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We study gravity duals of the minimal N ¼ 2 super Yang-Mills gauge theories in five dimensions using
the matter coupled Fð4Þ gauged supergravity in six dimensions. The Fð4Þ gauged supergravity coupled to
n vector multiplets contains 4nþ 1 scalar fields, parametrized by Rþ × SOð4; nÞ=SOð4Þ × SOðnÞ coset
manifold. Maximally supersymmetric vacua of the gauged supergravity with SUð2Þ ×G gauge group, with
G being an n-dimensional subgroup of SOðnÞ, correspond to five-dimensional superconformal field
theories (SCFTs) with SUð2ÞR R symmetry and G global symmetry. Deformations of the UV SCFTs
for G ¼ SUð2Þ and G ¼ Uð2Þ ∼ SUð2Þ ×Uð1Þ symmetries that lead to nonconformal N ¼ 2 super
Yang-Mills with various unbroken global symmetries are studied holographically.
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I. INTRODUCTION

Much insight to strongly coupled gauge theories can be
gained from studying their gravity duals via the AdS/CFT
correspondence [1] and its generalization to nonconformal
field theories [2–4]. One consequence of the AdS/CFT
correspondence which has been extensively studied is
holographic RG flows. These flows describe deformations
of an UV conformal field theory (CFT) to another con-
formal fixed point or to a nonconformal field theory in the
IR. On the gravity side, an RG flow in the dual field theory
is described by an asymptotically anti–de Sitter (AdS)
solution which becomes AdS space in a certain limit
corresponding to the UV CFT. The gravity solutions
interpolate between this AdS space and another AdS space
in the case of flows to some IR fixed points. For flows to
nonconformal field theories, gravity solutions in the IR will
take the form of a domain wall [5]. Furthermore, in flows
between CFTs, bulk scalar fields take finite constant values
at both conformal fixed points while in flows to non-
conformal theories, they are usually logarithmically
divergent.
The above argument leads to gravity duals of various

supersymmetric gauge theories in four dimensions, and
many important characteristics of the gauge theories such
as gaugino condensates and confinements can be success-
fully described by gravity solutions of five-dimensional
gauged supergravity; see, for example, [6–8]. On the other
hand, holographic duals of higher dimensional gauge
theories have not much been explored in the literature.
In this paper, we will carry out a similar study for N ¼ 2
supersymmetric Yang-Mills (SYM) gauge theories in five
dimensions using six-dimensional Fð4Þ gauged supergrav-
ity. This should provide the five-dimensional analogue of
the four-dimensional results in [6–8].

Five-dimensional field theories are interesting in their
own right. It has been discovered in [9–11] that five-
dimensional gauge theories admit nontrivial fixed points
with enhanced global symmetry. The five-dimensional
(5D) field theory describes the dynamics of the D4/D8-
brane system whose near horizon limit gives rise to AdS6
geometry [12]. At the fixed points, the SOð2NfÞ ×Uð1Þ
global symmetry of the gauge theory with Nf < 8 flavors
is enhanced to ENfþ1. E6;7;8 are the usual exceptional
groups and other groups are defined by E1 ¼ SUð2Þ,
E2 ¼ SUð2Þ × Uð1Þ, E3 ¼ SUð3Þ × SUð2Þ, E4 ¼ SUð5Þ,
and E5 ¼ SOð10Þ [9]. This symmetry enhancement in the
case of SUð2Þ gauge theories has also been shown to
appear in the superconformal indices [13].
By using AdS6=CFT5 correspondence, it has been

proposed in [14] that five-dimensional superconformal
field theories with global symmetry G should correspond
to AdS6 vacua of the matter coupled Fð4Þ gauged super-
gravity in the six-dimensional bulk with the SUð2ÞR × G
gauge group. The SUð2ÞR R symmetry is gauged by three
of the four vector fields in the supergravity multiplet, while
the G part of the gauge group is gauged by the vectors in
the vector multiplets. The dual field theory has been
identified with a singleton field theory on the boundary.
A number of papers on gauge/gravity correspondence
involving 5D gauge theories and the generalization to
quiver gauge theories from the ten-dimensional point of
view have appeared in [15–17]. RG flows between 5D
quiver gauge theories with Nf ¼ 0 have been studied
recently in [18] in the ten-dimensional context. Holo-
graphic RG flows within the framework of Fð4Þ gauged
supergravity have also been studied in [19] and [20]. In
this paper, we will give another example of flow solutions
to 5D nonconformal gauge theories in the framework
of six-dimensional gauged supergravity. As in lower
dimensions, this should be more convenient to work
with than the ten-dimensional computation and could*parinya.ka@hotmail.com
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provide a useful tool in the holographic study of N ¼ 2
5D SYM.
Furthermore, the study of gravity duals of 5D gauge

theories is not only important in AdS6=CFT5 correspon-
dence but is also useful in the context of AdS7=CFT6

correspondence [21,22]. This originates from the proposal
that the less understood N ¼ ð2; 0Þ gauge theory in six
dimensions could be defined in term of 5D SYM.
Furthermore, it has been shown that 5D superconformal
field theory (SCFT) could be an IR fixed point of N ¼ 2�
gauge theory in four dimensions [23]. Therefore, having
gravity duals of 5D SYM could be very useful in under-
standing the dynamics of M5-branes and gauge theories in
other dimensions as well.
The paper is organized as follows. In Sec. II, we review

relevant information about matter coupled Fð4Þ gauged
supergravity in six dimensions and formulas used
throughout the paper. Holographic RG flows to non-
conformal field theories from the UV fixed point identi-
fied with the maximally supersymmetric AdS6 critical
points will be given in Secs. III and IV. All of the solutions
can be analytically obtained and would be more useful
than the numerical solutions given in some other cases.
We end the paper by giving some conclusions and com-
ments in Sec. V.

