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Recently Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an
AdS5 × S5 background of type IIB superstring theory can be reinterpreted as the highly effective action
(HEA) of four-dimensional N ¼ 4 superconformal field theory on the Coulomb branch. We argue that
the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT
correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary
and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices
are higher-dimensional NC Uð1Þ gauge fields and the SW map is a local coordinate transformation
eliminating Uð1Þ gauge fields known as the Darboux theorem in symplectic geometry.
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I. INTRODUCTION

Recently Schwarz conjectured [1] that the world-volume
action of a probe p-brane in a maximally (or 3=4 maximal)
supersymmetric spacetime containing AdSpþ2 can be
reinterpreted as the highly effective action (HEA) of a
superconformal field theory in ðpþ 1Þ dimensions on the
Coulomb branch. The HEA is defined by taking a con-
formal gauge theory on the Coulomb branch and integrat-
ing out the massive fields, thereby obtaining an effective
action in terms of massless Abelian multiplets only. Then
the HEA is conjecturally identified with the world-volume
action for a probe p-brane in an AdSpþ2 × K background
geometry with N units of flux threading a compact space
K. Examples considered in [1] are a D3-brane in
AdS5 × S5, an M2-brane in AdS4 × S7=Zk, a D2-brane
in AdS4 × CP3, and an M5-brane in AdS7 × S4. This
conjecture was driven by a guiding principle [1]: “Take
coincidences seriously,” with the observation that the
probe-brane theory has all of the expected symmetries
and dualities. The brane actions fully incorporate the
symmetry of the background as an exact global symmetry
of the world-volume theory. For example, in the case of a
D3-brane in AdS5 × S5, this symmetry is the supercon-
formal group PSUð2; 2j4Þ. In this example, it also includes
the SLð2;ZÞ duality group, which is known to be an exact
symmetry of type IIB superstring theory. This conjecture
may be further strengthened by showing that the world-
volume actions describing probe branes in anti–de Sitter
(AdS) space exhibit not only (super)conformal symmetry
but also dual (super)conformal symmetry and, taken
together, have an infinite-dimensional Yangian-like sym-
metry.1 There have also been earlier works [3–7] to note the

conformal symmetry of the world-volume theory of a
p-brane in an AdS background as well as works [8–11]
to emphasize the relationship between probe-brane actions
and low-energy effective actions on the Coulomb branch.
In this paper we will argue that the HEA can be derived

from the noncommutative (NC) field theory representation
of the AdS/CFT correspondence as recently formulated in
[12] (see, in particular, Sec. VI). Our argument is based
only on the well-known facts that the master fields of large
N matrices are higher-dimensional NC Uð1Þ gauge fields
[13–16] and the Seiberg-Witten (SW) map [17] defining a
spacetime field redefinition between ordinary and NC
gauge fields is a local coordinate transformation eliminat-
ing Uð1Þ gauge fields via the Darboux theorem in sym-
plectic geometry [16,18–21]. The underlying math for the
argument is rather fundamental. For simplicity, let us
consider two-dimensional NC space, denoted byR2

θ, whose
coordinates obey the commutation relation

½y1; y2� ¼ iθ; ð1:1Þ

where θ > 0 is a constant parameter measuring the non-
commutativity of the space R2

θ. If we define annihilation
and creation operators as

a ¼ y1 þ iy2ffiffiffiffiffi
2θ

p ; a† ¼ y1 − iy2ffiffiffiffiffi
2θ

p ; ð1:2Þ

the NC algebra (1.1) of R2
θ reduces to the Heisenberg

algebra of harmonic oscillator, i.e.,

½a; a†� ¼ 1: ð1:3Þ

The representation space of the Heisenberg algebra (1.3) is
given by the Fock space defined by

H ¼ fjnijn ∈ Z≥0g; ð1:4Þ
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which is orthonormal, i.e., hnjmi ¼ δn;m and complete, i.e.,P∞
n¼0 jnihnj ¼ 1H, as is well-known from quantum

mechanics.
A crucial, though elementary, fact for our argument is

that the NC space R2
θ admits an infinite-dimensional

separable Hilbert space (1.4) [22]. Let us apply this
elementary fact to dynamical fields defined on Rd−1;1 ×
R2

θ with local coordinates ðxμ; y1; y2Þ where Rd−1;1 ∋ xμ

is a d-dimensional Minkowski spacetime. Consider two

arbitrary fields Φ̂1ðx; yÞ and Φ̂2ðx; yÞ on Rd−1;1 ×R2
θ.

In quantum mechanics physical observables are considered
as operators acting on a Hilbert space. Similarly the
dynamical variables Φ̂1ðx; yÞ and Φ̂2ðx; yÞ can be regarded
as operators acting on the Hilbert space H, which
are elements of the deformed algebra C∞ðRd−1;1Þ ⊗ Aθ.
Thus one can represent the operators acting on the Fock
space (1.4) as N × N matrices in EndðHÞ≡AN where
N ¼ dimðHÞ → ∞:

Φ̂1ðx; yÞ ¼
X∞
n;m¼0

jnihnjΦ̂1ðx; yÞjmihmj ≔
X∞
n;m¼0

ðΦ1ÞnmðxÞjnihmj;

Φ̂2ðx; yÞ ¼
X∞
n;m¼0

jnihnjΦ̂2ðx; yÞjmihmj ≔
X∞
n;m¼0

ðΦ2ÞnmðxÞjnihmj; ð1:5Þ

where Φ1ðxÞ and Φ2ðxÞ are N × N matrices in C∞ðRd−1;1Þ ⊗ AN . Then one gets a natural composition rule for the
products

ðΦ̂1 ⋆ Φ̂2Þðx; yÞ ¼
X∞

n;l;m¼0

jnihnjΦ̂1ðx; yÞjlihljΦ̂2ðx; yÞjmihmj

¼
X∞

n;l;m¼0

ðΦ1ÞnlðxÞðΦ2ÞlmðxÞjnihmj: ð1:6Þ

The above composition rule implies that the ordering in
the NC algebra Aθ is compatible with the ordering in the
matrix algebra AN , and so it is straightforward to translate
multiplications of NC fields in Aθ into those of matrices
in AN using the matrix representation (1.5) without any
ordering ambiguity.
It is easy to generalize the matrix representation to

2n-dimensional NC spaceR2n
θ whose coordinate generators

obey the commutation relation

½ya; yb� ¼ iθab; a; b ¼ 1;…; 2n; ð1:7Þ

where the Poisson bivector θ ¼ 1
2
θab ∂

∂ya ⋀
∂
∂yb is assumed

to be invertible and so B≡ θ−1 defines a symplectic
structure on R2n. Consider a D ¼ ðdþ 2nÞ-dimensional
NC space Rd−1;1 ×R2n

θ with coordinates YM¼ðxμ;yaÞ;

M¼0;1;…;D−1;μ¼0;1;…;d−1. The star product for
smooth functions f̂ðYÞ; ĝðYÞ ∈ C∞ðRD−1;1Þ is defined by

ðf̂ ⋆ ĝÞðYÞ ¼ e
i
2
θab ∂

∂ya⊗
∂

∂zb f̂ðx; yÞĝðx; zÞjy¼z: ð1:8Þ

Therefore, to formulate a gauge theory on Rd−1;1 ×R2n
θ , it

is necessary to dictate the gauge covariance under the NC
star product (1.8). The covariant field strength of NC Uð1Þ
gauge fields ÂMðYÞ ¼ ðÂμ; ÂaÞðx; yÞ is then given by

F̂MNðYÞ ¼ ∂MÂNðYÞ − ∂NÂMðYÞ − i½ÂM; ÂN �⋆ðYÞ: ð1:9Þ

Using the matrix representation (1.5), one can show
[13–16] that the D ¼ ðdþ 2nÞ-dimensional NC Uð1Þ
gauge theory is exactly mapped to the d-dimensional
UðN → ∞Þ Yang-Mills theory,

S ¼ −
1

4G2
YM

Z
dDYðF̂MN − BMNÞ2 ð1:10Þ

¼ −
1

g2YM

Z
ddxTr

�
1

4
FμνFμν þ 1

2
DμΦaDμΦa −

1

4
½Φa;Φb�2

�
; ð1:11Þ
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where G2
YM ¼ ð2πÞnjPfθjg2YM and

BMN ¼
�
0 0

0 Bab

�
:

We refer more details to Sec. 6.1 of Ref. [12].
We emphasize that the equivalence between

the D-dimensional NC Uð1Þ gauge theory (1.10) and
d-dimensional UðN → ∞Þ Yang-Mills theory (1.11) is
an exact mathematical identity, not a dimensional reduc-
tion, and has been known long ago, for example, in [13,14].
A remarkable point is that the resulting matrix models or
large N gauge theories described by the action (1.11) arise
as a nonperturbative formulation of string/M theories. For
instance, we get the Ishibashi-Kawai-Kitazawa-Tsuchiya
matrix model for d ¼ 0 [23], the Banks-Fischler-Shenker-
Susskind matrix quantum mechanics for d ¼ 1 [24], and
the matrix string theory for d ¼ 2 [25]. The most interest-
ing case arises for d ¼ 4 and n ¼ 3, which suggests an
engrossing duality that the ten-dimensional NCUð1Þ gauge
theory on R3;1 ×R6

θ is equivalent to the bosonic action
of four-dimensional N ¼ 4 supersymmetric UðNÞ Yang-
Mills theory, which is the large N gauge theory of the AdS/
CFT duality [3,26,27]. According to the large N duality or
gauge/gravity duality, the large N matrix model (1.11) is
dual to a higher-dimensional gravity or string theory. Hence
it should not be surprising that theD-dimensional NCUð1Þ
gauge theory should describe a theory of gravity (or a string
theory) in D dimensions. Nevertheless the possibility that
gravity can emerge from NC Uð1Þ gauge fields has been
largely ignored until recently. But the emergent gravity
picture based on NCUð1Þ gauge theory [12,16,28] debunks
that this coincidence did not arise by some fortuity. Here
we want to take an advantage following the advice of
Schwarz [1]: “Take coincidences seriously.”
In this paper, we will seriously take the equivalence

between the D-dimensional NC Uð1Þ gauge theory (1.10)
and the d-dimensional UðN → ∞Þ Yang-Mills theory
(1.11) to derive the HEA conjectured in [1]. It is to be
hoped that we also clarify why the emergent gravity from
NC gauge fields is actually the manifestation of the gauge/
gravity duality or large N duality in string/M theories. We
think that the emergent gravity from NC gauge fields opens
a lucid avenue to understand the gauge/gravity duality such
as the AdS/CFT correspondence. While the large N duality
is still a conjectural duality and its understanding is far
from being complete to identify an underlying first prin-
ciple for the duality, it is possible [12,16,28] to reasonably
identify the first principle for the emergent gravity from
NC Uð1Þ gauge fields and to derive in a systematic way
gravitational variables from gauge theory quantities.
Moreover, it can be shown [12] that the four-dimensional
N ¼ 4 supersymmetric UðNÞ Yang-Mills theory is equiv-
alent to the ten-dimensional N ¼ 1 supersymmetric NC
Uð1Þ gauge theory on R3;1 ×R6

θ if we consider the

Moyal-Heisenberg vacuum (1.7) which is a consistent
solution of the former—the N ¼ 4 super Yang-Mills
theory. Here is a foothold for our departure.
The paper is organized as follows. In Sec. II we review the

result in Ref. [12] showing that the four-dimensionalN ¼ 4
superconformal field theory on the Coulomb branch defined
by the NC space (1.7) is equivalent to the ten-dimensional
N ¼ 1 supersymmetricNCUð1Þ gauge theory. InSec. IIIwe
consider the ten-dimensional N ¼ 1 NC Uð1Þ super Yang-
Mills theory (2.8) as a nontrivial leading approximation of the
supersymmetric completion of the NC Dirac-Born-Infeld
(DBI) action. The supersymmetric completion is postponed
to Sec. V. In Sec. IV, we identify a commutative DBI action
that is mapped to the NC one by the exact SWmap defining a
spacetime field redefinition between ordinary and NC gauge
fields [17]. It is observed that the spacetime geometry dual
to four-dimensional large N matrices or ten-dimensional
NC Uð1Þ gauge fields is simply derived from the Darboux
transformation eliminating Uð1Þ gauge fields whose state-
ment is known as the Darboux theorem in symplectic
geometry. We also identify a possible candidate giving rise
to AdS5 × S5 geometry. It is shown and will also be checked
inAppendixA that the duality betweenNCUð1Þ gauge fields
and gravitational fields is the SWmap between commutative
and NCUð1Þ gauge fields. See Eq. (4.20).We thus argue that
the emergent gravity from NC gauge fields is the manifes-
tation of the gauge/gravity duality or largeN duality in string/
M theories [12]. In Sec. V, we derive theworld-volume action
of a probe D3-brane in AdS5 × S5 geometry from the DBI
action of ten-dimensional NC Uð1Þ gauge fields, which was
obtained from the four-dimensional N ¼ 4 superconformal
field theory on the Coulomb branch. We consider a super-
symmetric D9-brane with the local κ symmetry [29–34] to
yield the supersymmetric version of DBI actions. We finally
identify the supersymmetric world-volume action of a probe
D3-brane in AdS5 × S5 geometry with the HEA conjectured
by Schwarz [1]. Our approach sheds light onwhyN ¼ 1 (i.e.,
Abelian gauge group) is the proper choice for the HEA that
was elusive in the original conjecture (see the discussion in
Sec. 5 of Ref. [1]). In Sec. VI, we discuss why the emergent
gravity from NC gauge fields provides a lucid avenue to
understand the gauge/gravity duality such as the AdS/CFT
correspondence [3,26,27]. We conclude the paper with a
few speculative remarks. In Appendix A, we demonstrate
how to determine 2n-dimensional Kähler metrics from Uð1Þ
gauge fields by solving the identities (4.14) and (4.15)
between DBI actions, which are underlying equations for
our argument. In particular, we show that Calabi-Yau n-folds
for n ¼ 2 and 3 arise from symplecticUð1Þ instantons in four
and six dimensions, respectively.

