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The effective strength of electromagnetism interactions can be controlled by confining the fields to a
cavity and these effects might be used to push graphene into a strongly coupled regime. We study the
similar D3/probe D5 system on a compact space and discuss the gravity dual for a cavity between two
mirrors. We show that the introduction of a conformal symmetry breaking length scale introduces a mass
gap on a single D5 sheet. Bilayer configurations display exciton condensation between the sheets. There is
a first-order phase transition away from the exciton condensate if a strong enough magnetic field is applied.
We finally map out the phase structure of these systems in a cavity with the presence of mirror reflections of
the probes—a mass gap may form through exciton condensation with the mirror image.
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I. INTRODUCTION

The low-energy description of graphene [1] is given by a
theory of 2þ 1-dimensional massless fermions interacting
through classically conformal 3þ 1-dimensional electro-
magnetism. Holographic descriptions of N ¼ 4 super
Yang-Mills theory [2,3] with defect D5 probe branes
[4–8] (and other related systems [9–14]) provide a calcu-
lable system with similar gross properties—fermions on the
defect interacting by higher-dimensional conformal gauge
fields. The holographic description is only valid in the
regime where the gauge fields are strongly coupled (for-
mally the large N limit of the non-Abelian gauge theory).
It has been argued that the graphene system may be close
to strong coupling since the effective speed of light of the
fermionic theory is much less than the vacuum value [15].
Even so graphene may be in a different universality class
from the holographic systems, lying closer to perturbative
expectations. One way to drive graphene’s interactions to
stronger coupling is to place the theory in a cavity, for
example placing a sheet between two mirrors. The sepa-
ration of the mirrors, Δz, enters the effective 2þ 1-
dimensional electromagnetic coupling as g22 ∼ g23=Δz (see
also discussion of the Purcell effect in the condensed matter
literature [16]) and can be used to control the coupling
strength. It is therefore possible that graphene could be
forced into the strongly coupled regime experimentally.
Holographic models may then provide useful guidance as
to the expected phenomena in real world systems (although
the holographic theories typically contain remnants of
super-partners of the fields involved so no predictions
are likely to be quantitatively correct).
Motivated by this idea, here we will study the holo-

graphic D3/probe D5 system in a compact space and in a
cavity. The simplest example is to study the N ¼ 4 theory

in a space with one compact dimension, introducing a scale
Δz. The gravity dual is an AdS-soliton configuration [17].
We place a single D5 probe in the geometry and show that
a mass gap is generated by the probe brane bending in
the holographic description (the system is a simple lower-
dimensional extrapolation of the well explored D4/D6
system [18]). This is a clean example of dynamical mass
gap generation using AdS/CFT, similar to the mass gap
generated by an external magnetic field [19]. Previously a
mass gap has also been shown to develop in a system of
two D5 probes in AdS5 representing spatially separated
defects [10,20–22]; here, the condensation occurs due to
the D5 and anti-D5 branes joining in the interior of AdS
and represents “exciton” condensation between the fer-
mions on one defect with those on the other. In [23] the
phase transition between that phase and the phase in a
magnetic field where condensation occurs on each brane
alone was investigated. Here the conformal symmetry
breaking of the IR length scale is not sufficient to generate
a transition but a similar transition does occur again when a
magnetic field of sufficient strength is applied in addition.
Using the N ¼ 4 system to model EM interactions

