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We construct a string-inspired model for the central production of # and ' mesons in proton-proton
collisions via double Pomeron exchange. Using general symmetry considerations, we construct a low-
energy differential cross section for double glueball exchange in terms of some undetermined coupling
constants and form factors. We extend this model to the Regge regime, replacing the glueball propagators
with Pomeron trajectories and modifying the interaction term by a factor derived from the five-string
scattering amplitude in flat space. We then fix the couplings which remain undetermined, using the Sakai—
Sugimoto framework to model low-energy QCD. Finally, we generate a simulation of the scattering process
at /s = 29.1 GeV, where double Pomeron exchange should play a role (secondary to double Reggeon
exchange). We focus on the dependence of the scattering cross section on 634, the angle between the
scattered protons in the transverse plane. The results exhibit a definite deviation from the pure sin’6s,
dependence that arises as a consequence of natural parity violation alone. The amount of deviation is
primarily determined by couplings that come from the Chern—Simons action of the anti-de Sitter/QCD
supergravity dual, which is directly related to the QCD gravitational anomaly, and thus constitutes a
universal part of any five-dimensional string/gravity dual theory of QCD. We argue that this makes the
high-energy central production of pseudoscalar mesons an interesting probe of anti-de Sitter/QCD models.
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I. INTRODUCTION

Over the past ten years, gauge-string duality has found
fruitful application in the realm of strongly coupled systems,
from low-energy QCD to superconductors. The connection
between string theory and QCD is far older, however. It dates
back to the days of Regge theory, when string theories were
constructed in order to describe hadronic spectra and
hadronic scattering at high center-of-mass energy s and
small momentum transfer ¢ (the Regge regime) [1,2]. To
good approximation, the masses of mesons and baryons lie
on linear trajectories—Regge trajectories—with particle spin
J related to the mass m as J = ay + &/m?. String theories
generate precisely such a spectrum. Meanwhile, scattering
events at small 7 should be governed by the exchange of
hadrons. In the Regge regime, hadrons of arbitrarily high
spin contribute to the process, so the entire Regge trajectory
should be taken into account. The mediating hadron can be
replaced by a “Reggeon,” which couples like the lowest state
on the exchanged trajectory. The Veneziano amplitude, now
known to describe the scattering of strings in flat space, was
first proposed as a phenomenological model for the scatter-
ing of hadrons in the Regge limit.

The old idea of treating Reggeons as flat-space strings
captures many qualitative features but fails to accurately
describe the observed Regge trajectories and scattering
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processes. It may yet find new life in gauge-string duality,
whereby certain gauge theories (like QCD) are mapped
onto string theories in higher-dimensional curved space-
times. Regge regime hadronic scattering can thus be
translated to the holographic dual, where hadronic scatter-
ing is quite literally string scattering—but in a curved five-
dimensional space.

Consider, for example, the behavior of proton-proton or
proton-antiproton scattering in the Regge regime. Since
the cross sections behave similarly at very large s, the
exchanged object should be insensitive to the charges of the
scattered (anti)protons.' The exchanged trajectory thus has
vacuum quantum numbers and is known as the Pomeron.
The lightest particle on the Pomeron trajectory is widely
believed to be a J’¢ = 2++ glueball.? Since the Pomeron
consists of even spin glueballs, its holographic dual should
be a closed string [7,8]. The Pomeron was first identified in
a holographic context in Ref. [12] as the Regge trajectory of
string states in an asymptotically anti-de Sitter (aAdS)
space, the lowest state of which is the graviton. This means
that hadron scattering mediated by Pomeron exchange

'At smaller s, the exchange of mesonic trajectories also
contributes.

2Though there are some arguments in the literature that it may
in fact be a vector particle [3-6].
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should be equivalent to closed-string scattering in the
holographic dual. Though such amplitudes are difficult
to calculate exactly, one can model the interactions of the
lowest modes on the Regge trajectories in the supergravity
limit of gauge-string models and then extend the results for
these lowest-energy states to the Regge regime.

Although no known holographic dual model perfectly
reproduces all relevant features of low-energy QCD, several
reasonable toy models exist. The Sakai—Sugimoto model, for
instance, consists of N, D8 and D8 branes in the warped
gravitational background generated by N, D4-branes [9] (for
large N.). The open strings on the D-branes are dual to
mesons, while the closed strings living in the bulk are dual to
glueballs. Despite some important limitations, the masses of
mesons and some glueballs computed in this framework
have been found to match experimental and lattice results
with reasonable accuracy [10,13,14].

It is interesting and important, then, to extend the results
of low-energy holographic duals to modeling the scattering
processes of baryons and mesons in the Regge limit.
Glueball scattering (in the Regge limit and beyond) was
studied in Ref. [11]. Meanwhile, Ref. [17] proposed a more
phenomenological approach for studying proton-(anti)pro-
ton scattering holographically, relying on the assumption
that string scattering in weakly curved backgrounds should
roughly take the same form as flat-space string scattering.
First, Ref. [17] computed the amplitude for holographic
proton-proton scattering via spin-2 glueball exchange from
the supergravity limit of the Sakai—Sugimoto model. They
then used the structure of the flat-space Virasoro—Shapiro
amplitude to model the full Pomeron propagator and
substituted this propagator for the glueball propagators
in the proton-proton scattering amplitude. We call this
procedure ‘“Reggeizing” the amplitude—in other words,
extending the low-energy result to the Regge regime. The
slope and intercept of the Pomeron trajectory were left as
free parameters in this procedure, as these should differ
from their flat-space values. The result of Ref. [17]s
procedure was a phenomenological model for high-energy
scattering which could be directly compared with data.

In this work, we use similar techniques to model the
double-Pomeron-mediated central production of # and #
mesons in Regge-regime proton-proton scattering. We begin
by determining the differential cross section for the central
production of a pseudoscalar meson via the exchange of
spin-2 particles. This process violates natural parity. In
anti-de Sitter (AdS)/QCD, natural-parity-violating couplings
arise from bulk Chern—Simons terms present in all D-brane
constructions which yield QCD in the low-energy limit.
These terms are responsible for reproducing the gravita-
tional (and chiral) anomalies of QCD.? Since the coefficients

FRecall that gauge-gravity duality equates the classical super-
gravity theory in curved space with the fully quantum flat-space
field theory (at large 't Hooft coupling and large N ).
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of these terms are fully fixed—from supergravity and field
theory—their inclusion in an AdS/QCD model does not
increase the number of free parameters, and is furthermore
relatively model independent.

After computing the low-energy amplitude, we use
the form of a five (closed) string amplitude to motivate
the “Reggeization” of the process. This does not lead
to the same prediction as separately Reggeizing each
glueball propagator, as was done in Ref. [18]. Our
treatment is based on an analysis of central production
of particles by double Pomeron exchange in the string
dual [19,20], where it was demonstrated that the
behavior of the scattering amplitude depends on the
mass of the centrally produced particle. We will see that
the relatively light mass of the pseudoscalar meson we
are considering strongly affects how the glueball propa-
gators should be Reggeized. We finish by generating a
Monte Carlo simulation of #/#' central production at
Vs =29.1 GeV. We choose this energy to facilitate
comparison with the WA-102 experiment [25]. It is
important to note that double Pomeron exchange only
accounts for a small part of # and # production in this
regime, with significant contributions coming from
double Reggeon exchange. However, double Pomeron
exchange dominates at much higher energies, and there
our model, as it stands, should represent a reasonable
approximation.

The central ingredients of our construction yield clear
experimental signatures to distinguish them from other
approaches, thus providing a powerful check of its
underlying principles. First of all, treating the Pomeron
as a trajectory of even spin glueballs implies a particular
class of couplings, which would not be present if the
lowest state were a vectorlike particle. The effects of this
distinction are apparent in the form of the differential
cross sections.

In addition, because the Pomeron should be flavor
neutral, the Pomeron-Pomeron-pseudoscalar interaction
exclusively involves the flavor singlet pseudoscalar meson,
which we will call 7,. The couplings to 7 and 7/ mesons are
generated using the mixing angle with the flavor singlet. As
pions can only be centrally produced by exchanging two
mesonic Regge trajectories (Reggeons), the sole production
of 7 and 1’ becomes a unique signature for double Pomeron
processes.

Furthermore, the coefficient of the bulk gauge-gravity
Chern—Simons term which generates our coupling is
uniquely fixed by requiring consistency of the supergravity
theory on one side of the duality and by the gravitational
anomaly on the other. This makes our predictions relatively
model independent, though explicit predictions for the
glueball-glueball-meson couplings do require us to choose
a particular holographic QCD dual.

Finally, the Reggeization procedure based on the five-
string amplitude has a clear experimental signature distinct
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from the naive Reggeization of individual graviton propa-
gators. All of this suggests that comparison to experiment,
either by supplementing these calculations with those for
double Reggeon exchange or by considering experiments
run at higher center-of-mass energy, may yield significant
new insights.4

The body of this work begins in Sec. II, where we
calculate the cross section for central production of # or 7/
via t-channel glueball exchange in the Regge limit. In
Sec. III we discuss the five-string flat-space amplitude and
describe the Reggeization of our differential cross section.
In Sec. IV we compute the necessary low-energy couplings
in the Sakai—Sugimoto model. In Sec. V, we present the
results of a Monte Carlo simulation for our model. Finally,
we discuss the results and suggest some future work in
Sec. VI. A detailed description of the kinematics and phase
space of 2 — 3 scattering in the Regge limit is provided in
the Appendix.

II. FEYNMAN AMPLITUDE AND THE
CROSS SECTION

In the Regge limit, production of 7 and #' mesons in
proton-proton scattering is dominated by processes involv-
ing the t-channel exchange of Pomerons. We begin by
reviewing the kinematics and phase space of 2 — 3
scattering and the implications of the Regge limit for this
process. We then compute the amplitude and cross section
for producing 7 or ' mesons via t-channel double glueball
exchange in proton-proton scattering. Because the glueball
is flavor neutral, it only couples to the flavor singlet in the
pseudoscalar meson nonet. We therefore use the mixing
angle to determine the relationship between 7 and #
production.