II. NC Uð1Þ GAUGE FIELDS FROM LARGE
N MATRICES

The AdS/CFT correspondence [3,26,27] implies that a
wide variety of quantum field theories provide a
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nonperturbative realization of quantum gravity. In the AdS/
CFT duality, the dynamical variables are large N matrices,
and so gravitational physics at a fundamental level is
described by NC operators. We argued in [12] that the
AdS/CFT correspondence is a particular case of emergent
gravity from NC U(1) gauge fields. An underlying argu-
mentation is to realize the equivalence between the actions

(1.10) and (1.11) in a reverse way by observing that the
Moyal-Heisenberg vacuum (1.7) is a consistent vacuum
solution of the N ¼ 4 super Yang-Mills theory.
It is easy to understand an underlying logic, and so we

recapitulate only the essential points deferring to [12] on a
detailed description. The action of four-dimensionalN ¼ 4
super Yang-Mills theory is given by [35]

S ¼
Z

d4xTr

�
−
1

4
FμνFμν −

1

2
DμΦaDμΦa þ

g2

4
½Φa;Φb�2 þ iλ̄iσ̄μDμλ

iþ ig
2
Σ̄a
ijλ

i½Φa; λj� −
ig
2
Σa;ijλ̄i½Φa; λ̄j�

�
: ð2:1Þ

Consider a vacuum configuration defined by

hΦaivac ¼ pa; hAμivac ¼ 0; hλiivac ¼ 0: ð2:2Þ

Assume that the vacuum expectation value (vev) pa ∈
ANðN → ∞Þ satisfies the Moyal-Heisenberg algebra

½pa; pb� ¼ −iBabIN×N: ð2:3Þ

Of course, the commutation relation (2.3) is meaningful
only when we take the limit N → ∞. It is obvious that
the vacuum configuration (2.2) in this limit is definitely a
solution of the theory. We emphasize that the vev (2.2) of
adjoint scalar fields does not break four-dimensional
Lorentz symmetry. Actually the vacuum algebra (2.3)
refers to NC space R6

θ if we define pa ≡ Babyb and
B≡ θ−1. Now fluctuations of large N matrices around
the vacuum (2.2) are parametrized by

D̂μðx; yÞ ¼ ∂μ − iÂμðx; yÞ;
D̂aðx; yÞ≡ −iΦ̂aðx; yÞ ¼ −iðpa þ Âaðx; yÞÞ; ð2:4Þ

Ψ̂ðx; yÞ ¼
�Pþλ̂

i

P−
~̂λi

�
ðx; yÞ; ð2:5Þ

where we assumed that fluctuations also depend on vacuum
moduli ya. Note that, if we apply the matrix representation
(1.5) to the fluctuations in Eqs. (2.4) and (2.5) again, we
recover the original large N gauge fields in the action (2.1).
Therefore let us introduce ten-dimensional coordinates
YM ¼ ðxμ; yaÞ;M ¼ 0; 1;…; 9 and ten-dimensional con-
nections defined by

D̂MðYÞ ¼ ∂M − iÂMðx; yÞ ¼ ðD̂μ; D̂aÞðx; yÞ; ð2:6Þ

whose field strength is given by

F̂MNðYÞ ¼ i½D̂M; D̂N �⋆ ¼ ∂MÂN − ∂NÂM − i½ÂM; ÂN �⋆:
ð2:7Þ

Thus the correspondence between the NC ⋆ algebra Aθ

and the matrix algebra AN ¼ EndðHÞ under the Moyal-
Heisenberg vacuum (2.3) implies that the master fields of
large N matrices are higher-dimensional NC Uð1Þ gauge
fields. In the end large N matrices in the N ¼ 4 vector
multiplet on R3;1 are mapped to NC gauge fields and their
superpartners in the N ¼ 1 vector multiplet on R3;1 ×R6

θ
whereR6

θ is an extra NC space whose coordinate generators
ya ∈ Aθ obey the commutation relation (1.7).
Using the ordering (1.6) for UðNÞ and NC Uð1Þ gauge

fields, it is straightforward to organize the four-dimensional
N ¼ 4 UðNÞ super Yang-Mills theory (2.1) into the ten-
dimensional N ¼ 1 NC Uð1Þ super Yang-Mills theory
with the action [12]

S ¼
Z

d10Y

�
−

1

4G2
YM

ðF̂MN − BMNÞ2 þ
i
2
¯̂ΨΓMD̂MΨ̂

�
;

ð2:8Þ

where B fields take the same form as Eq. (1.10). Now the
fermion Ψ̂ðYÞ is a ten-dimensional gaugino, the super-
partner of the ten-dimensional NCUð1Þ gauge field ÂMðyÞ,
which is the Majorana-Weyl spinor of SOð9; 1Þ. The action
(2.8) is invariant under N ¼ 1 supersymmetry transforma-
tions given by

δÂM ¼ iᾱΓMΨ̂;

δΨ̂ ¼ 1

2
ðF̂MN − BMNÞΓMNα: ð2:9Þ

It should be remarked that the relationship between the
four-dimensional UðNÞ super Yang-Mills theory (2.1) and
ten-dimensional NC Uð1Þ super Yang-Mills theory (2.8) is
not a dimensional reduction, but they are exactly equivalent
to each other. Therefore any quantity in lower-dimensional
UðNÞ gauge theory can be transformed into an object in
higher-dimensional NC Uð1Þ gauge theory using the
compatible ordering (1.6) [12].
The coherent condensate (2.2) is described by vev’s of

adjoint scalar fields. Thus we will call the vacuum (2.2) a
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“Coulomb branch” although ½Φa;Φb�jvac ≠ 0.2 However,
note that ½Φa;Φb�jvac ¼ −iBabIN×N take values in a center
of the gauge group UðNÞ, which may be identified with
the unbroken Uð1Þ gauge group. Hence the Coulombic
vacuum (2.2) is compatible with the usual definition of
the Coulomb branch. We also remark that the conformal
symmetry of four-dimensional N ¼ 4 super Yang-Mills
theory is spontaneously broken by the vev (2.2) of scalar
fields because it introduces a NC scale jθj≡ l2NC. But it
needs not be specified because the theories with different
θ’s are SW equivalent [17]. These are also a typical feature
of the Coulomb branch.
Under a Coulomb branch described by the coherent

condensate (2.2), large N matrices in N ¼ 4 supersym-
metric gauge theory can be regarded as a linear represen-
tation of operators acting on a separable Hilbert space H
that is the Fock space of the Moyal-Heisenberg vacuum
(2.3). Therefore an important point is that a large N matrix
ΦðxÞ on four-dimensional spacetime R3;1 in the limit
N → ∞ on the Coulomb branch (2.2) can be represented
by its master field Φ̂ðx; yÞ, which is a higher-dimensional
NC Uð1Þ gauge field or its superpartner. Since the large N
gauge theory (2.1) on the Coulomb branch (2.2) is
mathematically equivalent to the NC Uð1Þ gauge theory
described by the action (2.8), it should be possible to
isomorphically map the ten-dimensional NC Uð1Þ super
Yang-Mills theory to a ten-dimensional type IIB super-
gravity according to the AdS/CFT correspondence
[3,26,27]. Indeed, the emergent gravity from NC Uð1Þ
gauge fields provides the first principle to found the largeN
duality or gauge/gravity duality in a systematic way
[12,16,28].

III. COMMUTATIVE AND NC D-BRANES

The world-volume action for a Dp-brane can be viewed
as a ðpþ 1Þ-dimensional nonlinear sigma model with a
target space M where the embedding functions XMðσÞ
define a map X∶ W → M from the ðpþ 1Þ-dimensional
world volume W with coordinates σαðα ¼ 0; 1;…; pÞ to
the target space M with coordinates XMðM ¼ 0; 1;…; 9Þ.
This embedding induces a world-volume metric

hαβ ¼ gMNðXÞ∂αXM∂βXN: ð3:1Þ

The D-brane action in general contains a dilaton coupling
e−ϕ where ϕ is the ten-dimensional dilaton field. Then the
string coupling constant is defined by gs ¼ ehϕi where the
vev hϕi at hand is assumed to be constant. The world
volume also carries Uð1Þ gauge fields AαðσÞ with field
strength

Fαβ ¼ ∂αAβ − ∂βAα: ð3:2Þ

Recall that the DBI action is a nonlinear generalization of
electrodynamics with self-interactions of Uð1Þ gauge
fields and reproduces the usual Maxwell theory at quad-
ratic order. In string theory a generalization of this action
appears in the context of Dp-branes. Open strings ending
on the Dp-brane couple directly to closed string back-
ground fields ðgMN; BMN;ϕÞ in the bulk. A low-energy
effective field theory deduced from the open string
dynamics on a single D-brane is obtained by integrating
out all the massive modes, keeping only massless fields
that are slowly varying at the string scale κ ≡ 2πα0. The
DBI action describes the dynamics of Uð1Þ gauge fields
on a D-brane world volume in the approximation of
slowly varying fields,

ffiffiffi
κ

p j ∂FF j ≪ 1, in the sense keeping
field strengths (without restriction on their size) but not
their derivatives. The resulting DBI action on a Dp-brane
is given by

S1 ¼ −TDp

Z
W
dpþ1σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðhþ κF Þ

p
þOð ffiffiffi

κ
p ∂F;…Þ;

ð3:3Þ

where

F ≡ Bþ F ð3:4Þ

is the total Uð1Þ field strength and the Dp-brane tension is
given by

TDp ¼ 2π

gsð2πκÞ
pþ1
2

: ð3:5Þ

In general, the DBI action (3.3) contains derivative
corrections Oð ffiffiffi

κ
p ∂F;…Þ. However, we will ignore

possible terms involving higher derivatives of fields
since we are mostly interested in the approximation that
world-volume fields are slowly varying. We will also
consider the probe-brane approximation ignoring the
backreaction of the brane on the geometry and the
other background fields. The world-volume theory of
a D-brane is given as the sum of two terms S ¼ S1 þ S2.
The first term S1 is given by the DBI action (3.3), and the
second term S2 is the form of the Wess-Zumino–type
given by

2The usual Coulomb branch is defined by ½Φa;Φb�jvac ¼ 0 and
so hΦaivac ¼ diagðαa1 ;…; αaN Þ. In this case the gauge group
UðNÞ or SUðN þ 1Þ is broken to Uð1ÞN . But we remark that the
HEA is conjectured to correspond to the choice, N ¼ 1 [1] while
the probe brane approximation requires N → ∞. Therefore the
conventional choice of vacuum finds difficulty in explaining why
N ¼ 1 (i.e., Abelian gauge group) is the proper choice for the
HEA. We emphasize that the Coulomb branch as the NC space
(2.2) is a key origin of emergent gravity and is completely
consistent with the HEA because it requires the N → ∞ limit and
preserves only the Uð1Þ gauge group. Hence our approach sheds
light on why HEA preserves only the Uð1Þ gauge symmetry in
spite of N → ∞, which was elusive in the original conjecture as
discussed in Sec. 5 of Ref. [1].
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S2 ¼
Z
W
CRR ∧ eκF ; ð3:6Þ

where the coupling to background Ramond-Ramond
(RR) n-form gauge fields is collected in the formal sum

CRR ¼ ⨁
10

n¼0

Cn: ð3:7Þ

The coupling S2 is a characteristic feature of D-branes
that they carry an RR charge [36] and support the
world-volume gauge fields (3.2).
Some important remarks are in order. The DBI action

(3.3) respects several local gauge symmetries. It has
ðpþ 1Þ-dimensional general coordinate invariance since
the integrand transforms as a scalar density in DiffðWÞ.
It also admits the so-called Λ symmetry,