between mirrors is harder since it is unclear whether any
true model would include such a configuration that
describes both the N ¼ 4 vacuum and mirrors. The
AdS-soliton configuration again appears the appropriate
way to introduce the IR length scale. In [24] a proposal was
made for AdS-duals for N ¼ 4 SYM with boundaries.
Amongst these proposals is one for a strip of the gauge
theory between two boundaries of constant tension. The
dual geometry is the AdS-soliton but with a cutoff in the
AdS space corresponding to the position of the boundaries
(the tension of the boundary is matched to that of the
plasma within). We study probe D5 branes in this system
but fail to find a regular description of a single defect since
the D5 brane solutions hit the interior cutoff. Most likely
this shows that the system with a wall with tension at*evans@phys.soton.ac.uk
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the edges of the strip is not a physical system that could be
generated in a complete theory. However, the discussion
shows that the behavior of the gauge fields in a cavity
would likely be very similar to that on the compact
dimension. We therefore use the AdS-soliton to describe
the vacuum state of the gauge fields and place probe D5
branes and their mirror image partners into the space. A
new phase is identified in which the probe has a mass gap
as a result of exciton condensation with its mirror image if
the sheet comes within a quarter of the separation of the
mirrors to either mirror. The complicated phase diagram for
bilayer configurations is also computed in this case.

II. HOLOGRAPHIC N ¼ 4 SYM

We will loosely represent QED interactions by the
large N dynamics of N ¼ 4 super Yang Mills theory on
the surface of a stack of D3 branes. The theory in a flat
3þ 1-dimensional space is described at zero temperature
by AdS5 × S5 [2,3],

ds2 ¼ ðρ2 þ L2Þ
R2

ðdx22þ1 þ dz2Þ

þ R2

ðρ2 þ L2Þ ðdρ
2 þ ρ2dΩ2

2 þ dL2 þ L2d ~Ω2
2Þ; ð1Þ

where we have written the geometry to display the
directions the D3 lie in (x2þ1; z). A 2þ 1-dimensional
defect with an N ¼ 2 chiral multiplet on its surface can be
introduced by embedding a probe [25] D5 [4–8] on (x2þ1,
ρ and Ω2) with the transverse directions L and ~Ω2, plus the
3 direction that we call z. R is the AdS radius.

III. N ¼ 4 SYM ON A COMPACT SPACE

N ¼ 4 SYM on a space that is compact in the z direction
is described by the AdS-soliton [17]

ds2 ¼ R2

r2
h−1ðrÞdr2 þ r2

R2
ðdx22þ1 þ hðrÞdz2Þ þ dΩ2

5; ð2Þ

with

hðrÞ ¼ 1 −
�
r0
r

�
4

; ð3Þ

The circumference of the space can be found by looking in
the r − z plane near the horizon at r0—writing r ¼ r0 þ ~r
and making the transformations ~r ¼ r0σ2=R2 and α ¼
2r0z=R2 gives a canonical two plane metric. We impose
for regularity that α has range 2π. Hence we learn the
circumference of the z direction is R2π=r0.
To embed a probe-D5 brane it’s convenient to make the

change of coordinates,

w ¼ ðr2 þ ðr4 − r40Þ1=2Þ1=2; ð4Þ

The metric becomes

ds2 ¼ w2

R2
ðgxdx22þ1 þ gzdz2Þ þ

R2

w2
ðdw2 þ w2dΩ2

5Þ; ð5Þ

where

gx ¼
�
w4 þ r40
2w4

�
; ð6Þ

gz ¼
ðw4 − r40Þ2

2w4ðw4 þ r40Þ
. ð7Þ

We can now split the transverse 6-plane as before,

ds2 ¼ ðρ2 þ L2Þ
R2

ðgxdx22þ1 þ gzdz2Þ

þ R2

ðρ2 þ L2Þ ðdρ
2 þ ρ2dΩ2

2 þ dL2 þ L2d ~Ω2
2Þ: ð8Þ

A. A Single graphene sheet

We will introduce quenched matter via a probe D5
brane. The matter content is a single Dirac fermion plus
scalar super partners (that will become massive in the
presence of any supersymmetry breaking) restricted to the
x0−2 directions. The underlying brane configuration is as
follows:

0 1 2 3 4 5 6 7 8 9

D3 - - - ∥ • • • • • •
D5 - - - • - - - • • •

We expect the vacuum configuration for a single D5
probe to be described by a profile LðρÞ at fixed z. The
action for the D5 is just it’s world volume,