A. Kinematics and phase space of 2 — 3 scattering
in the Regge limit

Consider a 2 — 3 central production process: there are
two incoming protons with momenta p; and p,, two
outgoing protons with momenta p; and p4, and one
outgoing pseudoscalar meson with momentum ps, shown
in Fig. 1. The mass-shell conditions (with a mostly plus
metric) are

pi=pi=pi=pi=-m;  pi=-ms (1)
where m,, is the mass of the proton and ms is the mass of
either the 7 or the 5’ particle. In addition, conservation of
four-momentum yields

P1+ P2 = p3+ ps+ ps. (2)

“Measuring the exclusive production of pseudoscalar mesons
at the multi-TeV scale would be very difficult, though perhaps not
impossible.
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FIG. 1. The kinematics of 2 — 3 central production.

To make calculations more convenient, we can define five
Mandelstam variables,

t=—(p1 - P3)2»

s =—(p3+ ps)*. (3)

s =—(p1 + p2)*
ty = —(p2 — ps)?,
sy = —(ps + ps)*.

We will assume the initial protons’ momenta are equal and
opposite, aligned along the z axis, so that we can write the
five four-momenta as

p1 = (E,0,0,p),
p3 = (E5.4q3. p3;).
ps = (Es.qs, ps;).

P2 = (E7O9O’ _p)’
P4 = (E4,Q4’P4z)’ (4)

There are five independent kinematic variables determining
the outgoing particles’ momenta. However, the azimuthal
symmetry of the initial states ensures that the final states
will only depend on four. We will use #; and ¢, as two of
these variables. A third will be the angle 65, between the
transverse portions of momentum for the outgoing protons,
defined as

q3 = (g3 cos b5, q3sinb;), q4 = ((1400594’CI4 sinf,),
934:64—93. (5)

The fourth will be xf, the difference between the fractions
of initial longitudinal momentum carried by the outgoing
protons, defined as

Xp = X1 — Xp. (6)

P3; = X1D, P4z = —X2P,

In the Regge limit, where the center-of-mass energy is large
and the scattering angles of the two protons are small, we
will have s > s, 5, > 1|, t,, m*> (where m could be the
mass of any of the particles involved). We also assume that
the quantity

S182

p=—= (7)

N
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remains fixed in the Regge limit, and of magnitude
comparable to t,, t, or m? for any of the involved masses.”
In Appendix A, we analyze the kinematics and phase space
in the Regge limit. We find that the phase space is
dominated by the region near xp = 0 and that we can
write the total cross section as

1 S
o= sy | (A (5 Jaonanas 5

where the spin-averaged amplitude squared (|.A|*) is
evaluated in the Regge limit at xy = 0. In this limit, we
also have

ﬂzmg—tl—t2+2\/t1[2005634, S| RSy R A\/SU,
g3 =V~ 44 =/ —l. )

B. Feynman amplitude

The Feynman diagram we need to compute is shown in
Fig. 2. Tt involves the propagator for the glueball, a massive
spin-2 object (see e.g. Ref. [21]),

id/,t/)vo' ( k)

D k) = , 10
elb) =532 (10

with

1
dﬂpl/o‘(k) = B (77/41/71,00 + 77,40’1;»)

1
+ W (k;lkarlpu + kﬂkv’/lpa + kpkorluv =+ kpkv’///w)
g

1 |:<k2)2 k2
+ ) +3<—>_6:|77 My
24 [\ m? m; e

(K> 4+ 3m32) 2k, k  k,k,
- qu (kﬂkp’/lua + kykanﬂp) + W ’
(11)

where k could be either k; or k, and m, is the mass of the
glueball. We will see that, due to the structure of the
vertices, only the first term in this expression contributes.
We also need two vertices: a proton-proton-glueball vertex
and a glueball-glueball-pseudoscalar vertex.

We assume that the glueball couples primarily to the
stress-energy tensor of the protons, as inspired by the idea
of tensor meson dominance [22,23]. In this case, the
proton-proton-glueball vertex can be written as

°In the literature this parameter is generally known as 7; we
have renamed it to avoid confusion with the # and #' mesons.
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FIG. 2. The Feynman amplitude for the central production
process.

A(1)

" = Ap |—= (y*PP + yPP*
Pl

B(1)

PH /)’ v Pr ;l’ v ky
+t5n (PAly? v + PP, vY])

—%(n"f’ﬂ— k”kf’)}, (12)

withk = p —gand P = (p + ¢)/2. The form factors A, B,
C are then derived from the energy-momentum tensor,
which implies that A(0) =1 and B(0) =0 [24]. In our
amplitude, the term proportional to C(z) will not contribute;
it vanishes when contracted through the glueball propagator
with the natural-parity-violating central vertex. We also
drop terms proportional to B(t), as B(t) is small and slowly
varying near ¢t = 0, where the amplitude is largest. This is
supported by calculations in the Sakai—Sugimoto model, as
discussed in Ref. [17].

Meanwhile, the glueball-glueball-pseudoscalar vertex is

Ve =[Gy (11, )n + Gy (1, t2)kgk(l/)]€aﬂy§k1yk25v (13)
with

ki = py = ps3, ky = py = pas. (14)

The structures appearing here are the only ones allowed
by the symmetries of the strong force: parity and charge
conjugation in addition to Lorentz symmetry. Note the
presence of the natural-parity-violating epsilon tensor,
which on the gravity side of the duality arises from the
Chern—Simons interaction. We will eventually take the
as-yet-arbitrary factors G; and G, from the Sakai—
Sugimoto model, along with the coupling constant Ap
and the form factor A(¢) of the proton-proton-glueball
vertex.

The full amplitude for central production of pseudosca-
lars in double glueball exchange processes is thus

A= (QSF”pul)Dﬂpaeva€ﬂ¢Duaﬂ¢(u4ryau2)' (15)
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Using the Dirac equation along with the structures of the propagator and vertices [and dropping terms proportional to B(7)],

we can rewrite this as

WBA(11)A(1)[Gy (11, ) + Gy (14, lz)kik(f]gaﬁyﬁklykz(s

A= [u3(yaple + yepl(l)ul][u4(}, P2() +v )P23)u2]7 (16)
(0~ ) (13— ) pPas 74P
with
P1:p1;p3’ P2:P242FP4' (17)

C. Differential cross section

To find the differential cross section, we now compute {|.4|?), averaging over spins for the incoming protons and

summing over the spins of the outgoing protons. We find

(AR) =3 3 IAP

spins

_ 167bA(11)?A(0)[G (1, ) + Gt )KSKY) (G (1. 020! + Gty ) KSk] JePPeP ey ey ko

(t; = mgz;)z(fz - m2)?

g

1
X (PlaPlePluPIe __(tlrlaapleple + tln(lePlePIa + tlﬂeaPIaPIe + (tlnee + klekle)Pl(IPla)>

16

1
X (Pz/spzlppszzf - R(

The last two kinematic multiplicative terms come from
expanding the traces over gamma matrices associated with
the proton-proton-glueball vertices. In each one, only the
first term (proportional to P{,) contributes in the Regge
limit. This allows for great simplification, leaving us with

(AP
_ pA(1)*A(6)*s* 111,26, 1, 1] = pGaty, 1)) sin’6s,

4(t, - mé)z(tz - mg)z

(19)

Combining this result with the expression for the total cross
section in Eq. (8) yields the differential cross section

do
dt,dt,d0s,

o\ 4
~(52) ()
87 u
y A(11)*A(1)*s° 111,26, [1), 1] = pGa [ty 1,])*sin* O3y
(ty —mg)* (1 — mg)? .

(20)

Perhaps the most interesting aspect of this result is the
dependence on the angle @s,. The factor of sin” 05, arises

1o PagPay + talpr Poy Pop + tollp, PopPas + (ol + k2(/)k2f)P2/}P2h)>- (18)

|

directly from the contraction with the epsilon tensor and
is therefore a simple consequence of breaking natural
parity. However, there is an additional possible depend-
ence on 3, in the factor u, which arises from the vertex
structure. At lower energies this process should be
dominated by the double exchange of vector particles,
where this additional structure does not occur. Lower-
energy data, such as that of the WA102 collaboration at
Vs =29.1 GeV, show no evidence of any angular
dependence other than the overall sin’6s, [25,26], which
is consistent with the idea that at these energies we
expect the exchange of Reggeons to play a larger role in
the process. At higher energies, the amount that the
sin? 03, dependence is modified will be determined by
the relative values of G; and G,, which we will compute
using the Sakai—Sugimoto model in Sec. IV.

Finally, we need to relate this expression to the pro-
duction of 7 and #' mesons. The glueballs are flavor neutral
and thus should only couple to the flavor singlet pseudo-
scalar 7. This is a linear combination of 7 and 7/, using the
mixing angle 6 = —15.2° £ 0.5%

o) = —sin@|n) + cosO|r'). (21)

Equation (20) gives the result for production of #,, and
therefore the results for the production of 7 and 7’ should be
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oy _ o (’1_7’)4 In (ﬁ) A(tl)2A(f2)252f112(2G12[f21’ h] - ﬂszz[fu 1r])*sin’6s, (22)
dfldt2d0g4 8 H (Zl - mg) (12 - mg)
and
dO'n/ _ COSZQ (/1_73>4 ln (E) A(t1>2A(t2)2S2t1 t2(2G12[t21, tz] - M2G22[t1’ tz])zsin2934 ' (23)
dtldt2d934 ¥/ H ([] - mg) (l’Q - mg)

The overall factor of sin?6 or cos” 8 is not the only way that
the production of # differs from the production of #’; the
differing masses of the 7 and 7’ mesons also play a role, as
we shall see more clearly once we have properly Reggeized
the propagators and computed the factors G; and G,.

