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Recently Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an
AdS;s x S° background of type IIB superstring theory can be reinterpreted as the highly effective action
(HEA) of four-dimensional A/ = 4 superconformal field theory on the Coulomb branch. We argue that
the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT
correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary
and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices
are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation
eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.
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I. INTRODUCTION

Recently Schwarz conjectured [1] that the world-volume
action of a probe p-brane in a maximally (or 3/4 maximal)
supersymmetric spacetime containing AdS, ., can be
reinterpreted as the highly effective action (HEA) of a
superconformal field theory in (p + 1) dimensions on the
Coulomb branch. The HEA is defined by taking a con-
formal gauge theory on the Coulomb branch and integrat-
ing out the massive fields, thereby obtaining an effective
action in terms of massless Abelian multiplets only. Then
the HEA is conjecturally identified with the world-volume
action for a probe p-brane in an AdS,, x K background
geometry with N units of flux threading a compact space
K. Examples considered in [I] are a D3-brane in
AdSs x S°, an M2-brane in AdS, x S7/Z;, a D2-brane
in AdS, x CP?, and an M5-brane in AdS; x S*. This
conjecture was driven by a guiding principle [1]: “Take
coincidences seriously,” with the observation that the
probe-brane theory has all of the expected symmetries
and dualities. The brane actions fully incorporate the
symmetry of the background as an exact global symmetry
of the world-volume theory. For example, in the case of a
D3-brane in AdSs x S°, this symmetry is the supercon-
formal group PSU(2,2|4). In this example, it also includes
the SL(2, Z) duality group, which is known to be an exact
symmetry of type IIB superstring theory. This conjecture
may be further strengthened by showing that the world-
volume actions describing probe branes in anti—de Sitter
(AdS) space exhibit not only (super)conformal symmetry
but also dual (super)conformal symmetry and, taken
together, have an infinite-dimensional Yangian-like sym-
metry.1 There have also been earlier works [3—7] to note the
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'Indeed this problem was addressed by Lipstein and Schwarz
[2]. But, unfortunately, this paper was withdrawn due to an error
in some equation.
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conformal symmetry of the world-volume theory of a
p-brane in an AdS background as well as works [8—11]
to emphasize the relationship between probe-brane actions
and low-energy effective actions on the Coulomb branch.
In this paper we will argue that the HEA can be derived
from the noncommutative (NC) field theory representation
of the AdS/CFT correspondence as recently formulated in
[12] (see, in particular, Sec. VI). Our argument is based
only on the well-known facts that the master fields of large
N matrices are higher-dimensional NC U(1) gauge fields
[13—16] and the Seiberg-Witten (SW) map [17] defining a
spacetime field redefinition between ordinary and NC
gauge fields is a local coordinate transformation eliminat-
ing U(1) gauge fields via the Darboux theorem in sym-
plectic geometry [16,18-21]. The underlying math for the
argument is rather fundamental. For simplicity, let us
consider two-dimensional NC space, denoted by R, whose
coordinates obey the commutation relation
b'.y* =i, (1.1)
where 6 > 0 is a constant parameter measuring the non-
commutativity of the space R3. If we define annihilation
and creation operators as

1 ) | )
azljii, oY T (1.2)
V20 V20

the NC algebra (1.1) of Rg reduces to the Heisenberg
algebra of harmonic oscillator, i.e.,
[a,a’] = 1. (1.3)

The representation space of the Heisenberg algebra (1.3) is
given by the Fock space defined by

H = {[n)ln € Z5}, (1.4)
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which is orthonormal, i.e., (n|m) = §,,,, and complete, i.e.,
® ,|n)(n| =1y, as is well-known from quantum
mechanics.

A crucial, though elementary, fact for our argument is
that the NC space RJ admits an infinite-dimensional
separable Hilbert space (1.4) [22]. Let us apply this
elementary fact to dynamical fields defined on R4~ x
R3 with local coordinates (x*,y',y?) where RY™I'1 5 x#
is a d-dimensional Minkowski spacetime. Consider two

|

Bi(ry) = 3 Il (x.y)lm) ]

n,m=0

byey) = 3 [n) (ala(x.y)|m) ] :

n,m=0
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arbitrary fields &, (x,y) and ®,(x,y) on R4 xR2.
In quantum mechanics physical observables are considered
as operators acting on a Hilbert space. Similarly the
dynamical variables ®, (x, y) and ®,(x, y) can be regarded
as operators acting on the Hilbert space H, which
are elements of the deformed algebra C*(R¥ 1) @ A,.
Thus one can represent the operators acting on the Fock
space (1.4) as N x N matrices in End(H) = Ay where
N = dim(H) — oo:

(@ 1) (X)) (],

()
n,m=0
00

(©2) 3 ()[1) (2], (1.5)

n,m=0

where @, (x) and ®,(x) are N x N matrices in C*(R% ') ® Ay. Then one gets a natural composition rule for the

products

[Se]

(&) % By)(x,y) =
n,l,m=0

o0

= > (@1)u(x)(22)y, (x)[m) (m].

n,l,m=0

The above composition rule implies that the ordering in
the NC algebra Ay is compatible with the ordering in the
matrix algebra Ay, and so it is straightforward to translate
multiplications of NC fields in 4, into those of matrices
in Ay using the matrix representation (1.5) without any
ordering ambiguity.

It is easy to generalize the matrix representation to
2n-dimensional NC space R2" whose coordinate generators
obey the commutation relation

[y4, y°] = i6, a,b=1,...,2n, (1.7)

9
ay“
to be invertible and so B ="' defines a symplectic
structure on R?". Consider a D = (d + 2n)-dimensional
NC space R x R2" with coordinates Y = (x*,y%),
|

where the Poisson bivector § = 16

A a—‘j,, is assumed

1

D Im){nl® (e )1 (11 (x, ) m) (m]

(1.6)

|
M=0,1,....D—-1,u=0,1,....,d—1. The star product for
smooth functions f(Y),§(Y) € C*(RP~11) is defined by

inab_0 aJ
057 ® 5%

(Fro)y)=e TPy (18)
Therefore, to formulate a gauge theory on R4=1 x R2", it
is necessary to dictate the gauge covariance under the NC
star product (1.8). The covariant field strength of NC U(1)
gauge fields A, (Y) = (A”,Aa)(x, y) is then given by

Fun(Y) = 0uAy(Y) = 0xAu(Y) = i[Ay, AyLL(Y). (19)

Using the matrix representation (1.5), one can show
[13-16] that the D = (d + 2n)-dimensional NC U(1)
gauge theory is exactly mapped to the d-dimensional
U(N — o) Yang-Mills theory,

§=— dPY(Fyn — Byn)? 1.10
4G%/M/ ( MN MN) ( )
oy T F””+]D@D"<I>“ 1[<I> D, (1.11)
= —_—— Tr| — —_ _—— .
g%/M X 4 uv D) u*xa 4 as *b ’
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where G3,, = (27)"|Pf0)g3,, and

0 0
BMN:(O Bb>

We refer more details to Sec. 6.1 of Ref. [12].

We emphasize that the equivalence between
the D-dimensional NC U(1) gauge theory (1.10) and
d-dimensional U(N — o) Yang-Mills theory (1.11) is
an exact mathematical identity, not a dimensional reduc-
tion, and has been known long ago, for example, in [13,14].
A remarkable point is that the resulting matrix models or
large N gauge theories described by the action (1.11) arise
as a nonperturbative formulation of string/M theories. For
instance, we get the Ishibashi-Kawai-Kitazawa-Tsuchiya
matrix model for d = 0 [23], the Banks-Fischler-Shenker-
Susskind matrix quantum mechanics for d = 1 [24], and
the matrix string theory for d = 2 [25]. The most interest-
ing case arises for d =4 and n = 3, which suggests an
engrossing duality that the ten-dimensional NC U(1) gauge
theory on R*! x R§ is equivalent to the bosonic action
of four-dimensional A" = 4 supersymmetric U(N) Yang-
Mills theory, which is the large N gauge theory of the AdS/
CFT duality [3,26,27]. According to the large N duality or
gauge/gravity duality, the large N matrix model (1.11) is
dual to a higher-dimensional gravity or string theory. Hence
it should not be surprising that the D-dimensional NC U(1)
gauge theory should describe a theory of gravity (or a string
theory) in D dimensions. Nevertheless the possibility that
gravity can emerge from NC U(1) gauge fields has been
largely ignored until recently. But the emergent gravity
picture based on NC U(1) gauge theory [12,16,28] debunks
that this coincidence did not arise by some fortuity. Here
we want to take an advantage following the advice of
Schwarz [1]: “Take coincidences seriously.”

