

conformal field theories having continuous spectra, by
making an appropriate choice of five-dimensional back-
ground geometry, one can produce a confining dual theory
with a discrete spectrum. Each supergravity field can be
decomposed in a Kaluza Klein-like tower of wave func-
tions dependent on the four-dimensional field theory’s
coordinates x and the fifth (“holographic”) coordinate U:
Φðx;UÞ ¼PnϕnðxÞφnðUÞ. Evaluating the supergravity
action on these solutions, we find an effective four-
dimensional Lagrangian with an infinite number of cou-
plings between the four-dimensional states ϕnðxÞ. These
states correspond to towers of mesons and glueballs, each
having the same quantum numbers but different masses.
In essence, the supergravity limit gives us the first state

on each of an infinite set of Regge trajectories: the lightest
mass modes give the first state on primary Regge trajecto-
ries, while the more massive states in the Kaluza–Klein
(KK) tower give states on the daughter trajectories. In the
supergravity limit, these are the only states we see, and
states which are higher up on these Regge trajectories have
infinite mass (so the Regge slopes are strictly zero). Of
course, this limit does not accurately represent real low-
energy QCD, in which no separation of scales exists
between the daughter trajectories and higher spin states.
For our purposes, it will be sufficient to consider the first

state on a few specific Regge trajectories regardless of the
value of λ, so this shortcoming of AdS/QCD frameworks
will not affect our analysis directly. Meanwhile, models of
holographic QCD have a great deal to offer. In particular,
the “top-down” versions of these models (like the Sakai–
Sugimoto framework [9] described below) have fewer free
parameters than generic phenomenological frameworks.
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Both bottom-up [29,30] and top-down [9] models have
been studied extensively in the low-energy regime, where
they produce impressive matching to experimental data
(e.g., meson masses, coupling constants, etc.) and to lattice
results. They also have the nice feature of incorporating
older phenomenological models (such as vector meson
dominance) as a natural consequence of their fifth or
holographic dimension.
At best, predictions based on holographic frameworks

can help evaluate the (heuristic) success of AdS/QCD
models. At worst, AdS/CFT provides phenomenological
Ansätze which may prove more successful than more
commonly used frameworks for fitting scattering data.
Model-independent checks are clearly the most interesting.
It is for this reason that we focus on central production of
the η, for which the low-energy coupling to glueballs is
fixed by general anomaly-cancellation arguments in string
theory (and the gravitational anomaly in QCD) and there-
fore depends relatively weakly on the details of the holo-
graphic model in question.
In this section we will describe the holographic QCD

predictions for the proton-proton-2þþ glueball and η=η0-2þþ
glueball couplings relevant to the central production of η=η0
in the Regge regime. We work exclusively in the well-
studied Sakai–Sugimoto model [9], which we now review.

A. Overview of the Sakai–Sugimoto model

The Sakai–Sugimoto model of Ref. [9] is a top-
down holographic QCD framework. In contrast to the
more phenomenologically oriented “bottom-up” models of
Refs. [29,30], the Sakai–Sugimoto model uses a D-brane
configuration in ten-dimensional supergravity to mimic the
most important features of low-energy QCD: confinement
and chiral symmetry breaking. A stack of Nc D4-branes
provides the color symmetry group; stacks of parallel Nf
D8- and D8-branes intersect the D4-branes along 3þ 1
directions, generating the chiral symmetry, UðNfÞL×
UðNfÞR. In the large Nc limit, we can replace the D4-
branes with the corresponding supergravity background,
which includes a Ramond–Ramond 3-form C3 and a
dilaton ϕ:

ds2 ¼ GMNdxMdxN ¼
�
U
R

�
3=2

ðημνdxμdxν þ fðUÞdτ2Þ

þ
�
U
R

�
−3=2

ðfðUÞ−1dU2 þ U2dΩ2
4Þ ð37Þ

eϕ ¼ gs

�
U
R

�
3=4

; F4 ¼ dC3 ¼
2πNc

V4

ϵ4;

fðUÞ≡ 1 −
U3

KK

U3
: ð38Þ

The coordinates xμ denote the flat “field theory” directions,
with μ ¼ 0, 1, 2, 3. R is the curvature, dΩ2

4 denotes the

metric on an S4 transverse to the branes, ϵ4 denotes its
volume form, and V4 ¼ 8π2=3 is the volume of a unit S4.
TheD4-branes wrap an S1 on finite radius (denoted by the τ
direction, with τ ∼ τ þ 2πM−1

KK). To avoid a conical singu-
larity, the radial coordinate U is bounded from below as
U ≥ UKK; this generates confinement in the field theory.
Antiperiodic boundary conditions on the fermionic super-
gravity modes, meanwhile, serve to fully break the super-
symmetry of the system.
It is useful to relate the inverse radius of the S1,MKK, the

asymptotic curvature R, open-string coupling gs and length
ls to parameters in the dual field theory:

MKK ¼ 3U1=2
KK

2R3=2 g2YM ¼ 2πMKKgsls

R3 ¼ πgsNcl3s ¼
g2YMNcl2s
2MKK

: ð39Þ

In the end, all of the physical observables for which we
make predictions can be expressed in terms of MKK and
gYM, which are thus the only free parameters of the model.
We will compute the ρ meson mass and the pion decay
constant in terms of the parameters MKK and gYM (detailed
below) and then use experimentally observed values for
these quantities (mρ ¼ 776 MeV, fπ ¼ 93 MeV)7 to fix
the model parameters.8 As computed in Ref. [9],

mρ ¼ 0.82MKK and f2π ¼
1

54π4
g2YMN

2
cM2

KK: ð40Þ

While somewhat greater accuracy could be achieved by
performing a global fit to all of the low-energy QCD data at
our disposal, we are in any case looking for rough estimates
for the computed parameters, as the results of AdS/QCD
are heuristic at best.
If we assume that Nf ≪ Nc, we can treat the D8 and D8

stacks as probe branes in the D4 background (that is, we
neglect their backreaction with the D4 geometry). The full
action for the system thus includes the background super-
gravity action Sgrav for closed-string modes, the Dirac-
Born-Infeld (DBI) action for the open-string modes on the
probe branes, SDBI, and the Ramond–Ramond action SRR,
which we discuss in the next subsection. Thus, we have

S ¼ Sgrav þ SDBI þ SRR; ð41Þ

7A previous version of this paper contained a typo in the value
of mρ in terms of MKK. This led to an incorrect value in the
Sakai–Sugimoto prediction for the η0 mass as well, now corrected
below. We thank Anton Rebhan and Frederik Bruenner for
pointing this out to us.