III. REGGEIZING THE PROPAGATORS

In the high energy limit we Reggeize the glueball
propagators appearing in the differential cross section:
we replace them with Pomeron propagators. We use a
form motivated by the fact that Pomerons are dual to closed
strings. In Ref. [17], the amplitude for four-string scattering
in flat-space bosonic string theory was considered, assum-
ing that the amplitude in the curved space dual to QCD
retains the general structure of the flat-space amplitude, but
with values for parameters such as the trajectory’s slope and
intercept allowed to vary. We begin by reviewing that
treatment and then discuss the “naive” Reggeization of the
central production process, assuming we separately
Reggeize each of the propagators. We then examine the
behavior of the five-tachyon amplitude in bosonic string
theory, as developed in Ref. [19]. Finally, we propose a
modification of the naive Reggeization procedure moti-
vated by the five-string amplitude.

This procedure relies crucially on the assumption that the
curved space string scattering process involves amplitudes
which essentially have the same form as flat-space ampli-
tudes, with the entire effect of space-time curvature and extra
dimensions encapsulated in the Regge trajectory parameters,
which are left arbitrary. This is clearly an approximation; for
instance, it has been shown that long spinning strings receive
corrections to their Regge trajectories which are not linear in
J [15,16]. However, for weak space-time curvatures and
scattering processes essentially localized at a single radial
position in the holographic space, the assumption should be
sufficient to create a reasonable model.

A. Review of elastic proton-proton scattering

The starting point in analyzing proton-proton scattering
in Ref. [17] is the crossing-symmetric Virasoro—Shapiro
amplitude,

[[=a(®)[[=a(uw)[l[-a(s)]
[~a(s) —a(0)]T[=a(s) — a(u)]T[-a(r) - a(s)]”
(24)

=2rC
A 1C

|
as given in Ref. [27]. This is the expression for the
scattering of four closed-string tachyons, but it can be
modified to account for the external particles having
nonzero spin through the inclusion of a kinematic prefactor
with no poles or zeroes. Such a modification has no effect
on the procedure of Reggeization, so we ignore it in what
follows.

In bosonic string theory in flat space, we take a(x) =
1 %, so that the mass of the tachyon is m% = — ;i,. When
we use this as an Ansatz for glueball exchange in four-
proton scattering, we assume a(x) is a linear function

related to the glueball trajectory a.(x) = a.(0) + a.x by
2+ 2a(x) = a.(x), (25)

so that the lowest element on the trajectory [corresponding
to a(x) = 0] is a spin-2 glueball with mass

2 _ 2_ac<0)

) a/c

m (26)

In replacing the dependence on u# with dependence on s and
t, a mass-shell parameter y is introduced so that

.
r=5 [4m3 — 3m?]. (27)

a(s)+a(t) + a(u)

By then comparing the lowest #-channel pole with the
Regge limit of this expansion, we obtain the proposed
replacement in the Regge limit:

1 aLT[—]T[1 = %9] /gl 5\ a2 -
t—mg " orfl -1 -y < 2 ) -
The net effect of what we have done in moving from the
bosonic string theory result to the proposed Reggeization of
the glueball propagator is to introduce the factor y (which in
bosonic string theory in flat space would be equal to —1)
and replace the bosonic trajectory a(x) = 1 + “T’" with the
glueball trajectory, according to Eq. (25). This procedure
(and what follows in the analysis of the five-string
amplitude) has limitations. However, it has the advantage
of maintaining important features such as the crossing
symmetry and general Regge behavior of the Virasoro—
Shapiro amplitude, while allowing for some phenomeno-
logically motivated adjustments.
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B. Naive Reggeization

The naive Reggeization of the 2 — 3 scattering process
would involve simply replacing the two glueball propa-
gators in our amplitude according to Eq. (28). The result
would be

1

(t = mz)(h - mé)

(29)

I“[ac(ztl) —1-=

To insert this into the differential cross section, we must
compute its magnitude squared. At the same time, we will
make the Regge limit approximation s; = s, ~ \/su. This
gives

1
212 22
(1 = mg)* (8 — mg)

Tl—g)* [ 2 \* [ a2sp %) +ac(n)
RS (%u) ( 4 )

(1 — %)y — 2P
X a.(t)) 2ra.(ty) 2" (30)
IFEsE = 1= TES2 - 1 =]

It is interesting to note that this expression has a
significant dependence on the kinematic parameter p.
This would be in addition to the dependence that arises
from the structure of the coupling. Phenomenologically,
this would complicate an experimental signature associated
with the angular (f54) dependence of the scattering cross
section. It would also affect the ratio of the production of
to 1/ mesons (through dependence on the mass of the
centrally produced meson), which would otherwise be
governed almost entirely by the mixing angle.

C. Five-tachyon string amplitude in the Regge limit

Naive Reggeization does not take into account the fact
that in the dual picture we should be looking at a five-string
scattering amplitude. In bosonic string theory in flat space,
the five closed-string tachyon amplitude can be written

A= C/dzudzy|u|—20(tl>—2’U|—2tl(t2)—2|1 |_2a 51)-2
X |1 _ M,U|2a(s1)+2a(s2)—2a(s)—2’ (31)

where a(x) =1 + 2x is the bosonic closed-string Regge
trajectory (agam) Thls can be approximated in the Regge

®This integral can be computed in closed form. However, we
will be content to take the Regge limit directly from the integral
form.
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regime in two different limits: # large and (ﬁ—” small [19]. In
the former scenario, we obtain

ia’sl 2a(ty) ia’s2 2a(ty)
4 T4

% [C[—a(t)|T[-a(t,)]
Tlalny) + Ta(ny) + 1] (32)

A 4772C<—

This is essentially just the product of two separate Reggeized
propagators, which suggests * ‘naive Reggeization.” On the

other hand, if we assume 4” is small, we obtain

Ar —4712C{ (i) 2a(t1) (—ia’s2> 2a(n)
N 4

% ['[—a(t)|la(t)) — a(,)]
i+ a(n)]

1
s\ 2a(t2) —id's, 2a(t;)
+ S 4

;]F[Cl(b _>a Iy ] } (33)

This expression is somewhat more complicated than the
naive result. The value of y, given in Eq. (7), is primarily
determined by the mass of the centrally produced meson:
U~ m% Based on fitting to proton-proton scattering in

Ref. [17], we also know a.. = 0.3 GeV~2. This gives “IT” ~

0.05 for central production of the # meson and aé‘” ~0.14
for central production of the ' meson. It is clearly more

reasonable to use the approximation that # is small, which
is not consistent with naive Reggeization. We will therefore
use the form of the five-string amplitude as a guide to create
a modified Reggeization scheme for the glueball propa-
gators in central production processes.

D. Modified Reggeization

In analogy to the four-string procedure, we propose a
modified form of the Reggeized double glueball propagator
in the small "‘” limit as

1

(t1 = mé)(tz - mé)

al\? io.s\ 2
Z) =212 = =2
> (5) T (-5)
s\ 2c(t) —ial.s, a.(t)
— 1, t
@) () e
a(t) [—iol.s,\ @(t)
+ <i> ’ (—m”s1> ' W(tz,tl)}, (34)
S1 2

where we define

086010-7



ANDERSON et al.

W(t, t,) =

(35)

Here, we maintain the same ratio of gamma functions, but
we modify the trajectory to be the glueball trajectory. This
creates the correct pole structure. We also introduce factors
of y according to their appearance in Eq. (28). However, it
is not clear what value y should assume. The value found in
Eq. (27) may not be appropriate here; if y arises from mass-
shell relationships between Mandelstam variables, it should
surely depend on the mass of the centrally produced meson.
To determine the Reggeized double propagator formally,
we would need to rewrite the original five-string amplitude
in a form where the appropriate crossing symmetries are
manifest and then rewrite the expression in terms of the five
independent Mandelstam variables {s, s, 55, #1, f, }, using
appropriate mass-shell relations. Nevertheless, changing
the value of y mostly rescales the Reggeized double
propagator without significantly affecting its functional
form, provided it is negative and of order O(1). We will
therefore use the value given in Eq. (27) when simulating
central production in Sec. V.

As before, we now compute the magnitude squared
Reggeized propagators and insert s; ~ s, & \/su, as dic-
tated by the Regge limit. This gives

1
(ty = mg)* (1, —m3)?

(] <ﬁ> a.(n)+a(r)

s* 2
/] do(t—1y) ! ] de(ti=t)
x { [“7”] TN (1) + [“7”} W (a.1y)
ma(t — 1)
+2cos # W(tl,tz)W(tz,tl) . (36)

Again, we will focus on the dependence on the kinematic
factor y: in this expression it appears only in the form
["%‘”]i“/"(lr[”. The Reggeization suppresses values of #; and
1, that are significantly nonzero, and so this dependence on
u is very weak, in contrast with what is implied by naive
Reggeization. Therefore, using the modified Reggeization
scheme, we should expect almost all of the 85, dependence
to come from the structure of the glueball-glueball-
pseudoscalar vertex. Similarly, we do not expect signifi-
cant differences between the production of 5 vs the
production of # to arise from the Reggeized propagators
in this scheme, because there is no strong dependence on
ms. Thus, using a Reggeization motivated by the five-
string amplitude is not only more consistent with string
theoretic models and with the approximate value of olu,
but it also leads to cleaner and more robust predictions for
the scattering behavior, making it easier to identify
experimentally.
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IV. LOW-ENERGY COUPLINGS FROM
HOLOGRAPHIC QCD

The general structure of central production processes can
be determined from symmetry considerations and the
assumption that Regge-regime scattering is well modeled
by the exchange of Regge trajectories. However, the precise
structures and values of the couplings are model dependent.
Assuming that the coupling of a full Regge trajectory is
completely determined by the coupling of its lightest state,
we need only determine the coupling of the lightest state on
each trajectory via some low-energy QCD framework—in
this case, holographic QCD.