In this paper, we will seriously take the equivalence
between the D-dimensional NC U(1) gauge theory (1.10)
and the d-dimensional U(N — o) Yang-Mills theory
(1.11) to derive the HEA conjectured in [1]. It is to be
hoped that we also clarify why the emergent gravity from
NC gauge fields is actually the manifestation of the gauge/
gravity duality or large N duality in string/M theories. We
think that the emergent gravity from NC gauge fields opens
a lucid avenue to understand the gauge/gravity duality such
as the AdS/CFT correspondence. While the large N duality
is still a conjectural duality and its understanding is far
from being complete to identify an underlying first prin-
ciple for the duality, it is possible [12,16,28] to reasonably
identify the first principle for the emergent gravity from
NC U(1) gauge fields and to derive in a systematic way
gravitational variables from gauge theory quantities.
Moreover, it can be shown [12] that the four-dimensional
N = 4 supersymmetric U(N) Yang-Mills theory is equiv-
alent to the ten-dimensional N = 1 supersymmetric NC
U(1) gauge theory on R*! x RS if we consider the
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Moyal-Heisenberg vacuum (1.7) which is a consistent
solution of the former—the N =4 super Yang-Mills
theory. Here is a foothold for our departure.

The paper is organized as follows. In Sec. II we review the
result in Ref. [12] showing that the four-dimensional N = 4
superconformal field theory on the Coulomb branch defined
by the NC space (1.7) is equivalent to the ten-dimensional
N = 1 supersymmetric NC U(1) gauge theory. In Sec. Il we
consider the ten-dimensional ' = 1 NC U(1) super Yang-
Mills theory (2.8) as a nontrivial leading approximation of the
supersymmetric completion of the NC Dirac-Born-Infeld
(DBI) action. The supersymmetric completion is postponed
to Sec. V. In Sec. IV, we identify a commutative DBI action
that is mapped to the NC one by the exact SW map defining a
spacetime field redefinition between ordinary and NC gauge
fields [17]. It is observed that the spacetime geometry dual
to four-dimensional large N matrices or ten-dimensional
NC U(1) gauge fields is simply derived from the Darboux
transformation eliminating U(1) gauge fields whose state-
ment is known as the Darboux theorem in symplectic
geometry. We also identify a possible candidate giving rise
to AdSs x S° geometry. It is shown and will also be checked
in Appendix A that the duality between NC U(1) gauge fields
and gravitational fields is the SW map between commutative
and NC U(1) gauge fields. See Eq. (4.20). We thus argue that
the emergent gravity from NC gauge fields is the manifes-
tation of the gauge/gravity duality or large N duality in string/
M theories [12]. In Sec. V, we derive the world-volume action
of a probe D3-brane in AdSs x S° geometry from the DBI
action of ten-dimensional NC U(1) gauge fields, which was
obtained from the four-dimensional A/ = 4 superconformal
field theory on the Coulomb branch. We consider a super-
symmetric D9-brane with the local x symmetry [29-34] to
yield the supersymmetric version of DBI actions. We finally
identify the supersymmetric world-volume action of a probe
D3-brane in AdS; x S geometry with the HEA conjectured
by Schwarz [1]. Our approach sheds lighton why N = 1 (i.e.,
Abelian gauge group) is the proper choice for the HEA that
was elusive in the original conjecture (see the discussion in
Sec. 5 of Ref. [1]). In Sec. VI, we discuss why the emergent
gravity from NC gauge fields provides a lucid avenue to
understand the gauge/gravity duality such as the AdS/CFT
correspondence [3,26,27]. We conclude the paper with a
few speculative remarks. In Appendix A, we demonstrate
how to determine 2n-dimensional Kéhler metrics from U(1)
gauge fields by solving the identities (4.14) and (4.15)
between DBI actions, which are underlying equations for
our argument. In particular, we show that Calabi-Yau n-folds
for n = 2 and 3 arise from symplectic U(1) instantons in four
and six dimensions, respectively.

II. NC U(1) GAUGE FIELDS FROM LARGE
N MATRICES

The AdS/CFT correspondence [3,26,27] implies that a
wide variety of quantum field theories provide a
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nonperturbative realization of quantum gravity. In the AdS/
CFT duality, the dynamical variables are large N matrices,
and so gravitational physics at a fundamental level is
described by NC operators. We argued in [12] that the
AdS/CFT correspondence is a particular case of emergent
gravity from NC U(1) gauge fields. An underlying argu-
mentation is to realize the equivalence between the actions
|
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(1.10) and (1.11) in a reverse way by observing that the
Moyal-Heisenberg vacuum (1.7) is a consistent vacuum
solution of the N' = 4 super Yang-Mills theory.

It is easy to understand an underlying logic, and so we
recapitulate only the essential points deferring to [12] on a
detailed description. The action of four-dimensional N = 4
super Yang-Mills theory is given by [35]

1 | 2 . g g
S = / d“xTr{—ZFWF’”’ 3D, 8D, +%[<I>a,q>b]2 + ixli{y”Dﬂ/l’—k%Z;’jﬂ’ (®,. ] —%Za-mi[@a,@]}. (2.1)

Consider a vacuum configuration defined by

<@a>VHC = pav <AM>V3.C = 0’ </1i>vac = 0' (2'2)
Assume that the vacuum expectation value (vev) p, €

Ay(N — o0) satisfies the Moyal-Heisenberg algebra

[Pas Pb] = =iBapl nxn- (2.3)
Of course, the commutation relation (2.3) is meaningful
only when we take the limit N — co. It is obvious that
the vacuum configuration (2.2) in this limit is definitely a
solution of the theory. We emphasize that the vev (2.2) of
adjoint scalar fields does not break four-dimensional
Lorentz symmetry. Actually the vacuum algebra (2.3)
refers to NC space R if we define p, = B,,y" and
B=6"". Now fluctuations of large N matrices around
the vacuum (2.2) are parametrized by

Dﬂ( y) = a}l - Z'Aﬂ(x, y),
b,

(x.y) = =i®y(x.y) = =i(pa + Au(x.y)).  (24)

B(ey) = (il)w) 23)

i

where we assumed that fluctuations also depend on vacuum
moduli y“. Note that, if we apply the matrix representation
(1.5) to the fluctuations in Egs. (2.4) and (2.5) again, we
recover the original large N gauge fields in the action (2.1).
Therefore let us introduce ten-dimensional coordinates
YM = (x*,y*),M =0,1,...,9 and ten-dimensional con-
nections defined by

N A

Dy(Y) = 0y = iAy(x.y) = (D, D) (x.y).  (2.6)

whose field strength is given by

[
Thus the correspondence between the NC « algebra Ay
and the matrix algebra Ay = End(H) under the Moyal-
Heisenberg vacuum (2.3) implies that the master fields of
large N matrices are higher-dimensional NC U(1) gauge
fields. In the end large N matrices in the N = 4 vector
multiplet on R*! are mapped to NC gauge fields and their
superpartners in the N’ = 1 vector multiplet on R*! x RS
where RS is an extra NC space whose coordinate generators
y* € Ay obey the commutation relation (1.7).

Using the ordering (1.6) for U(N) and NC U(1) gauge
fields, it is straightforward to organize the four-dimensional
N =4 U(N) super Yang-Mills theory (2.1) into the ten-
dimensional ' =1 NC U(1) super Yang-Mills theory
with the action [12]

1 ~ I = A A
S = /leY{_4G%,M (FMN — BMN)2 —l—E\IIFMDM\If},
(2.8)

where B fields take the same form as Eq. (1.10). Now the
fermion ‘if(Y ) is a ten-dimensional gaugino, the super-
partner of the ten-dimensional NC U(1) gauge field A, (y),
which is the Majorana-Weyl spinor of SO(9, 1). The action
(2.8) is invariant under ' = 1 supersymmetry transforma-
tions given by

(2.9)

It should be remarked that the relationship between the
four-dimensional U(N) super Yang-Mills theory (2.1) and
ten-dimensional NC U(1) super Yang-Mills theory (2.8) is
not a dimensional reduction, but they are exactly equivalent
to each other. Therefore any quantity in lower-dimensional
U(N) gauge theory can be transformed into an object in
higher-dimensional NC U(1) gauge theory using the
compatible ordering (1.6) [12].

The coherent condensate (2.2) is described by vev’s of
adjoint scalar fields. Thus we will call the vacuum (2.2) a
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“Coulomb branch” although [®,, ®,]|,. # 0.> However,
note that [®,, D, ]|v.c = —iBapInxy take values in a center
of the gauge group U(N), which may be identified with
the unbroken U(1) gauge group. Hence the Coulombic
vacuum (2.2) is compatible with the usual definition of
the Coulomb branch. We also remark that the conformal
symmetry of four-dimensional A" =4 super Yang-Mills
theory is spontaneously broken by the vev (2.2) of scalar
fields because it introduces a NC scale |0| = [Z.. But it
needs not be specified because the theories with different
6’s are SW equivalent [17]. These are also a typical feature
of the Coulomb branch.