ðB; AÞ ↦ ðB − dΛ; Aþ ΛÞ; ð3:8Þ
where the two-form B≡ X�ðBbulkÞ is the pullback of target
space B field Bbulk to the world volume W and the gauge
parameter Λ is a one-form in ΓðT�WÞ. Let ðW;BÞ be a
symplectic manifold. The symplectic structure B is a
nondegenerate, closed two-form, i.e., dB ¼ 0, and so it
can locally be written as B ¼ dξ by the Poincaré lemma.
The B-field transformation (3.8) can then be understood as
a shift of the canonical one-form, ξ → ξ − Λ. An important
point for us is that the symplectic structure defines a bundle
isomorphism B∶ TW → T�W by X ↦ Λ ¼ −ιXB. Thus
the B-field transformation (3.8) is equivalent to ðB; AÞ ↦
ðBþ LXB; A − ιXBÞ where LX ¼ dιX þ ιXd is the Lie
derivative with respect to the vector field X. Since vector
fields are infinitesimal generators of local coordinate
transformations, in other words, Lie algebra generators
of DiffðWÞ, the B-field transformation (3.8) can be iden-
tified with a coordinate transformation generated by a
vector field X ∈ ΓðTWÞ. Consequently the Λ symmetry
(3.8) can be considered on par with diffeomorphisms
[12,16]. Moreover, it is well known [29–34] that the
D-brane world-volume theory has a local fermionic
symmetry called “κ symmetry” if fermion coordinates
ψαðα ¼ 1;…; 32Þ are included in the target spacetime
with supercoordinates ZM ¼ ðXM;ψαÞ. See a recent review
[37] for brane effective actions with the κ symmetry.
In sum, the world-volume theory of a supersymmetric
D-brane admits the following local gauge symmetries:
(I) DiffðWÞ, (II) Λ symmetry, and (III) κ symmetry.
We can use the general coordinate invariance of the

action S ¼ S1 þ S2 to eliminate unphysical degrees of
freedom. We choose a static gauge so that XM ¼
ðxμðσÞ;ϕaðσÞÞ ¼ ðδμασα;ϕaðxÞÞ where μ ¼ 0;…; p and
a ¼ pþ 1;…; 9. The ð9 − pÞ coordinates ϕaðxÞ will
be identified as the world-volume scalar fields of the
Dp-brane. In this gauge the metric (3.1) becomes

hμν ¼ ημν þ ∂μϕ
a∂νϕ

a; ð3:9Þ

where we assumed gMNðXÞ ¼ ηMN for the target spacetime.
Now we focus on a D9-brane for which there are no world-
volume scalar fields, i.e., ϕa ¼ 0 and so hMN ¼ gMN .
Suppose that the D9-brane supports the two-form B field
with rankðBÞ ¼ 6. In this case it is convenient to split the
world-volume coordinates XM ¼ σM in the static gauge
into two parts, XM ¼ ðxμ; zaÞ; μ ¼ 0; 1; 2; 3; a ¼ 1;…; 6,
so that B ¼ 1

2
Babdza ∧ dzb. Then the total field strength

(3.4) takes the form

FMN ¼
�
Fμν Fμa

Faμ Bab þ Fab

�
: ð3:10Þ

It is well known [17] that the open string gives rise to the
NC geometry when the two-form B field is present on a
D-brane world volume. The D-brane dynamics in the static
gauge is then described by Uð1Þ gauge fields on a NC
spacetime with coordinates YM ¼ ðxμ; yaÞ obeying the
commutation relation (1.7). The resulting DBI action on
the NC D9-brane is given by

Ŝ1 ¼ −T9

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðF̂ þ ΦÞÞ

q
þOð ffiffiffi

κ
p

D̂ F̂;…Þ; ð3:11Þ

where the NC Uð1Þ field strength F̂MNðYÞ is given by
Eq. (1.9) and the NC D9-brane tension is

T9 ¼
2π

Gsð2πκÞ5
: ð3:12Þ

The open string moduli ðG;Φ; GsÞ in the NC description
(3.11) are related to the closed string moduli ðg; B; gsÞ in
the commutative description (3.3) by [17]

1

gþ κB
¼ 1

Gþ κΦ
þ θ

κ
; ð3:13Þ

Gs ¼ gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κΦÞ
detðgþ κBÞ

s
¼ gs

�
detG
det g

�1
4

; ð3:14Þ

where the two-form Φ parametrizes some freedom in the
description of commutative and NC gauge theories. It is
worthwhile to remark that the NC DBI action (3.11) can be
obtained by applying the (exact) SW map to the commu-
tative one (3.3) [20,38,39], as will be shown later. Similarly
the Wess-Zumino–type term Ŝ2 for the NC D9-brane
can be obtained from the RR couplings in Eq. (3.6)
for a commutative D9-brane by considering the (exact)
SW map [20,40].
Let us expand the NC DBI action (3.11) in powers of κ.

First, note that
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðF̂ þ ΦÞÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ κMÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p �
1 −

κ2

4
TrM2 −

κ4

8
TrM4 þ κ4

32
ðTrM2Þ2 þ � � �

�
; ð3:15Þ

where

MN
Q ≡ ðF̂ þ ΦÞNPG

PQ; ð3:16Þ
and so TrM ¼ 0. At nontrivial leading orders, we find

Ŝ1 ¼ −T9

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
−

1

4G2
YM

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
GMPGNQðF̂ þ ΦÞMNðF̂ þ ΦÞPQ þOðκ4Þ; ð3:17Þ

where the ten-dimensional Yang-Mills coupling constant is
given by

G2
YM ¼ ðκ2T9Þ−1 ¼ ð2πÞ4κ3Gs: ð3:18Þ

In our case at hand, the open string metric can be set to be
flat, i.e., GMN ¼ ηMN . The first term of Ŝ1 is a vacuum
energy due to the D-brane tension that will be canceled
against a contribution from Ŝ2 [1,3]. The second term is
precisely equal to the bosonic part of the action (2.8) when
the background independent prescription is employed,
i.e., Φ ¼ −B [17]. Therefore we will consider the ten-
dimensional N ¼ 1 NC Uð1Þ super Yang-Mills theory
(2.8) as a nontrivial leading approximation of the super-
symmetric completion of the NC DBI action (3.11). The
supersymmetric completion with the κ symmetry will be
discussed in Sec. V.

IV. AdS/CFT CORRESPONDENCE FROM
NC Uð1Þ GAUGE FIELDS

In their well-known paper [17], Seiberg and Witten
showed that there exists an equivalent commutative
description of the low-energy effective theory for the open
string ending on a NC D-brane. From the point of view of
an open string sigma model, an explicit form of the
effective action depends on the regularization scheme of
two-dimensional field theory. The difference due to differ-
ent regularizations is always in a choice of contact terms,
leading to the redefinition of coupling constants that are
spacetime fields. So low-energy field theories defined with
different regularizations should be related to each other by
the field redefinitions in spacetime. Now we will explain
how the NC DBI action (3.11) arises from a low-energy
effective action in a curved background that will be
identified with the HEA speculated by Schwarz [1]. First
we identify a commutative description that is SW equiv-
alent to the NC DBI action (3.11). From a conventional
approach, the answer is obvious. It is given by the D9-brane
action (3.3) (with p ¼ 9) with the field strength (3.10). But,
for our purpose, it is more proper to consider the NC DBI
action (3.11) as a particular commutative limit of the full
NC D9-brane described by the star product

ðf̂ ⋆ ĝÞðYÞ ¼ e
i
2
ΘMN ∂

∂YM⊗
∂

∂ZN f̂ðYÞĝðZÞjY¼Z ð4:1Þ
for f̂ðYÞ; ĝðYÞ ∈ C∞ðR10Þ. We implicitly assumed the
Wick rotation, R9;1 → R10, although it is simply formal
because we eventually come back to the space R3;1 ×R6

θ.
For this purpose, it is convenient to take the split ΘMN ¼
ðζμν; θabÞ where an SOð10Þ rotation was used to put
ζμa ¼ 0. We intend to understand the star product (1.8)
as a particular case of Eq. (4.1) with ζμν ¼ 0. Later we will
explain why the star product (4.1) is more relevant for our
context, especially, from the viewpoint of emergent space-
time. Hence we need to identify a commutative DBI action
that is SW equivalent to the NC DBI action (3.11), instead,
using the star product (4.1). It is given by the D9-brane
action (3.3) with the Uð1Þ field strength

F ¼ 1

2
FMNðXÞdXM ∧ dXN

¼ 1

2
ðBMN þ FMNðXÞÞdXM ∧ dXN ¼ Bþ F; ð4:2Þ

where B ¼ Θ−1 and rankðBÞ ¼ 10. We will assume that F
is also nondegenerate, i.e., detð1þ FΘÞ ≠ 0.
To derive the HEA, it is enough only to employ the logic

expounded in Appendix A in Ref. [12]. Note that F in
Eq. (4.2) is the gauge invariant quantity under the Λ
symmetry (3.8). In other words, the dynamical Uð1Þ gauge
fields should appear only as the combination (4.2). In
particular, we can use the Λ symmetry (3.8) so that the B
field in Eq. (4.2) is constant. Then dB ¼ 0 trivially and
B is nondegenerate because of rankðBÞ ¼ 10. Therefore
ðR10; BÞ is a symplectic manifold. Moreover, ðR10;F Þ is
also a symplectic manifold since dF ¼ 0 and F is non-
degenerate by our assumption. Then we can realize an
important identity

F ¼ ð1þ LXÞB ð4:3Þ
as we explained below Eq. (3.8). It implies that there exists
a local coordinate transformation ϕ ∈ DiffðMÞ such that
ϕ�ðF Þ ¼ B, i.e., ϕ� ¼ ð1þ LXÞ−1 ≈ e−LX . This statement
is the well-known theorem in symplectic geometry known
as the Darboux theorem [41,42]. Its global statement is
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known as the Moser lemma [43]. The Darboux theorem
states that it is always possible to find a local coordinate
transformation ϕ ∈ DiffðMÞ, which eliminates dynamical
Uð1Þ gauge fields in F . That is, in terms of local
coordinates, there exists ϕ∶ Y ↦ X ¼ XðYÞ so that

ðBMN þ FMNðXÞÞ
∂XM

∂YP

∂XN

∂YQ ¼ BPQ: ð4:4Þ

If we represent the local coordinate transformation by

XMðYÞ ¼ YM þ ΘMNÂNðYÞ; ð4:5Þ
Eq. (4.4) can be written as

PMNðXÞ≡ ðF−1ÞMNðXÞ ¼ fXMðYÞ; XNðYÞgΘ; ð4:6Þ
where we introduced the Poisson bracket defined by

ffðYÞ; gðYÞgΘ ¼ ΘMN ∂fðYÞ
∂YM

∂gðYÞ
∂YN ð4:7Þ

for f; g ∈ C∞ðR10Þ. We will call ÂMðYÞ in Eq. (4.5)
symplectic gauge fields and XMðYÞ covariant (dynamical)
coordinates. The field strength of symplectic gauge fields is
defined by

F̂MN ¼ ∂MÂN − ∂NÂM þ fÂM; ÂNgΘ: ð4:8Þ
Then Eq. (4.6) gives us the relation

PMN ¼ ½ΘðB − F̂ÞΘ�MN: ð4:9Þ
By solving this equation, we yield the semiclassical version
of the SW map [18–20],

F̂MNðYÞ ¼
�

1

1þ FΘ
F

�
MN

ðXÞ; ð4:10Þ

d10Y ¼ d10X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þ FΘÞ

p
; ð4:11Þ

where the second equation is derived from Eq. (4.4) by
taking the determinant on both sides.
The coordinate transformation (4.4) leads to the identity

gMN þ κFMN ¼ ðGPQ þ κBPQÞ
∂YP

∂XM

∂YQ

∂XN ; ð4:12Þ

where the dynamical (emergent) metric is defined by

GMN ¼ gPQ
∂XP

∂YM

∂XQ

∂YN : ð4:13Þ

The identity (4.12) in turn leads to a remarkable identity
between DBI actions,

1

gs

Z
d10X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ κF Þ

p
¼ 1

gs

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κBÞ

p
ð4:14Þ

¼ 1

Gs

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κðF̂ þ ΦÞÞ

q
: ð4:15Þ

It is straightforward to derive the second identity (4.15) by
using Eqs. (3.13) and (3.14) and the SW maps (4.10) and
(4.11). For the derivation of Eq. (4.15), see Eq. (5.10) in
Ref. [20] and Sec. 3.4 of Ref. [38]. It may be instructive to
check Eq. (4.15) by expanding the right-hand side (RHS) of
Eq. (4.14) around the background B field, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κBÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðκBÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1þM

κ

�s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðκBÞ

p �
1 −

1

4κ2
TrM2 −

1

8κ4
TrM4 þ 1

32κ4
ðTrM2Þ2 þ � � �

�
; ð4:16Þ

where

MN
Q ¼ GNPΘPQ ð4:17Þ

and

TrM2 ¼ TrðgPÞ2; TrM4 ¼ TrðgPÞ4: ð4:18Þ

But it is not difficult to show that TrM2n ¼
TrðgPÞ2n;TrM2nþ1 ¼ TrðgPÞ2nþ1 ¼ 0 for n ∈ N and thus

det

�
1þM

κ

�
¼ det

�
1þ 1

κ
gP

�
ð4:19Þ

using the expansion of the determinant [see Eq. (4.30) in
Ref. [32]]. Then, using the result (4.9), the expansion in
Eq. (4.16) can be arranged into the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κBÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðκBÞ
detG

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κðF̂ − BÞÞ

q
¼ gs

Gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κðF̂ − BÞÞ

q
; ð4:20Þ

HYUN SEOK YANG PHYSICAL REVIEW D 90, 086006 (2014)