Holographic QCD (or AdS/QCD) relies on the conjec-
ture that there exists a gauge-string duality between QCD in
four dimensions and a five-dimensional theory of strings in
an aAdS space-time. In the limit of small AdS curvature
and small string coupling, the string theory reduces to
classical supergravity. This corresponds to the limit of
large A = N_.g%y and large N, in the gauge theory. One
can therefore study strongly coupled QCD in the large N,
large A limit using solutions to the classical supergravity
equations of motion in aAdS space.

While the original AdS/CFT correspondence dealt with
conformal field theories having continuous spectra, by
making an appropriate choice of five-dimensional back-
ground geometry, one can produce a confining dual theory
with a discrete spectrum. Each supergravity field can be
decomposed in a Kaluza Klein-like tower of wave func-
tions dependent on the four-dimensional field theory’s
coordinates x and the fifth (“holographic™) coordinate U:
O(x,U) =>,0,(x)p,(U). Evaluating the supergravity
action on these solutions, we find an effective four-
dimensional Lagrangian with an infinite number of cou-
plings between the four-dimensional states ¢, (x). These
states correspond to towers of mesons and glueballs, each
having the same quantum numbers but different masses.

In essence, the supergravity limit gives us the first state
on each of an infinite set of Regge trajectories: the lightest
mass modes give the first state on primary Regge trajecto-
ries, while the more massive states in the Kaluza—Klein
(KK) tower give states on the daughter trajectories. In the
supergravity limit, these are the only states we see, and
states which are higher up on these Regge trajectories have
infinite mass (so the Regge slopes are strictly zero). Of
course, this limit does not accurately represent real low-
energy QCD, in which no separation of scales exists
between the daughter trajectories and higher spin states.

For our purposes, it will be sufficient to consider the first
state on a few specific Regge trajectories regardless of the
value of 4, so this shortcoming of AdS/QCD frameworks
will not affect our analysis directly. Meanwhile, models of
holographic QCD have a great deal to offer. In particular,
the “top-down” versions of these models (like the Sakai—
Sugimoto framework [9] described below) have fewer free
parameters than generic phenomenological frameworks.
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Both bottom-up [29,30] and top-down [9] models have
been studied extensively in the low-energy regime, where
they produce impressive matching to experimental data
(e.g., meson masses, coupling constants, etc.) and to lattice
results. They also have the nice feature of incorporating
older phenomenological models (such as vector meson
dominance) as a natural consequence of their fifth or
holographic dimension.

At best, predictions based on holographic frameworks
can help evaluate the (heuristic) success of AdS/QCD
models. At worst, AdS/CFT provides phenomenological
Ansidtze which may prove more successful than more
commonly used frameworks for fitting scattering data.
Model-independent checks are clearly the most interesting.
It is for this reason that we focus on central production of
the 7, for which the low-energy coupling to glueballs is
fixed by general anomaly-cancellation arguments in string
theory (and the gravitational anomaly in QCD) and there-
fore depends relatively weakly on the details of the holo-
graphic model in question.

In this section we will describe the holographic QCD
predictions for the proton-proton-2*+ glueball and /5’27
glueball couplings relevant to the central production of /%
in the Regge regime. We work exclusively in the well-
studied Sakai—Sugimoto model [9], which we now review.

A. Overview of the Sakai—-Sugimoto model

The Sakai—Sugimoto model of Ref. [9] is a top-
down holographic QCD framework. In contrast to the
more phenomenologically oriented “bottom-up” models of
Refs. [29,30], the Sakai—Sugimoto model uses a D-brane
configuration in ten-dimensional supergravity to mimic the
most important features of low-energy QCD: confinement
and chiral symmetry breaking. A stack of N, D4-branes
provides the color symmetry group; stacks of parallel N,
D8- and DS8-branes intersect the D4-branes along 3 + 1
directions, generating the chiral symmetry, U(N), x
U(Ny)g. In the large N, limit, we can replace the D4-
branes with the corresponding supergravity background,
which includes a Ramond-Ramond 3-form C; and a
dilaton ¢:

U\ 3/2
ds? = GyndxMdxN = (E) (n,dxtdx” + f(U)d7?)

U\ —3/2
+ <R> (f(U)'aU* + U*dQ3) (37)
U\3/4 27N,
e) =g, <E) . Fy=4dC3 = V. €4,
U3
fluy=1- % (38)

The coordinates x* denote the flat “field theory” directions,
with 4 =0, 1, 2, 3. R is the curvature, dQﬁ denotes the

PHYSICAL REVIEW D 90, 086010 (2014)

metric on an S* transverse to the branes, ¢, denotes its
volume form, and V, = 872/3 is the volume of a unit S*.
The D4-branes wrap an S on finite radius (denoted by the
direction, with 7 ~ 7 + 2zML). To avoid a conical singu-
larity, the radial coordinate U is bounded from below as
U > Ukg:; this generates confinement in the field theory.
Antiperiodic boundary conditions on the fermionic super-
gravity modes, meanwhile, serve to fully break the super-
symmetry of the system.

It is useful to relate the inverse radius of the S', Mgy, the
asymptotic curvature R, open-string coupling g, and length
[, to parameters in the dual field theory:

3UYE
Mg = YR3/2 ngM = 2nMxk sl
2 N 12
R} = ng,N.3 = QEMTKK (39)

In the end, all of the physical observables for which we
make predictions can be expressed in terms of Mgy and
gym» Which are thus the only free parameters of the model.
We will compute the p meson mass and the pion decay
constant in terms of the parameters Mygk and gy (detailed
below) and then use experimentally observed values for
these quantities (m, =776 MeV, f, =93 MeV)' to fix
the model parameters.8 As computed in Ref. [9],

m, = 082Mq and f2 = 54—1714 AUNME,.  (40)
While somewhat greater accuracy could be achieved by
performing a global fit to all of the low-energy QCD data at
our disposal, we are in any case looking for rough estimates
for the computed parameters, as the results of AdS/QCD
are heuristic at best.

If we assume that Ny < N, we can treat the D8 and D8
stacks as probe branes in the D4 background (that is, we
neglect their backreaction with the D4 geometry). The full
action for the system thus includes the background super-
gravity action S, for closed-string modes, the Dirac-
Born-Infeld (DBI) action for the open-string modes on the
probe branes, Spg;, and the Ramond—Ramond action Sgg,
which we discuss in the next subsection. Thus, we have

S = Sgray + Sppr + Skr; (41)

’A previous version of this paper contained a typo in the value
of m, in terms of Mgg. This led to an incorrect value in the
Sakai—Sugimoto prediction for the 77, mass as well, now corrected
below. We thank Anton Rebhan and Frederik Bruenner for
pointing this out to us.

In practice it will prove more convenient to express all
observables in terms of My = 949 MeV and f, (not gyym),

but this is just a matter of trivial algebraic manipulation.
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S grav

(2n)4lf )
2.4) Fap

(42)

dlox\/_{ (R + 4(V)?) -

2)('10

SDBI = —Tg / d9x€_¢Tr\/— det (gMN —+ ZHGIFMN).
(43)

Here «y is the ten-dimensional Newton constant, Tg =
(27)781;° is the D8-brane tension, g,y is the pullback of
the background metric onto the DS8-branes, and Fy =
OpAy — OnyAy — i[Ay, Ay] denotes the field strength of
U(N)-valued gauge fields living on the branes. The traces
run over U(N,) indices, with normalization Tr(7T“T”) =
59 /2. We ignore any fluctuations along or dependence on
the S* transverse to the x* and U directions and can thus
simply integrate out the S* to yield an effectively five-
dimensional action.

In this background, the D8 and D8-branes fill the x*
and S* directions, while joining together to form a single,
U-shaped stack having a nontrivial profile in the (z,U)
plane. This effectively breaks the chiral symmetry from
U(Ny), xU(Ny)g to U(Ny)y. One can find the profile
of the D8-branes—and thus the induced metric on the
branes—by extremizing the DBI action without gauge
field fluctuations (A;; = 0) in the D4 background. The
simplest possible configuration is given by constant

7(U) =ZR, /72, where the D8 and D8 are located at
30/ T

antipodal points along the x* circle as U — co.

The Sakai—Sugimoto model works in the limit of zero
quark mass, so the breaking of chiral symmetry is entirely
due to the (gg) condensate. Since we work at high energies
overall, this a reasonable approximation.

B. Open- and closed-string spectra

The closed-string modes living in the bulk space corre-
spond to glueball states, since they have no flavor indices.
The open-string modes, for which the end points move on
the stack of D8-branes, transform under the flavor sym-
metry and correspond to mesonic states in the dual field
theory. Concretely, these are modes of the D8-brane gauge
field A, which is dual to the QCD vector and axial vector
currents. There also exist scalar excitations on the brane
which come from transverse fluctuations of the brane
profile in the background. These are artifacts of the model

°To include an explicit quark mass (which, in the dual field
theory, corresponds to explicitly deforming the field theory
Lagrangian with a term of the type m,yy), one would need
to turn on a nontrivial non-normalizable mode for the open-string
tachyon living on the D-branes.
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from the perspective of QCD, and we neglect them in what
follows.

We now briefly review the relevant parts of the glueball
and meson spectra arising in this framework, originally
computed in Refs. [13,31] and Ref. [9], respectively.

1. Spin-2 glueballs

The 27 glueballs are dual to modes of the background
graviton field hj, which transform like a symmetric
traceless two-tensor in four dimensions: the h,, compo-
nents. The full background field content generates a rich
spectrum of glueballs (described in detail in Ref. [13]),
which furthermore matches lattice predictions with rea-
sonable accuracy. For our purposes only the spin-2 mode is
relevant, and we ignore the rest in what follows.