S ∼ −T
Z

d6ξeϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffi−detGp

∼ −
Z

dρ

�
1þ 1

ðρ2 þ L2Þ2
�

3=2
ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L02

p
; ð9Þ

where T is the tension, ϕ the dilaton (which is constant here
as in pure AdS) and we have dropped angular factors on the
two-sphere which are a constant multiplicative factor for all
the solutions we compute. Here we have rescaled each of L
and ρ by a factor of r0.
One can solve for the numerical embedding LðρÞ by

shooting from ρ ¼ 0 subject to the boundary condition
L0ð0Þ ¼ 0. The asymptotic solutions fall off as Lðρ ∼∞Þ ¼
mþ c=ρþ � � �, where m is proportional to the quark mass
and c to the quark condensate (strictly it is only the quark
condensate in the massless limit [9]). To find the massless
embedding one shoots to find the solution with Lð∞Þ ¼ 0.
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The solution is shown in Fig. 1 (the position in the ρ-L plane
at which the geometry closes (i.e. w ¼ 1) is also shown so
one sees that the embedding never enters this region).
Numerical computation of −S evaluated on a solution gives
the vacuum energy since the configuration is static. This
energy suffers from an IR divergence which goes as Λ3 for
large cutoff Λ, as can be seen from Eq. (9) since L0ðρÞ → 0
as ρ → ∞ on our solution. The difference in energy between
any two solutions is finite however; a simple way to
regularize the solution is to subtract

R∞
0 ρ2dρ.

The curved solution in Fig. 1 is already an interesting
result. It breaks the SO(3) symmetry of the L ¼ 0 embed-
ding to SO(2) and the nonzero value of Lð0Þ can be
interpreted as a dynamically generated IR quark mass.
This response is familiar from other cases in the literature
describing the dynamical generation of a mass gap
[18,19,26]. This graphene like configuration on a compact
space provides an example of a completely controlled
AdS/CFT computation of a dynamically generated mass
gap (the case with magnetic field is the only other known
case for a single probe D5 brane [7,8]).

B. Bilayer configurations

Another example of a holographically computable
dynamical mass gap is provided by a bilayer configuration
of probe D5 branes in AdS [9–14,23]. A joined D5/anti-D5
brane U-shaped configuration, analogous to the Wilson
loop configuration of an interacting quark and anti-quark
[27,28], describes this “exciton” condensation between the
fermions on the two defects. The separation of the defects
provides the conformal symmetry breaking scale. It is
interesting to explore this configuration in the compact
space therefore.
We will allow for an embedding of the probe D5 brane in

the z direction. Allowing z to depend on ρ only, the action
for the case L ¼ 0 now becomes

S ∼ −
Z

dρ

�
1þ 1

ρ4

�
3=2

ρ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðρ4 − 1Þ2

2ðρ4 þ 1Þ z
02

s
; ð10Þ

We have again scaled ρ by r0 and now z by a factor of
R2=r0 (the circumference of the compact z-direction is now
π in these coordinates). In general there may be solutions
with nonzero z and L simultaneously but we shall not
consider such configurations. Those configurations were
explored in [23] for the B field case but shown to only
represent local maxima of the effective potential. The
action for the brane configurations here is very similar
to that in [23] with an IR wall introduced by an effective
dilaton factor. The main difference is just the power in the
dilatonic factor so we expect the vacuum structure to be
similar.
Since the action is independent of z, there is a constant of

motion Πz given by

Πz ¼
z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ρ4

p
ðρ4 − 1Þ2

ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ z02ðρ4 þ 4=ð1þ ρ4Þ − 3Þ

p : ð11Þ

As mentioned, these solutions represent two branes
joining, and extend a finite distance into the bulk of the
space at which point they turn around. There thus exists
some ρ0 at which z0 → ∞. From Eq. (11) one then finds that