II. MATTER COUPLED Fð4Þ GAUGED
SUPERGRAVITY AND THE DUAL

N ¼ 2 SUPER YANG-MILLS THEORY

We begin with a brief review of the matter coupled Fð4Þ
gauged supergravity in six dimensions. The theory is an
extension of the pure Fð4Þ gauged supergravity, con-
structed a long time ago in [24], by coupling n vector
multiplets to the N ¼ ð1; 1Þ supergravity multiplet. The
resulting theory is elegantly constructed by using the
superspace approach in [25–27]. In the present work, we
will need only supersymmetry transformations of fermions
and the bosonic Lagrangian involving the metric and
scalars. Most of the notations and conventions are the
same as those given in [25] and [26] but with the metric
signature ð−þþþþþÞ.
In half-maximal N ¼ ð1; 1Þ supersymmetry, the field

content of the supergravity multiplet is given by

ðeaμ;ψA
μ ; Aα

μ; Bμν; χA; σÞ;

where eaμ, χA, and ψA
μ denote the graviton, the spin-1=2

field, and the gravitini, respectively. Both χA and ψA
μ are

eight-component pseudo-Majorana spinors with indices A,
B ¼ 1, 2 referring to the fundamental representation of the
SUð2ÞR ∼USpð2ÞR R symmetry. The remaining fields are
given by the dilaton σ, four vectors Aα

μ, α ¼ 0, 1, 2, 3, and a
two-form field Bμν.

A vector multiplet has component fields

ðAμ; λA;ϕαÞ:

Each multiplet will be labeled by an index I ¼ 1;…; n. The
4n scalars ϕαI are described by a symmetric quaternionic
manifold SOð4; nÞ=SOð4Þ × SOðnÞ. The dilaton σ can also
be regarded as living in the coset spaceRþ ∼Oð1; 1Þ. As in
[25], it is convenient to decompose the α index into α ¼
ð0; rÞ in which r ¼ 1, 2, 3. The SUð2ÞR R symmetry is
identified with the diagonal subgroup of SUð2Þ × SUð2Þ∼
SOð4Þ ⊂ SOð4Þ × SOðnÞ. A general compact gauge group
is then given by SUð2Þ ×G with dimG ¼ n.
The 4n scalars living in the SOð4; nÞ=SOð4Þ × SOðnÞ

coset can be parametrized by the coset representative
LΛ

Σ; Λ;Σ ¼ 0;…; 3þ n. Using the index splitting
α ¼ ð0; rÞ, we can split LΛ

Σ into ðLΛ
α; LΛ

IÞ and further
to ðLΛ

0; LΛ
r; LΛ

IÞ. The vielbein of the SOð4; nÞ=SOð4Þ ×
SOðnÞ coset PI

α can be obtained from the left-invariant
1-form of SOð4; nÞ

ΩΛ
Σ ¼ ðL−1ÞΛΠ∇LΠ

Σ; ∇LΛ
Σ ¼ dLΛ

Σ − fΛΓ ΠAΓLΠ
Σ;

ð1Þ

via

PI
α ¼ ðPI

0; PI
rÞ ¼ ðΩI

0;ΩI
rÞ: ð2Þ

The structure constants of the full gauge group SUð2ÞR × G
are denoted by fΛΠΣ, which can be split into ϵrst and CIJK
for SUð2ÞR and G, respectively. The direct product struc-
ture of the gauge group SUð2ÞR ×G leads to two coupling
constants, g1 and g2, which, in the above equation, are
encoded in fΛΠΣ.
In this paper, we are interested in n ¼ 3; 4 cases with

gauge groups SUð2ÞR × SUð2Þ and SUð2ÞR × SUð2Þ×
Uð1Þ. To describe SOð4; nÞ=SOð4Þ × SOðnÞ, we introduce
basis elements of ð4þ nÞ × ð4þ nÞ matrices by

ðexyÞzw ¼ δxzδyw; w; x; y; z ¼ 1;…; nþ 4: ð3Þ

The SOð4Þ, SUð2ÞR, and noncompact generators of
SOð4; nÞ are accordingly given by

SOð4Þ∶ Jαβ ¼ eβþ1;αþ1 − eαþ1;βþ1; α; β ¼ 0; 1; 2; 3;

SUð2ÞR∶ Jrs ¼ esþ1;rþ1 − erþ1;sþ1; r; s ¼ 1; 2; 3;

YαI ¼ eαþ1;Iþ4 þ eIþ4;αþ1; I ¼ 1;…; n: ð4Þ

Gaugings lead to fermionic mass–like terms and the
scalar potential in the Lagrangian, as well as some
modifications to the supersymmetry transformations at first
order in the coupling constants. We will give only infor-
mation relevant to the study of supersymmetric RG flows
and refer the reader to [25] and [26] for more details and
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complete formulas. The bosonic Lagrangian for the metric
and scalar fields is given by [26]

L ¼ 1

4
eR − e∂μσ∂μσ −

1

4
ePIαμPIαμ − eV; ð5Þ

where e ¼ ffiffiffiffiffiffi−gp
. The scalar kinetic term is written in term

of PIα
μ ¼ PIα

i ∂μϕ
i, i ¼ 1;…; 4n. For completeness, we also

give the explicit form of the scalar potential

V ¼ −e2σ
�
1

36
A2 þ 1

4
BiBi −

1

4
ðCI

tCIt þ 4DI
tDItÞ

�

−m2e−6σN00 þme−2σ
�
2

3
AL00 − 2BiL0i

�
; ð6Þ

where N00 is the 00 component of the scalar matrix defined
by

NΛΣ ¼ L0
ΛðL−1Þ0Σ þ Li

ΛðL−1ÞiΣ − LI
ΛðL−1ÞIΣ: ð7Þ

Various quantities appearing in the scalar potential and in
the supersymmetry transformations given below are
defined as follows:

A ¼ ϵrstKrst; Bi ¼ ϵijkKjk0; ð8Þ

Ct
I ¼ ϵtrsKrIs; DIt ¼ K0It; ð9Þ

where

Krst ¼ g1ϵlmnLl
rðL−1ÞsmLn

t þ g2CIJKLI
rðL−1ÞsJLK

t ;