Consider the action S,,, in Eq. (41), expanded in metric
fluctuations around the background of Eq. (37) with
gun = Gyy — hyy. In the gauge hy, =0, and taking
h% = 0, the graviton equation of motion is

3 (92f+3U8Uf>h,j + (f + Uy f)UOyhy;

In this expression we have Fourier transformed in the field
theory directions as h;;(q, U) = [d*xe™""*h;;(x,U). Here
g* is the 4-momentum, which has become a parameter in
the solution. The boundary conditions are chosen such that
solutions are smooth at U = Uk [i.e., hj;(q, Ugk) = 0]
and normalizable as U — oo (/;;(q, o) = 0). Only par-
ticular values of g> satisfy (44) with these boundary
conditions, yielding a discrete spectrum of spin-2 reso-
nances. In terms of these resonances we can write

> (y) nw. @

n=1

(n)

where m? is the mass of the nth resonance h; ;~ and the wave
functions T, (U) satisfy
dy(U*foyT,) = —myR*UT,. (46)

The lightest of these states (m? = 1.57M%y) is the first state
on the Pomeron trajectory, while the higher states lie on
daughter Regge trajectories. Inserting the mode expansion
equation (45) into S, and integrating over U yields a
four-dimensional action for the modes #;;’. We choose to
scale T, in such a way that the kinetic terms of the four-
dimensional fields are canonically normalized. Expanding
the Einstein-Hilbert term to second order in 4, we find
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N M KKgYM
35 2 Z
/a"‘xn’”’nﬂ‘s e [5‘ hgy o, h ") ——8 h& 0 hﬂ”]

. (47)

N grav

We therefore require

N3MKKgYM/°° U U
T, (T, (U)d—=35,,. 48
2 35 2 | UKK m( ) ( ) UKK mn ( )

As we consider only the lightest resonance here, we set
m2=m}, T(U) =T, and h;;(x) = Al )( ) in what follows.

2. Mesons

Now let us consider open-string excitations for which the
end points lie on the stack of N, D8-branes and thus
transform under the flavor symmetry group. These are
mesonic resonances, parametrized in the supergravity limit
by the field content of the DBI action. The meson spectrum
is analyzed in great detail in Ref. [9]; we will summarize the
points relevant to our discussion here.

The gauge field A,; appearing in (43) is dual to the axial
and vector flavor currents of QCD. Its normalizable
excitations thus correspond to the vector and axial-vector
mesons (p/w and a,/f-like states), for which the parity
transformation properties are dictated by whether their
wave functions on the brane profile are even or odd under
swapping the D8 and DS stacks, which corresponds in
QCD to swapping chirality and U(N;), <>U(Ny)g. Even
wave functions are dual to vectors; odd ones correspond to
axial vectors.

Assuming no dependence on the §* coordinates, the DBI
action equation (43) becomes

4 U 3ULKK U, P0
Spg =—k | d*xd U Tr = " F,,F o,
KK 4 T 1
KK
2. , U |U? w
+ gMKK U\ U0 —FyFy+ ..., (49)
KK
with
2 A2
_ gymNV
N 108n3c' (50)

Note that there is an additional factor of 2 in the overall
coefficient (compared to the DBI action) because the U
coordinate only parametrizes half of the D8-D8 profile.
To ensure that the mass and kinetic terms of the four-
dimensional action are normalizable, we must have the
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field strengths (F,z,F,,) — 0 as U = oo, so we seek
solutions A,, vanishing at large U. As with the graviton
modes, we consider a mode expansion,

ZA
=> ¢ (x)e, (V). (52)

where the y,,’s obey the equation of motion and orthogon-
ality relation

AUk | U3 u | U3
- — 1Ugxd — 1Ugkdyy
9 U U KK U<UKK UKK KK4uY¥
U

Xy, (U), (51)

(53)

The massive ¢, modes sitting in A;; can be absorbed into

the A,(,”) modes via a gauge transformation. There is, how-
ever, a single massless pseudoscalar mode: the g> =0
mode of the Ay; component of the gauge field. This mode is
gauge equivalent to the state generated by the longitudinal
part of A, which is in turn dual to the divergence of QCD’s
axial flavor current. Hence, the mode corresponds to the
pseudoscalar mesons, which are the Nambu—Goldstone
bosons associated with the broken chiral symmetry. The
states which parametrize the SU(N) part of the flavor
group are the (generalized) pions, while the U(1) piece

yields the ¢!

1 U \-5/2
Ay = BN T o (U—) (54)

satisfies the linearized equations of motion derived from the
DBI action with g> = 0, and is furthermore orthogonal to
the massive modes. The coefficient (expressed here in
terms of the field theory quantities My and gyy;) ensures
appropriate normalization. Note that the dimensionless
coordinate U/Uxgyg € [1,00) only parametrizes half of
the brane stack, so all integrations over U on the branes
should come with an additional factor of 2.

As discussed in Sec. II, the 1 and 7’ correspond to linear
combinations of the U(1) generator T° and the T® generator
of SU(3), with the 1’ being mostly 7° and the 5 mostly T8.
In the above analysis, 775 and 5y are degenerate, since the
quark masses vanish in Sakai—Sugimoto, and we assume an
exact U(3) flavor symmetry. This treatment neglects the
additional 7, mass generated by the anomaly in the U(1),
current in QCD. The anomalous mass was studied in the
original work of Sakai and Sugimoto [9] and by Ref. [32] in
a bottom-up QCD framework. The mass of the 7, is

=1y. One can check that the mode

086010-11



ANDERSON et al.

nonzero when N, is large but finite and can be derived in
supergravity using the transformation properties of the
background Ramond—Ramond C; potential—which is
directly analogous to the theta angle in QCD. This analysis
yields [9]

1 Ny
=— I My (NG 55
my,, 3 \/§7; N, KK( LgYM) ( )

In our case, this gives m, = 978 MeV.

We adopt a practical approach and simply include the
experimentally measured values for the n and 5 masses
where necessary, noting however that proper treatment of
the mass in Sakai—Sugimoto could also change the mode’s
wave function on the branes and might lead to slightly
modified couplings.

C. Four-dimensional couplings

Having described the relevant parts of the spectrum, we
now turn to the meson-glueball and proton-glueball cou-
plings which determine the structure (and magnitude) of the
amplitude for producing #/#’ in proton-proton collisions. In
top-down AdS/QCD, couplings between the open and
closed-string sectors arise from both the DBI action and
Ramond-Ramond (RR) actions. The former generates an
interaction between the protons and the spin-2 glueball,
while the latter yields a natural-parity-violating coupling of
27+ glueballs to 7/#. As noted in the Sec. I, the
coefficients of these terms are completely fixed on the
QCD side by requiring that correlation functions of currents
reproduce the gravitational anomaly. We find the couplings
between mesons and glueballs in the four-dimensional
effective theory by evaluating the action in Eq. (41) on
shell using the mode expansions derived in the previous
subsection. Each coupling constant is related to an integral
over the radial coordinate U.

1. ny-glueball coupling

Since couplings between the 7, and two spin-2 glueballs
violate natural parity, they can only come from a Chern—
Simons term that couples bulk RR forms to D-brane fields.
The Ramond—Ramond coupling for D-branes can be
derived using anomaly inflow arguments [33]. The action
takes the form

Sgr = A 8 CATr exp{%}] A(R), (56)

where integration is over the D8 world volume. Here C =
>;C; is the sum of RR form fields turned on in the
background. For us, C = Cj, the 3-form gauge potential of
Eq. (37). F is the (Hermitian) field strength of the D-brane
gauge fields and the trace is over gauge indices. A(R) is the
“A-roof genus,” a sum over Pontryajin classes (p;) of the
gravitational curvature 2-form R,
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. 1 1
AR)=1-=pi(R)+...=1+ T

7 TrRAR + ...

ﬂ'2

(57)

We are suppressing 6-form terms and higher not relevant to
the current analysis. Here the trace is over Lorentz indices
of the curvature 2-form, related to the Riemann tensor
as RMN = L RMN x4 p x|

The integral in Eq. (56) picks out the 9-form terms in the
integrand,

1
SRR = C3N | =——=Tr(F)ATr(RAR
w= [ Cn g TOIATHRAR)

+ Tr(FAF/\F)] + ...

4873

1

+%ﬂ3w5(A)] + o (58)

where ws(A) is the Chern—Simons 5-form, defined by
dws = TrF3. Again, we neglect fluctuations along
the $*, and we can trivially integrate it out to yield a
five-dimensional action. The second term in Eq. (58) yields
the gauge Chern—Simons term dual to the chiral anomaly of
QCD and generates natural-parity-violating couplings
among mesons [9,34].

The first term in Eq. (58), meanwhile, is the one of
interest for modelling Pomeron exchange, as it couples
glueballs to mesons. In coordinates, the relevant five-
dimensional coupling becomes

N
Srr D < A xeMNPORTr (A, )R Ror™S, 59
RR 2 15362 (Ay)RypsTRor (59)
where eMNPRC refers to the Levi-Civitd tensor density. This

contribution to the classical action in supergravity gener-
ates mixed gauge-gravitational anomalies in the full quan-
tum theory of the dual conformal field theory and has been
studied in the context of holographic hydrodynamics [35].

Since we are only interested in the 7, coupling to
gravitons, the most convenient gauge choice is one in
which the 7 appears only in the U component of the world
volume gauge field, A;. The only term appearing in the
RR-form action is then

N, |N _
SRR 2 7536,2 \/7f / A Rys7R 6™, (60)

where we have traced over the flavor indices.' To identify
the graviton-graviton-7, interaction we expand Eq. (60) to

"Flavor group generators are normalized as TrT¢T? = 5% /2.
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second order in the graviton perturbation, h,;y, where
IuN = Iun — hyn- As we are only interested in the spin-2
coupling, we can neglect terms involving /gy and hy,,
focusing solely on the terms including 4, and its deriv-
atives. After some significant algebra we obtain

5 ﬂl//)(FUAO
Skr 2 15362\/ /dx

x {25 n*n07°0 ,h,q 0, h 5 ——fn P Oy0,hyaOsh,p+

+ 2f7’]aﬂauaﬂ hvaauaghpﬂ

R\3
+2 <U) W(lﬂnyéayaﬂhwaﬂ(aﬁhﬂﬁ - 8ﬁhﬂ5)}‘ (61)

Replacing the bulk fields with the lowest terms in the
mode expansions computed previously, AY = ¢(U)n,(x)
and h,,(x,U) = (42T (U)h,,(x), we find the four-
dimensional coupling

Srlohh = /d4x{Ku€ﬂpp0}70’7aﬁaﬂhuaao’hp/}

+ K€ P00, 0510, (Dshoq — Oahos) }.