086006-8



where

GMN ¼ −κ2ðBg−1BÞMN; Gs ¼ gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðκBg−1Þ

q
ð4:21Þ

are the open string metric and coupling constant, respec-
tively, in the background independent prescription, i.e.,
Φ ¼ −B [17]. To demonstrate how 2n-dimensional Kähler
metrics arise from Uð1Þ gauge fields, in Appendix A,
we will solve the identities (4.14) and (4.15). In particular,
it is shown that Calabi-Yau n-folds for n ¼ 2 and 3 are
emergent from symplectic Uð1Þ instantons in four and six
dimensions, respectively.
NC Uð1Þ gauge fields are obtained by quantizing

symplectic gauge fields. The quantization in our case is
simply defined by the canonical quantization of the Poisson
algebra P ¼ ðC∞ðR10Þ; f−;−gΘÞ. The quantization map
Q∶ C∞ðR10Þ → Aθ by f ↦ QðfÞ≡ f̂ is a C-linear alge-
bra homomorphism defined by

f · g ↦ df ⋆ g ¼ f̂ · ĝ ð4:22Þ

and

f ⋆ g≡Q−1ðQðfÞ ·QðgÞÞ ð4:23Þ

for f; g ∈ C∞ðR10Þ and f̂; ĝ ∈ Aθ. The above star product
is given by Eq. (4.1) [22]. The DBI action (3.11) for the NC
D9-brane relevant to the NC Uð1Þ gauge theory (2.8) is
then obtained by simply considering a particular NC
parameter ΘMN ¼ðζμν;θabÞ with ζμν¼0. We understand
the limit ζμν→0 as jζj2≡GμρGνσζ

μνζρσ ¼ κ2jκBμλgλρj2≪
κ2 where the open string metric in Eq. (4.21) was used. This
means that gμν þ κBμν ¼ ðδρμ þ κBμλgλρÞgρν ≈ gμν; in other
words, the metric part in the DBI background gμν þ κBμν is
dominant so that the B-field part can be ignored.
Why do we need to take the limit ζμν → 0 instead of

simply putting ζμν ¼ 0? Actually the answer is involved
with the most beautiful aspect of emergent gravity. In the
emergent gravity picture, any spacetime structure is not
assumed a priori but defined by the theory itself. In a
sonorous phrase, the theory of emergent gravity must be
background independent. Hence it is necessary to define a
configuration in the algebraAθ, for instance, like Eq. (1.7),
to generate any kind of spacetime structure, even for flat
spacetime. Emergent gravity then says that the flat space-
time is emergent from the Moyal-Heisenberg algebra (1.7).
In other words, even the flat spacetime must have a
dynamical origin [12,16,28], which is absent in general
relativity. This picture may also be convinced by gazing
up at the identity (4.14). Note that the dynamical variables
on the RHS of Eq. (4.14) are (emergent) metric fields,
GMNðYÞ, whereas those on the left-hand side (LHS) are
Uð1Þ gauge fields, FMNðXÞ, in a specific background
ðg; BÞ. Therefore the gravitational fields GMNðYÞ are

completely determined by dynamical Uð1Þ gauge fields,
and so the former is emergent from the latter. When Uð1Þ
gauge fields are turned off, the emergent metric reduces to
the flat metric, i.e., GMN ¼ gMN . But the background B
field still persists, and it can be regarded as a vacuum gauge

field Að0Þ
M ¼ − 1

2
BMNXN . Then it is natural to think that the

flat metric gMN is emergent from the vacuum gauge fields

Að0Þ
M . This remarkable picture can be rigorously confirmed

from a background independent formulation, e.g., matrix
models [12,16,28]. In consequence, any spacetime struc-
ture did not exist a priori, but the existence of spacetime
requires a coherent condensate of vacuum gauge fields.
Nature allows “no free lunch.” As a result, the usual
commutative spacetime has to be understood as a commu-
tative limit of NC spacetime as we advocated above.
Indeed, we do not know how to reproduce the NC DBI
action (3.11) via the identity (4.14) starting with the Uð1Þ
field strength (3.10).3

Note that the coordinate transformation (4.4) to a
Darboux frame is defined only locally and symplectic or
NC gauge fields have been introduced to compensate local
deformations of an underlying symplectic structure by
Uð1Þ gauge fields, i.e., the Darboux coordinates in ϕ∶ Y ↦
X ¼ XðYÞ ∈ DiffðR10Þ obey the relation ϕ�ðBþ FÞ ¼ B.
The identity (4.20) also manifests this local nature of NC
gauge fields because they manifest themselves only in a
locally inertial frame (in free fall) with the local metric
(4.13) [12]. If the gravitational metric in Eq. (4.20) were
represented by a global form, e.g.,

GMN ¼ gABEA
ME

B
N; A; B ¼ 0; 1;…; 9; ð4:24Þ

where EA ¼ EA
Mdx

M are elements of a global coframe on an
emergent ten-dimensional manifold M, it would be diffi-
cult to find an imprint of symplectic or NC gauge fields in
the expression (4.24).
Recall that the basic program of differential geometry is

that all the world can be reconstructed from the infinitely
small. For example, manifolds are obtained by gluing open
subsets of Euclidean space. So the differential forms and
vector fields on a manifold are defined locally and then
glued together to yield a global object. The gluing is
possible because these objects are independent of the
choice of local coordinates. In reality this kind of globali-
zation of a (spacetime) geometry by gluing local data might
be enforced because global comparison devices are not
available owing to the restriction of the finite propagation
speed. Indeed, the global metric (4.24) can be constructed
in a similar way. First note that the D9-brane described by
the LHS of Eq. (4.14) supports a line bundle L → R10 over

3Note that the Darboux theorem (4.4) can be applied only to a
symplectic form, i.e., a nondegenerate and closed two-form. But
the dynamical two-form F does not belong to this category
because it usually vanishes at an asymptotic infinity.
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a symplectic manifold ðR10; BÞ. Introduce an open cover-
ing fUi∶ i ∈ Ig ofR10, i.e.,R10 ¼ ∪i¼IUi, and let AðiÞ be a
connection of the line bundle L → Ui on an open neigh-
borhood Ui. Consider all compatible coordinate systems
fðUi;φiÞ∶ i ∈ Ig as a family of local Darboux charts
where φi∶ Ui → R10 are Darboux coordinates on Ui.
Then we have the collection of local data ⨁

i∈I
ðAðiÞ; YðiÞÞ

on the D9-brane where YðiÞ ¼ φiðUiÞ are Darboux coor-
dinates on Ui obeying Eq. (4.4), i.e., φ�

i ðBþ FðiÞÞ ¼ B
where FðiÞ ¼ dAðiÞ. On an intersection Ui ∩ Uj, local data
ðAðiÞ; YðiÞÞ and ðAðjÞ; YðjÞÞ on Darboux charts Ui and Uj,
respectively, are glued together by [44,45]

AðjÞ ¼ AðiÞ þ dλðjiÞ; ð4:25Þ

YðjÞ ¼ φðjiÞðYðiÞÞ; ð4:26Þ

where φðjiÞ is a symplectomorphism on Ui ∩ Uj generated
by a Hamiltonian vector field XλðjiÞ obeying ιX

λðjiÞ
Bþ

dλðjiÞ ¼ 0. Note that the symplectomorphism is a canonical
transformation preserving the Poisson structure Θ ¼ B−1

and can be identified with a NC Uð1Þ gauge transformation
upon quantization [21,22]. Since the local metric (4.13) is
the incarnation of symplectic gauge fields in a Darboux
frame, the gluing of local Darboux charts can be translated
into that of emergent metrics in locally inertial frames from
the viewpoint of the RHS of Eq. (4.14). This kind of gluing
should be well defined because every manifold can be
constructed by gluing open subsets of Euclidean space
together and both sides of Eq. (4.14) are coordinate
independent, and so local Darboux charts can be consis-
tently glued altogether. See Ref. [46] to illuminate how a
nontrivial topology of an emergent manifold can be
implemented by gluing local data ∪i¼IðAðiÞ; YðiÞÞ.
It is in order to ponder on the results obtained. We

showed in Sec. II that the four-dimensional N ¼ 4 super
Yang-Mills theory on the Coulomb branch (2.2) is equiv-
alent to the ten-dimensional N ¼ 1 supersymmetric
NC Uð1Þ gauge theory. And we considered the resulting
ten-dimensional NC Uð1Þ gauge theory as a low-energy
effective theory of supersymmetric NC D9-brane. Finally
we got the important identity (4.20) that the dynamics of
NC Uð1Þ gauge fields after ignoring fermion fields is
completely encoded into a ten-dimensional emergent
geometry described by the metric (4.24). According to
the AdS/CFT correspondence, it is natural to expect that the
metric (4.24) must describe a ten-dimensional emergent
geometry dual to the four-dimensional N ¼ 4 super Yang-
Mills theory. An immediate question to arise is how to
realize the AdS5 × S5 vacuum geometry in our context.
Since there is no reason to further reside in Euclidean

space, let us go back to the Lorentzian spacetime with the
NC parameterΘMN ¼ ðζμν ¼ 0; θab ≠ 0Þ byWick rotation.

To pose the above question, let us consider a more general
vacuum geometry that is conformally flat. That is, we are
interested in a background geometry with the metric
given by

ds2 ¼ λ2ðημνdxμdxν þ dyadyaÞ: ð4:27Þ

There are two interesting cases that are conformally flat [12]:

λ2 ¼ 1 ⇒ M ¼ R9;1; ð4:28Þ

λ2 ¼ R2

ρ2
⇒ M ¼ AdS5 × S5; ð4:29Þ

where ρ2 ¼ P
6
a¼1 y

aya and R ¼ ð4πgsðα0Þ2NÞ1=4 is the
radius of AdS5 and S5 spaces. We already speculated
before that the flat Minkowski spacetime (4.28) arises
from a uniform condensate of vacuum gauge fields

Að0Þ
M ¼ − 1

2
BMNXN . This can be confirmed by looking at

the vacuum configuration (2.2). Note that, from the four-
dimensional gauge theory point of view, the vacuum
configuration (2.2) simply represents a particular configu-
ration of large N matrices and it is connoted as an extra
six-dimensional “emergent” space only in a ten-dimensional
description. Its tangible existence must be addressed from
the RHS of Eq. (4.14). (See Sec. 1 in Ref. [12] for the
rationale underlying this reasoning.) Then it is easy to prove
that the emergent metric (4.13) for the vacuum configuration
(2.2) is precisely the flat Minkowski spacetime (4.28). Note
that a Darboux chart ðU;φÞ in this case can be extended to
the entire spacetime, and so it is not necessary to consider
the globalization prescribed before.
Now a perplexing problem is to understand what is the

gauge field configuration to realize the vacuum geometry
(4.29). To figure out the problem, it is necessary to find a
stable configuration of NC or large N gauge fields and so
certainly a supersymmetric or Bogomol’nyi-Prasad-
Sommerfield state. And this configuration must be con-
sistent with the isometry of the vacuum geometry (4.27),
in particular, preserving SOð6ÞR Lorentz symmetry as if a
hydrogen atom preserves SOð3Þ symmetry. It was conjec-
tured in [12] that the AdS5 × S5 geometry arises from the
stack of NC Hermitian Uð1Þ instantons at the origin in
the internal space R6 like a nucleus containing a lot of
nucleons. The NC Hermitian Uð1Þ instanton obeys the
Hermitian Yang-Mills equations [47] given by

F̂ab ¼ −
1

4
εabcdefF̂cdIef; ð4:30Þ

where I ¼ I3 ⊗ iσ2 is a 6 × 6 matrix of the complex
structure of R6 and the field strength is defined by
Eq. (2.7). Note that the six-dimensional NC Uð1Þ gauge
fields Âa in Eq. (4.30) are originally adjoint scalar fields
Φa¼paþÂa in four-dimensional N ¼ 4 super Yang-Mills
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theory. See Eq. (2.4). If true, the vacuum geometry (4.29)
will be emergent from the stack of infinitely many NCUð1Þ
instantons obeying Eq. (4.30) according to the identity
(4.20).4 Since we are interested in the approximation of
slowly varying fields,

ffiffiffi
θ

p j D̂ F̂
F̂
j ≪ 1, ignoring the deriva-

tives of field strengths, the Uð1Þ field strength in Eq. (4.30)
can be replaced by Eq. (4.8) in this limit, and so we can use
the SW maps (4.10) and (4.11). But, if we include NC
corrections containing higher-order derivatives of field
strengths, the LHS of Eq. (4.20) will receive derivative
corrections introducing a higher-order gravity in the emer-
gent geometry [21].
In conclusion, the AdS/CFT correspondence is a par-

ticular example of emergent gravity from NC Uð1Þ gauge
fields. And the duality between large N gauge fields and a
higher-dimensional gravity is simply a consequence of the
novel equivalence principle stating that the electromagnetic
force can always be eliminated by a local coordinate
transformation as far as spacetime admits a symplectic
structure; in other words, a microscopic spacetime becomes
NC [12,16].