Under a Coulomb branch described by the coherent
condensate (2.2), large N matrices in N' = 4 supersym-
metric gauge theory can be regarded as a linear represen-
tation of operators acting on a separable Hilbert space H
that is the Fock space of the Moyal-Heisenberg vacuum
(2.3). Therefore an important point is that a large N matrix
®(x) on four-dimensional spacetime R*' in the limit
N — oo on the Coulomb branch (2.2) can be represented
by its master field ®(x, y), which is a higher-dimensional
NC U(1) gauge field or its superpartner. Since the large N
gauge theory (2.1) on the Coulomb branch (2.2) is
mathematically equivalent to the NC U(1) gauge theory
described by the action (2.8), it should be possible to
isomorphically map the ten-dimensional NC U(1) super
Yang-Mills theory to a ten-dimensional type IIB super-
gravity according to the AdS/CFT correspondence
[3,26,27]. Indeed, the emergent gravity from NC U(1)
gauge fields provides the first principle to found the large N
duality or gauge/gravity duality in a systematic way
[12,16,28].

III. COMMUTATIVE AND NC D-BRANES

The world-volume action for a Dp-brane can be viewed
as a (p + 1)-dimensional nonlinear sigma model with a
target space M where the embedding functions X" (o)
define a map X: W — M from the (p + 1)-dimensional
world volume W with coordinates ¢*(a =0, 1,...,p) to
the target space M with coordinates X (M = 0,1,...,9).
This embedding induces a world-volume metric

*The usual Coulomb branch is defined by [®,., ®,]|,,. = 0 and
SO (D) e = dlag( .0, ). In this case the gauge group
U(N)or SUN + 1) i is broken to U (1)N. But we remark that the
HEA is conjectured to correspond to the choice, N = 1 [1] while
the probe brane approximation requires N — oo. Therefore the
conventional choice of vacuum finds difficulty in explaining why
N =1 (i.e., Abelian gauge group) is the proper choice for the
HEA. We emphasize that the Coulomb branch as the NC space
(2.2) is a key origin of emergent gravity and is completely
consistent with the HEA because it requires the N — oo limit and
preserves only the U(1) gauge group. Hence our approach sheds
light on why HEA preserves only the U(1) gauge symmetry in
spite of N = oo, which was elusive in the original conjecture as
discussed in Sec. 5 of Ref. [1].

PHYSICAL REVIEW D 90, 086006 (2014)
haﬂ = gMN(X)aaXMaﬂXN (31)

The D-brane action in general contains a dilaton coupling
e~ where ¢ is the ten-dimensional dilaton field. Then the
string coupling constant is defined by g, = e/?) where the
vev (¢) at hand is assumed to be constant. The world
volume also carries U(1) gauge fields A,(c) with field
strength

Faﬁ - 3aA/, - @,Aa. (32)
Recall that the DBI action is a nonlinear generalization of
electrodynamics with self-interactions of U(1) gauge
fields and reproduces the usual Maxwell theory at quad-
ratic order. In string theory a generalization of this action
appears in the context of Dp-branes. Open strings ending
on the Dp-brane couple directly to closed string back-
ground fields (gyn, Byy, @) in the bulk. A low-energy
effective field theory deduced from the open string
dynamics on a single D-brane is obtained by integrating
out all the massive modes, keeping only massless fields
that are slowly varying at the string scale k = 2za’. The
DBI action describes the dynamics of U(1) gauge fields
on a D-brane world volume in the approximation of
slowly varying fields, /k| 2| < 1, in the sense keeping
field strengths (without restriction on their size) but not
their derivatives. The resulting DBI action on a Dp-brane
is given by

S, =—Tp, df’“ \/—det(h + kF) + O(\/xOF., ...),
(3.3)

where
F=B+F (3.4)

is the total U(1) field strength and the D p-brane tension is
given by

2w

Tpp = ——-
9,(27)"

P

(3.5)

In general, the DBI action (3.3) contains derivative
corrections O(y/kOF,...). However, we will ignore
possible terms involving higher derivatives of fields
since we are mostly interested in the approximation that
world-volume fields are slowly varying. We will also
consider the probe-brane approximation ignoring the
backreaction of the brane on the geometry and the
other background fields. The world-volume theory of
a D-brane is given as the sum of two terms S = S| + S,.
The first term S, is given by the DBI action (3.3), and the
second term S, is the form of the Wess-Zumino-type
given by
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S2 = / CRR A\ EK]:, (36)
w

where the coupling to background Ramond-Ramond
(RR) n-form gauge fields is collected in the formal sum

10
CRR - @)C}’t (37)

The coupling S, is a characteristic feature of D-branes
that they carry an RR charge [36] and support the
world-volume gauge fields (3.2).

Some important remarks are in order. The DBI action
(3.3) respects several local gauge symmetries. It has
(p + 1)-dimensional general coordinate invariance since
the integrand transforms as a scalar density in Diff(W).
It also admits the so-called A symmetry,

(B,A) — (B—dA, A+ A), (3.8)
where the two-form B = X*(By,) is the pullback of target
space B field By, to the world volume W and the gauge
parameter A is a one-form in I'(T*W). Let (W, B) be a
symplectic manifold. The symplectic structure B is a
nondegenerate, closed two-form, i.e., dB =0, and so it
can locally be written as B = d& by the Poincaré lemma.
The B-field transformation (3.8) can then be understood as
a shift of the canonical one-form, £ — £ — A. An important
point for us is that the symplectic structure defines a bundle
isomorphism B: TW — T*W by X +— A = —iyB. Thus
the B-field transformation (3.8) is equivalent to (B, A) —
(B+ LxB,A—1xB) where Lx = dix +ixd is the Lie
derivative with respect to the vector field X. Since vector
fields are infinitesimal generators of local coordinate
transformations, in other words, Lie algebra generators
of Diff(W), the B-field transformation (3.8) can be iden-
tified with a coordinate transformation generated by a
vector field X € I'(TW). Consequently the A symmetry
(3.8) can be considered on par with diffeomorphisms
[12,16]. Moreover, it is well known [29-34] that the
D-brane world-volume theory has a local fermionic
symmetry called “x symmetry” if fermion coordinates
w*(a=1,...,32) are included in the target spacetime
with supercoordinates ZM = (XM, y®). See a recent review
[37] for brane effective actions with the x symmetry.
In sum, the world-volume theory of a supersymmetric
D-brane admits the following local gauge symmetries:
(D Diff(W), () A symmetry, and (III) k symmetry.

We can use the general coordinate invariance of the
action S =S5+ S, to eliminate unphysical degrees of
freedom. We choose a static gauge so that XM =
(x*(0),¢%(0)) = (640”, ¢*(x)) where pu=0,...,p and
a=p+1,...,9. The (9—p) coordinates ¢*(x) will
be identified as the world-volume scalar fields of the
Dp-brane. In this gauge the metric (3.1) becomes

PHYSICAL REVIEW D 90, 086006 (2014)
h;w = ﬂuzx + ay¢aau¢av (39)

where we assumed g,y (X) = 1,y for the target spacetime.
Now we focus on a D9-brane for which there are no world-
volume scalar fields, i.e., ¢* =0 and so hyy = gyn-
Suppose that the D9-brane supports the two-form B field
with rank(B) = 6. In this case it is convenient to split the
world-volume coordinates X = oM in the static gauge
into two parts, X¥ = (x*,z%),u=0,1,2,3,a=1,...,6,
so that B = 1B,,dz" A dz’. Then the total field strength
(3.4) takes the form

F F
_ 1% pa
fMN‘(F Bah+Fah>‘

ap

(3.10)

It is well known [17] that the open string gives rise to the
NC geometry when the two-form B field is present on a
D-brane world volume. The D-brane dynamics in the static
gauge is then described by U(1) gauge fields on a NC
spacetime with coordinates Y™ = (x#,y) obeying the
commutation relation (1.7). The resulting DBI action on
the NC D9-brane is given by

S, =T, / d‘OY\/— det(G + k(F + ®))

+O(KDF,..), (3.11)

where the NC U(1) field strength F,y(Y) is given by
Eq. (1.9) and the NC D9-brane tension is

2r
Tog=—" . 3.12
* 7 G, (21x) (3.12)

The open string moduli (G, @, G;) in the NC description
(3.11) are related to the closed string moduli (g, B, g,) in
the commutative description (3.3) by [17]

S B
g+kB G+xkd «’

t ® tG\i
det(G + x®) _ detG : (3.14)
det(g + xB) detg

(3.13)

Gs:gs

where the two-form ® parametrizes some freedom in the
description of commutative and NC gauge theories. It is
worthwhile to remark that the NC DBI action (3.11) can be
obtained by applying the (exact) SW map to the commu-
tative one (3.3) [20,38,39], as will be shown later. Similarly
the Wess-Zumino—type term S, for the NC D9-brane
can be obtained from the RR couplings in Eq. (3.6)
for a commutative D9-brane by considering the (exact)
SW map [20,40].