Krs0 ¼ g1ϵlmnLl
rðL−1ÞsmLn

0 þ g2CIJKLI
rðL−1ÞsJLK

0 ;

KrIt ¼ g1ϵlmnLl
rðL−1ÞImLn

t þ g2CIJKLI
rðL−1ÞIJLK

t ;

K0It ¼ g1ϵlmnLl
0ðL−1ÞImLn

t þ g2CIJKLI
0ðL−1ÞIJLK

t :

ð10Þ

Finally, the supersymmetry transformations of χA, λIA, and
ψA
μ involving only scalars and the metric are given by

δψμA ¼ DμϵA −
1

24
ðAeσ þ 6me−3σðL−1Þ00ÞϵABγμϵB

−
1

8
ðBteσ − 2me−3σðL−1Þt0Þγ7σtABγμϵB; ð11Þ

δχA ¼ 1

2
γμ∂μσϵABϵ

B þ 1

24
½Aeσ − 18me−3σðL−1Þ00�ϵABϵB

−
1

8
½Bteσ þ 6me−3σðL−1Þt0�γ7σtABϵB; ð12Þ

δλIA ¼ PI
riγ

μ∂μϕ
iσrABϵ

B þPI
0iγ

7γμ∂μϕ
iϵABϵ

B

− ð2iγ7DI
t þCI

tÞeσσtABϵB − 2me−3σðL−1ÞI0γ7ϵABϵB;
ð13Þ

where σtCB are Pauli matrices and ϵAB ¼ −ϵBA. The space-
time gamma matrices γa, with a being tangent space
indices, satisfy

fγa; γbg ¼ 2ηab; ηab ¼ diagð−1; 1; 1; 1; 1; 1Þ; ð14Þ

and γ7 ¼ γ0γ1γ2γ3γ4γ5.
We now give a short description of the UV SCFTwhich

is identified with the AdS6 vacuum preserving 16 super-
charges. At this vacuum, all scalars vanish, and the full
gauge group SUð2ÞR ×G is preserved. The bulk fields in
the supergravity multiplet are dual to the operators in the
energy-momentum tensor supermultiplet in the five-
dimensional field theory, while the bulk vector multiplets
correspond to the global current supermultiplets. The full
spectrum of all supergravity fields can be found in [25] and
[26]. SUð2ÞR singlet scalars in the adjoint representation of
G are dual to operators of dimension four corresponding to
the highest components of the global current supermultip-
lets. These scalars give supersymmetry preserving defor-
mations, as discussed in [14]. On the other hand, the dilaton
and SUð2ÞR triplet scalars are dual to operators of dimen-
sion three and correspond to supersymmetry breaking
deformations.

III. RG FLOWS FROM SUð2ÞR × SUð2Þ SCFT
We begin with the simplest possibility with n ¼ 3

and the SUð2ÞR × SUð2Þ gauge group. The gravity
theory consists of 13 scalars parametrized by Oð1; 1Þ ×
SOð4; 3Þ=SOð4Þ × SOð3Þ coset space. We are interested
in SUð2ÞR singlet scalars which are given by σ and an
additional three scalars from SOð4; 3Þ=SOð4Þ × SOð3Þ.
The latter correspond to the noncompact generators Y11,
Y12, and Y13. The coset representative is accordingly
written as

L ¼ ea1Y11ea2Y12ea3Y13 : ð15Þ
The space-time metric is the standard domain wall ansatz

ds2 ¼ e2AðrÞdx21;4 þ dr2; ð16Þ

in which five-dimensional Poincaré symmetry is manifest.
From now on, the six-dimensional space-time indices will
be split as ðμ; rÞ with μ ¼ 0;…; 4.
Using (11), (12), and (13), we find the following

Bogomol’nyi-Prasad-Sommerfeld (BPS) equations:

a10 ¼ −2e−3σm
sinh a1

cosh a2 cosh a3
; ð17Þ

a20 ¼ −2e−3σm
cosha1 sinh a2

cosh b3
; ð18Þ

a30 ¼ −2e−3σm cosh a1 cosh a2 sinh a3; ð19Þ
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σ0 ¼ −
1

2
½eσg1 − 3e−3σm cosh a1 cosh a2 cosh a3�; ð20Þ

A0 ¼ 1

2
½eσg1 þ e−3σm cosh a1 cosh a2 cosha3�; ð21Þ

where 0 denotes d
dr and we have used the projection

γrϵA ¼ ϵA. The presence of γ7 in δλIA does not impose
any condition on ϵA since it appears as an overall factor in
all of the BPS equations obtained from δλIA ¼ 0. That the
bulk gravity solution preserves eight supercharges is to be
expected because the minimal SYM in five dimensions has
eight supercharges. The equation for the warp factor AðrÞ is
obtained from δψA

μ , μ ¼ 0, 1, 2, 3, 4. The δψA
r ¼ 0 equation

would give the dependence of the Killing spinors on the r
coordinate as in other cases. We now look at solutions of
interest.

A. Flow to SUð2ÞR × Uð1Þ SYM
We first study the solution that breaks the SUð2Þ global

symmetry to Uð1Þ. This corresponds to turning on only a3
and σ. The latter is of course a singlet of the full gauge
group SUð2ÞR × SUð2Þ. With a1 ¼ a2 ¼ 0, Eqs. (17) and
(18) are trivially satisfied, and Eqs. (19), (20), and (21)
become

a30 ¼ −2e−3σm sinh a3; ð22Þ

σ0 ¼ 1

2
ð−g1eσ þ 3e−3σm cosh a3Þ; ð23Þ

A0 ¼ 1

2
ðg1eσ þ e−3σm cosh a3Þ: ð24Þ

We can solve Eq. (22) by introducing a new radial
coordinate ~r such that d~rdr ¼ e−3σ. We then find the solution
for a3,

a3 ¼ � ln

�
1þ e−2m~rþC1

1 − e−2m~rþC1

�
: ð25Þ

This form is very similar to the solution studied in [6] for
the four-dimensional (4D) SYM. C1 is an integration
constant. There are two possibilities for the two signs.
Combining Eqs. (22) and (23) gives an equation for dσ

da3
,

dσ
da3

¼ 1

4m
ðe4σg1cscha3 − 3m coth a3Þ; ð26Þ

whose solution is given by

σ ¼ −
1

4
ln

�
g1ð3 cosh a3 − coshð3a3Þ þ 18C2sinh3a3Þ

6m

�
;

ð27Þ
with C2 being another integration constant.