V. HEA FROM NC Uð1Þ GAUGE
FIELDS

Nowwe are ready to derive the HEA of four-dimensional
N ¼ 4 superconformal field theory on the Coulomb
branch. According to the conjecture [1], the HEA should
be a Uð1Þ gauge theory in the AdS5 × S5 geometry with N
units of flux threading S5. However the original conjecture
did not allude to any clue why the HEA on the Coulomb
branch must be described by the Uð1Þ gauge theory
although the probe-brane approximation requires a large
N limit. For the discussion of this problem, see, in
particular, Sec. 5 in Ref. [1]. As we emphasized in
footnote 2, our approach based on the NC field theory
representation of AdS/CFT correspondence will clarify
why N ¼ 1 is the relevant choice for the HEA.
We argued before that the AdS5 × S5 geometry is

emergent from the stack of infinitely many NC
Hermitian Uð1Þ instantons near the origin in R6. Thus
suppose that the vacuum configuration for the background
geometry (4.29) is given by

hΦaivac ¼ pa þ Âa; hAμivac ¼ 0; hλiivac ¼ 0;

ð5:1Þ

where Âa is a solution of Eq. (4.30) describing N NC
Hermitian Uð1Þ instantons in six dimensions. We introduce
fluctuations around the vacuum (5.1) and represent them as

D̂μ ¼ ∂μ − iâμðx; yÞ; ð5:2Þ

D̂a ¼ −iðpa þ ÂaðyÞ þ âaðx; yÞÞ≡ ∇̂aðyÞ − iâaðx; yÞ;
ð5:3Þ

whose field strengths are given by

F̂ μν ¼ ∂μâν − ∂νâμ − i½âμ; âν�⋆ ≡ f̂μν; ð5:4Þ

F̂ μa ¼ D̂μâa − ∇̂aâμ ≡ f̂μa; ð5:5Þ

F̂ ab ¼ −Bab þ F̂ab þ ∇̂aâb − ∇̂bâa − i½âa; âb�⋆
≡ −Bab þ F̂ab þ f̂ab; ð5:6Þ

where F̂abðyÞ − Bab ¼ i½∇̂a; ∇̂b�⋆ðyÞ. We will include fer-
mions later. Note that we assumed that the instanton
connection ∇̂aðyÞ depends only on NC coordinates in
extra dimensions. Hence the solution has a translational
invariance along R3;1, which means that the solution
describes extended objects along R3;1. They were conjec-
turally identified with N D3-branes in [12]. Since the SW
relation between commutative and NC gauge theories is
true for general gauge fields, we can apply to the gauge
fields in Eqs. (5.2) and (5.3) the SW maps

F̂MNðYÞ ¼
�

1

1þFΘ
F

�
MN

ðXÞ; ð5:7Þ

d10Y ¼ d10X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð1þFΘÞ

p
; ð5:8Þ

where F≡ Bþ F þ f is the total Uð1Þ field strength
including the background instanton part Fab and the
fluctuation part fMN ¼ ∂MaN − ∂NaM. The result will be
given by the following equivalence:

1

gs

Z
d10X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ κFÞ

p
¼ 1

Gs

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðF̂ þ ΦÞÞ

q
: ð5:9Þ

But we can also apply the Darboux transformation (4.4) to
the field strength F such that the Darboux coordinates ZM

eliminate only the instanton gauge fields Fab. Then we will
get the following identity:

gMN þ κFMN ¼ ðGPQ þ κðBþ ~fÞPQÞ
∂ZP

∂XM

∂ZQ

∂XN ; ð5:10Þ

where

4Given the metric (4.27) of AdS5 × S5 geometry on the LHS
of Eq. (4.20), we may simply assume that we have solved
Eq. (4.20) to find some configuration of Uð1Þ gauge fields that
gives rise to the AdS5 × S5 geometry. In Appendix A, we will
solve Eq. (4.20) to illustrate how 2n-dimensional Calabi-Yau
manifolds arise from 2n-dimensional symplectic Uð1Þ gauge
fields. But it should be remarked that the underlying argument
can proceed with impunity if our conjecture is true or not.
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GMN ¼ gPQ
∂XP

∂ZM

∂XQ

∂ZN ;

~fMN ¼ fPQ
∂XP

∂ZM

∂XQ

∂ZN ¼ ∂ ~aN
∂ZM −

∂ ~aM
∂ZN ð5:11Þ

with ~aM ¼ ∂XP

∂ZM aP. This leads to an enticing result

1

gs

Z
d10X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ κFÞ

p
¼ 1

gs

Z
d10Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~fÞÞ

q
ð5:12Þ

¼ 1

Gs

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðF̂ þ ΦÞÞ

q
: ð5:13Þ

We can check the consistency of the above identities by
showing that Eq. (5.13) can be derived from the RHS of
Eq. (5.12). Consider a Darboux transformation ϕ1∶ YM ↦
ZM ¼ YM þ ΘMNâNðYÞ satisfying ϕ�

1ðBþ ~fÞ¼B. Then it
leads to the identity

GMN þ κðBþ ~fÞMN ¼ ðGPQ þ κBPQÞ
∂YP

∂ZM

∂YQ

∂ZN ;

ð5:14Þ

where

GMN ¼ GPQ
∂ZP

∂YM

∂ZQ

∂YN ¼ gPQ
∂XP

∂YM

∂XQ

∂YN : ð5:15Þ

The previous Darboux transformation (5.10) satisfies
ϕ�
2ðBþFÞ¼B where ϕ2∶ZM↦XM¼ZMþΘMNÂNðZÞ,

which, in Eq. (5.15), has been combined with ϕ1, i.e.,

ϕ2∘ϕ1∶ YM ↦ XM ¼ YM þ ΘMNðÂN þ âNÞðYÞ: ð5:16Þ

Note that we can put Âμ ¼ 0 by our assumption. Using the
identity (5.14), we can derive the following equivalence
between DBI actions:

1

gs

Z
d10Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~fÞÞ

q
¼ 1

gs

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κBÞ

p
: ð5:17Þ

By applying the same method as Eq. (4.20) and using the
coordinates (5.16), it is straightforward to derive Eq. (5.13)
from the RHS of Eq. (5.17).
The conformally flat metric (4.27) takes the form

ds2 ¼ R2

�
dx · dxþ dρ2

ρ2
þ dΩ2

5

�
; ð5:18Þ

where dx · dx ¼ ημνdxμdxν. This form of the metric can be
transformed into the metric form used in [1] by a simple
inversion ρ ¼ 1=v,

ds2 ¼ R2
�
v2dx · dxþ v−2dv2 þ dΩ2

5

�
¼ R2ðv2dx · dxþ v−2dv · dvÞ; ð5:19Þ

where dv · dv ¼ dvadva. Note that the four-dimensional
supersymmetric gauge theory is defined on the boundary of
AdS5 space where v → ∞ in the metric (5.19) and so the
five-sphere S5 shrinks to a point near the conformal
boundary of the AdS space. Then the SOð6Þ isometry of
S5 is realized as a global symmetry in the gauge theory and
the (angular) momenta dual to five-sphere coordinates are
given by generators of the SOð6Þ R symmetry. Since we are
interested in the HEA of the boundary theory where the S5

shrinks to a point, we can thus consider a low-energy limit
by ignoring any y dependence for fluctuations, but leaving
the background intact. Then the fluctuating Uð1Þ field
strengths on the LHS of Eq. (5.17) reduce to

~fμνðx; yÞ → ∂μ ~aνðxÞ − ∂ν ~aμðxÞ≡ fμνðxÞ;
~fμaðx; yÞ → ∂μ ~aaðxÞ≡ ∂μφaðxÞ;
~fabðx; yÞ → 0: ð5:20Þ

Since we assumed that the low-energy theory does not
depend on the coordinates ya of extra dimensions, we
will try to reduce the ten-dimensional theory to a four-
dimensional effective field theory. For this purpose, first let
us consider the block matrix

GMN þ κðBþ ~fÞMN ¼
�
λ2ημν þ κfμν κ∂μφa

−κ∂μφa λ2δab þ κBab

�
;

ð5:21Þ

where we put Bμν ¼ 0 according to the reasoning explained
in Sec. IV. Even we may take the approximation λ2δab þ
κBab ≈ λ2δab because λ2 ¼ R2v2 → ∞ and the low-energy
limit applied to Eq. (5.20) is basically equivalent to
θab → 0, and so the metric part is dominant similar to
the reasoning below Eq. (4.23). Considering the fact that
NC corrections in NC gauge theory correspond to 1=N
expansions in large N gauge theory [21], the approximation
considered can be interpreted as the planar limit in AdS/
CFT correspondence. Using the determinant formula for a
block matrix

det

�
A B
C D

�
¼ detD detðA − BD−1CÞ; ð5:22Þ

we get the following relation:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~fÞÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðλ2 þ κBÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
λ2ημν þ κfμν þ κ2∂μφa

�
1

λ2 þ κB

�
ab∂νφb

�s

≈ λ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
λ2ημν þ κ2λ−2∂μφ · ∂νφþ κfμν

�s
: ð5:23Þ

Suppose that a D3-brane is embedded in ten-dimensional
target spacetime M with local coordinates XM ¼ ðxμ;ϕaÞ
whose metric is given by GMNðXÞ. To be specific, we
consider M ¼ AdS5 × S5 and choose a static gauge for
the embedding functions, i.e., XMðσÞ ¼ ðxμðσÞ;ϕaðσÞÞ ¼
ðδμασα; va þ κ

R2 φaðxÞÞ where va ≡ hϕaivac are vevs of
world-volume scalar fields. The fact that the world-volume
scalar fields ϕa are originated from NC Uð1Þ gauge fields
in Eq. (5.3) implies that the vevs va ¼ hϕaivac can be
identified with the Coulomb branch parameters pa in
Eq. (2.2). Then we see that the symmetric part in
Eq. (5.23) is precisely the induced world-volume metric
(3.1), i.e.,

hμν ¼ GMN∂μXM∂νXN ¼ R2ðv2ημν þ v−2∂μϕ · ∂νϕÞ;
ð5:24Þ

where λ2 ¼ R2v · v ¼ R2=ρ2. Therefore, in the approxima-
tion considered above, we get the identityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−det10ðGþ κðBþ ~fÞÞ
q

¼ λ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det4ðhþ κfÞ

p
; ð5:25Þ

where the subscript in the determinant indicates the size of
matrix. Using the identity (5.25), we can reduce the
ten-dimensional DBI action in AdS5 × S5 geometry to a
four-dimensional DBI action given by

−TD9

Z
d10Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det10ðGþ κðBþ ~fÞÞ

q
¼

�
gsN
4π

�3
2

Lðϵ; RÞ
	
−TD3

Z
W
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det4ðhþ κfÞ

p 

;

ð5:26Þ

where ðgsN
4π Þ

3
2 ¼ TD9R6

TD3

R
S5 volðS5Þ and

Lðϵ; RÞ≡
Z

R

ϵ

dv
v

¼ ln
R
ϵ

ð5:27Þ

is a regularized integral along the AdS radius. We identify
the DBI action in the bracket in Eq. (5.26) with the world-
volume action of a probe D3-brane in AdS5 × S5 geometry.
Schwarz speculated in [1] that the probeD3-brane action can
be interpreted as the HEA of four-dimensional N ¼ 4
superconformal field theory on the Coulomb branch. We
want to emphasize we directly derived the HEA from the
four-dimensionalN ¼ 4 superconformal field theory on the

Coulomb branch although we have not incorporated fer-
mions yet. One caveat is that our HEA is slightly different
from Eq. (12) in Ref. [1] where our v2 was replaced by ϕ2.
But one needs to recall that v2 is coming from the back-
ground geometry and the probe brane approximation
involves neglecting the backreaction of the brane on the
geometry and other background fields (which requires that
N is large). In this description, the AdS5 × S5 geometry is
regarded as a background, and so it remains to be fixed
against the fluctuations of world-volume fields. Thus the ϕ2

in the denominator in Eq. (12) of Ref. [1] can be replaced by
v2 in the probe-brane approximation.
A demanding task is to understand how to derive the

coupling (3.6) of background RR gauge fields from the
four-dimensional N ¼ 4 superconformal field theory.
Actually this issue is closely related to our previous
conjecture for a possible realization of D3-branes in terms
of NC HermitianUð1Þ instantons. Hence we will only draw
a plausible picture based on this conjecture. If the con-
jecture is true, N D3-branes correspond to a stack of N NC
Hermitian Uð1Þ instantons at the origin of R6. Then, this
instanton configuration generates a topological invariant
given by (up to normalization)

I ∼
Z
R6

F̂ ∧ F̂ ∧ Ω ¼
Z
S5

�
Â ∧ F̂ −

1

3
Â ∧ Â ∧ Â

�
∧ Ω;

ð5:28Þ
where Ω is a Kähler form on R6. The topological invariant
I refers to the instanton number N, and so we identify
I ¼ 2πN. Since the “instanton flux” is threading S5 ¼ ∂R6

and the instanton flux emanating from the origin is
regarded as a background field, we make a simple iden-
tification for the five-form in Eq. (5.28),

μ3F5 ≔
1

g2YM

�
Â ∧ F̂ −

1

3
Â ∧ Â ∧ Â

�
∧ Ω

¼ μ3k3volðS5Þ; ð5:29Þ
where μ3 is the basic unit of D3-brane charge and k3 is a
coefficient depending on the normalization convention.
In the AdS/CFT correspondence, F5 is the self-dual
RR five-form of N D3-branes given by

F5 ¼ k3ðvolðAdS5Þ þ volðS5ÞÞ ¼ dC4: ð5:30Þ
Although we do not pin down the origin of the self-duality,
the self-duality is necessary for the conjecture to be true
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because it implies that the topological charge of NC Uð1Þ
instantons can be interpreted as the RR charge of
D3-branes, i.e.,

μ3

Z
S5

F5 ¼ μ3

Z
AdS5

dC4 ¼ μ3

Z
W
C4; ð5:31Þ

where W ¼ ∂ðAdS5Þ. Besides the background instanton
gauge fields, there exist world-volume Uð1Þ gauge fields,
and they can induce a well-known topological instanton
coupling given by