Let us expand the NC DBI action (3.11) in powers of «.
First, note that
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\/~det(G + x(F + @) = V=det G/det(1 + M)

2 4 4
= V- detG(l - KZTrMZ - %TrM“ + g—z(Ter)2 +-- ) (3.15)

where
and so TrM = 0. At nontrivial leading orders, we find

- 1 . .

S; =-T, / d"Yv—detG - Pres / d''YV—det GGMPGNO(F + @) 1y (F + @) py + O(*), (3.17)

YM
I
. . . . . . iQMN_0 @ 0

where the ten-dimensional Yang-Mills coupling constant is (f * 9)(Y) = 2 @ TMa2)|y—y (4.1)

given by

Gy = (K2Ty)™! = (22)*3G,. (3.18)

In our case at hand, the open string metric can be set to be
flat, i.e., Gyy = nyy- The first term of S‘l is a vacuum
energy due to the D-brane tension that will be canceled
against a contribution from 3'2 [1,3]. The second term is
precisely equal to the bosonic part of the action (2.8) when
the background independent prescription is employed,
i.e., ® = —B [17]. Therefore we will consider the ten-
dimensional ' =1 NC U(1) super Yang-Mills theory
(2.8) as a nontrivial leading approximation of the super-
symmetric completion of the NC DBI action (3.11). The
supersymmetric completion with the x symmetry will be
discussed in Sec. V.

IV. AdS/CFT CORRESPONDENCE FROM
NC U(1) GAUGE FIELDS

In their well-known paper [17], Seiberg and Witten
showed that there exists an equivalent commutative
description of the low-energy effective theory for the open
string ending on a NC D-brane. From the point of view of
an open string sigma model, an explicit form of the
effective action depends on the regularization scheme of
two-dimensional field theory. The difference due to differ-
ent regularizations is always in a choice of contact terms,
leading to the redefinition of coupling constants that are
spacetime fields. So low-energy field theories defined with
different regularizations should be related to each other by
the field redefinitions in spacetime. Now we will explain
how the NC DBI action (3.11) arises from a low-energy
effective action in a curved background that will be
identified with the HEA speculated by Schwarz [1]. First
we identify a commutative description that is SW equiv-
alent to the NC DBI action (3.11). From a conventional
approach, the answer is obvious. It is given by the D9-brane
action (3.3) (with p = 9) with the field strength (3.10). But,
for our purpose, it is more proper to consider the NC DBI
action (3.11) as a particular commutative limit of the full
NC D9-brane described by the star product

for f(¥),5(Y) € C*(R'). We implicitly assumed the
Wick rotation, R%! — R0, although it is simply formal
because we eventually come back to the space R*! x RS,
For this purpose, it is convenient to take the split @V =
(¢*,09) where an SO(10) rotation was used to put
{#* = (0. We intend to understand the star product (1.8)
as a particular case of Eq. (4.1) with {* = (. Later we will
explain why the star product (4.1) is more relevant for our
context, especially, from the viewpoint of emergent space-
time. Hence we need to identify a commutative DBI action
that is SW equivalent to the NC DBI action (3.11), instead,
using the star product (4.1). It is given by the D9-brane
action (3.3) with the U(1) field strength

1

where B = ©~! and rank(B) = 10. We will assume that F
is also nondegenerate, i.e., det(1 + FO) # 0.

To derive the HEA, it is enough only to employ the logic
expounded in Appendix A in Ref. [12]. Note that F in
Eq. (4.2) is the gauge invariant quantity under the A
symmetry (3.8). In other words, the dynamical U(1) gauge
fields should appear only as the combination (4.2). In
particular, we can use the A symmetry (3.8) so that the B
field in Eq. (4.2) is constant. Then dB = 0 trivially and
B is nondegenerate because of rank(B) = 10. Therefore
(R', B) is a symplectic manifold. Moreover, (R'?, F) is
also a symplectic manifold since dF = 0 and F is non-
degenerate by our assumption. Then we can realize an
important identity

(4.2)

F=(1+Lx)B (4.3)
as we explained below Eq. (3.8). It implies that there exists
a local coordinate transformation ¢ € Diff(M) such that
¢*(F) =B, ie., ¢* = (1 + Lx)~! ~ e7*x. This statement
is the well-known theorem in symplectic geometry known
as the Darboux theorem [41,42]. Its global statement is
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known as the Moser lemma [43]. The Darboux theorem
states that it is always possible to find a local coordinate
transformation ¢ € Diff(M), which eliminates dynamical
U(1) gauge fields in F. That is, in terms of local
coordinates, there exists ¢p: ¥ > X = X(Y) so that

oxXM oxN

(Bun + Fyn(X)) Y7 9rC — Bpo. (4.4)

If we represent the local coordinate transformation by

XM(Y) =YM 4 @YNA\(Y), (4.5)
Eq. (4.4) can be written as
PNX) = (F7HM(X) = {XM(¥).X"(V)}e. (4.6)

where we introduced the Poisson bracket defined by

9f(¥) 99(Y)
_ @MN

for f,g€ C®(R'). We will call Ay(Y) in Eq. (4.5)
symplectic gauge fields and X" (Y) covariant (dynamical)
coordinates. The field strength of symplectic gauge fields is
defined by

(4.7)

Fyn = 0yAy — OyAy + {AMvAN}G)- (4.8)
Then Eq. (4.6) gives us the relation
PN = [©(B — F)OMN, (4.9)

By solving this equation, we yield the semiclassical version
of the SW map [18-20],
|

PHYSICAL REVIEW D 90, 086006 (2014)

Fan(Y) = ( 1 +1F . F)MN(X), (4.10)
d''y = d'°x\/det(1 + FO®), (4.11)

where the second equation is derived from Eq. (4.4) by
taking the determinant on both sides.
The coordinate transformation (4.4) leads to the identity

oY gye

axvoxy (12

gun +kF yn = (Gpo + kBpg)

where the dynamical (emergent) metric is defined by

ox" 0x°©
Iun = gro oYM yN (4.13)
The identity (4.12) in turn leads to a remarkable identity
between DBI actions,

;/wwwﬁgzﬁj
_5/¢w¢ﬁ@1@5 (4.14)
—Gis/dloY\/det(G—kK(F-F‘I)))- (4.15)

It is straightforward to derive the second identity (4.15) by
using Egs. (3.13) and (3.14) and the SW maps (4.10) and
(4.11). For the derivation of Eq. (4.15), see Eq. (5.10) in
Ref. [20] and Sec. 3.4 of Ref. [38]. It may be instructive to
check Eq. (4.15) by expanding the right-hand side (RHS) of
Eq. (4.14) around the background B field, i.e.,

\/det(G + kB) = \/det(xB) det<1 + %)

1 1 1
= /det(xB) <1 - FTrM2 ——TrM* + — (TrM?)? + - .>,
K

where
My2 = Gy pOF2 (4.17)
and
TrM? = Tr(gPB)?, TrM* = Tr(gP)*. (4.18)
But it is mnot difficult to show that TrM?" =

Tr(gB)>", TrM*>'+! = Tr(g*B)*"*' = 0 for n € N and thus

8x* 32kt (4.16)

M 1
det<1 +—> = det<1 +—g‘l3>
K K

using the expansion of the determinant [see Eq. (4.30) in
Ref. [32]]. Then, using the result (4.9), the expansion in
Eq. (4.16) can be arranged into the form

(4.19)

\/det(G + «B) = 1 /dZStKg)\/det(G +k(F - B))

_ g—i\/det(G +(F - B)),

(4.20)
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where

Guy = —«*(Bg~'B)yy, Gy = gy\/det(kBg™") (4.21)
are the open string metric and coupling constant, respec-
tively, in the background independent prescription, i.e.,
® = —B [17]. To demonstrate how 2n-dimensional Kihler
metrics arise from U(1) gauge fields, in Appendix A,
we will solve the identities (4.14) and (4.15). In particular,
it is shown that Calabi-Yau n-folds for n =2 and 3 are
emergent from symplectic U(1) instantons in four and six
dimensions, respectively.