Πz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ρ40

p ðρ40 − 1Þ2
ρ20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ40 þ 4=ð1þ ρ40Þ − 3

p . ð12Þ

From Eq. (11) one also finds

z0 ¼�
ffiffiffi
2

p
Πzρ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ1=ρ4Þðρ4−1Þ4−Π2

zρ
4ðρ4þ4=ð1þρ4Þ−3Þ

p ;

ð13Þ

giving a first-order ODE for zðρÞ which one can directly
integrate up numerically. One can also find the separationΔz
of the branes in a given solution by integrating Eq. (13) over
ρ ∈ ½ρ0;∞�. The solutions for various values of ρ0 are shown
in Fig. 2.
An interesting feature is that there are no linked

configurations with separation greater than π=2 (half the
circumference of the compact direction). The maximum
π=2 separation is realized precisely when the linked
configurations falls into the scale r0. For a compact space
the dual has provided us with precisely the minimum
number of configurations to describe all possible probe D5
separations-two D5 probes can not be separated by more
than half the circumference of the z-direction. The solutions
do not provide us with configurations that wind further
around the compact direction though.
For the purposes of computing the energies of these

solutions, the expression given in Eq. (13) can be

2 4 6 8 10

0.5

1.0

1.5

L

Ρ

FIG. 1 (color online). The embedding (extending to infinite ρ)
of a single D5 brane for a massless quark in the AdS-soliton
background is shown for r0 ¼ 1. The dual of the compact space
therefore closes off on the smaller circle shown—note the D5
brane embedding is regular avoiding this line. We also show the
solution of (21) as the larger circle with the tension chosen so that
the interval between the walls has radius R2π=r0—the D5
embedding hits this cut off on the space.
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substituted directly into the action in (10). The asymptotic
behavior of the on-shell action can then easily be read off,
and we again subtract

R∞
0 ρ2dρ to regularize. The results

for the two embeddings are given in Fig. 3. The linked
embedding always has lower energy than the separated
embeddings—exciton condensation between the sheets is
preferred over separated sheets with condensation on the
single sheet at all separations on the z circle.

C. Applying a magnetic field

For the compact space, U-shaped probe configurations
were always energetically preferred over the configuration
in Fig. 1 for bilayers. It is known that the configuration of
Fig. 1 though is heavily preferred when a large background
constant magnetic field is applied [7,8,19]. Here we mean a
B field associated with the U(1) baryon number symmetry
which has a dual description in terms of a gauge field in the
DBI action of the brane and not a component of theN ¼ 4
SYM fields. The full DBI action with that gauge field is
given by

S ∼ −T
Z

d6ξeϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− det½Gþ 2πα0F�

p
. ð14Þ

For the 2þ 1-dimensional defect field theory in question,
the only possibility for introducing an external magnetic
field is via Fyx ¼ −Fxy ¼ Bz ≡ B. Following through the
analysis as before, one finds that the actions retain the
forms (9) and (10) but with an additional factor that can be
identified as an effective dilaton profile,

eϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2πα0Þ2B2

g2xðρ2 þ L2Þ2

s
. ð15Þ

Equations (12) and (13) for the bilayer configurations
now become

Πz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=ρ40

p
ðρ40 − 1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4B2ρ40=ð1þ ρ40Þ2

p
ρ20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ40 þ 4=ð1þ ρ40Þ − 3

p ;

ð16Þ

and

z0 ¼
ffiffiffi
2

p
Πzρ

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
A − B

p ; ð17Þ

A ¼ ð1þ 1=ρ4Þðρ4 − 1Þ4
�
1þ 4B2ρ4

ð1þ ρ4Þ2
�

;

B ¼ Π2
zρ

4ðρ4 þ 4=ð1þ ρ4Þ − 3Þ; ð18Þ

where we are writing B in units of 1=2πα0. One finds that
for any value of B, the maximum possible separation of
the branes (corresponding to ρ0 ¼ 1) is again given by π=2.
Of course, the equation of motion for L also changes
accordingly, and for a given value of B one again shoots
numerically to find the solution with Lð∞Þ ¼ 0, corre-
sponding to the massless embedding.
For both types of embeddings the same regularization

as before holds, as the new factor introduces no new
divergences. The energies of the solutions are increased as
one increases the strength of the magnetic field, but this
does not happen at the same rate so that a phase transition