(62)

where the coefficients x, and k,, are the integrals

fU3 /
‘/ avl 7y
Ka = 3847z / Ut (1)

= (jz‘f()?f* \/AT x (2.418) = 0.084 GeV~!  (63)

5\ = d
3847r / u(r

W \/7 x (2.086) = 0.182 GeV=3.  (64)

Recall that we have fixed Mgk using the mass of the p,
although one could obtain greater accuracy by calculating
My using a more comprehensive fit of QCD observables
(i.e., meson masses and couplings).

The resulting Feynman diagram coupling for graviton

polarizations eg;)(kl) and eig)(kz) and the 7, polarization

Kp =

em)(ps) is given by
afys pe _ e
2¢e kl,ueri{rl (Ka thl ' kZ) + kl kZKb}’ (65)

which appears as the central vertex in Fig. 2. Comparing
this with Eq. (13), we have
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—ky(k - ky)] and  Gy(11,1y) = 2k,
(66)

G (t1.1;) =2k,

With these identifications, the vertex coupling structure that
appears in the differential cross sections will be

2G(t, 1) — uGy(ty, 1p) = 4(k, + Kkp /111, c08034), (67)

which does not depend explicitly on ms. Given that the
calculation of these couplings (inaccurately) assumes m,, =
m, = 0 (we will simply insert the correct values for these
masses later on), it is very convenient that the coupling
structure we are working with ends up independent of ms,
so our simplified treatment should be a reasonable approxi-
mation. Notice also that the dependence of the differential
cross section on 6z, should be sensitive to the ratio «,/x}.
This does not depend on f,, only on Mgk, so errors in the
determination of f, will affect the results only obliquely,
while modifications to Mgk are much more important. In
addition, although the values of k,, and x;, are dependent on
the overlap integrals (63) and (64), the basic form of
Eq. (67) derives only from the structure of a Chern—Simons
coupling and should be mostly independent of the details of
the Sakai—-Sugimoto action.

2. Proton-glueball coupling

Much work has been done to understand the nature of
baryons in holographic QCD and in the Sakai—Sugimoto
model specifically. Strictly speaking, holography operates
in the N. — oo limit, where the baryons are infinitely
massive. Baryons are also solitonic objects in the dual
(gravitational) theory: they are finite-volume D-branes. In
Sakai—Sugimoto, they are D4-branes which wrap the $*
direction and are pointlike in the U and x* directions, but
“dissolve” into fields living on the D8-brane world volume.
In other words, baryons are charge 1 instantons of the full
five-dimensional DBI action of Eq. (41). The solutions
evade analytical description and thus are often framed in
terms of an expansion in 1/4 [36-38]; a full (numerical)
solution was found only recently [39]. All of the above treat
the baryon as an object without spin; it is only after
quantization of the collective coordinate fluctuations
around these solutions that they display the properties of
spin-1/2 particles—e.g., protons. We choose instead to
treat protons using “effective” fermion fields 3 on the
curved D8-brane world volume with a U-dependent effec-
tive mass [28,40-43]. The resulting coupling between
protons and spin-2 glueballs was derived in Ref. [17].
We very briefly review the result here.

A single graviton couples to protons as it does to the rest
of the matter living on the brane, via the five-dimensional
energy-momentum tensor 7,y [17]:
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Sipp / Bx /TN (x, U). (68)

In the limit of large A—which amounts to the assumption
that the baryons “sit” at U = Ugg with little extent to
greater U [17,28]—showed that one can reasonably
approximate the coupling of the spin-2 portion of the
graviton h,, to the protons via the coupling to the four-
dimensional energy-momentum tensor, with only the value
of the coupling determined by five-dimensional action
wave functions of the fermion modes overlapping with
the graviton,

Shpp & Ap / d*xh,, T} (69)

where T, is the four-dimensional stress tensor of the proton
modes. In the treatment of protons as effective fermion
fields, the coupling Ap was found"" to be Ap = 9.02 GeV~!
[28], which is the value we use below. Note, however, that
the fit of a Regge regime Ansatz for proton-proton
scattering, performed in Ref. [17], yielded a value of
approximately 1, = 8.5 GeV~!. Here we adopt values
calculated in the Sakai—Sugimoto model (rather than fits)
wherever possible. The value of Ap only affects the
magnitude of the total cross section, which we cannot
predict reliably anyway, as described below.

Asin Ref. [17], we can model the behavior of the energy-
momentum tensor itself by considering its matrix element
between proton states,

(P s'|Twlp,s)

A(1)

=a(p',s') [—2 (r"P? + y*P")

+ % (P*[y?, y*] + PP[r*. v*])k,

— % (0t + k”k/’)} u(p.s), (70)

where P = (p+p')/2 and k=p—p', and t=—k>.
Assuming that the Sakai—Sugimoto baryon roughly takes
the form of a four-dimensional Skyrmion in the spherically
symmetric hedgehog configuration, one can explicitly
compute these form factors in the large N, limit [44]. It
was shown in Ref. [17] that B(¢) is small and slowly
varying for small |7[, and as noted in Sec. II, dependence on
C(r) disappears in our amplitude. We can therefore neglect
B(t) and C(t). Meanwhile, for |¢t| < 0.8 GeV, A(¢) is well
approximated by a dipole form with M, = 1.14 GeV [17].

""The value of Ap which appeared in a previous version of this
paper and Ref. [28] was off by a factor of 1/v/2.
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V. SIMULATING PRODUCTION

We are now ready to write down our final result for the
Reggeized differential cross section and use it to simulate
central production. We focus on the angular dependence of
the differential cross section Reggeized according to the
five-tachyon string amplitude. To better understand the
effects of the modified Reggeization procedure, we com-
pare this to the results using naive Reggeization as well as
no Reggeization. We are primarily concerned with 7
production as our treatment of the #' meson does not
account for the instanton effects responsible for the mass
splitting between 7 and #'. Additionally, in the five-string
Reggeization, the approximation that alu is small is
stronger for 7 than #'. Nevertheless, we compare 7
production to that of #' to highlight important differences.
Finally, we compare the total cross sections for # and #’
with each type of Reggeization.

A. Simulating 5 production with five-string
Reggeization

After Reggeization based on the five-tachyon string
amplitude, as given in Eq. (36), the tree-level differential
cross section for 7 reads

do
dt,dt,d0s,

F - 4 (l(’(tl)+(lc'([2)
= sin29<ﬂp47£rx]> In(s/p) <%)

x A(t))*A(t) (Ka + Kp\/T11, €08 O34)?

/] @lta=t1) MCAGES)
XHO‘E"} 2‘w2<z1,t2)+["‘5"] W (1y,1)

2 tl tz sin2934
s2

+2cos [@} W(t,,tz)W(Iz,tl)}. (71)

The form factor A(t) is assumed to be

t -2
Alt) = |1 —— , 72
0= (1-5) ™)
and we use
a.
¥ = ?‘ [4m?, - 3m§], a.(x) = a.(0) + a.x,
a.(0) =2 —a.mj. (73)

The values of the parameters arising in the equations above
are given in Table I. The masses of the external particles
(the protons and the pseudoscalars) and the mixing angle
between 7 and 7’ are fixed to be their experimentally known
values. Most of the other parameters are determined using
the Sakai—Sugimoto model as our low-energy dual
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TABLE I. A table of parameter values used in the simulations.

Ap 9.02 GeV~! Value determined using effective fermion fields in the Sakai-Sugimoto model, in Ref. [28]
a. 0.290 GeV~ Fit value using proton-proton scattering data modeled with string-theory-inspired amplitude in Ref. [17]
m 1.485 GeV Value determined using the Sakai—Sugimoto dual model in Ref. [13]

Ky, 0.0846 GeV~! Value determined using the Sakai—Sugimoto dual model in Sec. IV
Kp 0.1842 GeV~3 Value determined using the Sakai—Sugimoto dual model in Sec. IV

M, 1.17 GeV Value determined in the Sakai—Sugimoto dual picture modeling the proton as a four-dimensional
skyrmion, in Ref. [17]

m 0.938 GeV Known experimental value

m, 0.548 GeV Known experimental value

my 0.958 GeV Known experimental value

0 15.2° Known experimental value

supergravity theory. The exception is the Regge slope «,,  approximately 1.30 rad. At this c.m. energy, the WA102
which is fit to existing proton-proton scattering data,  experiments [25] seem to indicate that double Reggeon

because it cannot be extracted from the low-energy super- exchange dominates the process, as the total exclusive cross
gravity theory (in which the slope is, strictly speak-  section for pions (which cannot be produced by double
ing, zero). Pomeron exchange) is about ten times larger than the total

Having fixed all of the form factors, coupling constants,  cross section for . At higher energies, however, we expect
and masses, we proceed to simulate the differential cross  that double Pomeron exchange will dominate and that the
section using the rejection method, at a c.m. energy of the  djfferential cross section will exhibit modifications from
WA102 data for 5 central production [25], /s = 29.1 GeV. the pure sin?s, behavior.

For t;, < -0.6 GeV? we assume that perturbative QCD Let us examine the source of this deviation from sin’65,
effects dominate, so we take 7, and 7, to range from 0.0 to pehayior, Besides the overall factor of sin20s,, there are

2 : d . . .