8In practice it will prove more convenient to express all
observables in terms of MKK ¼ 949 MeV and fπ (not gYM),
but this is just a matter of trivial algebraic manipulation.
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Sgrav

¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffi
−g

p �
e−2ϕðRþ 4ð∇ϕÞ2Þ− ð2πÞ4l2s

2 · 4!
F2
4

�
;

ð42Þ

SDBI ¼ −T8

Z
d9xe−ϕTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ð~gMN þ 2πα0FMNÞ

p
:

ð43Þ

Here κ10 is the ten-dimensional Newton constant, T8 ¼
ð2πÞ−8l−9s is the D8-brane tension, ~gMN is the pullback of
the background metric onto the D8-branes, and FMN ¼
∂MAN − ∂NAM − i½AM; AN � denotes the field strength of
UðNfÞ-valued gauge fields living on the branes. The traces
run over UðNfÞ indices, with normalization TrðTaTbÞ ¼
δab=2. We ignore any fluctuations along or dependence on
the S4 transverse to the xμ and U directions and can thus
simply integrate out the S4 to yield an effectively five-
dimensional action.
In this background, the D8 and D8-branes fill the xμ

and S4 directions, while joining together to form a single,
U-shaped stack having a nontrivial profile in the ðτ; UÞ
plane. This effectively breaks the chiral symmetry from
UðNfÞL ×UðNfÞR to UðNfÞV . One can find the profile
of the D8-branes—and thus the induced metric on the
branes—by extremizing the DBI action without gauge
field fluctuations (AM ¼ 0) in the D4 background. The
simplest possible configuration is given by constant

τðUÞ ¼ π
3
R

ffiffiffiffiffiffiffi
R

UKK

q
, where the D8 and D8 are located at

antipodal points along the x4 circle as U → ∞.
The Sakai–Sugimoto model works in the limit of zero

quark mass, so the breaking of chiral symmetry is entirely
due to the hq̄qi condensate. Since we work at high energies
overall, this a reasonable approximation.9

B. Open- and closed-string spectra

The closed-string modes living in the bulk space corre-
spond to glueball states, since they have no flavor indices.
The open-string modes, for which the end points move on
the stack of D8-branes, transform under the flavor sym-
metry and correspond to mesonic states in the dual field
theory. Concretely, these are modes of the D8-brane gauge
field AM which is dual to the QCD vector and axial vector
currents. There also exist scalar excitations on the brane
which come from transverse fluctuations of the brane
profile in the background. These are artifacts of the model

from the perspective of QCD, and we neglect them in what
follows.
We now briefly review the relevant parts of the glueball

and meson spectra arising in this framework, originally
computed in Refs. [13,31] and Ref. [9], respectively.

1. Spin-2 glueballs

The 2þþ glueballs are dual to modes of the background
graviton field hMN which transform like a symmetric
traceless two-tensor in four dimensions: the hμν compo-
nents. The full background field content generates a rich
spectrum of glueballs (described in detail in Ref. [13]),
which furthermore matches lattice predictions with rea-
sonable accuracy. For our purposes only the spin-2 mode is
relevant, and we ignore the rest in what follows.
Consider the action Sgrav in Eq. (41), expanded in metric

fluctuations around the background of Eq. (37) with
gMN ¼ GMN − hMN . In the gauge h0μ ¼ 0, and taking
hαα ¼ 0, the graviton equation of motion is

−
1

2

�
9f
2
þ 3U∂Uf

�
hij þ ðf þ U∂UfÞU∂Uhij

þ fU2∂2
Uhij ¼ −

q2R3

U
hij: ð44Þ

In this expression we have Fourier transformed in the field
theory directions as hijðq;UÞ ¼ R d4xe−iqxhijðx; UÞ. Here
q2 is the 4-momentum, which has become a parameter in
the solution. The boundary conditions are chosen such that
solutions are smooth at U ¼ UKK [i.e., h0ijðq;UKKÞ ¼ 0]
and normalizable as U → ∞ (hijðq;∞Þ ¼ 0). Only par-
ticular values of q2 satisfy (44) with these boundary
conditions, yielding a discrete spectrum of spin-2 reso-
nances. In terms of these resonances we can write

hijðx; UÞ ¼
X∞
n¼1

hðnÞij ðxÞ
�
U
R

�
3=2

TnðUÞ; ð45Þ

wherem2
n is the mass of the nth resonance hðnÞij and the wave

functions TnðUÞ satisfy

∂UðU4f∂UTnÞ ¼ −m2
nR3UTn: ð46Þ

The lightest of these states (m2
1 ¼ 1.57M2

KK) is the first state
on the Pomeron trajectory, while the higher states lie on
daughter Regge trajectories. Inserting the mode expansion
equation (45) into Sgrav and integrating over U yields a
four-dimensional action for the modes hðnÞij . We choose to
scale Tn in such a way that the kinetic terms of the four-
dimensional fields are canonically normalized. Expanding
the Einstein–Hilbert term to second order in hμν we find

9To include an explicit quark mass (which, in the dual field
theory, corresponds to explicitly deforming the field theory
Lagrangian with a term of the type mqψ̄ψ ), one would need
to turn on a nontrivial non-normalizable mode for the open-string
tachyon living on the D-branes.
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Sgrav ⊃
N3

cM2
KKg

2
YM

2 · 35π2
X∞
n¼1

Z
∞

1

U
UKK

T2
nðUÞd

�
U

UKK

�

×
Z

d4xημνηβδηαγ
�
∂αh

ðnÞ
δν ∂μh

ðnÞ
βγ −

1

2
∂αh

ðnÞ
δν ∂γh

ðnÞ
βμ

�
þ � � � : ð47Þ

We therefore require

N3
cM2

KKg
2
YM

2 · 35π2

Z
∞

1

U
UKK

TmðUÞTnðUÞd U
UKK

¼ δmn: ð48Þ

As we consider only the lightest resonance here, we set
m2

g ≡m2
1, ~TðUÞ≡ T1 and hijðxÞ≡ hð1Þij ðxÞ in what follows.

2. Mesons

Now let us consider open-string excitations for which the
end points lie on the stack of Nf D8-branes and thus
transform under the flavor symmetry group. These are
mesonic resonances, parametrized in the supergravity limit
by the field content of the DBI action. The meson spectrum
is analyzed in great detail in Ref. [9]; wewill summarize the
points relevant to our discussion here.
The gauge field AM appearing in (43) is dual to the axial

and vector flavor currents of QCD. Its normalizable
excitations thus correspond to the vector and axial-vector
mesons (ρ=ω and a1=f1-like states), for which the parity
transformation properties are dictated by whether their
wave functions on the brane profile are even or odd under
swapping the D8 and D8 stacks, which corresponds in
QCD to swapping chirality and UðNfÞL↔UðNfÞR. Even
wave functions are dual to vectors; odd ones correspond to
axial vectors.
Assuming no dependence on the S4 coordinates, the DBI

action equation (43) becomes

SD8 ¼ −κ
Z

d4xd

�
U

UKK

�
Tr

2
64 3 U

UKK

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

U3
KK
− 1

q ημνηρσFμρFνσ

þ 2

3
M2

KK
U

UKK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

U3
KK

− 1

s
ημνFμUFνU þ…

3
75; ð49Þ

with

κ ¼ g2YMN
2
c

108π3
: ð50Þ

Note that there is an additional factor of 2 in the overall
coefficient (compared to the DBI action) because the U
coordinate only parametrizes half of the D8-D8 profile.
To ensure that the mass and kinetic terms of the four-
dimensional action are normalizable, we must have the

field strengths ðFμZ; FμνÞ → 0 as U → �∞, so we seek
solutions AM vanishing at large U. As with the graviton
modes, we consider a mode expansion,

Aμðx;UÞ ¼
X
n

AðnÞ
μ ðxÞψnðUÞ; ð51Þ

AUðx;UÞ ¼
X
n

ϕðnÞðxÞφnðUÞ; ð52Þ

where the ψn’s obey the equation of motion and orthogon-
ality relation

−
4

9

UKK

U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

U3
KK

− 1

s
UKKdU

 
U

UKK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

U3
KK

− 1

s
UKKdUψm

!