1 2 3 4 5 6

z

1

2

3

1

2

3

FIG. 2 (color online). U-shaped D5=D̄5 configurations in the
AdS-soliton background. The space has circumference π in the
z-direction-we repeat the space to show configurations wrapping
both ways around the circle. Note that configurations which reach
down to r0 ¼ 1 (left-hand vertical line) describe defects separated
by π=2 in z. We also plot the solution of (21) (in bold) with the
tension chosen so that the interval between the walls is π-the
probe configurations hit this boundary. If the figure is viewed as
that for an interval between two mirrors then configurations
corresponding to exciton condensation with the mirror partner
exist if the probe lies within π=4 of the mirror.

Separation

0.5

1.0

0.5

0.5 1.0 1.5

FIG. 3 (color online). The regularized energy of two D5s in the
configuration of Fig 1 (top line which is independent of z) and
that of the U-shaped joined embedding (lower line) against
separation in z (which cannot exceed π=2). The U shaped
configurations are always preferred.
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exists above a certain value of B. The phase diagram of
the theory is shown in Fig. 4—at low B the U-shaped
configurations are preferred (phase A in the figure)—while
at large B the separated brane configurations have lowest
energy (phase B in the figure). The closer the probe branes,
the larger the B field needed to trigger the transition.

IV. N ¼ 4 SYM IN A CAVITY

We would like to describe the background N ¼ 4 SYM
fields enclosed in a cavity, for example between two
mirrors placed Δz apart. If the vacuum of the theory is
locally determined then one would expect the description of
the vacuum state to match that of the theory on a compact
space since one can consider the space to simply repeat
every Δz period. The soliton geometry of (2) seems the
good candidate. Whether this is true or not depends on the
boundary where there can potentially be boundary terms
associated with the “mirror.” For example in [24] the
authors proposed treating the surface as a boundary of
constant tension T . The bulk plus boundary action is then

I ¼ 1
16πGN

R
bulk

ffiffiffiffiffiffi−gp ðR − 2ΛÞ þ 1
8πGN

R
bound

ffiffiffiffiffiffiffi−hp ðK − T Þ;
ð19Þ

where R is the Ricci scalar and Kab is the extrinsic
curvature. The boundary condition

Kab ¼ ðK − T Þhab; ð20Þ
results. For the case of a strip between two such boundaries
this gives the differential equation,

z0ðrÞ ¼ � RT

r2hðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hðrÞ − R2T 2

p ; ð21Þ

where the sign depends on which side of the strip the
boundary sits. The solutions of this equation represent
the radial evolution of the position where the tension of
the boundary matches the pressure of the interior gauge
fields. The solutions are U-shaped dipping down to a

distance r� in the bulk. At the midpoint 4hðr�Þ ¼ R2T2.
One can then integrate (21) from r ¼ r� to ∞ and require
that Δz matches that from the regularity condition of the
geometry (2)—this fixes the tension T.
We plot the solutions of (21) in Figs. 1 and 2 above. They

represent a cutoff on the space in this construction. We
would now be interested in including probe D5 branes in
the space. The Euler-Lagrange equations describing the
embeddings in the new space are identical to those in the
compact space and we would hope the probes to close off
before hitting the new boundaries. In Figs. 1 and 2 we see
that this is not the case. It is possible that one needs to
invoke new boundary conditions when the probes meet the
cutoff to reflect the physics of the interaction between the
fields on the probes and the barrier physics. Equally likely
though is that the construction does not make complete
sense. One is attempting to construct a theory with mirrors
and a region of space with the vacuum of N ¼ 4 SYM but
such a theory may well not exist because the matter needed
to construct the mirror would need to be part of the vacuum
in the strip.
It is not our intention to resolve these complex issues

here. Instead we will take the most naive prescription of
simply using the soliton geometry as our description of
the vacuum of the theory between two mirrors and place
probe branes with their mirror images in that space. The
embedding solutions are then simply those we have already
displayed for the compact space. We hope that this will
reveal the qualitative new physics correctly.
Let us first take this approach for a single probe D5 brane

between the mirrors. The immediate assumption is that the
configuration is that shown in Fig. 1—there will be
condensation of the fermions on the brane triggered by