After changing to the ~r coordinate and using the a3
solution, we find that the combination of (24) and (23)
becomes, with 0 now being d

d~r,

A0 þ σ0 ¼ 2mðe4m~r þ e2C1Þ
e2C1 − e4m~r : ð28Þ

The solution to this equation can be readily found to be

A ¼ 2m~rþ ln ð1 − eC1−2m~rÞ þ ln ð1þ eC1−2m~rÞ − σ;

ð29Þ
where we have neglected the additive integration constant
to A by absorbing it into the rescaling of the xμ coordinates.
To identify the maximally supersymmetric vacuum at σ ¼
a3 ¼ 0 with the N ¼ 2 SCFT, we have to set g1 ¼ 3m. In
the above solutions, we have not done this in order to keep
the solutions in a generic form. Note also that if we try to
truncate σ out by setting σ ¼ 0, Eq. (23) will imply a3 ¼ 0.
Therefore, to obtain a nontrivial solution, we must keep σ
nonvanishing.
An RG flow to a nonconformal field theory with only the

dilaton σ in pure Fð4Þ gauged supergravity has been
studied in [19]. The resulting solution is interpreted as
the analogue of the Coulomb branch flow. We now have a
more general flow solution in the case of matter coupled
Fð4Þ gauged supergravity. As r → ∞, σ, a3 → 0, we see
that ~r ∼ r → ∞. In this limit, we obtain the maximally
supersymmetric AdS6 background with A ∼ 2mr ¼ r

L,
where the AdS6 radius in the UV is given by L ¼ 1

2m.
According to the AdS/CFT correspondence, this is iden-
tified with the UV SCFT with SUð2ÞR × SUð2Þ SCFT in
five dimensions. From the above solutions, the behavior of
σ and a3 near the UV point with g1 ¼ 3m is readily seen
to be

a3 ∼ e−2mr ¼ e−
r
L; σ ∼ a33 ∼ e−6mr ¼ e−

3r
L : ð30Þ

We see that a3 corresponds to a deformation by a relevant
operator of dimension Δ ¼ 4 while σ describes a defor-
mation by a vacuum expectation value of operator of
dimension Δ ¼ 3.
There is an issue of singularities in the IR which are

typical in flows to nonconformal field theories. Physical
and unphysical singularities can be classified by using
the criterion given in [28]. From the solution, we see that
a3 is singular when ~r → C1

2m. We now consider the case
with a3 > 0 and a3 < 0 separately. For a3 > 0, we find
a3 ¼ − ln ð2m~r − C1Þ þ ln 2, as 2m~r ∼ C1 and

σ ¼ 3

4
ln ð2m~r − C1Þ

−
1

4
ln ½9C2 − 2þ 3ð2m~r − C1Þ2ð9C2 − 2Þ

þ3ð9C2 þ 2Þð2m~r − C1Þ4 þ � � ��: ð31Þ
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The warp factor A near ~r → C1

2m is given by

A ¼ ln ð2m~r − C1Þ − σ: ð32Þ
For C2 ¼ 2

9
, we find that

σ ∼ −
1

4
lnð2m~r − C1Þ; A ∼

5

4
lnð2m~r − C1Þ: ð33Þ

We can find the relation between ~r and r in this limit by
using d~r

dr ¼ e−3σ. The relation is given by

2mr − C ¼ 4ð2m~r − C1Þ4; ð34Þ
where C is a new integration constant. The metric becomes

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2; ð35Þ

where we have absorbed the multiplicative constant to the
scaling of xμ coordinates. According to the domain-wall/
quantum field theory correspondence, this background is
dual to a nonconformal SYM theory in five dimensions.
To determine whether the singularity in the solution is

acceptableornot,wecheck the scalarpotential on the solution.
With a1 ¼ a2 ¼ 0 and g1 ¼ 3m, the potential is given by

V ¼ e−6σm2½coshð2a3Þ − 12e4σ cosha3 − 9e8σ�: ð36Þ
It can beverified thatV → −∞ asa3, σ → ∞. The singularity
is then physical according to the criterion of [28]. For a3 < 0,
it canbeeasilychecked that thesingularity is acceptable for the
choice C2 ¼ − 2

9
which leads to

a3 ∼ lnð2m~r − C1Þ; σ −
1

4
lnð2m~r − C1Þ;

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð37Þ

On the other hand, if C2 ≠ � 2
9
for a3 ∼� lnð2m~r − C1Þ,

respectively, the solution is asymptotic to

a3 ∼� lnð2m~r − C1Þ; σ ∼
3

4
lnð2m~r − C1Þ;

ds2 ¼ ð2mr − CÞ 2
13dx21;4 þ dr2; ð38Þ

where we have used the relation ð2m~r − C1Þ134 ¼
13
4
ð2mr − CÞ, near ~r ∼ C1

2m, with a constant C. The singu-
larity in this case is, however, not acceptable since V → ∞.
It is useful to comment on the IR singularities. Following

the discussion in [5], the criterion of [28] is related to the

fact that the divergence in a vacuum expectation value of an
operator O dual to a canonical scalar ϕ is excluded. In the
IR, the scalar bulk action is given by S ∼

R
e5Að∂ϕÞ2 since

the potential is irrelevant due to the divergence of the scalar.
The expectation value of O is then given by

hOi ∼ δS
δϕ

∼ e5A∂rϕ ∼ ðr − r0Þ5κ−1; ð39Þ

where we have used the asymptotic behavior ϕ ∼ ϕ0 lnðr −
r0Þ and A ∼ κ lnðr − r0Þ. The singularity occurs at r ¼ r0.
We see that hOi diverges when κ < 1

5
. In the present case,

the physical flow has κ ¼ 5 while the unphysical one has
κ ¼ 1

13
. This is consistent with the finiteness of the expect-

ation value of the dual operator.