χ

8π

Z
W
f ∧ f: ð5:32Þ

Combining these two couplings leads to a moderate (if any)
suggestion for the Wess-Zumino coupling in Eq. (3.6)
given by [1]

S2 ¼ μ3

Z
W
C4 þ

χ

8π

Z
W
f ∧ f: ð5:33Þ

Now we will include the Majorana-Weyl fermion Ψ̂ðYÞ
in the HEA. This means that we are considering a super-
symmetric D9-brane that respects the local κ symmetry
[29–34]. Thus we use the κ symmetry to eliminate half of
the ðψ1;ψ2Þ coordinates where ψ1;2 are two Majorana-
Weyl spinors of the same chirality. We adopt the gauge
choice, ψ1 ¼ 0, used in Refs. [29,30] and rename ψ2 ≔ ψ .
It was shown in [29,30] that in this gauge the super-
symmetric extension of ten-dimensional DBI action
has a surprisingly simple form. The supersymmetric case
also respects the identity (5.12) with the following
replacement:

FMN → FMN þ iψ̄ΓM∂Nψ −
κ

4
ψ̄ΓP∂Mψψ̄ΓP∂Nψ ≡FMN þ ΥMN; ð5:34Þ

~fMN → ~fMN þ iψ̄ ~ΓM
~∂Nψ −

κ

4
ψ̄ ~ΓP ~∂Mψψ̄ ~ΓP

~∂Nψ ≡ ~fMN þ ξMN; ð5:35Þ

where ~ΓM ¼ ΓP
∂XP

∂ZM and ~∂M ¼ ∂
∂ZM. Again we can apply the

Darboux transformation ϕ1∶ YM ↦ ZM ¼ ΘMNðBNPYP þ
âNðYÞÞ satisfying ϕ�

1ðBþ ~fÞ ¼ B. Then it leads to the
following identity:

GMN þ κðBþ ~f þ ξÞMN

¼ ðGPQ þ κðBþ ~ξÞPQÞ
∂YP

∂ZM

∂YQ

∂ZN ; ð5:36Þ

where

~ξMN ¼ ξPQ
∂ZP

∂YM

∂ZQ

∂YN ¼ ΥPQ
∂XP

∂YM

∂XQ

∂YN : ð5:37Þ

The above identity (5.36) leads to the following equiv-
alence between DBI actions:

1

gs

Z
d10Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~f þ ξÞÞ

q
¼ 1

gs

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~ξÞÞ

q
: ð5:38Þ

Let us expand the RHS of Eq. (5.38) around the
background B field as the bosonic case (4.16),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~ξÞÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðκBÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

�
1þM

κ

�s
;

ð5:39Þ

where

MN
Q ¼ ðGþ κ~ξÞNPΘPQ ¼ ðgþ κΥÞRS

∂XR

∂YN

∂XS

∂YPΘ
PQ:

ð5:40Þ

Note that TrM ≠ 0 unlike the bosonic case. Using the

formula detð1þ AÞ ¼ exp
P∞

k¼1
ð−Þkþ1

k TrAk, it is not diffi-
cult to show that

det

�
1þM

κ

�
¼ det

�
1þ 1

κ
ðgþ κΥÞP

�
; ð5:41Þ

where

ðΥPÞMN ¼ −i
�
δPM þ iκ

4
ψ̄ΓP∂Mψ

�
ψ̄ΓPfXN;ψgΘ:

ð5:42Þ

In terms of the matrix notation, the matrix on the RHS of
Eq. (5.41) can be read as
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1þ 1

κ
ðgþ κΥÞP ¼ Bð1þ κG−1ðF̂ − BÞ þ ΘΥPBÞΘ

¼ BG−1ðGþ κðF̂ − BÞ þGΘΥPBÞΘ;
ð5:43Þ

where the NC field strengths F̂MN including an instan-
ton background are given by Eqs. (5.4)–(5.6). Using the
result (5.42), one can calculate the fermionic term
GΘΥPB ¼ −κ2Bg−1ΥPB, which takes the form

− iκ2ðBg−1ÞMP

�
δQP þ iκ

4
ψ̄ΓQ∂Pψ

�
ψ̄ΓQDNψ

≡ −κ2ðBg−1ÞMPΥ̂PN

≈ −iκψ̄ΓMDNψ þOðκ2Þ; ð5:44Þ

where ΓM ≡ κBMNgNPΓP obey the Dirac algebra
fΓM;ΓNg ¼ 2GMN and

DNψ ¼ ∂ψ=∂YN þ fÂN þ âN;ψgΘ: ð5:45Þ
In the end, we get the supersymmetric version of
Eqs. (5.12) and (5.13),

1

gs

Z
d10X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ κðFþ ΥÞÞ

p
¼ 1

gs

Z
d10Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~f þ ξÞÞ

q
ð5:46Þ

¼ 1

Gs

Z
d10Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðF̂ þ ΦÞ − κ2Bg−1Υ̂Þ

q
:

ð5:47Þ

Let us redefine the fermion field, Ψ≡ ðκT9Þ12ψ , and use
the approximation (5.44) to take the expansion like
Eq. (3.15). With this normalization, we correctly reproduce
the action (2.8) at leading orders. As before, we consider
the limit ΘMN → ðζμν ¼ 0; θab ≠ 0Þ. Then it is easy to see
that, at nontrivial leading orders, Eq. (5.47) reproduces the
ten-dimensional N ¼ 1 supersymmetric NC Uð1Þ gauge
theory (2.8) in the instanton background (5.1). As we
demonstrated in Sec. II, the action (2.8) is equivalent to the
four-dimensional N ¼ 4 superconformal field theory on
the Coulomb branch. And we argued in this section that
fluctuations in AdS5 × S5 background geometry are
described by the ten-dimensional N ¼ 1 supersymmetric
NC Uð1Þ gauge theory in the background of NC Hermitian
Uð1Þ instantons obeying Eq. (4.30). According to our
construction, we thus declare that the RHS of Eq. (5.46)
has to describe the fluctuations in AdS5 × S5 geometry.
Therefore we expect that the supersymmetric HEA for
the N ¼ 4 superconformal field theory on the Coulomb
branch would be derived from a dimensional reduction of
the RHS of Eq. (5.46) similar to Eq. (5.26).

Before proceeding further, let us first address some
subtle issues regarding the equivalence in Eqs. (5.46)
and (5.47). The first one is that an interpretation for the
factor ðδQP þ iκ

4
ψ̄ΓQ∂PψÞ in Υ̂PN is not clear from the point

of view of NC Uð1Þ gauge theory. Note that ∂Pψ ¼
∂ψ=∂XP and the Darboux transformations did not touch
the factor. Hence this factor behaves like a background part
induced from the backreaction of fermions at higher orders.
Therefore a plausible picture from the viewpoint of NC
Uð1Þ gauge fields is to interpret this factor as vielbeins
EA

M ¼ ðδAM − iκ
4
ψ̄ΓA∂MψÞ with an effective metric GMN ¼

EA
ME

B
NgAB and write

κ2ðBg−1ÞPMΥ̂PN ¼ iκψ̄TMDNψ ; ð5:48Þ

where

TM ≡ κBMNgNPEA
PΓA: ð5:49Þ

Then the gamma matrices TM satisfy the Dirac algebra

fTM;TNg ¼ −2κ2ðBg−1Gg−1BÞMN ≡ 2GMN: ð5:50Þ

Of course, if we ignore the backreaction from the fermions,
we recover the previous Dirac term (5.44) in flat spacetime.
Another issue is how to glue local Darboux charts now
involved with fermions as well as bosons. We argued before
that the global metric (4.24) can be constructed via the
globalization in terms of the gluing of local Darboux charts
described by Eqs. (4.25) and (4.26). Or the local frames in
the metric (5.11) are replaced by global vielbeins [12],

∂XA

∂ZM → EA
M: ð5:51Þ

Then the gamma matrices in Eq. (5.35) will also be
replaced by ΓM ≡ EA

MΓA and ΓM ≡ EM
A ΓA.5 Now it is also

necessary to glue the fermions defined on local Darboux
patches by local Lorentz transformations

ψ ðjÞ ¼ SðjiÞψ ðiÞ ð5:52Þ

acting on fermions on an intersection Ui ∩ Uj. As usual,
we introduce a spin connection ωM ¼ 1

2
ωMABΓAB to cova-

riantize the local gluing (5.52). This means that the
fermionic terms in Eq. (5.52) are now given by

ξMN → iψ̄EA
MΓA∇Nψ −

κ

4
ψ̄ΓA∇Mψψ̄ΓA∇Nψ ; ð5:53Þ

where the covariant derivative is defined by

5They should not be confused with the gamma matrices in
Eq. (5.34) that are defined on the flat spacetime R9;1 while those
in Eq. (5.35) are now defined on a curved spacetime.
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∇Mψ ¼ ð∂M þ ωMÞψ : ð5:54Þ
The spin connections ωM are determined by the
metric (5.18).
Therefore the block matrix (5.21) for the supersymmetric

case is replaced by

GMN þ κðBþ ~f þ ξÞMN

≈
�
λ2ημν þ κðfμν þ ξμνÞ κð∂μφa þ ξμaÞ
−κð∂μφa − ξaμÞ λ2δab þ κðBab þ ξabÞ

�
:

ð5:55Þ
Since we are interested in the HEA of the four-dimensional
supersymmetric gauge theory defined on the boundary of

AdS5 space, the dimensional reduction similar to Eq. (5.20)
was adopted too for fermionic excitations, i.e.,

ξμν ¼ iψ̄Γμ∇νψ ; ξab ¼ iψ̄Γaωbψ ;

ξμa ¼ iψ̄Γμωaψ ; ξaμ ¼ iψ̄Γa∇μψ ; ð5:56Þ

where ΓM ¼ EA
MΓA and we ignored the quartic term in

Eq. (5.53). To get a four-dimensional picture after
the dimensional reduction (5.26), it is convenient to
decompose the 16 components of the Majorana-
Weyl spinor ψ into the four Majorana-Weyl gauginos
λiði ¼ 1;…; 4Þ as follows:

ψ ¼
�
Pþλi

P− ~λi

�
with P� ¼ 1

2
ðI4 � γ5Þ and ~λi ¼ −Cλ̄iT ; ΓA ¼ ðγμ̂ ⊗ I8; γ5 ⊗ γâÞ; Γ11 ¼ γ5 ⊗ I8; ð5:57Þ

where C is the four-dimensional charge conjugation operator and the hat is used to indicate tangent space indices. We take
the four- and six-dimensional Dirac matrices in the chiral representation

γμ̂ ¼
�

0 iσμ̂

−iσ̄μ̂ 0

�
; σμ̂ ¼ ðI2; ~σÞ ¼ ðσμ̂Þα _β; σ̄μ̂ ¼ ð−I2; ~σÞ ¼ ðσ̄μ̂Þ _αβ; ð5:58Þ

γâ ¼
�

0 Σâ

Σ̄â 0

�
; Σâ ¼ ð~η; i~̄ηÞ ¼ Σâ;ij; Σ̄â ¼ ðΣâÞ† ¼ ð−~η; i~̄ηÞ ¼ Σ̄â

ij; ð5:59Þ

where ~σ are Pauli matrices and the 4 × 4 matrices ð~η; ~̄ηÞ
are self-dual and anti–self-dual ’t Hooft symbols. Then the
fermion bilinear terms in Eq. (5.56) read as

ξμν ¼ iv−1ðλ̄iσ̄μ̂∇νλ
i − λiσμ̂∇νλ̄iÞ;

ξab ¼ ∂cv−1ðλ̄ΣâΣ̄b̂ ĉλ̄ − λΣ̄âΣb̂ ĉλÞ;
ξμa ¼ 2i∂bv−1ðλ̄σ̄μ̂Σâ b̂λÞ;
ξaμ ¼ v−1ðλ̄Σâ∇μλ̄ − λΣ̄â∇μλÞ; ð5:60Þ

where

Σ̄â b̂ ≡ 1

2
ðΣ̄âΣb̂ − Σ̄b̂ΣâÞ; Σâ b̂ ≡ 1

2
ðΣâΣ̄b̂ − Σb̂Σ̄âÞ;

ð5:61Þ

and the spin connection for the background geometry
(4.27) is given by

ωμ ¼ −Γμ̂ â∂a ln v; ωa ¼ −Γâ b̂∂b ln v: ð5:62Þ

Since we are considering the HEA of the four-dimensional
supersymmetric gauge theory defined on the boundary of
the AdS5 space where v → ∞ and the S5 shrinks to a point,
we can ignore ξab and ξμa in Eq. (5.60) as well as the spin
connections ωM → 0.
After applying the formula (5.22) to the matrix (5.55), it

is straightforward to yield the supersymmetric completion
of the bosonic HEA obtained in Eq. (5.26), and it is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ κðBþ ~f þ ξÞÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðλ2 þ κBÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
λ2ημν þ κðfμν þ ξμνÞ þ κ2∂μφa

�
1

λ2 þ κB

�
ab
ð∂νφb − ξbνÞ

�s

≈ λ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det

�
hμν þ κ

�
fμν þ ξμν − v−2∂μϕ

aξaν
��r

: ð5:63Þ
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One may drop the last term since it is of Oðv−3Þ. As the bosonic case (5.26), the ten-dimensional supersymmetric DBI
action (5.46) in AdS5 × S5 geometry is thus reduced to a four-dimensional supersymmetric DBI action given by