¼ −m2
nψn and 3κ

Z
dU

Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

U3
KK
− 1

q ψnψm ¼ δmn:

ð53Þ
The massive φn modes sitting in AU can be absorbed into

the AðnÞ
μ modes via a gauge transformation. There is, how-

ever, a single massless pseudoscalar mode: the q2 ¼ 0
mode of the AU component of the gauge field. This mode is
gauge equivalent to the state generated by the longitudinal
part of Aμ, which is in turn dual to the divergence of QCD’s
axial flavor current. Hence, the mode corresponds to the
pseudoscalar mesons, which are the Nambu–Goldstone
bosons associated with the broken chiral symmetry. The
states which parametrize the SUðNfÞ part of the flavor
group are the (generalized) pions, while the Uð1Þ piece

yields the ϕUð1Þ
0 ≡ η0. One can check that the mode

AU ¼ ϕ0ðxÞ4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3NclsMKK

p
g2YM

1ffiffiffi
f

p
�

U
UKK

�
−5=2

ð54Þ

satisfies the linearized equations of motion derived from the
DBI action with q2 ¼ 0, and is furthermore orthogonal to
the massive modes. The coefficient (expressed here in
terms of the field theory quantities MKK and gYM) ensures
appropriate normalization. Note that the dimensionless
coordinate U=UKK ∈ ½1;∞Þ only parametrizes half of
the brane stack, so all integrations over U on the branes
should come with an additional factor of 2.
As discussed in Sec. II, the η and η0 correspond to linear

combinations of theUð1Þ generator T0 and the T8 generator
of SUð3Þ, with the η0 being mostly T0 and the η mostly T8.
In the above analysis, η0 and η8 are degenerate, since the
quark masses vanish in Sakai–Sugimoto, and we assume an
exact Uð3Þ flavor symmetry. This treatment neglects the
additional η0 mass generated by the anomaly in the Uð1ÞA
current in QCD. The anomalous mass was studied in the
original work of Sakai and Sugimoto [9] and by Ref. [32] in
a bottom-up QCD framework. The mass of the η0 is
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nonzero when Nc is large but finite and can be derived in
supergravity using the transformation properties of the
background Ramond–Ramond C1 potential—which is
directly analogous to the theta angle in QCD. This analysis
yields [9]

mη0 ¼
1

3
ffiffiffi
3

p
π

ffiffiffiffiffiffi
Nf

Nc

s
MKKðNcg2YMÞ: ð55Þ

In our case, this gives mη0 ¼ 978 MeV.
We adopt a practical approach and simply include the

experimentally measured values for the η and η0 masses
where necessary, noting however that proper treatment of
the mass in Sakai–Sugimoto could also change the mode’s
wave function on the branes and might lead to slightly
modified couplings.

C. Four-dimensional couplings

Having described the relevant parts of the spectrum, we
now turn to the meson-glueball and proton-glueball cou-
plings which determine the structure (and magnitude) of the
amplitude for producing η=η0 in proton-proton collisions. In
top-down AdS/QCD, couplings between the open and
closed-string sectors arise from both the DBI action and
Ramond–Ramond (RR) actions. The former generates an
interaction between the protons and the spin-2 glueball,
while the latter yields a natural-parity-violating coupling of
2þþ glueballs to η=η0. As noted in the Sec. I, the
coefficients of these terms are completely fixed on the
QCD side by requiring that correlation functions of currents
reproduce the gravitational anomaly. We find the couplings
between mesons and glueballs in the four-dimensional
effective theory by evaluating the action in Eq. (41) on
shell using the mode expansions derived in the previous
subsection. Each coupling constant is related to an integral
over the radial coordinate U.

1. η0-glueball coupling

Since couplings between the η0 and two spin-2 glueballs
violate natural parity, they can only come from a Chern–
Simons term that couples bulk RR forms to D-brane fields.
The Ramond–Ramond coupling for D-branes can be
derived using anomaly inflow arguments [33]. The action
takes the form

SRR ¼
Z
D8

C∧Tr
�
exp

�
F
2π

�� ffiffiffiffiffiffiffiffiffiffiffi
ÂðRÞ

q
; ð56Þ

where integration is over the D8 world volume. Here C ¼P
iCi is the sum of RR form fields turned on in the

background. For us, C ¼ C3, the 3-form gauge potential of
Eq. (37). F is the (Hermitian) field strength of the D-brane
gauge fields and the trace is over gauge indices. ÂðRÞ is the
“A-roof genus,” a sum over Pontryajin classes (pi) of the
gravitational curvature 2-form R,

ÂðRÞ ¼ 1 −
1

24
p1ðRÞ þ… ¼ 1þ 1

192π2
TrR∧Rþ…

ð57Þ

We are suppressing 6-form terms and higher not relevant to
the current analysis. Here the trace is over Lorentz indices
of the curvature 2-form, related to the Riemann tensor
as RMN ¼ 1

2
RMN
AB dxA∧dxB.

The integral in Eq. (56) picks out the 9-form terms in the
integrand,

SRR ¼
Z
D8

C3∧
�

1

768π3
TrðFÞ∧TrðR∧RÞ

þ 1

48π3
TrðF∧F∧FÞ

�
þ…

¼
Z
D8

dC3∧
�

1

768π3
TrðAÞ∧TrðR∧RÞ

þ 1

48π3
ω5ðAÞ

�
þ…; ð58Þ

where ω5ðAÞ is the Chern–Simons 5-form, defined by
dω5 ¼ TrF3. Again, we neglect fluctuations along
the S4, and we can trivially integrate it out to yield a
five-dimensional action. The second term in Eq. (58) yields
the gauge Chern–Simons term dual to the chiral anomaly of
QCD and generates natural-parity-violating couplings
among mesons [9,34].
The first term in Eq. (58), meanwhile, is the one of

interest for modelling Pomeron exchange, as it couples
glueballs to mesons. In coordinates, the relevant five-
dimensional coupling becomes