B. Flow to SUð2ÞR SYM

If the other scalars, a1 and a2, are nonvanishing, the
solution will break the SUð2Þ global symmetry completely.
It is now more difficult to solve all five BPS equations, but
it turns out that these equations admit analytic solutions.
To obtain the solution, we consider A, σ, a1, and a2 as

functions of a3. Combining Eqs. (18) and (19), we find

da2
da3

¼ tanh a2
sinh a3 cosha3

: ð40Þ

This is easily solved by

a2 ¼ ln

�
e2a3þC1 − eC1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ e2a3Þ2 þ e2C1ðe2a3 − 1Þ

p
1þ e2a3

�

¼ sinh−1ðeC1 tanh a3Þ: ð41Þ

Similarly, by solving Eqs. (17) and (19), we obtain

a1 ¼ sinh−1
eC2 sinh a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2C1 þ ð1þ e2C1Þ coshð2a3Þ
p : ð42Þ

Using the a1 and a2 solutions and the new radial coordinate
~r, we find the solution for a3:

a3 ¼ � 1

2
cosh−1

�
e2C2 þ 2e2C1 − 2þ 4tanh2ð2m~r − C3Þ

2þ 2e2C1 þ e2C2

�
:

ð43Þ
We can similarly solve for σ as a function of a3. The
solution is given by

σ ¼ 1

4
ln ½3mð ~A2 þ ~B2Þ2csch6a3ð36 ~A2C4ð ~A2 þ ~B2Þ2sinh3a3ð ~A2 coshð2a3Þ þ ~B2Þ

−2ð3 ~A2 þ ~B2 − 2 ~A2 coshð2a3ÞÞð ~A2 coshð2a3Þ þ ~B2Þ3=2Þ� − 1

4
ln ½1296 ~A4C2

4g1ð ~A2 þ ~B2Þ4ð ~A2 coshð2a3Þ þ ~B2Þ
−4g1csch6a3ð ~A4 coshð4a3Þ þ ~A4 þ ~A2ð ~B2 − 3 ~A2Þ coshð2a3Þ − 3 ~A2 ~B2 − ~B4Þ2�: ð44Þ

GRAVITY DUALS OF 5D N ¼ 2 SYM THEORY FROM … PHYSICAL REVIEW D 90, 086009 (2014)

086009-5



We have defined two new constants, ~A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2e2C1 þ e2C2

p
and ~B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2e2C1 − e2C2

p
, for con-

venience.
Finally, adding (20) to (21) and changing the variable

from r to a3, we find a simple equation for A:

dA
da3

þ dσ
da3

¼ − coth a3; ð45Þ

whose solution is

A ¼ −σ − lnðsinh a3Þ: ð46Þ
Near the UV point, we find r ∼ ~r → ∞, a1 ∼ a2∼

a3 ∼ e−
r
L, and σ ∼ e−

3r
L . The solution for A then gives

A ∼ 2mr ¼ r
L. The flow is again driven by turning on

operators of dimension four corresponding to a1;2;3 and a
vacuum expectation value (VEV) of a dimension three
operator dual to σ.
It can be checked by expanding (43) that a3 → �∞ as

2m~r → ~C, where we have collectively denoted all constant
terms from the expansion by ~C. The behavior of a3 near this
point is a3 ∼� lnð2m~r − ~CÞ. Although a3 blows up when
2m~r ∼ ~C, a1 and a2 remain finite, with a2 ∼ sinh−1 eC1 and
a1 ∼ sinh−1 eC2ffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ2e2C1
p . Similar to the previous case, the

criterion of [28] requires C4 ¼ � 2
ffiffi
2

p
~A

9ð ~A2þ ~B2Þ2 for the singu-

larity to be physical. This is true for both a3 < 0 and
a3 > 0. We find that

a3 ∼� lnð2m~r − ~CÞ; σ ∼ −
1

4
lnð2m~r − ~CÞ;

ds2 ¼ ð2mr − CÞ10dx24;1 þ dr2: ð47Þ

It can be readily verified that there always exist the values
of C1 and C2 at which this behavior gives V → −∞.

ForC4 ≠ � 2
ffiffi
2

p
~A

9ð ~A2þ ~B2Þ2, the solution near 2m~r ∼ ~C becomes

a3 ∼� lnð2m~r − ~CÞ; σ ∼ −
3

4
a3 ¼

3

4
lnð2m~r − ~CÞ;

ds2 ¼ ð2mr − CÞ 2
13dx21;4 þ dr2: ð48Þ

This solution is not physical, as it can be checked that V →
∞ for all values of C1 and C2.

C. Flow to SUð2Þdiag SYM

In this subsection, we will look at an RG flow with
SUð2Þdiag ∼ ðSUð2ÞR × SUð2ÞÞdiag singlet scalars. Some
nonsupersymmetric AdS6 vacua and holographic RG flows
interpolating between these critical points and the max-
imally supersymmetric AdS6 have been studied in [20]. In
this work, we will give a supersymmetric flow to a
nonconformal field theory.