− TD9

Z
d10Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det10ðGþ κðBþ ~f þ ξÞÞ

q
¼

�
gsN
4π

�3
2

Lðϵ; RÞ
	
−TD3

Z
W
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det4ðhμν þ κðfμν þ ξμν − v−2∂μϕ

aξaνÞÞ
q 


: ð5:64Þ

If the quartic term in Eq. (5.53) is included, it contributes
an extra term given by κ2v2

4
ðξλμξλν þ ξaμξ

a
νÞ inside the

determinant. Since the metric (5.19) becomes flat when
v ¼ 1, the result in this case should be equal to the action of a
supersymmetricD3-brane.One can see that the action (5.64)
is actually the case. See Eq. (88) in Ref. [30]. According to
the identity (5.46), the left-hand side of Eq. (5.64) is equal
to the world-volume action of a Bogomol’nyi-Prasad-
Sommerfield D9-brane of type IIB string theory after
fixing the κ symmetry, which is invariant under the super-
symmetry transformations given by Eqs. (90) and (91) in
Ref. [30]. Since Eq. (5.46) is a mathematical identity, the
action on the left-hand side of Eq. (5.64) will also be
supersymmetric. Its supersymmetry transformations basi-
cally take the form replacing the ordinary derivatives in
Eqs. (90) and (91) inRef. [30] by covariant derivatives on the
AdS5 × S5 space. But an explicit check of supersymmetry
is somewhat lengthy though straightforward. Its detailed
exposition from the perspective of HEA deserves to pursue
a separate work, which will be reported elsewhere. Note
that, after the gauge fixing, ψ1 ¼ 0, for the κ symmetry, the
Wess-Zumino term for the supersymmetric case is the same
as the bosonic one (5.33) [30]. The final result can be
interpreted as the world-volume action of a supersymmetric
probe D3-brane in the AdS5 × S5 background geometry.
According to the conjecture in Ref. [1], it can be reinter-
preted as the HEA of four-dimensional N ¼ 4 supercon-
formal field theory on the Coulomb branch. We emphasize
that we directly derived the HEA from the four-dimensional
N ¼ 4 superconformal field theory on the Coulomb branch
defined by the NC space (2.3).

VI. DISCUSSION

We want to emphasize that NC spacetime should be
regarded as a more fundamental concept from which
classical spacetime should be derived as quantum mechan-
ics is a more fundamental theory and the classical phenom-
ena are emergent from quantum physics. Then the NC
spacetime requires us to take a radical departure from the
20th century physics. First of all, it introduces a new kind of
duality, known as the gauge/gravity duality, as formalized
by the identity (4.20). But we have to recall that quantum
mechanics has already illustrated such a kind of novel
duality where the NC phase space obeying the commuta-
tion relation ½xi; pj� ¼ iℏδij is responsible for the so-called

wave-particle duality. Remarkably there exists a novel form
of the equivalence principle stating that the electromagnetic
force can always be eliminated by a local coordinate
transformation as far as spacetime admits a symplectic
structure. The novel equivalence principle is nothing but
the famous mathematical theorem known as the Darboux
theorem or the Moser lemma in symplectic geometry
[41,42]. It proves the equivalence principle for the gravi-
tational force in the context of emergent gravity. Therefore
we may conclude [12,16] that the NC nature of spacetime
is the origin of the gauge/gravity duality and the first
principle for the duality is the equivalence principle for the
electromagnetic force.
The AdS/CFT correspondence [3,26,27] is a well-tested

gauge/gravity duality and a typical example of emergent
gravity and emergent space. But we do not understand yet
why the duality should work. We argued that the AdS/CFT
correspondence is a particular example of emergent gravity
from NCUð1Þ gauge fields and the duality between largeN
gauge fields and a higher-dimensional gravity is simply a
consequence of the novel equivalence principle for the
electromagnetic force. We note [12,16] that the emergent
gravity from NC Uð1Þ gauge fields is an inevitable
conclusion as far as spacetime admits a symplectic struc-
ture; in other words, a microscopic spacetime becomes NC.
Moreover, the emergent gravity is much more general than
the AdS/CFT correspondence because it holds for general
background spacetimes as exemplified by the identity
(5.17). Therefore we believe that the emergent gravity
from NC gauge fields provides a lucid avenue to under-
stand the gauge/gravity duality or large N duality.
For example, it is interesting to notice that the trans-

formation (4.20) between NC Uð1Þ gauge fields and an
emergent gravitational metric holds even locally. Thus one
may imagine an (infinitesimal) open patch U where the
field strength FU of fluctuating Uð1Þ gauge fields has a
maximal rank such that ðU;FUÞ is a symplectic Darboux
chart. Then one can apply the Darboux theorem on the local
patch to transform the local Uð1Þ gauge fields into a
corresponding local spacetime geometry supported on U.
But this local geometry is unfledged yet to be materialized
into a classical spacetime geometry. Hence this kind of
immature geometry describes a bubbling geometry or
spacetime foams that intrinsically correspond to a quantum
geometry. Even we may consider fluctuating Uð1Þ gauge
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fields on a local patch U whose field strengths FU do not
support the maximal rank. The dimension of emergent
bubbling geometry will be determined by the rank of FU on
U. This implies that the dimension of quantum geometries
is not fixed but fluctuates. This picture is in a sense
well-known folklore in quantum gravity.
Then one may raise a question why NC spacetime

reproduces all the results in string theory. The connection
between string theory and symplectic geometry becomes
most manifest by Gromov’s J-holomorphic curves. See
Sec. 7 in Ref. [12] for this discussion. The J-holomorphic
curve for a given symplectic structure is nothing but the
minimal world sheet in string theory embedded in a target
spacetime. Moreover, α0 corrections in string theory
correspond to derivative corrections in NC gauge theory.
In this sense the string theory can be regarded as a stringy
realization of symplectic geometry or more generally
Poisson geometry. But the NC spacetime provides a more
elegant framework for the background independent formu-
lation of quantum gravity in terms of matrix models
[16,28], which is still elusive in string theory.
We showed that the world-volume effective action of a

supersymmetric probe D3-brane in AdS5 × S5 geometry
can be directly derived from the four-dimensional N ¼ 4
supersymmetric Yang-Mills theory on the Coulomb branch
defined by the NC space (1.7). Since our result, for
example, described by the identity (5.17) should be true
for general Uð1Þ gauge fields in an arbitrary background
geometry, the remaining problem is to identify a corre-
sponding dual (super)gravity whose solution coincides
with the emergent metric GMN . One may use the method
in Refs. [48,49] to attack this problem. See also [50]. It
was shown there that the world-volume effective action
of a probe D3-brane is a solution to the Hamilton-Jacobi
equation of type IIB supergravity defined by the Arnowitt-
Deser-Misner formalism adopting the radial coordinate as
time for type IIB supergravity reduced on S5. In particular,
the radial time corresponds to the vev of the Higgs field in
the dual Yang-Mills theory as our case. It will be interesting
to find the relation between the DBI action obtained in
Refs. [48,49] and the HEA derived in this paper. Also there
are several works [7–11] to address the relation of the HEA
with the low-energy effective actions of N ¼ 4 super
Yang-Mills theory on the Coulomb branch. Thus it may
be a vital project to understand any relation between our
approach based on the Coulomb branch defined by the NC
space and other approaches for the HEA cited above.
Recently there have been some developments [51,52]

that describe D-branes in the framework of generalized
geometry. A D-brane including fluctuations in a static
gauge is identified with a leaf of foliations generated by the
Dirac structure of a generalized tangent bundle, and the
scalar fields and vector fields on the D-brane are unified as
a generalized connection [51]. It was also argued in [52]
that the equivalence between commutative and NC DBI

actions is naturally encoded in the generalized geometry of
D-branes. In particular, when considering a D-brane as a
symplectic leaf of the Poisson structure, describing the
noncommutativity, the SW map is naturally interpreted in
terms of the corresponding Dirac structure. Thus NC gauge
theories can be naturally interpreted within the generalized
geometry. Since the Darboux transformation relating the
deformation of a symplectic structure with diffeomorphism
symmetry is one of the pillars for emergent gravity, we
think that the emergent gravity from NC gauge fields can
be formulated in a natural way within the framework of
generalized geometry. It will be interesting to inquire
further into this idea.
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APPENDIX: KÄHLER MANIFOLDS FROM Uð1Þ
GAUGE FIELDS

In this appendix we will illustrate how to determine
four- and six-dimensional Kähler metrics from Uð1Þ gauge
fields by solving the identities (4.14) and (4.15) between
DBI actions. For this purpose, let us introduce d ¼ 2n-
dimensional complex coordinates

zi ¼ x2i−1 þ ix2i; z̄i ¼ x2i−1 − ix2i; i ¼ 1;…; n;

ðA1Þ
and corresponding complex Uð1Þ gauge fields

Ai ¼
1

2
ðA2i−1 − iA2iÞ; Āī ¼

1

2
ðA2i−1 þ iA2iÞ: ðA2Þ

Then the field strengths of (2,0) and (1,1) parts are,
respectively, given by

Fij¼
1

4
ðF2i−1;2j−1−F2i;2jÞ−

i
4
ðF2i−1;2jþF2i;2j−1Þ; ðA3Þ

Fij̄¼
1

4
ðF2i−1;2j−1þF2i;2jÞþ

i
4
ðF2i−1;2j−F2i;2j−1Þ: ðA4Þ

If Uð1Þ gauge fields in Eq. (A2) are the connection of a
holomorphic vector bundle, i.e., Fij ¼ Fī j̄ ¼ 0, Eq. (A3)
leads to the following relations:
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F2i−1;2j−1 ¼ F2i;2j; F2i−1;2j ¼ −F2i;2j−1;

i; j ¼ 1;…; n: ðA5Þ

The connections of a holomorphic line bundle can be
obtained by solving the condition Fij ¼ Fī j̄ ¼ 0, and they
are given by

Ai ¼ −i
∂ϕðz; z̄Þ
∂zi ≔ −i∂iϕðz; z̄Þ;

Āī ¼ i
∂ϕðz; z̄Þ
∂z̄i ¼ i∂̄ īϕðz; z̄Þ; ðA6Þ

where ϕðz; z̄Þ is a real smooth function on Cn. Then the
(1,1) field strength (A4) is given by

Fij̄ ¼ 2i∂i∂̄ j̄ϕðz; z̄Þ: ðA7Þ

Similarly the condition for a Hermitian metric, i.e.,
Gij ¼ Gī j̄ ¼ 0, can be solved by

G2i−1;2j−1 ¼ G2i;2j; G2i−1;2j ¼ −G2i;2j−1: ðA8Þ

If we further impose the Kähler condition, dΩ ¼ 0, for the
Hermitian metric ds2 ¼ Gij̄dz

idz̄j where Ω ¼ iGij̄dz
i ∧

dz̄j is a Kähler form, the metric is solely determined by
a Kähler potential Kðz; z̄Þ as

Gij̄ ¼ ∂i∂̄ j̄ð2Kðz; z̄Þ − K0Þ; ðA9Þ

where K0 ¼ z̄kzk and our choice of Kähler potential is just
for a later convenience.
To deduce Kähler metrics from Uð1Þ gauge fields

obeying Eqs. (4.14) and (4.15), let us take their local form
given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgþ κF Þ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κBÞ

p
ðA10Þ

¼ gs
Gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGþ κðF̂ − BÞÞ

q
: ðA11Þ

For our case at hand, gμν ¼ Gμν ¼ δμν; μ; ν ¼
1;…; d ¼ 2n, and Bμν ¼ − 2

κ 1n ⊗ iσ2 in Eqs. (A10)
and (A11). We will choose the same complex structure
as (A1) for all DBI densities in Eqs. (A10) and (A11).
In terms of complex coordinates, their nonvanishing
components are given by gij̄ ¼ Gij̄ ¼ δij̄ and Bij̄ ¼
− i

κ δij̄ for i; j ¼ 1;…; n. Thus they are Kähler metrics
and a Kähler form on Cn, i.e., gij̄ ¼ Gij̄ ¼ ∂i∂̄ j̄K0 and
Bij̄ ¼ − i

κ ∂i∂̄ j̄K0 with K0 ¼ z̄kzk, respectively. However,
the RHS of Eq. (A10) needs some care since GμνðxÞ is
regarded as a nontrivial metric on a Riemannian manifold.
For this case, it is convenient to distinguish local coordinate
indices ðμ; ν;…Þ from tangent space indices ða; b;…Þ by
introducing vielbeins Ea

μ, i.e., Ea
μEa

ν ¼ Gμν. Let us split both

coordinate indices into holomorphic and antiholomorphic
ones: μ ¼ ðα; ᾱÞ, ν ¼ ðβ; β̄Þ, a ¼ ði; īÞ, b ¼ ðj; j̄Þ. The
Hermitian condition (A8) can be solved by taking the
vielbeins as

Ei
ᾱ ¼ Eī

α ¼ 0; Eᾱ
i ¼ Eα

ī ¼ 0: ðA12Þ
Then the nonvanishing components of the B field in

Eq. (A10) are given by Biī ¼ Eα
i E

β̄
ī Bαβ̄ where Bαβ̄ ¼ −iδαβ̄.