—0.6 GeV=. At this energy the data for ;™ takes a  three sources of angular dependence in the differential
characteristic sin® 6, shape, as a direct result of natural- cross section, all of which arise from the structure
parity violation. However, as shown in Fig. 3, the double  y ~ m2 — 1, — 1, 4 2./1;1, cos 03,. First, we have the factor
Pomeron exchange contribution to #‘; exhibits a different,  of In(s/u), which comes from the kinematics and phase
modulated sin?6;, form due to the additional cos@s,  space of 2 — 3 scattering. Because y is always close to m?

dependence, and has a maximum visibly below 7 at  and a logarithm is a slowly varying function, the quantity

o (pp—~pp+1) = 386.4 sin(6) nb.
-0.1
0.008
0.06
-02
,g _ 0.006 %
= 0.04 % 0.3 i
=) . — o
~ L% 0.004
Q - o
< —_
= S
-0.4 £
0.02 0002
-0.5
0
0.00
—0.6 1 n i . . n -
-06 -05 -04 -03 -02 -01 00
054 (rad) 11(GeV?)
FIG. 3 (color online). The differential cross sections d‘fT‘; and dt‘fztz, Reggeized according to the five-tachyon string amplitude, are

shown. In the angular dependence, qualitative deviations from the pure sin® 65,4 behavior are visible, with a maximum at approximately
1.3 rad. In the #; and t, dependence, we see, by comparison to the un-Reggeized differential cross sections shown in Fig. 6, that the
Reggeized double glueball propagator selects most strongly for events where #; and #, are between approximately —0.04 and
—0.24 GeV?. Additionally, comparing the ¢, and f, dependence to the naively Reggeized results, shown in Fig. 4, we see that the
Reggeized double glueball propagator suppresses events with larger |#, ,| more slowly.
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o (pp—>PP+7haive = 10.70 sin*(9) nb.

0.07F

frac. /0.1 rad

ot T
2 3 6

034 (rad)
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w |

FIG. 4 (color online).
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qualitative deviations from the pure sin? 63, behavior of Reggeon exc
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0.0F;

0.020

—0.2}H
0015 >
—_~ o
< 3
v 03[ s
< 0.010
<! ©
Z
—04f g
0.005 &

—0.6/
-0.6

-0.1 0.0

-0.3 -0.2

1(GeV?)

-05 -04

The differential cross sections dgga‘“ and Z;'"—g;;, Reggeized naively, are shown. In the angular dependence,
hange are barely visible, with a maximum at or just above z/2. In

the #; and t,, dependence, we see that the naively Reggeized propagators select most strongly for events where #; and ¢, are

approximately —0.1 GeV>.

In(s/u) contributes to the differential cross section pri-
marily as an overall scale factor. Second, we have the
factors of (alu)*%(2~") from the Reggeized double glue-
ball propagator. However, since |a.(t, —t;)| < 0.174, the
quantity (a,p)*%(2=1) will also vary quite slowly: at most
10% over the domain of the differential cross section.
Finally, we have the expression (k, + ky+/717; 08 034),
which comes from the structure of the spin 2-spin
2-pseudoscalar vertex. This is the dominant factor modi-
fying the sin” 03, dependence. The ratio x,/k, controls the
degree of this modification, suggesting that the deviation of
%‘; from sin” @5, could be used (at higher energies) as an

o (PP-PP+naive = 3.874 cos*(6) nb.

0.07F
0.06 F
0.05F

0.04F

frac. /0.1 rad

0.03F
0.02F

0.01F

0.00E

Wi

T
2

N

034 (rad)

FIG. 5 (color online).

The naively Reggeized differential cross sections for 1’ production, dg“““e and

experimental test both of the even-spin nature of the
Pomeron trajectory (which is what allows such a vertex
structure to exist in the first place) as well as the specific
value of x,/k;.

B. Comparison to naive Reggeization
and no Reggeization

As discussed previously, the Reggeization scheme based
on a five-string amplitude structure has significantly differ-
ent implications for the scattering process than a naive
Reggeization scheme. To highlight this, we can also look at
simulations based on the naive Reggeization scheme, and

0.015

0.010

1(GeV?)

0.005

frac. / 1.6 x 107 GeV*

03
1(GeV?)

dopive

034 dtdty’

are shown. With ms = m,,

less cancelation occurs between the 653, dependence from the naively Reggeized propagators and the spin 2-spin 2-pseudoscalar vertex,

and the maximum is shifted below 7z/2.

086010-16



CENTRAL PRODUCTION OF 5 AND 7/ VIA ...

for the un-Reggeized differential cross section. The naively
Reggeized differential cross section for # production reads

danaive

. A,PF[_Z] 4 2 4 a/CZS,M a.(t)+ac(n)
—sm29<T In(s/p) o 1
5 <A<t1>r[l - “f&ﬁ)z (A(rml - “fg'”])Z
Pl — 1=y ) \ TR - 1=y

(Ka 4 Kp\/T11; €08 034)2,

tl t2 sin2634
e (74)

and the simulated angular dependence as well as #; and ¢,
dependence are shown in Fig. 4. We notice immediately
that dd";—“y shows only a very weak deviation from the
sin? 034 shape, with a maximum just greater than z/2. This
effect is largely due to a partial cancellation between the
angular dependence of the central vertex structure in
Eq. (67) and the factor (au/4)% ") +a(2)=4 in the naively
Reggeized propagators. This cancellation depends on the
precise value of ms = m,. If we instead look at #" pro-
duction, shown in Fig. 5, this cancellation effect is less
exact due to the increased value of ms, and the maximum
shifts to below z/2. Additionally, the smaller deviation
from sin’6@;, agrees with the #; and #, dependence
produced by the naive Reggeization, which more rapidly
suppresses the differential cross section for larger |7;]
and |1,].

The simulation of the un-Reggeized differential cross
section is shown in Fig. 6. The un-Reggeized results show
the strongest deviation from sin” #,, and examining the
and #, dependence we see that this occurs primarily

T(PP=PP+un—reg = 723.8 sin*(6) pb.

0.08 +
0.06

0.04

frac. /0.1 rad

0.02

0.00
z z s 2n RLs
6 3 2 3 6
034 (rad)
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because the differential cross section is largest when
|t;| and |t,| are large, as opposed to being quickly
suppressed in this region. Any form of Reggeization will
suppress larger |f;| and |f,|, which will decrease the
amount of deviation.

C. Total cross sections for # and 7' production

We can also use the simulations to compute the total
cross sections for the production of # and #’, which we can
compare with each other as well as with the data from the
WA102 experiment. The tree-level total cross sections at
29.1 GeV for 57 and 5’ predicted by five-string Reggeization
are

o(pp = pp +1) = 386.4sin*0 nb and

o(pp — pp +1') = 305.6 cos’d nb. (75)
Thus, using five-string Reggeization, one expects the ratio
of the  and #' total cross sections to fall within 25% of
tan®0, the relationship based solely on the mixing angle. On
the other hand, the ratio of the naively Reggeized 5 and #/
total cross sections is approximately 3tan’6, due to the
additional dependence on ms in this calculation.

It is also interesting to compare these cross sections to
the experimental cross sections from the WA102 experi-
ment [25], which found

o(pp = PP+ N)eyp = (3859 +368) nb  and

o(pp = pp+ n’)exp = (1717 £ 184) nb, (76)
at /s =29.1 GeV. It seems that double Pomeron
exchange accounts for about 20% of the production of
7', and only about 0.5% of the production of 5 at this

0.0 F§

~0.006

0.004

1(GeV?)
5
(98]

frac. / 1.6 x 107 GeV*

0.002

-06 -05 -04 -03 -02 -01 00
t (GeV?)

FIG. 6 (color online). The un-Reggeized differential cross sections M#‘;”g and 22 are shown. The angular dependence, as compared

dtydt,

to either of the Reggeized differential cross sections, differs more strongly from pure Reggeon exchange and takes a maximum at
approximately 1.1 rad. Examining the #; and 7, dependence, we see that this occurs because without Reggeization the events where
larger |#;] and |#,| have more likelihood, thereby enhancing the 6, dependence.
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energy. However, it is worth noting that the overall cross
sections calculated are sensitive to a number of factors
that we have estimated only very roughly. In particular,
varying the mass-shell parameter y by +50% changes
the cross sections by an order of magnitude. However,
this sensitivity is not carried over into either the
dependence on 634 or the ratio of the # and #' total
cross sections. Furthermore, such a strong hierarchy is
not surprising from the holographic perspective: the
coefficient of the five-dimensional gravitational Chern—
Simons term that gives rise the Pomeron-Pomeron-7,
interaction is determined by the anomaly to be
N,/1536x%, while the pure gauge Chern—Simons term
that generates the Reggeon-Reggeon-n vertex has a
coefficient of N./24x>. Without taking into account
the reduction to a four-dimensional effective theory, for
which the couplings are determined in part by these
coefficients and in part by wave function overlaps (as
described in the previous section), the hierarchy of
Chern—Simons coefficients implies that the cross sec-
tions differ by a factor of roughly 2500. The dependence
on s, meanwhile, favors Pomeron exchange as s grows
larger, since Reggeized Pomeron propagators scale
(roughly) with s*% while Reggeons scale with s=019,'2
leading to naively Reggeized central production cross
sections that approximately go like (s5,)%% and
(515,)79-38 respectively. It is thus clear that, while under-
standing Reggeon exchange is essential at presently
measured energies, at high enough energies Pomeron
exchange should play the dominant role.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have used the ideas of holographic QCD and
Regge theory to construct a model for the central pro-
duction of a pseudoscalar meson via double Pomeron
exchange in proton-proton collisions. Our starting point
was the tree-level process involving the 7-channel
exchange of massive spin-2 particles, where the forms
of the vertices and propagators are dictated by Lorentz,
parity and charge conjugation symmetry. The central
vertex, in particular, must violate natural parity, which
leads to an overall factor of sin?@y, in the cross section,
where 6,4 is the angle between the emerging photons in
the plane transverse to the scattering process. Assuming
that the exchanged particles are spin 2 leads to additional
possible structures (and additional dependence on 6s,),
that are not present if for instance the exchanged particle
is spin 1.