There is only one singlet scalar under SUð2Þdiag from
SOð4;3Þ

SOð4Þ×SOð3Þ; see the details in [20]. The coset representative

can be written as

L ¼ eaðY21þY32þY43Þ: ð49Þ

The supersymmetry transformations of ψA
μ , χA, and λIA give

the following BPS equations:

a0 ¼ −eσ sinhð2aÞðg1 cosh a − g2 sinh aÞ; ð50Þ

σ0 ¼ 1

2
e−3σ½3mþ e4σðg2sinh3a − g1cosh3aÞ�; ð51Þ

A0 ¼ 1

2
e−3σ½mþ e4σðg1cosh3a − g2sinh3aÞ�: ð52Þ

Note that for nonsinglet scalars of SUð2ÞR, the SUð2Þ
coupling g2 appears.
In order to solve the above equations, we will treat σ and

A as functions of a:

dσ
da

¼ 3me−4σ − g1cosh3aþ g2sinh3a
2 sinhð2aÞðg1 cosh a − g2 sinh aÞ

; ð53Þ

which can be solved by

σ ¼ 1

4
ln

�
6m coshð2aÞ þ C1 sinhð2aÞ
2g1 cosh a − 2g2 sinh a

�
: ð54Þ

We can check that as a → 0 and g1 ¼ 3m, σ → 0 as
expected for the UV point. This is the case for any value
of C1. To solve for a from Eq. (50), it is convenient to
define a new coordinate ~r via eσ ¼ d~r

dr. In this case only is ~r
defined by eσ ¼ d~r

dr. In all other cases, we have e−3σ ¼ d~r
dr.

With this new variable, we can solve for ~r as a function
of a. The resulting solution is given by

2g1g2 ~r ¼ g2 ln coth
a
2
− 2g1tan−1

h
tanh

a
2

i

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 − g22

q
tan−1

�
g1 tanh

a
2
− g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 − g22
p

�
; ð55Þ

where we have neglected the additive integration constant.
Taking the combination (51) −3× (52) with (50), we can

rewrite the equation for A as

dσ
da

− 3
dA
da

¼ g1 sinh aþ g2ð1 − cosh aÞ
g1 cosh a − g2 sinh a

: ð56Þ

The solution is readily obtained to be

A ¼ 1

3
½σ þ ln sinhð2aÞ þ lnðg1 cosha − g2 sinh aÞ�: ð57Þ
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From the above solutions, we can find the behavior of
a, σ, and A near the UV point, a ¼ σ ¼ 0. In this
limit, ~r ∼ r → ∞, we find a ∼ σ ∼ e−6mr ¼ e−

3r
L and

A ∼ 2mr ¼ r
L. This indicates that the flow is driven by

vacuum expectation values of operators of dimension three.
This is to be expected since it has been pointed out in [20]
that the flow driven by turning on the operators dual to σ
and a corresponds to a nonsupersymmetric flow to a
nonsupersymmetric IR fixed point. In the IR, there are a
number of possibilities, depending on the values of g2 and
the integration constant C1, since these lead to different IR
behaviors of a and σ.
We begin with the g2 ¼ g1 case and consider the solution

for large jaj. For a < 0, we find by expanding the solution
in (55) that a diverges as a ∼ 1

3
lnðg1 ~r − ~CÞ. As in the

previous case, we have collectively denoted all of the
constants by ~C. When C1 ¼ 6m, the solutions for σ and A
become

σ ∼
1

4
lnðg1 ~r − ~CÞ; A ∼

7

36
lnðg1 ~r − ~CÞ;

ds2 ¼ ð3mr − CÞ1427dx21;4 þ dr2: ð58Þ

This leads to V → −∞, which is acceptable.
For C1 ≠ 6m, we find different behavior:

σ ∼ −
1

12
lnðg1 ~r − ~CÞ; A ∼

1

12
lnðg1 ~r − ~CÞ;

ds2 ¼ ðg1r − CÞ 2
13dx21;4 þ dr2; ð59Þ

which gives V → ∞, as expected since in this case κ < 2
5
.

For a > 0, we find that a ∼ − lnðg1 ~r − ~CÞ. There are two
possibilities for C1 ¼ −6m and C1 ≠ −6m which give,
respectively,

σ ∼
1

4
lnðg1 ~r − ~CÞ; A ∼

13

12
lnðg1 ~r − ~CÞ;

ds2 ¼ ðg1r − CÞ269 dx21;4 þ dr2; ð60Þ

and

σ ∼ −
3

4
lnðg1 ~r − ~CÞ; A ∼

3

4
lnðg1 ~r − ~CÞ;

ds2 ¼ ðg1r − CÞ67dx21;4 þ dr2: ð61Þ

Both of them give V → −∞. We then conclude that for
g2 ¼ g1, all flows with a > 0 are physical, but flows with
a < 0 are physical only for C1 ¼ 6m.
We now move to the g1 ≠ g2 case and quickly look at the

a > 0 and a < 0 flows separately. With a > 0, the solution
becomes

a ∼ −
1

3
ln ½ðg1 − g2Þ~r − ~C�;

σ ∼ −
1

12
ln ½ðg1 − g2Þ~r − ~C�;

ds2 ¼ ½ðg1 − g2Þ~r − ~C� 213dx21;4 þ dr2; ð62Þ

for C1 ≠ −6m, and

a ∼ −
1

3
ln ½ðg1 − g2Þ~r − ~C�; σ ∼

1

4
ln ½ðg1 − g2Þ~r − ~C�;

ds2 ¼ ½ðg1 − g2Þ~r − ~C�1427dx21;4 þ dr2; ð63Þ

for C1 ¼ −6m. The former is unphysical, but the latter is
physical provided that−ð5þ 4

ffiffiffi
2

p Þm < g2 < ð4 ffiffiffi
2

p
− 5Þm.