Separation

A

B

0.5 1.0 1.5

1

2

3

4

5

6

7
B

FIG. 4 (color online). Phase diagram of bilayer D5s in AdS
with one compact direction and an applied B field. Phase A is
U-shaped configurations. In phase B the probes separate and take
up configurations similar to Fig 1.

d1

A

A

A
A

A

AB

B

B

B

BC

C

C

C

B

B

d1

d20.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 5 (color online). The phase diagram of the bilayer theory
in an interval between two mirrors of separation π. d1 and d2
measure the distance from one mirror to the first and second
defect respectively. We have marked the lines d1=2 ¼ π=4; 3π=4
because these are the separations within which condensation with
the mirror image are possible. In phase A both D5s condense with
their mirror images. In phase B the two D5s form a U-shaped
configuration. In phase C the probe nearest the mirror displays
exciton condensation with its mirror partner whilst the other
probe takes up the lone configuration of Fig. 1.
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the conformal symmetry breaking scale Δz. However, there
is an additional interesting possibility which is that there
can be exciton style condensation with the mirror images
of the probe. When the probe is at the midpoint between
the mirrors, it is a distance Δz from it’s reflections. There
are no U-shaped configurations for probes separated by
more than Δz=2 so the single configuration of Fig. 1 is
correct. If the probe though is moved within Δz=4 of the
mirror then joined configurations exist with lower energy
than the single configuration and exciton condensation with
the mirror image will occur. In a sense this is a new form of
mass gap formation for this system.
For two probe branes several configurations are possible

depending on the separation of the branes from each other
and from their mirror partners. Both branes can condense
with their mirrors, one can condense with the mirror and
one have condensation of only its own fields, or the two
branes can display exciton condensation with each other.
One works through all possibilities and computes the
energetically preferred configuration. The phase diagram
is shown in Fig. 5.

V. DISCUSSION

We have studied D5 probe embeddings in an AdS-
soliton configuration. The geometry is dual toN ¼ 4 SYM
with one spatial direction of the 3þ 1d space compact.
We have also argued that it is dual to the vacuum of the
theory of N ¼ 4 SYM confined to a compact region
between two mirrors (although as we discussed this is
ambiguous and essentially assumes the mirrors do not
contribute to the form of the vacuum configuration of the
N ¼ 4 fields except through the introduction of a length

scale). The conformal symmetry breaking scale introduced
through the finite distance in z in both cases generates
fermion condensation and mass gap formation. For a
compact space a single defect exhibits a fermion conden-
sate on its surface. For a bilayer D5=D̄5 configuration the
energetically preferred condensation is exciton condensa-
tion between the fermions on the two sheets. If one includes
mirror images of the probes in the case of the interval then
an extra phase appears in which a single fermion, when
close enough to the mirror, displays exciton condensation
with its mirror image. The bilayer phase structure is then
considerably complicated (we display the phase diagram
in Fig. 5).
The hope is that graphene sheets can be engineered into

a strongly coupled phase by placing them in a cavity.
The qualitative expectations from our results are that a
mass gap will form in this regime. Further predictions
would then be that there would be a first-order phase
transition to condensation with the mirror partner if the
single sheet were brought close to the mirror. For bilayer
configurations we also showed that an applied magnetic
field can cause a first-order transition from an exciton
condensation phase to a phase with separate condensation
on each sheet. Potentially these sorts of features could be
looked for experimentally.
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