Motivated by gauge-string duality, we considered this
process to be the low-energy limit of a five-string scattering
process and sought to find an appropriate Reggeization.
It was previously shown that in elastic proton-proton

"2As determined from the proton-proton total cross section.
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scattering the Regge limit of the string amplitude is
reasonably approximated by simply replacing low-energy
propagators with a Reggeized propagator that encompasses
the entire exchanged Regge trajectory, in this case a
Pomeron. We found that a naive approach based on this
idea, separately replacing each propagator with a Pomeron,
is not equivalent to what follows from analyzing a five-
string amplitude in the Regge limit, unless the mass of the
centrally produced meson is sufficiently large. This should
not be the case for the 5 or # mesons. We therefore
proposed a modified Reggeization procedure for this
scattering process. This form of Reggeization, in particular,
does not introduce significant additional dependence on the
angle 034 into the scattering cross section (while the naive
Reggeization process would).

We then computed the low-energy coupling constants
using the Sakai—Sugimoto model as the supergravity limit
of the dual theory. Here, the natural-parity-violating central
vertex arises from a Chern—Simons action which reprodu-
ces the gravitational anomaly in QCD. The values of the
two coupling constants involved were computed as overlap
integrals depending on the modes of the graviton in the
bulk and the vector field on the D8-brane. The Chern—
Simons action leads to a vertex structure that includes more
information than can be inferred using symmetry argu-
ments alone. This information is likely to be relatively
model independent; any QCD dual theory must contain
parity-violating Chern—Simons terms that reflect the chiral
gravitational anomaly of QCD. These five-dimensional
Chern—Simons couplings are universal, although some
weak model dependence enters through the wave functions
of the glueballs and # and #' mesons.

Finally, we generated simulations of the scattering
process at the energy /s = 29.1 GeV, using our Reggei-
zation procedure for the propagators and the values of the
coupling constants derived from the Sakai—Sugimoto
model. We saw a clear shift of the differential cross section
do

0., away from a pure sin’@s, profile. Experimental data at

this energy show no such deviation, supporting the idea that
at this energy double Reggeon exchange dominates the
process. We also computed the total cross sections for both
n and i’ production. Using our Reggeization procedure, we
found that the ratio is primarily determined by the mixing
angle between 7 and 7’; the glueballs couple only to the
flavor singlet.

Given that the existing central production data (e.g., from
the WA102 [25] experiment) lies squarely in the regime
where Reggeon exchange seems to dominate, a crucial
next step in this analysis is to create a model that also
incorporates double Reggeon exchange. It will be an
important zeroth-order check of our methods to see whether
holographic calculations which include Reggeons give the
right ballpark estimate for the total cross section. Since the
double Reggeon process should dominate at this energy,
the dependence of the differential cross section on 634

086010-18



CENTRAL PRODUCTION OF 5 AND 7' VIA ...

should be a simple sin’65, proﬁle.13 It would be interesting
to analyze the behavior of the full model at increasing
center-of-mass energy so as to pinpoint where significant
deviations from sin” #, begin to arise.

The present analysis could also be made more consistent.
The Reggeization of propagators was somewhat ad hoc: we
used the five-string scattering amplitude for flat-space
bosonic strings as a starting point but did not take into
account the modifications of the mass-shell conditions in a
well-motivated way. It would be interesting to take a more
systematic approach, particularly as this might lead to
additional dependence on the mass of the centrally pro-
duced meson. We could also use a more accurate treatment
of the proton in the dual model that better accounts for the
five-dimensional structure of the process instead of simply
relying on the Skyrmion solution for both the form factor
and the coupling constant between the protons and the
glueballs. However, the recent numerical work of Ref. [39]
on exact skyrmion solutions suggests that this may not be a
reasonable approach. A numerical analysis to determine
these factors would be more appropriate, and might yield
further insights.

Overall, our results suggest that the central production of
pseudoscalar mesons in very high-energy proton-proton

|

PHYSICAL REVIEW D 90, 086010 (2014)

collisions could provide interesting insights into the suc-
cess of string/gravity duals for QCD. Though the details of
the production rate are model dependent, the central
ingredient—a natural-parity-violating coupling between
glueballs and pseudoscalar mesons required by the gravi-
tational contribution to the chiral anomaly—is not.
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APPENDIX: REGGE LIMIT AND PHASE SPACE

1. Phase space

Calling (|.A|*) the spin-averaged amplitude squared, we
know the total cross section should be

(28— /o5 = \ o+ = (03 400 4 m2) g i,

1 / (lAP)(27)s
c =
64\/([’1 - p2)?t = mj, \/p32+mf,\/p42+mf,\/(p3+p4)2+m§

Now we can rewrite the integrals over p3 and py4, using our
decomposition above, as

dp3d’py = q3dq3dOs3dp 5 X q4dqsdO4dp

1

= 4 d(‘lg)d(ﬂlﬁ)d@d@d}?szdi’u- (A2)

With the definitions
03 = ¢, 04 = ¢+ 034, Diz = P3; + D4z = DXF,

P—z; = P3; — P4z (A3)
we obtain

B p

6 =

2°(2m)*\/(p1 - p2)?* — m,

@y @y Y

[
d03d94 — d¢d934,

1 P
dp3zdp4z = Ederzdp—z = dede—Z' (A4)

The integrals over 054 and ¢ are each carried out over
the region [0, 27], the integral over p_. will be carried
out over [—oo,+o0], and the integral over xp will be
carried out over [—1,+1]. Furthermore, we expect the
amplitude to have azimuthal symmetry, and thus be
independent of ¢, so we can carry that integral out
explicitly. Putting these pieces together gives us the total
Cross section

db34dxpd(q3)d(q3)dp_..  (AS5)

y (AR5 (2E - /p3® +m} = /B3 4 3 = |/ (B + pa)? + )

\/P32 + mf,\/pf + mf,\/(p3 +pg)* + m%

BPreliminary analysis of the five-open-string amplitude indicates that significant modifications to the 85, dependence from Reggeization
are unlikely; the amplitude in the small y/Regge limit has only weak dependence on y, just as for the five-closed-string amplitude.
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We then use the remaining delta function to perform the
integral over p_,, giving

6= / (lA]%)
28(2n)* (Pl P2)? — m Es|ps.Es — pu.Es|

X db3,dxpd(q3)d(q3), (A6)
where the kinematic parameters { D3z Paz» B3, Ey, Es} are
now understood to be expressed in terms of
{43, g4, XF, 034}, using the mass-shell and 4-momentum
conservation equations. Note that so far we have made no
use of the Regge limit. We should also remember that we
eventually want to work with the process in terms of
{t1,t, X, 6034}, which means we want to rewrite the
integrals over q% and g3 as integrals over #; and t,.
However, it will be much easier to understand how to
do this once we work out the Regge limit.

2. Regge limit

First we note that, in terms of Mandelstam variables, we
have

1
p=lyioamt b
—s + 51 — 2t — 3m;,

2,/3—4mf,

which means

s — 8, + 21 —3m127
2¢/s —4m3

(A7)

p4z =

) + 2t1 - 2I2
= A8
o s —4m3, (A8)

In the Regge limit, we want to have s, sy, 5, > u, t1, 1o, m~,
where m is any of the masses involved, and y = *:2 is held
fixed in the limit. This implies that in the Regge 11m1t we
have

(A9)

SXp R S| — S).

We can then rewrite s; and s, in terms of y and sxp, as

1

S zi [sxF + \/s2x2F+4s,u],
1

szzi [—sxp—l— \/ S xF—|—4su}

Using these expressions then gives us

s1+ 5y — 2m%, N \/slezr + 4dspu —Zm?,
2s 2\/s

‘[ F+— (Al1)

(A10)

ESZ
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The appearance of ;- in the phase space integral then
implies that in the extreme Regge limit s — oo there is a
pole at xy = 0, but for any finite s there is just a sharp
peak, with Es~ /u at xp = 0. Furthermore, we should
have

4 m2 4\ 2
I H H
G~ 2 (2 =\ > - 41’ (xF & s )

and similarly

t 4 m? 4u\*
qﬁz—%(Z—xF— x%+?ﬂ>—7p<xp+\/x%+?ﬂ>.

(A13)

Now, in performing the variable transformation necessary
to rewrite the integrals over g3 and g3 in terms of #; and
t,, we should note that ¢ will depend on #; and #¢,.
However, to leading order in the Regge limit, we will get

d(q3)d(q3)
1
32— @ = )+ O/
~ (1= |xpl) + O/ u/s5)lddt,. (A14)
We also have
s =58+ m% s =8
E; = ~ ,
) 2./s 24/s
s—s +my s—s
E, = ~ AlS
4 2\/5 2\/5 ’ ( )
and this implies that
|E3pa. — Eqps| ~—[(1 = xrl) + O(Vu/s)l.  (Al6)

This then demonstrates that in the Regge limit we simply
have

d(g3)d(qs) 2

~—dt;dt,. Al7
\Esps. — Eqps.| s 7 (A7)

(Notice that there is neither a formal pole nor a sharp
peak at |xg| = 1.) This allows us to write our total cross
section as

(AP?)

1
[
262 42/
(”)s ‘/F+”

Finally, since the phase space is sharply peaked in the far
Regge limit around xr =0, we can approximate this

dXFd934dt1dt2. (Alg)
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further by replacing (|.A|?) with its value at x; = 0 and
evaluating the integral over x explicitly. This gives

/ \/; dx
\/)T VIt
S Ky s
=2In —+ —+1>zln(—>
(Vo o) =n(;
(A19)
so that
1 s
JNW/GAW 1n</—l> dBs,dt,dt,. (A20)
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It is also useful to write out what various frame-
dependent and frame-independent quantities will be when
expressed in the Regge limit with xp = 0, as these will
appear in (|.AJ>) and the Reggeization of the propagators.
Note first that we will now have

\/—tl, Q4N\/—t2. (A21)

§1 R Sy R \/SU, q3 =

We can then use the mass-shell condition for the centrally
produced meson to determine y, as

ﬂ%mg—tl —t2+2\/l1t2 C08934. (A22)
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