Finally, for a < 0, we find the IR behavior

a ∼
1

3
ln ½ðg1 þ g2Þ~r − ~C�; σ ∼ −

1

12
ln ½ðg1 þ g2Þ~r − ~C�;

ds2 ¼ ½ðg1 þ g2Þ~r − ~C� 213dx21;4 þ dr2; ð64Þ

for C1 ≠ 6m, and

a ∼
1

3
ln ½ðg1 þ g2Þ~r − ~C�; σ ∼

1

4
ln ½ðg1 þ g2Þ~r − ~C�;

ds2 ¼ ½ðg1 þ g2Þ~r − ~C�1427dx21;4 þ dr2; ð65Þ

for C1 ¼ 6m. Similar to the previous case, only the second
possibility is physical, provided that ð5 − 4

ffiffiffi
2

p Þm <
g2 < ð5þ 4

ffiffiffi
2

p Þm. In summary, for g2 ≠ g1, flows with
a > 0 and a < 0 are physical for C1 ¼ −6m and C1 ¼ 6m,
respectively, for some appropriate values of g2.

IV. RG FLOWS FROM SUð2ÞR × Uð2Þ SCFT
To give more examples, we consider Fð4Þ gauged

supergravity coupled to four vector multiplets with the
SUð2ÞR × SUð2Þ ×Uð1Þ gauge group. There are 16 scalars
parametrized by the SOð4; 4Þ=SOð4Þ × SOð4Þ coset.
We will focus on SUð2ÞR singlet scalars which are the
highest components of the global symmetry multiplet and
correspond to supersymmetry preserving deformations.
Together with the dilaton σ, there are five SUð2ÞR singlet
scalars. The coset representative can be written as

L ¼ ea1Y11ea2Y12ea3Y13ea4Y14 : ð66Þ
Using the projector γrϵA ¼ ϵA, we can derive the following
BPS equations:

a10 ¼ −
2me−3σ sinh a1

cosha2 cosha3 cosh a4
; ð67Þ

a20 ¼ −
2me−3σ sinh a2 cosh a1

cosha3 cosh a4
; ð68Þ
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a30 ¼ −
2me−3σ cosh a1 cosh a2 sinh a3

cosh a4
; ð69Þ

a40 ¼ −2me−3σ cosh a1 cosh a2 cosha3 sinh a4; ð70Þ

σ0 ¼ 1

2
½3me−3σ cosh a1 cosha2 cosh a3 cosh a4 − g1eσ�;

ð71Þ

A0 ¼ 1

2
½me−3σ cosh a1 cosh a2 cosha3 cosh a4 þ g1eσ�:

ð72Þ

We are interested in the RG flows with the symmetry
breaking patterns Uð2Þ → SUð2Þ, Uð2Þ → Uð1Þ ×Uð1Þ,
and Uð2Þ → Uð1Þ and the completely broken Uð2Þ. The
procedure is essentially the same as in the previous section,
so we will neglect some details and simply give the
solutions.

A. Flow to SUð2ÞR × SUð2Þ SYM
In order to preserve SUð2Þ ⊂ SUð2Þ ×Uð1Þ, only a4 is

allowed to be nonvanishing. The above equations reduce to
three simple equations:

a40 ¼ −2me−3σ sinh a4; ð73Þ

σ0 ¼ 1

2
ð3me−3σ cosha4 − g1eσÞ; ð74Þ

A0 ¼ 1

2
ðme−3σ cosh a4 þ g1eσÞ: ð75Þ

By introducing a new radial coordinate ~r via d~r
dr ¼ e−3σ as in

the previous section, we find the solutions

a4 ¼ � ln

�
1þ e−2m~rþC1

1 − e−2m~rþC1

�
;

σ ¼ −
1

4
ln

�
g1ð3 cosh a4 − coshð3a4Þ þ 18C2sinh3a4Þ

6m

�
;

A ¼ 2m~rþ ln ð1 − eC1−2m~rÞ þ ln ð1þ eC1−2m~rÞ − σ:

ð76Þ

Near the UV point, a4, σ, and A behave as

a4 ∼ e−2mr; σ ∼ e−6mr; A ∼ 2mr: ð77Þ

Similar to the previous solutions, we find that the IR
singularity at ~r ∼ C1

2m is physical for a4 ∼� lnð2m~r − C1Þ
if we choose C2 ¼ � 2

9
. In both cases, the IR metric is

given by

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð78Þ

Other choices of C2 lead to unacceptable singularities.

B. Flow to SUð2ÞR × Uð1Þ × Uð1Þ SYM
In this subsection, we will give the solution for the

flow to SYM with SUð2ÞR ×Uð1Þ2 symmetry. To find
this solution, we set a1 ¼ a2 ¼ a4 ¼ 0. The BPS equa-
tions, which are similar to those in the previous sub-
section, give the following solutions, in terms of the ~r
coordinate:

a3 ¼ � ln

�
1þ e−2m~rþC1

1 − e−2m~rþC1

�
;

σ ¼ −
1

4
ln

�
g1ð3 cosh a3 − coshð3a3Þ þ 18C2sinh3a3Þ

6m

�
;

A ¼ 2m~rþ ln ð1 − eC1−2m~rÞ þ ln ð1þ eC1−2m~rÞ − σ:

ð79Þ

Near the UV point, we find a3 ∼ e−2mr, σ ∼ e−6mr, and
A ∼ 2mr. In the IR, ~r → C1

m , the physical solution with
C2 ¼ � 2

9
is given by

a4 ∼� lnð2m~r − C1Þ; σ ∼ −
1

4
lnð2m~r − C1Þ;

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð80Þ

C. Flow to SUð2ÞR × Uð1Þ SYM
We then consider the flow that breaks SUð2Þ ×Uð1Þ

global symmetry to Uð1Þ. In this case, we turn on both
a3 and a4. This leads to more complicated equations due
to the coupling between a4 and a3. We will regard a4 as
a new variable and find that the solutions for a3, σ, and A
are given by

a3 ¼ sinh−1½eC1 tanha4�;

σ ¼ −
1

4
ln

�
g1

6
ffiffiffi
2

p
m
½72C2sinh3a4ð1þ e2C1Þ

− 2 cosha4½ð1þ e2C1Þ coshð2a4Þ

− e2C1 − 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2e2C1 tanh2a4

q
�
�
;

A ¼ −σ − ln sinh a4: ð81Þ

The solution of a4 in terms of ~r is given by

~r ¼ 1

2m
tanh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ coshð2a4Þ þ 2e2C1sinh2a4

2

r
: ð82Þ

At the UV point, we find the expected behavior
a3;4 ∼ e−2mr, σ ∼ e−6mr, and A ∼ 2mr. In the IR, we
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consider the behavior of the solutions as a4 → ∞. In this
limit, the a4 solution becomes a4 ∼ − lnð2m~r − ~CÞ for
some constant ~C. We find that the requirement for the

IR singularity to be acceptable is given by C2 ¼ 1
9

ffiffiffiffiffiffiffiffiffiffiffi
1þe2C1

2

q
.