SRR ⊃
Nc

1536π2

Z
d5x~ϵMNPQRTrðAMÞRNPSTRQR

TS; ð59Þ

where ~ϵMNPRQ refers to the Levi-Civitá tensor density. This
contribution to the classical action in supergravity gener-
ates mixed gauge-gravitational anomalies in the full quan-
tum theory of the dual conformal field theory and has been
studied in the context of holographic hydrodynamics [35].
Since we are only interested in the η0 coupling to

gravitons, the most convenient gauge choice is one in
which the η0 appears only in the U component of the world
volume gauge field, AU. The only term appearing in the
RR-form action is then

SRR ⊃
Nc

1536π2

ffiffiffiffiffiffi
Nf

2

r Z
d5x~ϵμνρσAð0Þ

U RμνSTRρσ
TS; ð60Þ

where we have traced over the flavor indices.10 To identify
the graviton-graviton-η0 interaction we expand Eq. (60) to

10Flavor group generators are normalized as TrTaTb ¼ δab=2.
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second order in the graviton perturbation, hMN , where
gMN ¼ ~gMN − hMN . As we are only interested in the spin-2
coupling, we can neglect terms involving hUU and hUμ,
focusing solely on the terms including hμν and its deriv-
atives. After some significant algebra we obtain

SRR ⊃
Nc

1536π2

ffiffiffiffiffiffi
Nf

2

r Z
d5x~ϵμνρσUA0

U

×

�
9f
2U2

ηαβηγδ∂μhνα∂σhρβ −
6f
U

ηαβ∂U∂μhνα∂σhρβþ

þ 2fηαβ∂U∂μhνα∂U∂σhρβ

þ 2

�
R
U

�
3

ηαβηγδ∂γ∂μhνα∂σð∂δhρβ − ∂βhρδÞ
�
: ð61Þ

Replacing the bulk fields with the lowest terms in the
mode expansions computed previously, A0

U ¼ ϕðUÞη0ðxÞ
and hμνðx;UÞ ¼ ðURÞ3=2 ~TðUÞhμνðxÞ, we find the four-
dimensional coupling

Sη0hh ¼
Z

d4xfκaϵμνρση0ηαβ∂μhνα∂σhρβ

þ κbϵ
μνρση0η

αβηγδ∂μ∂βhνγ∂ρð∂δhσα − ∂αhσδÞg;
ð62Þ

where the coefficients κa and κb are the integrals

κa ¼
Nc

384π2

ffiffiffiffiffiffi
Nf

2

r Z
∞

U0

dU
fU3

R3
ð ~T 0Þ2ϕ

¼ M2
KK

4ð2πÞ5f3π

ffiffiffiffiffiffi
Nf

2

r
× ð2.418Þ ¼ 0.084 GeV−1 ð63Þ

κb ¼
Nc

384π2

ffiffiffiffiffiffi
Nf

2

r Z
∞

U0

dUð ~TÞ2ϕ

¼ 9

16ð2πÞ5f3π

ffiffiffiffiffiffi
Nf

2

r
× ð2.086Þ ¼ 0.182 GeV−3: ð64Þ

Recall that we have fixed MKK using the mass of the ρ,
although one could obtain greater accuracy by calculating
MKK using a more comprehensive fit of QCD observables
(i.e., meson masses and couplings).
The resulting Feynman diagram coupling for graviton

polarizations ϵðhÞϕγ ðk1Þ and ϵðhÞϵδ ðk2Þ and the η0 polarization

ϵðη0Þðp5Þ is given by

2ϵαβγδk1μk2σfηϕϵðκa − κbk1 · k2Þ þ kϕ1k
ϵ
2κbg; ð65Þ

which appears as the central vertex in Fig. 2. Comparing
this with Eq. (13), we have

G1ðt1; t2Þ ¼ 2½κa − κbðk1 · k2Þ� and G1ðt1; t2Þ ¼ 2κb:

ð66Þ

With these identifications, the vertex coupling structure that
appears in the differential cross sections will be

2G1ðt1; t2Þ − μG2ðt1; t2Þ ¼ 4ðκa þ κb
ffiffiffiffiffiffiffi
t1t2

p
cos θ34Þ; ð67Þ

which does not depend explicitly on m5. Given that the
calculation of these couplings (inaccurately) assumesmη ¼
mη0 ¼ 0 (we will simply insert the correct values for these
masses later on), it is very convenient that the coupling
structure we are working with ends up independent of m5,
so our simplified treatment should be a reasonable approxi-
mation. Notice also that the dependence of the differential
cross section on θ34 should be sensitive to the ratio κa=κb.
This does not depend on fπ , only on MKK, so errors in the
determination of fπ will affect the results only obliquely,
while modifications to MKK are much more important. In
addition, although the values of κa and κb are dependent on
the overlap integrals (63) and (64), the basic form of
Eq. (67) derives only from the structure of a Chern–Simons
coupling and should be mostly independent of the details of
the Sakai–Sugimoto action.

2. Proton-glueball coupling

Much work has been done to understand the nature of
baryons in holographic QCD and in the Sakai–Sugimoto
model specifically. Strictly speaking, holography operates
in the Nc → ∞ limit, where the baryons are infinitely
massive. Baryons are also solitonic objects in the dual
(gravitational) theory: they are finite-volume D-branes. In
Sakai–Sugimoto, they are D4-branes which wrap the S4

direction and are pointlike in the U and xμ directions, but
“dissolve” into fields living on theD8-brane world volume.
In other words, baryons are charge 1 instantons of the full
five-dimensional DBI action of Eq. (41). The solutions
evade analytical description and thus are often framed in
terms of an expansion in 1=λ [36–38]; a full (numerical)
solution was found only recently [39]. All of the above treat
the baryon as an object without spin; it is only after
quantization of the collective coordinate fluctuations
around these solutions that they display the properties of
spin-1=2 particles—e.g., protons. We choose instead to
treat protons using “effective” fermion fields B on the
curved D8-brane world volume with a U-dependent effec-
tive mass [28,40–43]. The resulting coupling between
protons and spin-2 glueballs was derived in Ref. [17].
We very briefly review the result here.
A single graviton couples to protons as it does to the rest

of the matter living on the brane, via the five-dimensional
energy-momentum tensor TMN [17]:
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Shpp ⊃
Z

d5x
ffiffiffi
g

p
hMNTMNðx; UÞ: ð68Þ

In the limit of large λ—which amounts to the assumption
that the baryons “sit” at U ¼ UKK with little extent to
greater U [17,28]—showed that one can reasonably
approximate the coupling of the spin-2 portion of the
graviton hμν to the protons via the coupling to the four-
dimensional energy-momentum tensor, with only the value
of the coupling determined by five-dimensional action
wave functions of the fermion modes overlapping with
the graviton,