NC U(1) gauge fields are obtained by quantizing
symplectic gauge fields. The quantization in our case is
simply defined by the canonical quantization of the Poisson
algebra P = (C*(R!?), {—, —}¢). The quantization map
Q: C®(R') —» Ay by f+ Q(f) = f is a C-linear alge-
bra homomorphism defined by

fgfrxg=1-0 (4.22)
and
fxg=07(Q(f) - Qg)) (4.23)

for f,g € C*(R'%) and f, § € Ajy. The above star product
is given by Eq. (4.1) [22]. The DBI action (3.11) for the NC
D9-brane relevant to the NC U(1) gauge theory (2.8) is
then obtained by simply considering a particular NC
parameter @MY = (¢ 9%) with ¥ =0. We understand
the limit " -0 as |{|*=G,,G,,{" " =K*|kB, 9" |* <
x> where the open string metric in Eq. (4.21) was used. This
means that g, + kB, = (i + kB,;4")g,, & g,,; in other
words, the metric part in the DBI background g, + B, is
dominant so that the B-field part can be ignored.

Why do we need to take the limit {*¥ — O instead of
simply putting {* = 0? Actually the answer is involved
with the most beautiful aspect of emergent gravity. In the
emergent gravity picture, any spacetime structure is not
assumed a priori but defined by the theory itself. In a
sonorous phrase, the theory of emergent gravity must be
background independent. Hence it is necessary to define a
configuration in the algebra 4, for instance, like Eq. (1.7),
to generate any kind of spacetime structure, even for flat
spacetime. Emergent gravity then says that the flat space-
time is emergent from the Moyal-Heisenberg algebra (1.7).
In other words, even the flat spacetime must have a
dynamical origin [12,16,28], which is absent in general
relativity. This picture may also be convinced by gazing
up at the identity (4.14). Note that the dynamical variables
on the RHS of Eq. (4.14) are (emergent) metric fields,
Gun(Y), whereas those on the left-hand side (LHS) are
U(1) gauge fields, Fyy(X), in a specific background
(g, B). Therefore the gravitational fields Gy (Y) are

PHYSICAL REVIEW D 90, 086006 (2014)

completely determined by dynamical U(1) gauge fields,
and so the former is emergent from the latter. When U(1)
gauge fields are turned off, the emergent metric reduces to
the flat metric, i.e., Gyn = gyn-. But the background B
field still persists, and it can be regarded as a vacuum gauge

field A,ﬁg) =- % By yX". Then it is natural to think that the
flat metric g,y is emergent from the vacuum gauge fields

AES). This remarkable picture can be rigorously confirmed
from a background independent formulation, e.g., matrix
models [12,16,28]. In consequence, any spacetime struc-
ture did not exist a priori, but the existence of spacetime
requires a coherent condensate of vacuum gauge fields.
Nature allows “no free lunch.” As a result, the usual
commutative spacetime has to be understood as a commu-
tative limit of NC spacetime as we advocated above.
Indeed, we do not know how to reproduce the NC DBI
action (3.11) via the identity (4.14) starting with the U(1)
field strength (3.10).°

Note that the coordinate transformation (4.4) to a
Darboux frame is defined only locally and symplectic or
NC gauge fields have been introduced to compensate local
deformations of an underlying symplectic structure by
U(1) gauge fields, i.e., the Darboux coordinates in ¢p: Y
X = X(Y) € Diff(R!°) obey the relation ¢*(B + F) = B.
The identity (4.20) also manifests this local nature of NC
gauge fields because they manifest themselves only in a
locally inertial frame (in free fall) with the local metric
(4.13) [12]. If the gravitational metric in Eq. (4.20) were
represented by a global form, e.g.,

gMN = gABE?/[EII\;H A, B = O, 1, caey 9, (424)
where E4 = Ef,dxM are elements of a global coframe on an
emergent ten-dimensional manifold M, it would be diffi-
cult to find an imprint of symplectic or NC gauge fields in
the expression (4.24).

Recall that the basic program of differential geometry is
that all the world can be reconstructed from the infinitely
small. For example, manifolds are obtained by gluing open
subsets of Euclidean space. So the differential forms and
vector fields on a manifold are defined locally and then
glued together to yield a global object. The gluing is
possible because these objects are independent of the
choice of local coordinates. In reality this kind of globali-
zation of a (spacetime) geometry by gluing local data might
be enforced because global comparison devices are not
available owing to the restriction of the finite propagation
speed. Indeed, the global metric (4.24) can be constructed
in a similar way. First note that the D9-brane described by
the LHS of Eq. (4.14) supports a line bundle L — R! over

*Note that the Darboux theorem (4.4) can be applied only to a
symplectic form, i.e., a nondegenerate and closed two-form. But
the dynamical two-form F does not belong to this category
because it usually vanishes at an asymptotic infinity.
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a symplectic manifold (R'?, B). Introduce an open cover-
ing {U;: i €I} of R',i.e, R = U,_,U;, and let A be a
connection of the line bundle L — U; on an open neigh-
borhood U;. Consider all compatible coordinate systems
{(U;,¢;): i €I} as a family of local Darboux charts
where @;: U; — R!° are Darboux coordinates on U,.
Then we have the collection of local data @ (AW, Y ;)
iel

on the D9-brane where Y ;) = ¢;(U;) are Darboux coor-
dinates on U; obeying Eq. (4.4), ie., ¢:(B+FY) =B
where F() = dA(). On an intersection U; N U ;> local data
(A0, Y ;) and (AU),Y(;)) on Darboux charts U; and U,
respectively, are glued together by [44,45]

AV = A 1 g0, (4.25)

Y() =06 (Y ), (4.26)
where ¢ ;) is a symplectomorphism on U; N U; generated
by a Hamiltonian vector field X,; obeying leB_I'

dAl) = 0. Note that the symplectomorphism is a canonical
transformation preserving the Poisson structure ® = B~!
and can be identified with a NC U(1) gauge transformation
upon quantization [21,22]. Since the local metric (4.13) is
the incarnation of symplectic gauge fields in a Darboux
frame, the gluing of local Darboux charts can be translated
into that of emergent metrics in locally inertial frames from
the viewpoint of the RHS of Eq. (4.14). This kind of gluing
should be well defined because every manifold can be
constructed by gluing open subsets of Euclidean space
together and both sides of Eq. (4.14) are coordinate
independent, and so local Darboux charts can be consis-
tently glued altogether. See Ref. [46] to illuminate how a
nontrivial topology of an emergent manifold can be
implemented by gluing local data U,_;(A), Y (i)-

It is in order to ponder on the results obtained. We
showed in Sec. II that the four-dimensional N = 4 super
Yang-Mills theory on the Coulomb branch (2.2) is equiv-
alent to the ten-dimensional A =1 supersymmetric
NC U(1) gauge theory. And we considered the resulting
ten-dimensional NC U(1) gauge theory as a low-energy
effective theory of supersymmetric NC D9-brane. Finally
we got the important identity (4.20) that the dynamics of
NC U(1) gauge fields after ignoring fermion fields is
completely encoded into a ten-dimensional emergent
geometry described by the metric (4.24). According to
the AdS/CFT correspondence, it is natural to expect that the
metric (4.24) must describe a ten-dimensional emergent
geometry dual to the four-dimensional N' = 4 super Yang-
Mills theory. An immediate question to arise is how to
realize the AdSs x S° vacuum geometry in our context.

Since there is no reason to further reside in Euclidean
space, let us go back to the Lorentzian spacetime with the
NC parameter @V = (¢* = 0,6 # 0) by Wick rotation.
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To pose the above question, let us consider a more general
vacuum geometry that is conformally flat. That is, we are
interested in a background geometry with the metric
given by

ds* = 2*(n,, dx*dx" + dy“dy?). (4.27)

There are two interesting cases that are conformally flat [12]:

2=1=M=R", (4.28)

2

R
2= 7= M = AdSs x S5, (4.29)

where p? =3"%_ y9y¢ and R = (4ng,(a’)>N)"/* is the
radius of AdSs and S° spaces. We already speculated
before that the flat Minkowski spacetime (4.28) arises
from a uniform condensate of vacuum gauge fields

A;S) = —%BMNXN . This can be confirmed by looking at
the vacuum configuration (2.2). Note that, from the four-
dimensional gauge theory point of view, the vacuum
configuration (2.2) simply represents a particular configu-
ration of large N matrices and it is connoted as an extra
six-dimensional “‘emergent” space only in a ten-dimensional
description. Its tangible existence must be addressed from
the RHS of Eq. (4.14). (See Sec. 1 in Ref. [12] for the
rationale underlying this reasoning.) Then it is easy to prove
that the emergent metric (4.13) for the vacuum configuration
(2.2) is precisely the flat Minkowski spacetime (4.28). Note
that a Darboux chart (U, ¢) in this case can be extended to
the entire spacetime, and so it is not necessary to consider
the globalization prescribed before.