The behavior of a3, σ, and A is given by

a3 ∼ sinh−1eC1 ; σ ∼ −
1

4
lnð2m~r − ~CÞ;

A ∼
5

4
lnð2m~r − ~CÞ: ð83Þ

With the relation 2mr − C ¼ 4ð2m~r − ~CÞ14, the metric in
the IR then takes the form of a domain wall

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð84Þ

D. Flow to SUð2ÞR SYM

We now quickly look at the flow breaking the Uð2Þ
symmetry completely. Finding the solution in this case
amounts to solving all of the six BPS equations. This,
however, turns out not to be difficult. The resulting
solutions for ai, σ, and A are given by

a3 ¼ sinh−1ðeC1 tanha4Þ;

a2 ¼ sinh−1
eC2 sinh a4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2C1 þ ð1þ e2C1Þ coshð2a4Þ
p ;

a1 ¼ sinh−1
eC3 sinh a4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 2e2C1 − e2C2 þ ð2þ 2e2C1 þ e2C2Þ coshð2a4Þ
p ;

σ ¼ 1

4
ln
h
96

ffiffiffi
2

p
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ α2 − α2sech2a4

q i
−
1

4
ln
h
g1ð2304ðα2 þ 4ÞC4sinh3a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 4 − α2sech2a4

q

−
ffiffiffi
2

p
secha4ð3α4 þ ðα2 þ 4Þ2 coshð4a4Þ þ 16α2−4ðα4 þ 6α2 þ 8Þ coshð2a4Þ − 48ÞÞ

i
;

A ¼ −σ − ln sinh a4;

a4 ¼
1

2
cosh−1

�
8tanh2ð2m~r − C5Þ þ α2 − 4

α2 þ 4

�
; ð85Þ

where α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4e2C1 þ 2e2C2 þ e2C3

p
. At the UV fixed point,

the solutions become

a1;2;3;4 ∼ e−2mr; σ ∼ e−6mr; A ∼ 2mr: ð86Þ

In the IR, we have to set C4 ¼ 1
144

ffiffiffiffiffiffiffiffi
4þα2

2

q
in order

to obtain a physical solution. The solution is then
given by

a4 ∼ − lnð2m~r − ~CÞ; a3 ∼ sinh−1eC1 ;

a2 ∼ sinh−1
eC2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ 2e2C1

p ;

a1 ∼ sinh−1
eC3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 4e2C1 þ 2e2C2

p ;

σ ∼ −
1

4
lnð2m~r − ~CÞ; A ∼

5

4
lnð2m~r − ~CÞ;

ds2 ¼ ð2mr − CÞ10dx21;4 þ dr2: ð87Þ

All of the flows given above are driven by turning on
operators of dimension four and a VEV of a dimension
three operator.

V. CONCLUSIONS

We have studied various holographic RG flows from
matter coupled Fð4Þ gauged supergravity. These flows
describe deformations of the UVN ¼ 2 SCFTs with SUð2Þ
and SUð2Þ × Uð1Þ global symmetries in five dimensions to
nonconformal N ¼ 2 SYM theories in the IR. We have
explored various symmetry breaking patterns and inter-
preted the solutions as RG flows driven by turning on
operators of dimension four in a vacuum with nonzero
VEV of a dimension three operator dual to the six-
dimensional dilaton, except for the flow to the SUð2Þdiag
SYM, which is driven by vacuum expectation values of
dimension three operators. We have also identified physical
flows which have acceptable IR singularities from the
resulting solutions. Therefore, these solutions might be
useful in the study of strongly coupled N ¼ 2 SYM in five
dimensions. However, the identification of the dual five-
dimensional SYM corresponding to these solutions in the
IR is not clear. Accordingly, the precise physical interpre-
tation of these solutions needs to be clarified.
It is interesting to holographically compute various

characteristics of the 5D gauge theories such as the
Wilson loops, as done in [29]. It could be useful to do
this computation with the six-dimensional solutions given
here, similar to the four-dimensional gauge theories studied
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in [6,7]. The solutions found in this paper would hopefully
be useful in this aspect and for other holographic calcu-
lations. It will very interesting (if possible) to find a gravity
solution describing the enhancement of the global sym-
metry SOð2NfÞ ×Uð1Þ to the ENfþ1 fixed point in five
dimensions. In this aspect, the six-dimensional framework
considered here may not be able to accommodate this
solution since the symmetry enhancement is not seen at the
classical supergravity level, as remarked in [17].
It is not presently known how to embed the six-

dimensional Fð4Þ gauged supergravity coupled to n vector
multiplets to 10 or 11 dimensions, although the pure Fð4Þ
gauged supergravity and the theory coupled to 20 vector
multiplets are known to originate from massive type IIA
compactification on warped S4 and K3, respectively
[30,31]. The embedding of Fð4Þ gauged supergravity in

type IIB theory via the non-Abelian T duality has been
proposed recently in [32]. This might also provide another
mean to embed the six-dimensional gauged supergravity in
higher dimensions. It would be interesting to find such an
embedding, which in turn can be used to uplift the solutions
found here and in [20] to ten dimensions. This could pro-
vide some insight to the dynamics of D4/D8-brane system.
We hope to come back to these issues in future works.
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