Shpp ∝ λP

Z
d4xhμνT

μν
p ; ð69Þ

where Tp is the four-dimensional stress tensor of the proton
modes. In the treatment of protons as effective fermion
fields, the coupling λP was found11 to be λP ¼ 9.02 GeV−1

[28], which is the value we use below. Note, however, that
the fit of a Regge regime Ansatz for proton-proton
scattering, performed in Ref. [17], yielded a value of
approximately λP ¼ 8.5 GeV−1. Here we adopt values
calculated in the Sakai–Sugimoto model (rather than fits)
wherever possible. The value of λP only affects the
magnitude of the total cross section, which we cannot
predict reliably anyway, as described below.
As in Ref. [17], we can model the behavior of the energy-

momentum tensor itself by considering its matrix element
between proton states,

hp0; s0jTμνjp; si

¼ ūðp0; s0Þ
�
AðtÞ
2

ðγμPρ þ γρPμÞ

þ BðtÞ
8mp

ðPμ½γρ; γν� þ Pρ½γμ; γν�Þkν

−
CðtÞ
mp

ðημρtþ kμkρÞ
�
uðp; sÞ; ð70Þ

where P ¼ ðpþ p0Þ=2 and k ¼ p − p0, and t ¼ −k2.
Assuming that the Sakai–Sugimoto baryon roughly takes
the form of a four-dimensional Skyrmion in the spherically
symmetric hedgehog configuration, one can explicitly
compute these form factors in the large Nc limit [44]. It
was shown in Ref. [17] that BðtÞ is small and slowly
varying for small jtj, and as noted in Sec. II, dependence on
CðtÞ disappears in our amplitude. We can therefore neglect
BðtÞ and CðtÞ. Meanwhile, for jtj < 0.8 GeV, AðtÞ is well
approximated by a dipole form with Md ¼ 1.14 GeV [17].

V. SIMULATING PRODUCTION

We are now ready to write down our final result for the
Reggeized differential cross section and use it to simulate
central production. We focus on the angular dependence of
the differential cross section Reggeized according to the
five-tachyon string amplitude. To better understand the
effects of the modified Reggeization procedure, we com-
pare this to the results using naive Reggeization as well as
no Reggeization. We are primarily concerned with η
production as our treatment of the η0 meson does not
account for the instanton effects responsible for the mass
splitting between η and η0. Additionally, in the five-string
Reggeization, the approximation that α0cμ is small is
stronger for η than η0. Nevertheless, we compare η
production to that of η0 to highlight important differences.
Finally, we compare the total cross sections for η and η0
with each type of Reggeization.

A. Simulating η production with five-string
Reggeization

After Reggeization based on the five-tachyon string
amplitude, as given in Eq. (36), the tree-level differential
cross section for η reads

dσ
dt1dt2dθ34

¼ sin2θ

�
λPΓ½−χ�

4π

�
4

lnðs=μÞ
�
α0cs
2

�
αcðt1Þþαcðt2Þ

×Aðt1Þ2Aðt2Þ2
t1t2sin2θ34

s2
ðκa þ κb

ffiffiffiffiffiffiffi
t1t2

p
cosθ34Þ2

×

��
α0cμ
2

�
α0cðt2−t1Þ

W2ðt1; t2Þ þ
�
α0cμ
2

�
α0cðt1−t2Þ

W2ðt2; t1Þ

þ 2 cos
�
πα0cðt1 − t2Þ

2

�
Wðt1; t2ÞWðt2; t1Þ

�
: ð71Þ

The form factor AðtÞ is assumed to be

AðtÞ ¼
�
1 −

t
M2

d

�
−2
; ð72Þ

and we use

χ ¼ α0c
2
½4m2

p − 3m2
g�; αcðxÞ ¼ αcð0Þ þ α0cx;

αcð0Þ ¼ 2 − α0cm2
g: ð73Þ

The values of the parameters arising in the equations above
are given in Table I. The masses of the external particles
(the protons and the pseudoscalars) and the mixing angle
between η and η0 are fixed to be their experimentally known
values. Most of the other parameters are determined using
the Sakai–Sugimoto model as our low-energy dual

11The value of λP which appeared in a previous version of this
paper and Ref. [28] was off by a factor of 1=

ffiffiffi
2

p
.
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supergravity theory. The exception is the Regge slope α0c,
which is fit to existing proton-proton scattering data,
because it cannot be extracted from the low-energy super-
gravity theory (in which the slope is, strictly speak-
ing, zero).
Having fixed all of the form factors, coupling constants,

and masses, we proceed to simulate the differential cross
section using the rejection method, at a c.m. energy of the
WA102 data for η central production [25],

ffiffiffi
s

p ¼ 29.1 GeV.
For t1;2 < −0.6 GeV2 we assume that perturbative QCD
effects dominate, so we take t1 and t2 to range from 0.0 to
−0.6 GeV2. At this energy the data for dσ

dθ34
takes a

characteristic sin2 θ34 shape, as a direct result of natural-
parity violation. However, as shown in Fig. 3, the double
Pomeron exchange contribution to dσ

dθ34
exhibits a different,

modulated sin2θ34 form due to the additional cos θ34
dependence, and has a maximum visibly below π

2
, at

approximately 1.30 rad. At this c.m. energy, the WA102
experiments [25] seem to indicate that double Reggeon
exchange dominates the process, as the total exclusive cross
section for pions (which cannot be produced by double
Pomeron exchange) is about ten times larger than the total
cross section for η. At higher energies, however, we expect
that double Pomeron exchange will dominate and that the
differential cross section will exhibit modifications from
the pure sin2θ34 behavior.
Let us examine the source of this deviation from sin2θ34

behavior. Besides the overall factor of sin2θ34, there are
three sources of angular dependence in the differential
cross section, all of which arise from the structure
μ ≈m2

5 − t1 − t2 þ 2
ffiffiffiffiffiffiffi
t1t2

p
cos θ34. First, we have the factor

of lnðs=μÞ, which comes from the kinematics and phase
space of 2 → 3 scattering. Because μ is always close to m2

5

and a logarithm is a slowly varying function, the quantity

TABLE I. A table of parameter values used in the simulations.