Now a perplexing problem is to understand what is the
gauge field configuration to realize the vacuum geometry
(4.29). To figure out the problem, it is necessary to find a
stable configuration of NC or large N gauge fields and so
certainly a supersymmetric or Bogomol nyi-Prasad-
Sommerfield state. And this configuration must be con-
sistent with the isometry of the vacuum geometry (4.27),
in particular, preserving SO(6), Lorentz symmetry as if a
hydrogen atom preserves SO(3) symmetry. It was conjec-
tured in [12] that the AdSs x S° geometry arises from the
stack of NC Hermitian U(1) instantons at the origin in
the internal space R® like a nucleus containing a lot of
nucleons. The NC Hermitian U(1) instanton obeys the
Hermitian Yang-Mills equations [47] given by

1 o
ab = — Zeabcdechdlefv

9

(4.30)

where 1 =I5 ® ic® is a 6 x 6 matrix of the complex
structure of R® and the field strength is defined by
Eq. (2.7). Note that the six-dimensional NC U(1) gauge

fields Aa in Eq. (4.30) are originally adjoint scalar fields
®,=p, +Aa in four-dimensional A/ = 4 super Yang-Mills
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theory. See Eq. (2.4). If true, the vacuum geometry (4.29)
will be emergent from the stack of infinitely many NC U(1)
instantons obeying Eq. (4.30) according to the identity
(4.20).* Since we are interested in the approximation of
bE

slowly varying fields, /@ < 1, ignoring the deriva-
tives of field strengths, the U(1) field strength in Eq. (4.30)
can be replaced by Eq. (4.8) in this limit, and so we can use
the SW maps (4.10) and (4.11). But, if we include NC
corrections containing higher-order derivatives of field
strengths, the LHS of Eq. (4.20) will receive derivative
corrections introducing a higher-order gravity in the emer-
gent geometry [21].

In conclusion, the AdS/CFT correspondence is a par-
ticular example of emergent gravity from NC U(1) gauge
fields. And the duality between large N gauge fields and a
higher-dimensional gravity is simply a consequence of the
novel equivalence principle stating that the electromagnetic
force can always be eliminated by a local coordinate
transformation as far as spacetime admits a symplectic
structure; in other words, a microscopic spacetime becomes
NC [12,16].

V. HEA FROM NC U(1) GAUGE
FIELDS

Now we are ready to derive the HEA of four-dimensional
N =4 superconformal field theory on the Coulomb
branch. According to the conjecture [1], the HEA should
be a U(1) gauge theory in the AdSs x S° geometry with N
units of flux threading S°. However the original conjecture
did not allude to any clue why the HEA on the Coulomb
branch must be described by the U(1) gauge theory
although the probe-brane approximation requires a large
N limit. For the discussion of this problem, see, in
particular, Sec. 5 in Ref. [I]. As we emphasized in
footnote 2, our approach based on the NC field theory
representation of AdS/CFT correspondence will clarify
why N =1 is the relevant choice for the HEA.

We argued before that the AdSs x S° geometry is
emergent from the stack of infinitely many NC
Hermitian U(1) instantons near the origin in R®. Thus
suppose that the vacuum configuration for the background
geometry (4.29) is given by

<(I)a>vac = Pa +Aav <A/4>vac =0,

(5.1)

*Given the metric (4.27) of AdSs x S° geometry on the LHS
of Eq. (4.20), we may simply assume that we have solved
Eq. (4.20) to find some configuration of U(1) gauge fields that
gives rise to the AdSs x S° geometry. In Appendix A, we will
solve Eq. (4.20) to illustrate how 2n-dimensional Calabi-Yau
manifolds arise from 2n-dimensional symplectic U(1) gauge
fields. But it should be remarked that the underlying argument
can proceed with impunity if our conjecture is true or not.

PHYSICAL REVIEW D 90, 086006 (2014)
where Aa is a solution of Eq. (4.30) describing N NC

Hermitian U(1) instantons in six dimensions. We introduce
fluctuations around the vacuum (5.1) and represent them as

D, =0, —ia,(x,y),

(5.2)

A

Da = _i(pa +Aa(y> + &a(x’y)) = ﬁa(y) - i&a(xvy)’

(5.3)
whose field strengths are given by
Fu =08, 0,8, —ila,.a,), =f,. (54
Fua=Dpag = Vi, = fra, (5.5)
Fup = =Bap+ Fop + Vo, = Vyia, — ila,. ay),
=B+ Fup + Fap. (5.6)

where F,,(y) — By, = i[@a, @b]*(y). We will include fer-
mions later. Note that we assumed that the instanton
connection V,(y) depends only on NC coordinates in
extra dimensions. Hence the solution has a translational
invariance along R3! which means that the solution
describes extended objects along R*!. They were conjec-
turally identified with N D3-branes in [12]. Since the SW
relation between commutative and NC gauge theories is
true for general gauge fields, we can apply to the gauge
fields in Egs. (5.2) and (5.3) the SW maps

S e I )
4y = d9X\/det(1 + FO). (5.8)

where § =B+ F+ f is the total U(1) field strength
including the background instanton part F,, and the
fluctuation part f,y = Oy ay — Oyay. The result will be
given by the following equivalence:

gl/ d'°X\/—det(g + k)

1

_G_S/d‘OY\/—det(G+K(f:+¢))- (5.9)

But we can also apply the Darboux transformation (4.4) to
the field strength & such that the Darboux coordinates Z¥
eliminate only the instanton gauge fields ;. Then we will
get the following identity:

ozF 079

ro) gy gx - (5:10)

gmun + «kFun = (Gpo + k(B + f)

where

086006-11



HYUN SEOK YANG

ox’ ox?
Iun = gro 97" 97N

~ oxt ox?  oOay Oay
fMN:fPQOZMazN:E)ZM_aZN (5.11)
with ay, = g%;a p- This leads to an enticing result

gl/ d''Xy/—det(g + «g)

- gl [ @°2y/-dex(@ -+ x(5 4 )

(5.12)

:Gis/dloy\/—det(Gﬂ(ﬁJrcD)). (5.13)

We can check the consistency of the above identities by
showing that Eq. (5.13) can be derived from the RHS of
Eq. (5.12). Consider a Darboux transformation ¢, : M
ZM = yM + @MNg\(Y) satisfying ¢} (B+ f)=B. Then it
leads to the identity

~ oYr oye
Gun + KB+ flyy = (Gpg + KBPQ)az—MaW’
(5.14)
where
0zF 079 oxr ox?
G = Gro gy gyn = 9re gy gys - 1)

The previous Darboux transformation (5.10) satisfies
¢5(B+F)=B where ¢,: ZM > X" =7ZM L @MNA\(Z),
which, in Eq. (5.15), has been combined with ¢, i.e.,

dropy: YM s XM = yM L @MN(Ay +ay)(Y).  (5.16)
Note that we can put A 4 = 0 by our assumption. Using the

identity (5.14), we can derive the following equivalence
between DBI actions:

l 10 _ p;
gs/d 2/ det(g + k(B + )
:gl/dloY\/—det((ﬁ—i—KB).

(5.17)

By applying the same method as Eq. (4.20) and using the
coordinates (5.16), it is straightforward to derive Eq. (5.13)
from the RHS of Eq. (5.17).

The conformally flat metric (4.27) takes the form

dx - dx + dp?
ds? :R2<L2+p (5.18)

+ dfz%),
P
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where dx - dx = n,,dx*dx". This form of the metric can be
transformed into the metric form used in [1] by a simple
inversion p = 1/v,

ds* = R*(v*dx - dx 4+ v=2dv* + dQ2)

= R?(v?dx - dx + v~2dv - dv), (5.19)
where dv - dv = dv®dv®. Note that the four-dimensional
supersymmetric gauge theory is defined on the boundary of
AdSs space where v — oo in the metric (5.19) and so the
five-sphere S° shrinks to a point near the conformal
boundary of the AdS space. Then the SO(6) isometry of
S’ is realized as a global symmetry in the gauge theory and
the (angular) momenta dual to five-sphere coordinates are
given by generators of the SO(6) R symmetry. Since we are
interested in the HEA of the boundary theory where the S°
shrinks to a point, we can thus consider a low-energy limit
by ignoring any y dependence for fluctuations, but leaving
the background intact. Then the fluctuating U(1) field
strengths on the LHS of Eq. (5.17) reduce to

Fu(x,y) = 8,a,(x) — 8,,(x) = f,,(x),
Fua(x.Y) = 0,a,(x) = 0,0,(x).