Our primary concern is to find Uð1Þ gauge fields that
give rise to the Kähler metric (A9). This means that the
RHS of Eq. (A10) is purely of (1,1) type. Therefore, to
satisfy Eq. (A10), the Uð1Þ gauge fields on the LHS must
be connections of a holomorphic line bundle obeying
Fij ¼ Fī j̄ ¼ 0. Moreover, F ¼ F ij̄dz

i ∧ dz̄j is a nonde-
generate, closed (1,1) form, and so a Kähler form, i.e.,6

F ¼ i∂i∂̄ j̄ð2ϕðz; z̄Þ − K0Þdzi ∧ dz̄j; ðA13Þ

because B is a symplectic two-form and F in Eq. (A7)
satisfies the Bianchi identity, dF ¼ 0. By the same reason-
ing, we have to impose a similar condition F̂ij ¼ F̂ī j̄ ¼ 0
for symplectic Uð1Þ gauge fields in Eq. (A11). This
condition is equivalent to Eq. (A5) and replaced F by F̂.
Before proceeding to the particular dimensions we are
interested in, let us first discuss general properties of the
above determinant equation. Suppose that S and A are
d × d symmetric and antisymmetric matrices, respectively.
Then we have the relation

PðS; AÞ≡ detðSþ AÞ ¼ detðS − AÞ
¼ ð−1Þd detð−Sþ AÞ: ðA14Þ

This means that the polynomial PðS; AÞ has only even
powers in A, or equivalently, only even (odd) powers of S
appear in PðS; AÞ for d ¼ even (odd). When S is a
Hermitian metric H on an n-dimensional (i.e., d ¼ 2n)
complex manifoldM, there is a remarkable property. As we
noticed above, the DBI densities in Eqs. (A10) and (A11)
are involved only with (1,1)-type quantities when we
restrict ourselves to the Kähler metric (A9). The poly-
nomial PðG; AÞ can then be written as the form

detðGμν þ AμνÞ ¼ j detðGαβ̄ þ Aαβ̄Þj2; ðA15Þ

where Gαβ̄ þ Aαβ̄ is an n × n complex matrix.
The proof goes as follows. Take the LHS of Eq. (A15)

as the form, detðGþ AÞ ¼ detG detð1þMÞ where
Mμ

ν ¼ GμλAλν. Because of the Hermiticity property of
G and A, we have the following split:

6Note that Fij̄ alone in Eq. (A7) cannot be a Kähler form
because it becomes degenerate, e.g., at an asymptotic infinity.
This is a reason why the symplectic B field is necessary to attain a
Kähler form.

HIGHLY EFFECTIVE ACTION FROM LARGE N GAUGE … PHYSICAL REVIEW D 90, 086006 (2014)

086006-19



Mμ
ν ¼

�
mα

β ≡Gαγ̄Aγ̄β; μ ¼ α;
m̄ᾱ

β̄ ≡GᾱγAγβ̄; μ ¼ ᾱ; ðA16Þ

where m and m̄ are now regarded as n × n matrices.
A critical step is to use the determinant formula,

detð1þMÞ ¼ exp
P∞

k¼1
ð−Þkþ1

k TrMk. Then the split (A16)
induces the same split for the trace,

Tr2nMk ¼ Trnmk þ Trnm̄k; ðA17Þ

where the subscript in the trace denotes the size of the
matrix. Therefore we get the result

detð1þMÞ ¼ detð1þmÞ detð1þ m̄Þ: ðA18Þ

Similarly the formula, detG ¼ exp Tr lnG, leads to the
result, detGμν ¼ detGαβ̄ detGᾱβ. Combining all together,
we finally get the formula (A15).
There is another interesting representation of the deter-

minant (A14) that was used to formulate the kappa
symmetry of supersymmetric D-branes [29–34]. The poly-
nomial PðG; AÞ can be written as the form

detðGþ AÞ ¼ ρGðAÞ†ρGðAÞ; ðA19Þ

where

ρGðAÞ ¼
X½d2�
l¼0

1

2ll!ðd − 2lÞ!Aμ1μ2 � � �Aμ2l−1μ2lγμ2lþ1���μdε
μ1���μd :

ðA20Þ

Here γ matrices onM are defined as usual as γμ ¼ Ea
μγa and

the γ matrices γa obey the Dirac algebra fγa; γbg ¼ 2δab on
flat space. For the proof of Eq. (A19), see, in particular,
Appendix A in Ref. [30] and Appendix B in Ref. [31].
See also [53] [Eq. (2.18)]. It is convenient to introduce
the skew-exponential function [34] (the usual exponential
function with completely skew-symmetrized indices of
gamma matrices at every order in the expansion)

se−A ¼
X½d2�
l¼0

ð−1Þl
2ll!

γμ1���μ2lAμ1μ2 � � �Aμ2l−1μ2l ðA21Þ

to rewrite ρGðAÞ as

ρGðAÞ ¼ se−AΓG; ðA22Þ

where A≡ 1
2
γμνAμν and

ΓG ¼ εμ1���μdγμ1���μd ¼ ð−iÞdðd−1Þ2

ffiffiffiffiffiffiffiffiffiffiffi
detG

p
γdþ1: ðA23Þ

Using the formula (A22), we get the skew exponentials for
each DBI density,

ρgðF Þ ¼ ð−iÞdðd−1Þ2 se−γ
ij̄F ij̄γdþ1; ðA24Þ

ρGðBÞ ¼ ð−iÞdðd−1Þ2

ffiffiffiffiffiffiffiffiffiffi
detG

p
se−γ

αᾱBαᾱ γdþ1; ðA25Þ

ρGðF̂ Þ ¼ ð−iÞdðd−1Þ2 se−γ
ij̄F̂ ij̄γdþ1; ðA26Þ

where F̂ ≡ F̂ − B and γ2dþ1 ¼ 1. We set κ ¼ 1 for
convenience.
Note that, using the results (A9) and (A13), we get the

expression

gij̄ þ F ij̄ ¼ i∂i∂̄ j̄ð2ϕ − K0 − iK0Þ; ðA27Þ

Gij̄ þ Bij̄ ¼ ∂i∂̄ j̄ð2K − K0 − iK0Þ; ðA28Þ

where we did not discriminate curved and flat space
indices because it is no longer necessary. Now, using the
relation (A15), we can phrase the equivalence (A10) in
terms of Kähler potentials (up to holomorphic gauge
transformations),

ϕðz; z̄Þ ¼ Kðz; z̄Þ: ðA29Þ

The real function ϕðz; z̄Þ and so the Kähler potentialKðz; z̄Þ
will be determined by solving the equations of motion of
either commutative or NC Uð1Þ gauge fields. We remark
that the relation (A29) is completely consistent with that in
Ref. [54] [see Eqs. (30) and (31)] for the equivalence
between hyper-Kähler manifolds and symplectic Uð1Þ
instantons. (See also [55].) Therefore the relation (A29)
generalizes the one in [54,55] to general 2n-dimensional
Kähler manifolds. Recall that the Ricci tensor and the
Ricci form for a 2n-dimensional Kähler manifold are
given by

Rij̄ ¼ −
∂2 ln detGkl̄

∂zi∂z̄j ;

ρ ¼ −i∂∂̄ ln detGij̄; ðA30Þ

respectively. In particular, the Ricci tensor (A30) vanishes
if detGij̄ is constant, and so the Kähler manifold reduces
to a 2n-dimensional Calabi-Yau manifold. Hence we can
translate the statement for Kähler manifolds into that
for Uð1Þ gauge theory and vice versa using the relation
(A29). For example, one may wonder what is the gauge
theory object that gives rise to the 2n-dimensional
Calabi-Yau manifold. It was verified in [54,55] for the
four-dimensional case that it is the commutative limit of
NC Uð1Þ instantons [56]. Later it was conjectured in [12]
that Calabi-Yau threefolds arise from a semiclassical limit
of NC Hermitian Uð1Þ instantons in six dimensions.
Now wewill show that the conjecture in [12] is true. First

we will illustrate our method with the four-dimensional
case since this case was well established in [54,55]. Then
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we will generalize our approach to the six-dimensional
case. Consider four-dimensional symplectic Uð1Þ instan-
tons as the commutative limit of NC Uð1Þ instantons [56]
obeying the self-duality equations

F̂μν ¼ � 1

2
εμν

ρσF̂ρσ ðA31Þ

or in a compact notation

P∓F̂ ¼ 0; ðA32Þ
where P� ¼ 1

2
ð1� γ5Þ and F̂ ¼ 1

2
γμνF̂μν. In terms

of complex coordinates (A1), the self-duality
equations (A31) can be stated as7

F̂ij ¼ F̂ī j̄ ¼ 0; ðA33Þ

F̂iī ¼ 0. ðA34Þ
To see what kind of condition the instanton equations (A33)
and (A34) impose on the Kähler metric Gij̄, let us apply the
SW map (4.10) to them. An important part is to note that
θij̄ ¼ −iδij̄ or θ2i−1;2j ¼ 1

2
δij due to the relation

Bμλθ
λν ¼ δνμ. Then it is easy to see that Eq. (A33) can

be solved by Fij ¼ Fī j̄ ¼ 0 for which Nμ
ν ≡ δνμ þ Fμλθ

λν

is split into holomorphic and antiholomorphic parts such as
Eq. (A16). In particular, Ni

j ¼ δji þ Fik̄θ
k̄j ¼ δij̄ þ iFij̄ ¼

−∂i∂̄ j̄ð2ϕ − K0Þ ¼ −Gij̄ where Eqs. (A7) and (A29) were
used. Then we can easily solve Eq. (A34),

F̂iī ¼ ðN−1ÞikFkī ¼ −iðN−1ÞikðNk
i − δikÞ

¼ −ið2 − TrN−1Þ ¼ 0: ðA35Þ

Using the relation TrN−1 ¼ TrN= detN, we get
TrN ¼ 2 detN. Motivated by this relation, we define a
new matrix G as N ¼ 1

2
ð1þGÞ so that detGij̄ ¼ 1. In

consequence, the Kähler metric Gij̄ is Ricci flat because
of the formula (A30). In other words, the four-manifold
described by the metric Gij̄ is a hyper-Kähler manifold
or a Calabi-Yau twofold. In the end we have checked
the equivalence between symplectic Uð1Þ instantons and
Calabi-Yau twofolds in [54,55].8

Now we consider the six-dimensional case. The
analysis is almost the same as the four-dimensional case.

We consider six-dimensional symplectic Uð1Þ instantons
satisfying the Hermitian Yang-Mills equations [47]

F̂μν ¼ −
1

4
εμν

ρσαβF̂ρσIαβ; ðA36Þ

where I ¼ 13 ⊗ iσ2 is a complex structure of R6. They can
be written with the complex coordinates (A1), and the
result takes the same form as Eqs. (A33) and (A34).
The same argument shows that Eq. (A33) can be solved
by Fij ¼ Fī j̄ ¼ 0 and Eq. (A34) leads to the result
F̂iī ¼ ðN−1ÞikFkī ¼ −ið3 − TrN−1Þ ¼ 0, i.e., TrN−1 ¼ 3.
The trace of 3 × 3 complex matrix N−1 is given by

detNTrN−1 ¼ N11̄N22̄ þ N22̄N33̄ þ N33̄N11̄

− ðN12̄N21̄ þ N23̄N32̄ þ N31̄N13̄Þ: ðA37Þ

By a similar reasoning to the four-dimensional case, we
introduce a new metric G defined by N ¼ 1

3
ð1þGÞ.

A straightforward calculation shows that TrN−1 ¼ 3 can
be written as the form

detG ¼ 2þ TrG: ðA38Þ

Note that φ≡ iGij̄dz
i ∧ dz̄j is a closed two-form of type

(1,1), and so we may assume, up to an addition of an
exact two-form, that φ is harmonic. And the trace TrG
is equal to the contraction of φ with the Kähler form
ω≡ 1

2
Iμνdxμ ∧ dxν, i.e., TrG ¼ ðφ;ωÞ. Since φ is a

harmonic (1,1)-form, its trace TrG is then constant [57]
(see 2.33). In consequence, the six-manifold described by
the metric Gij̄ is a Ricci flat and Kähler manifold, i.e., a
Calabi-Yau threefold. Therefore we confirm the conjecture
in [12] for the equivalence between Hermitian Uð1Þ
instantons and Calabi-Yau threefolds.
To check our conjecture for the AdS5 × S5 geometry,

it is necessary to sum up the stack of Hermitian Uð1Þ
instantons obeying (A36). This may be a challenging
problem, and we do not know yet how to sum up the
lump of infinitely many Hermitian Uð1Þ instantons near
the origin of R6. We leave this problem and an
explicit construction of emergent Kähler metrics for future
works.

8Note that we are solving the determinant equations (A10) and (A11), and so Gij̄ ¼ −Nij̄ leads to the relation Gμν ¼ 1
2
ðδμν þGμνÞ

according to the formula (A15), which was used in [54,55] to identify a gravitational metric Gμν from the emergent metric Gμν
determined by Uð1Þ gauge fields.

7The complex structure in Eq. (A33) is correlated with the self-dual structure in Eq. (A31). In this appendix we will fix the complex
structure with the coordinates (A1). Instead, we will flip the orientation for the definition of the self-duality equations (A31), e.g.,
ε12���ð2nÞð2n−1Þ ¼ 1 for the self-dual case and ε12���ð2n−1Þ2n ¼ 1 for the anti–self-dual case.
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