λP 9.02 GeV−1 Value determined using effective fermion fields in the Sakai–Sugimoto model, in Ref. [28]
α0c 0.290 GeV−2 Fit value using proton-proton scattering data modeled with string-theory-inspired amplitude in Ref. [17]
mg 1.485 GeV Value determined using the Sakai–Sugimoto dual model in Ref. [13]
κa 0.0846 GeV−1 Value determined using the Sakai–Sugimoto dual model in Sec. IV
κb 0.1842 GeV−3 Value determined using the Sakai–Sugimoto dual model in Sec. IV
Md 1.17 GeV Value determined in the Sakai–Sugimoto dual picture modeling the proton as a four-dimensional

skyrmion, in Ref. [17]
mp 0.938 GeV Known experimental value
mη 0.548 GeV Known experimental value
mη0 0.958 GeV Known experimental value
θ 15.2° Known experimental value
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FIG. 3 (color online). The differential cross sections dσ
dθ34

and dσ
dt1dt2

, Reggeized according to the five-tachyon string amplitude, are
shown. In the angular dependence, qualitative deviations from the pure sin2 θ34 behavior are visible, with a maximum at approximately
1.3 rad. In the t1 and t2 dependence, we see, by comparison to the un-Reggeized differential cross sections shown in Fig. 6, that the
Reggeized double glueball propagator selects most strongly for events where t1 and t2 are between approximately −0.04 and
−0.24 GeV2. Additionally, comparing the t1 and t2 dependence to the naively Reggeized results, shown in Fig. 4, we see that the
Reggeized double glueball propagator suppresses events with larger jt1;2j more slowly.
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lnðs=μÞ contributes to the differential cross section pri-
marily as an overall scale factor. Second, we have the
factors of ðα0cμÞ�α0cðt2−t1Þ from the Reggeized double glue-
ball propagator. However, since jα0cðt2 − t1Þj ≤ 0.174, the
quantity ðα0cμÞ�α0cðt2−t1Þ will also vary quite slowly: at most
10% over the domain of the differential cross section.
Finally, we have the expression ðκa þ κb

ffiffiffiffiffiffiffi
t1t2

p
cos θ34Þ2,

which comes from the structure of the spin 2-spin
2-pseudoscalar vertex. This is the dominant factor modi-
fying the sin2 θ34 dependence. The ratio κa=κb controls the
degree of this modification, suggesting that the deviation of
dσ
dθ34

from sin2 θ34 could be used (at higher energies) as an

experimental test both of the even-spin nature of the
Pomeron trajectory (which is what allows such a vertex
structure to exist in the first place) as well as the specific
value of κa=κb.

B. Comparison to naive Reggeization
and no Reggeization

As discussed previously, the Reggeization scheme based
on a five-string amplitude structure has significantly differ-
ent implications for the scattering process than a naive
Reggeization scheme. To highlight this, we can also look at
simulations based on the naive Reggeization scheme, and
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FIG. 4 (color online). The differential cross sections dσnaive
dθ34

and dσnaive
dt1dt2

, Reggeized naively, are shown. In the angular dependence,
qualitative deviations from the pure sin2 θ34 behavior of Reggeon exchange are barely visible, with a maximum at or just above π=2. In
the t1 and t2, dependence, we see that the naively Reggeized propagators select most strongly for events where t1 and t2 are
approximately −0.1 GeV2.
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FIG. 5 (color online). The naively Reggeized differential cross sections for η0 production, dσnaivedθ34
and dσnaive

dt1dt2
, are shown. With m5 ¼ mη0 ,

less cancelation occurs between the θ34 dependence from the naively Reggeized propagators and the spin 2-spin 2-pseudoscalar vertex,
and the maximum is shifted below π=2.
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for the un-Reggeized differential cross section. The naively
Reggeized differential cross section for η production reads

dσnaive
dt1dt2dθ34

¼ sin2θ

�
λPΓ½−χ�

4π

�
4

lnðs=μÞ
�

2

α0cμ

�
4
�
α02c sμ
4

�
αcðt1Þþαcðt2Þ

×

�
Aðt1ÞΓ½1 − αcðt1Þ

2
�

Γ½αcðt1Þ
2

− 1 − χ�

�2�Aðt2ÞΓ½1 − αcðt2Þ
2

�
Γ½αcðt2Þ

2
− 1 − χ�

�2

×
t1t2sin2θ34

s2
ðκa þ κb

ffiffiffiffiffiffiffi
t1t2

p
cos θ34Þ2; ð74Þ

and the simulated angular dependence as well as t1 and t2
dependence are shown in Fig. 4. We notice immediately
that dσnaive

dθ34
shows only a very weak deviation from the

sin2 θ34 shape, with a maximum just greater than π=2. This
effect is largely due to a partial cancellation between the
angular dependence of the central vertex structure in
Eq. (67) and the factor ðα0cμ=4Þαcðt1Þþαcðt2Þ−4, in the naively
Reggeized propagators. This cancellation depends on the
precise value of m5 ¼ mη. If we instead look at η0 pro-
duction, shown in Fig. 5, this cancellation effect is less
exact due to the increased value of m5, and the maximum
shifts to below π=2. Additionally, the smaller deviation
from sin2 θ34 agrees with the t1 and t2 dependence
produced by the naive Reggeization, which more rapidly
suppresses the differential cross section for larger jt1j
and jt2j.
The simulation of the un-Reggeized differential cross

section is shown in Fig. 6. The un-Reggeized results show
the strongest deviation from sin2 θ34, and examining the t1
and t2 dependence we see that this occurs primarily

because the differential cross section is largest when
jt1j and jt2j are large, as opposed to being quickly
suppressed in this region. Any form of Reggeization will
suppress larger jt1j and jt2j, which will decrease the
amount of deviation.

C. Total cross sections for η and η0 production

We can also use the simulations to compute the total
cross sections for the production of η and η0, which we can
compare with each other as well as with the data from the
WA102 experiment. The tree-level total cross sections at
29.1 GeV for η and η0 predicted by five-string Reggeization
are

σðpp → ppþ ηÞ ¼ 386.4 sin2θ nb and

σðpp → ppþ η0Þ ¼ 305.6 cos2θ nb: ð75Þ

Thus, using five-string Reggeization, one expects the ratio
of the η and η0 total cross sections to fall within 25% of
tan2θ, the relationship based solely on the mixing angle. On
the other hand, the ratio of the naively Reggeized η and η0
total cross sections is approximately 3tan2θ, due to the
additional dependence on m5 in this calculation.
It is also interesting to compare these cross sections to

the experimental cross sections from the WA102 experi-
ment [25], which found

σðpp → ppþ ηÞexp ¼ ð3859� 368Þ nb and

σðpp → ppþ η0Þexp ¼ ð1717� 184Þ nb; ð76Þ

at
ffiffiffi
s

p ¼ 29.1 GeV. It seems that double Pomeron
exchange accounts for about 20% of the production of
η0, and only about 0.5% of the production of η at this
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FIG. 6 (color online). The un-Reggeized differential cross sections dσun-Reg
dθ34