Farl3) = 0. (5.20)
Since we assumed that the low-energy theory does not
depend on the coordinates y* of extra dimensions, we
will try to reduce the ten-dimensional theory to a four-
dimensional effective field theory. For this purpose, first let
us consider the block matrix

M1+ Kf

. 9,0,
gMN+K(B+f>MN:< —xB,0 ou® >’
uPa

/1251117 + KBab
(5.21)

where we put B, = 0 according to the reasoning explained
in Sec. IV. Even we may take the approximation A%5,, +
kB, ~ A*5,, because 1> = R?>v> — oo and the low-energy
limit applied to Eq. (5.20) is basically equivalent to
0’ — 0, and so the metric part is dominant similar to
the reasoning below Eq. (4.23). Considering the fact that
NC corrections in NC gauge theory correspond to 1/N
expansions in large N gauge theory [21], the approximation
considered can be interpreted as the planar limit in AdS/
CFT correspondence. Using the determinant formula for a
block matrix

det(é g) — detDdet(A— BD'C),  (5.22)

we get the following relation:
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~ ab
\/— det(G+«x(B+f)) = \/det(ﬂ2 + KB)\/— det </1277,,,, + kf u + K200, </12+11<B> 8,40,,)

~ N0 \/— det (ﬂzmu + Kzl_zayfﬂ ~ 0,0 + Kf;w) :

Suppose that a D3-brane is embedded in ten-dimensional
target spacetime M with local coordinates X” = (x*, %)
whose metric is given by Gy (X). To be specific, we
consider M = AdSs x S° and choose a static gauge for
the embedding functions, i.e., X" (c) = (x*(0), ¢ (0)) =
(8ac®, v + 25 ¢%(x)) where v* = (¢%),,. are vevs of
world-volume scalar fields. The fact that the world-volume
scalar fields ¢ are originated from NC U(1) gauge fields
in Eq. (5.3) implies that the vevs v* = (¢*),,. can be
identified with the Coulomb branch parameters p, in
Eq. (2.2). Then we see that the symmetric part in
Eq. (5.23) is precisely the induced world-volume metric
(3.1), i.e.,

h/w = gMNa,uXMaz/XN = R2(U27]/41/ + D_26ﬂ¢ . al/d))’
(5.24)

where 1> = R?v - v = R?/p?. Therefore, in the approxima-
tion considered above, we get the identity

V/~detio(G + k(B + J)) = 2y/=dety(h + k). (5.25)

where the subscript in the determinant indicates the size of
matrix. Using the identity (5.25), we can reduce the
ten-dimensional DBI action in AdSs x S° geometry to a
four-dimensional DBI action given by

T / 97\ detyy(G + k(B + F)

- <giil>%L(e,R) {—TD_; /V d%\/W}

(5.26)
where (%Y); = T?Zfﬁ Jss vol(S?) and
R R
L(e,R) = v _ In— (5.27)
e v €

is a regularized integral along the AdS radius. We identify
the DBI action in the bracket in Eq. (5.26) with the world-
volume action of a probe D3-brane in AdSs x S° geometry.
Schwarz speculated in [ 1] that the probe D3-brane action can
be interpreted as the HEA of four-dimensional N =4
superconformal field theory on the Coulomb branch. We
want to emphasize we directly derived the HEA from the
four-dimensional N = 4 superconformal field theory on the

(5.23)

|
Coulomb branch although we have not incorporated fer-
mions yet. One caveat is that our HEA is slightly different
from Eq. (12) in Ref. [1] where our »> was replaced by ¢?.
But one needs to recall that v is coming from the back-
ground geometry and the probe brane approximation
involves neglecting the backreaction of the brane on the
geometry and other background fields (which requires that
N is large). In this description, the AdSs x S° geometry is
regarded as a background, and so it remains to be fixed
against the fluctuations of world-volume fields. Thus the ¢?>
in the denominator in Eq. (12) of Ref. [1] can be replaced by
v? in the probe-brane approximation.

A demanding task is to understand how to derive the
coupling (3.6) of background RR gauge fields from the
four-dimensional A =4 superconformal field theory.
Actually this issue is closely related to our previous
conjecture for a possible realization of D3-branes in terms
of NC Hermitian U(1) instantons. Hence we will only draw
a plausible picture based on this conjecture. If the con-
jecture is true, N D3-branes correspond to a stack of N NC
Hermitian U(1) instantons at the origin of R®. Then, this
instanton configuration generates a topological invariant
given by (up to normalization)

1~/ F/\F/\Qz/(A/\F——A/\A/\A)/\Q,
RS SS 3
(5.28)

where Q is a Kéhler form on R®. The topological invariant
I refers to the instanton number N, and so we identify
I = 2zN. Since the “instanton flux” is threading S° = OR®
and the instanton flux emanating from the origin is
regarded as a background field, we make a simple iden-
tification for the five-form in Eq. (5.28),

(5.29)

where p5 is the basic unit of D3-brane charge and k5 is a
coefficient depending on the normalization convention.
In the AdS/CFT correspondence, Fs is the self-dual
RR five-form of N D3-branes given by

Fs = k3(vol(AdSs) + vol(S®)) = dC,. (5.30)

Although we do not pin down the origin of the self-duality,
the self-duality is necessary for the conjecture to be true
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because it implies that the topological charge of NC U(1)
instantons can be interpreted as the RR charge of
D3-branes, i.e.,

/43/F5—ﬂ3/ dC4—/43/C4’
s AdS; w

where W = O(AdSs). Besides the background instanton
gauge fields, there exist world-volume U(1) gauge fields,
and they can induce a well-known topological instanton

coupling given by
£ / fAF.
8 w

Combining these two couplings leads to a moderate (if any)
suggestion for the Wess-Zumino coupling in Eq. (3.6)
given by [1]

(5.31)

(5.32)

.- K _ _
Sun = Sun + Ty Ony — ZWFPaMWWFPaNV/ =Bun + Yun.

~ ~ L~ ~ K _~ ~ _~ ~ ~
fun = fun + 0Ty Ony — Zz//FPGMz//wFpaNl// = fun + Eun-

where fM =TIp (%’; and 5M = 0%,. Again we can apply the

Darboux transformation ¢, : Y” > ZM = @MN(BypY? +

ay(Y)) satisfying ¢T(B+J~‘) = B. Then it leads to the
following identity:

Gun + KB+ +Euy

SNN) GiG) &
= (Gpg + (B + é)PQ)aZ_MaW’ (5.36)
where
- oYARVA ox* ox@
Sun = Spo YT gyN — LPO Gy gyN - (5.37)

The above identity (5.36) leads to the following equiv-
alence between DBI actions:

i/ dloz\/— det(G + k(B + f +¢&))
_ i A0V det(® + k(B+E).  (5.38)

Let us expand the RHS of Eq. (5.38) around the
background B field as the bosonic case (4.16),

PHYSICAL REVIEW D 90, 086006 (2014)

_ £
Sz—ﬂsA}Q‘i‘Sﬂ[}Vf/\f' (5.33)

Now we will include the Majorana-Weyl fermion ()
in the HEA. This means that we are considering a super-
symmetric D9-brane that respects the local x symmetry
[29-34]. Thus we use the k symmetry to eliminate half of
the (w,,w,) coordinates where y,, are two Majorana-
Weyl spinors of the same chirality. We adopt the gauge
choice, y; = 0, used in Refs. [29,30] and rename v, := .
It was shown in [29,30] that in this gauge the super-
symmetric extension of ten-dimensional DBI action
has a surprisingly simple form. The supersymmetric case
also respects the identity (5.12) with the following
replacement:

(5.34)
(5.35)
[
. M
V/— det(® + k(B + &) = v/~ det(xB) det(l + ?> ,
(5.39)
where
~ OXR 0x$
My2 = (6 + k&) ypOT? = (g + kY )gg WWQPQ-
(5.40)

Note that TrM # 0 unlike the bosonic case. Using the
formula det(1 4+ A) = exp 3% | EE2Trak, it is not diffi-
cult to show that

det(l +%) =det(1 +%(9+KY)5B>, (5.41)

where

. K _ _
(YP)y" = —i <55} + T PaMl//) o (X" w}e.