and dσun-Reg
dt1dt2

are shown. The angular dependence, as compared
to either of the Reggeized differential cross sections, differs more strongly from pure Reggeon exchange and takes a maximum at
approximately 1.1 rad. Examining the t1 and t2 dependence, we see that this occurs because without Reggeization the events where
larger jt1j and jt2j have more likelihood, thereby enhancing the θ34 dependence.
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energy. However, it is worth noting that the overall cross
sections calculated are sensitive to a number of factors
that we have estimated only very roughly. In particular,
varying the mass-shell parameter χ by �50% changes
the cross sections by an order of magnitude. However,
this sensitivity is not carried over into either the
dependence on θ34 or the ratio of the η and η0 total
cross sections. Furthermore, such a strong hierarchy is
not surprising from the holographic perspective: the
coefficient of the five-dimensional gravitational Chern–
Simons term that gives rise the Pomeron-Pomeron-η0
interaction is determined by the anomaly to be
Nc=1536π2, while the pure gauge Chern–Simons term
that generates the Reggeon-Reggeon-η vertex has a
coefficient of Nc=24π2. Without taking into account
the reduction to a four-dimensional effective theory, for
which the couplings are determined in part by these
coefficients and in part by wave function overlaps (as
described in the previous section), the hierarchy of
Chern–Simons coefficients implies that the cross sec-
tions differ by a factor of roughly 2500. The dependence
on s, meanwhile, favors Pomeron exchange as s grows
larger, since Reggeized Pomeron propagators scale
(roughly) with s0.04 while Reggeons scale with s−0.19,12

leading to naively Reggeized central production cross
sections that approximately go like ðs1s2Þ0.08 and
ðs1s2Þ−0.38, respectively. It is thus clear that, while under-
standing Reggeon exchange is essential at presently
measured energies, at high enough energies Pomeron
exchange should play the dominant role.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have used the ideas of holographic QCD and
Regge theory to construct a model for the central pro-
duction of a pseudoscalar meson via double Pomeron
exchange in proton-proton collisions. Our starting point
was the tree-level process involving the t-channel
exchange of massive spin-2 particles, where the forms
of the vertices and propagators are dictated by Lorentz,
parity and charge conjugation symmetry. The central
vertex, in particular, must violate natural parity, which
leads to an overall factor of sin2θ34 in the cross section,
where θ34 is the angle between the emerging photons in
the plane transverse to the scattering process. Assuming
that the exchanged particles are spin 2 leads to additional
possible structures (and additional dependence on θ34),
that are not present if for instance the exchanged particle
is spin 1.
Motivated by gauge-string duality, we considered this

process to be the low-energy limit of a five-string scattering
process and sought to find an appropriate Reggeization.
It was previously shown that in elastic proton-proton

scattering the Regge limit of the string amplitude is
reasonably approximated by simply replacing low-energy
propagators with a Reggeized propagator that encompasses
the entire exchanged Regge trajectory, in this case a
Pomeron. We found that a naive approach based on this
idea, separately replacing each propagator with a Pomeron,
is not equivalent to what follows from analyzing a five-
string amplitude in the Regge limit, unless the mass of the
centrally produced meson is sufficiently large. This should
not be the case for the η or η0 mesons. We therefore
proposed a modified Reggeization procedure for this
scattering process. This form of Reggeization, in particular,
does not introduce significant additional dependence on the
angle θ34 into the scattering cross section (while the naive
Reggeization process would).
We then computed the low-energy coupling constants

using the Sakai–Sugimoto model as the supergravity limit
of the dual theory. Here, the natural-parity-violating central
vertex arises from a Chern–Simons action which reprodu-
ces the gravitational anomaly in QCD. The values of the
two coupling constants involved were computed as overlap
integrals depending on the modes of the graviton in the
bulk and the vector field on the D8-brane. The Chern–
Simons action leads to a vertex structure that includes more
information than can be inferred using symmetry argu-
ments alone. This information is likely to be relatively
model independent; any QCD dual theory must contain
parity-violating Chern–Simons terms that reflect the chiral
gravitational anomaly of QCD. These five-dimensional
Chern–Simons couplings are universal, although some
weak model dependence enters through the wave functions
of the glueballs and η and η0 mesons.
Finally, we generated simulations of the scattering

process at the energy
ffiffiffi
s

p ¼ 29.1 GeV, using our Reggei-
zation procedure for the propagators and the values of the
coupling constants derived from the Sakai–Sugimoto
model. We saw a clear shift of the differential cross section
dσ
dθ34

away from a pure sin2θ34 profile. Experimental data at
this energy show no such deviation, supporting the idea that
at this energy double Reggeon exchange dominates the
process. We also computed the total cross sections for both
η and η0 production. Using our Reggeization procedure, we
found that the ratio is primarily determined by the mixing
angle between η and η0; the glueballs couple only to the
flavor singlet.
Given that the existing central production data (e.g., from

the WA102 [25] experiment) lies squarely in the regime
where Reggeon exchange seems to dominate, a crucial
next step in this analysis is to create a model that also
incorporates double Reggeon exchange. It will be an
important zeroth-order check of our methods to see whether
holographic calculations which include Reggeons give the
right ballpark estimate for the total cross section. Since the
double Reggeon process should dominate at this energy,
the dependence of the differential cross section on θ34

12As determined from the proton-proton total cross section.
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should be a simple sin2θ34 profile.
13 It would be interesting

to analyze the behavior of the full model at increasing
center-of-mass energy so as to pinpoint where significant
deviations from sin2 θ34 begin to arise.
The present analysis could also be made more consistent.

The Reggeization of propagators was somewhat ad hoc: we
used the five-string scattering amplitude for flat-space
bosonic strings as a starting point but did not take into
account the modifications of the mass-shell conditions in a
well-motivated way. It would be interesting to take a more
systematic approach, particularly as this might lead to
additional dependence on the mass of the centrally pro-
duced meson. We could also use a more accurate treatment
of the proton in the dual model that better accounts for the
five-dimensional structure of the process instead of simply
relying on the Skyrmion solution for both the form factor
and the coupling constant between the protons and the
glueballs. However, the recent numerical work of Ref. [39]
on exact skyrmion solutions suggests that this may not be a
reasonable approach. A numerical analysis to determine
these factors would be more appropriate, and might yield
further insights.
Overall, our results suggest that the central production of

pseudoscalar mesons in very high-energy proton-proton

collisions could provide interesting insights into the suc-
cess of string/gravity duals for QCD. Though the details of
the production rate are model dependent, the central
ingredient—a natural-parity-violating coupling between
glueballs and pseudoscalar mesons required by the gravi-
tational contribution to the chiral anomaly—is not.
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APPENDIX: REGGE LIMIT AND PHASE SPACE

1. Phase space

Calling hjAj2i the spin-averaged amplitude squared, we
know the total cross section should be

σ ¼ 1

64
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −m4

p

q Z hjAj2ið2πÞδ
	
2E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3

2 þm2
p

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
4 þm2

p

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3 þ p4Þ2 þm2

5

q 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3

2 þm2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4

2 þm2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3 þ p4Þ2 þm2

5

q d3p3

ð2πÞ3
d3p4

ð2πÞ3 : ðA1Þ

Now we can rewrite the integrals over p3 and p4, using our
decomposition above, as

d3p3d3p4 ¼ q3dq3dθ3dpz3 × q4dq4dθ4dpz4

¼ 1

4
dðq23Þdðq24Þdθ3dθ4dp3zdp4z: ðA2Þ

With the definitions

θ3 ¼ ϕ; θ4 ¼ ϕþ θ34; pþz ¼ p3z þp4z ¼ pxF;

p−z ¼ p3z −p4z; ðA3Þ
we obtain

dθ3dθ4 ¼ dϕdθ34;

dp3zdp4z ¼
1

2
dpþzdp−z ¼

p
2
dxFdp−z: ðA4Þ

The integrals over θ34 and ϕ are each carried out over
the region ½0; 2π�, the integral over p−z will be carried
out over ½−∞;þ∞�, and the integral over xF will be
carried out over ½−1;þ1�. Furthermore, we expect the
amplitude to have azimuthal symmetry, and thus be
independent of ϕ, so we can carry that integral out
explicitly. Putting these pieces together gives us the total
cross section

σ ¼ p

29ð2πÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −m4

p

q

×
Z hjAj2iδ

	
2E −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3

2 þm2
p

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
4 þm2

p

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3 þ p4Þ2 þm2

5

q 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3

2 þm2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4

2 þm2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp3 þ p4Þ2 þm2

5

q dθ34dxFdðq23Þdðq24Þdp−z: ðA5Þ

13Preliminary analysis of the five-open-string amplitude indicates that significant modifications to the θ34 dependence fromReggeization
are unlikely; the amplitude in the small μ/Regge limit has only weak dependence on μ, just as for the five-closed-string amplitude.
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We then use the remaining delta function to perform the
integral over p−z, giving

σ ¼ p

28ð2πÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 −m4

p

q Z hjAj2i
E5jp3zE4 − p4zE3j

× dθ34dxFdðq23Þdðq24Þ; ðA6Þ

where the kinematic parameters fp3z; p4z; E3; E4; E5g are
now understood to be expressed in terms of
fq3; q4; xF; θ34g, using the mass-shell and 4-momentum
conservation equations. Note that so far we have made no
use of the Regge limit. We should also remember that we
eventually want to work with the process in terms of
ft1; t2; xF; θ34g, which means we want to rewrite the
integrals over q23 and q24 as integrals over t1 and t2.
However, it will be much easier to understand how to
do this once we work out the Regge limit.

2. Regge limit

First we note that, in terms of Mandelstam variables, we
have

p ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p

q
; p3z ¼

s − s2 þ 2t1 − 3m2
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p

q ;

p4z ¼
−sþ s1 − 2t2 − 3m2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p

q ; ðA7Þ

which means

xF ¼ s1 − s2 þ 2t1 − 2t2
s − 4m2

p
: ðA8Þ

In the Regge limit, we want to have s, s1, s2 ≫ μ, t1, t2,m2,
where m is any of the masses involved, and μ ¼ s1s2

s is held
fixed in the limit. This implies that in the Regge limit we
have

sxF ≈ s1 − s2: ðA9Þ
We can then rewrite s1 and s2 in terms of μ and sxF, as

s1 ≈
1

2

h
sxF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x2F þ 4sμ

q i
;

s2 ≈
1

2

h
−sxF þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x2F þ 4sμ

q i
: ðA10Þ

Using these expressions then gives us

E5 ¼
s1 þ s2 − 2m2

p

2
ffiffiffi
s

p ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2x2F þ 4sμ

p
− 2m2

p

2
ffiffiffi
s

p

≈
ffiffiffi
s

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4μ

s

r
: ðA11Þ

The appearance of 1
E5

in the phase space integral then
implies that in the extreme Regge limit s → ∞ there is a
pole at xF ¼ 0, but for any finite s there is just a sharp
peak, with E5 ≈

ffiffiffi
μ

p
at xF ¼ 0. Furthermore, we should

have

q23 ≈−
t1
2

�
2þ xF −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ

4μ

s

r �
−
m2

p

4

�
xF −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ

4μ

s

r �2

ðA12Þ

and similarly

q24≈−
t2
2

�
2−xF−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Fþ

4μ

s

r �
−
m2

p

4

�
xFþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Fþ

4μ

s

r �2

:

ðA13Þ

Now, in performing the variable transformation necessary
to rewrite the integrals over q23 and q24 in terms of t1 and
t2, we should note that μ will depend on t1 and t2.
However, to leading order in the Regge limit, we will get

dðq23Þdðq24Þ

≈
�
1

4
ð2− xF − jxFjÞð2þ xF − jxFjÞ þOð

ffiffiffiffiffiffiffiffi
μ=s

p
Þ
�
dt1dt2

≈ ½ð1− jxFjÞ þOð
ffiffiffiffiffiffiffiffi
μ=s

p
Þ�dt1dt2: ðA14Þ

We also have

E3 ¼
s − s2 þm2

p

2
ffiffiffi
s

p ≈
s − s2
2
ffiffiffi
s

p ;

E4 ¼
s − s1 þm2

p

2
ffiffiffi
s

p ≈
s − s1
2
ffiffiffi
s

p ; ðA15Þ

and this implies that

jE3p4z − E4p3zj ≈
s
2
½ð1 − jxFjÞ þOð

ffiffiffiffiffiffiffiffi
μ=s

p
Þ�: ðA16Þ

This then demonstrates that in the Regge limit we simply
have

dðq23Þdðq24Þ
jE3p4z − E4p3zj

≈
2

s
dt1dt2: ðA17Þ

(Notice that there is neither a formal pole nor a sharp
peak at jxFj ¼ 1.) This allows us to write our total cross
section as

σ ≈
1

26ð2πÞ4s2
Z hjAj2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2F þ 4μ
s

q dxFdθ34dt1dt2: ðA18Þ

Finally, since the phase space is sharply peaked in the far
Regge limit around xF ¼ 0, we can approximate this
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further by replacing hjAj2i with its value at xF ¼ 0 and
evaluating the integral over xF explicitly. This givesZ

1

−1

dxFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2F þ 4μ

s

q ¼ 2

Z ffiffiffi
s
4μ

p

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

¼ 2 ln

� ffiffiffiffiffi
s
4μ

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4μ

þ 1

r �
≈ ln

�
s
μ

�
ðA19Þ

so that

σ ≈
1

4ð4πÞ4s2
Z

hjAj2i ln
�
s
μ

�
dθ34dt1dt2: ðA20Þ

It is also useful to write out what various frame-
dependent and frame-independent quantities will be when
expressed in the Regge limit with xF ¼ 0, as these will
appear in hjAj2i and the Reggeization of the propagators.
Note first that we will now have

s1 ≈ s2 ≈
ffiffiffiffiffi
sμ

p
; q3 ≈

ffiffiffiffiffiffiffi
−t1

p
; q4 ≈

ffiffiffiffiffiffiffi
−t2

p
: ðA21Þ

We can then use the mass-shell condition for the centrally
produced meson to determine μ, as

μ ≈m2
5 − t1 − t2 þ 2

ffiffiffiffiffiffiffi
t1t2

p
cos θ34: ðA22Þ
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