(5.42)

In terms of the matrix notation, the matrix on the RHS of
Eq. (5.41) can be read as
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1+ % (94 «Y)P = B(1 + kG (F — B) + OYPB)O
= BG™'(G + x(F - B) + GOYPB)O,
(5.43)

where the NC field strengths F uy including an instan-
ton background are given by Egs. (5.4)—(5.6). Using the
result (5.42), one can calculate the fermionic term
GOYPB = —x’Bg~'YBB, which takes the form

— iK*(Bg™") " (6% + %u‘/FQapw> wloDyy

= _Kz(Bg_l)MPYPN

~ —ixpl yDyy + O(k?), (5.44)
where I'y, =«xByng“'Tp obey the Dirac algebra
{T'y. Ty} =2Gyy and

Dyy = Oy /OYN + {Ay + ay.w}e. (5.45)

In the end, we get the supersymmetric version of
Egs. (5.12) and (5.13),

gls / d'9X /= det(g + <(F + Y))

! lez\/ —det(G+ k(B +f +¢&))

s

(5.46)

1 A -
- E/leY\/— det(G + k(F + ®) —x*Bg~'Y).

(5.47)

Let us redefine the fermion field, ¥ = (KTQ)%I/I, and use
the approximation (5.44) to take the expansion like
Eq. (3.15). With this normalization, we correctly reproduce
the action (2.8) at leading orders. As before, we consider
the limit @V — (" = 0,0 # 0). Then it is easy to see
that, at nontrivial leading orders, Eq. (5.47) reproduces the
ten-dimensional N = 1 supersymmetric NC U(1) gauge
theory (2.8) in the instanton background (5.1). As we
demonstrated in Sec. II, the action (2.8) is equivalent to the
four-dimensional A/ = 4 superconformal field theory on
the Coulomb branch. And we argued in this section that
fluctuations in AdSs x S° background geometry are
described by the ten-dimensional A/ = 1 supersymmetric
NC U(1) gauge theory in the background of NC Hermitian
U(1) instantons obeying Eq. (4.30). According to our
construction, we thus declare that the RHS of Eq. (5.46)
has to describe the fluctuations in AdSs x S° geometry.
Therefore we expect that the supersymmetric HEA for
the N/ = 4 superconformal field theory on the Coulomb
branch would be derived from a dimensional reduction of
the RHS of Eq. (5.46) similar to Eq. (5.26).
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Before proceeding further, let us first address some
subtle issues regarding the equivalence in Egs. (5.46)
and (5.47). The first one is that an interpretation for the
factor (5% + XpT90py) in Y py is not clear from the point
of view of NC U(1) gauge theory. Note that dpy =
Ow/0X" and the Darboux transformations did not touch
the factor. Hence this factor behaves like a background part
induced from the backreaction of fermions at higher orders.
Therefore a plausible picture from the viewpoint of NC
U(1) gauge fields is to interpret this factor as vielbeins
Gy = (84 — Xy Oyy) with an effective metric ®,,y =
64,68 gsp and write

2(Bg )5 Y py = ikpTy Dy, (5.48)

where

S:M = K'BMNQIVP&‘?)FA. (549)

Then the gamma matrices &), satisfy the Dirac algebra

T, Iy}t = —2*(Bg'Gg7'B)yn =26y, (5.50)
Of course, if we ignore the backreaction from the fermions,
we recover the previous Dirac term (5.44) in flat spacetime.
Another issue is how to glue local Darboux charts now
involved with fermions as well as bosons. We argued before
that the global metric (4.24) can be constructed via the
globalization in terms of the gluing of local Darboux charts
described by Egs. (4.25) and (4.26). Or the local frames in
the metric (5.11) are replaced by global vielbeins [12],

(5.51)

Then the gamma matrices in Eq. (5.35) will also be
replaced by 'y, = E4,T'y and T = EMT4 > Now it is also
necessary to glue the fermions defined on local Darboux
patches by local Lorentz transformations

wl) = S(ji)l//(i) (5.52)
acting on fermions on an intersection U; N U;. As usual,
we introduce a spin connection @y, = $ w4 to cova-

riantize the local gluing (5.52). This means that the
fermionic terms in Eq. (5.52) are now given by

. K _ _
Sun — ZWE?JFAVNV/ - ZWFAVMV/V/FAVNW (5.53)

where the covariant derivative is defined by

5They should not be confused with the gamma matrices in
Eq. (5.34) that are defined on the flat spacetime R”! while those
in Eq. (5.35) are now defined on a curved spacetime.
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Vuw = Oy + o)y (5.54)

The spin connections
metric (5.18).

Therefore the block matrix (5.21) for the supersymmetric
case is replaced by

wy are determined by the

Gun + k(B + f + &) un
N (ﬂznﬂy + e +8w) k(090 + ) )
( wPa — 50}4) j'251117 + K(Bab + éub)
(5.55)
Since we are interested in the HEA of the four-dimensional

supersymmetric gauge theory defined on the boundary of
|

P ith P.— (1, +
g - t = —
v=\py) v P 5 s E7s)

and 1; = —CA'7,

PHYSICAL REVIEW D 90, 086006 (2014)

AdS; space, the dimensional reduction similar to Eq. (5.20)
was adopted too for fermionic excitations, i.e.,

é:ﬂy = iwruvywv éab
gya = iwrua)al//v gap

= iyl 0y,

=iyl V,p, (5.56)

where Ty, = E4 T, and we ignored the quartic term in
Eq. (5.53). To get a four-dimensional picture after
the dimensional reduction (5.26), it is convenient to
decompose the 16 components of the Majorana-
Weyl spinor y into the four Majorana-Weyl gauginos
(i =1,...,4) as follows:

M=0"® .75 7%, I'y=ys ®Ig, (557)

where C is the four-dimensional charge conjugation operator and the hat is used to indicate tangent space indices. We take
the four- and six-dimensional Dirac matrices in the chiral representation

ﬁ_< 0 iaf‘>
"=\liz o)

a 0 x a = 2 aij
r'=1 , 4= (n, i) = XY,

>0

where & are Pauli matrices and the 4 x 4 matrices (7}, 7)
are self-dual and anti—self-dual "t Hooft symbols. Then the
fermion bilinear terms in Eq. (5.56) read as

5/'”/ = iU_l (Z,&;,V,/V — /liaﬁvy/_li),

Eup = 007 (A, 55,4 — 2225 ,4),

g = 200, (/10'”2”/1)

= SN ETY. (560

where

Sab — % (Sexh — $hya) yab = % (zagh — xbsa)
(5.61)

o = (I,,5)

= (o) & =(-1.5) = ()", (5.58)
50 = (29" = (-7 if) = £, (5.59)

and the spin connection for the background geometry
(4.27) is given by

w, =-T"%9,Inwv, w, = -T49, Inv.  (5.62)

Since we are considering the HEA of the four-dimensional
supersymmetric gauge theory defined on the boundary of
the AdSs space where v — oo and the S° shrinks to a point,
we can ignore &, and &, in Eq. (5.60) as well as the spin
connections w,; — O.

After applying the formula (5.22) to the matrix (5.55), it
is straightforward to yield the supersymmetric completion
of the bosonic HEA obtained in Eq. (5.26), and it is
given by

~ ab
\/— det(G+k(B+f+¢)) = \/det(z2 + KB)\/— det<,12,7ﬂy +&(fuy + &) + K 6‘ </12 _i B) (O, — fby)>

~ 26 \/ - det(h,w n K( Fuo+ G — v‘zaﬂqﬁ“fw)) :

(5.63)
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One may drop the last term since it is of O(v~?). As the bosonic case (5.26), the ten-dimensional supersymmetric DBI
action (5.46) in AdSs x S geometry is thus reduced to a four-dimensional supersymmetric DBI action given by

~ T [ @02/ ~detio(@ +x(B + 7+ 4)

N\:
N (géiir > L(e,R) {_Tm A, d4x\/—det4(h,w +&(fu + G = v720,80)) |-

If the quartic term in Eq. (5.53) is included, it contributes
an extra term given by % (£, + £4,89,) inside the
determinant. Since the metric (5.19) becomes flat when
v = 1, theresultin this case should be equal to the action of a
supersymmetric D3-brane. One can see that the action (5.64)
is actually the case. See Eq. (88) in Ref. [30]. According to
the identity (5.46), the left-hand side of Eq. (5.64) is equal
to the world-volume action of a Bogomol nyi-Prasad-
Sommerfield D9-brane of type IIB string theory after
fixing the x symmetry, which is invariant under the super-
symmetry transformations given by Egs. (90) and (91) in
Ref. [30]. Since Eq. (5.46) is a mathematical identity, the
action on the left-hand side of Eq. (5.64) will also be
supersymmetric. Its supersymmetry transformations basi-
cally take the form replacing the ordinary derivatives in
Egs. (90) and (91) in Ref. [30] by covariant derivatives on the
AdS;s x S’ space. But an explicit check of supersymmetry
is somewhat lengthy though straightforward. Its detailed
exposition from the perspective of HEA deserves to pursue
a separate work, which will be reported elsewhere. Note
that, after the gauge fixing, y; = 0, for the x symmetry, the
Wess-Zumino term for the supersymmetric case is the same
as the bosonic one (5.33) [30]. The final result can be
interpreted as the world-volume action of a supersymmetric
probe D3-brane in the AdSs x S° background geometry.
According to the conjecture in Ref. [1], it can be reinter-
preted as the HEA of four-dimensional N = 4 supercon-
formal field theory on the Coulomb branch. We emphasize
that we directly derived the HEA from the four-dimensional
N = 4 superconformal field theory on the Coulomb branch
defined by the NC space (2.3).

VI. DISCUSSION

We want to emphasize that NC spacetime should be
regarded as a more fundamental concept from which
classical spacetime should be derived as quantum mechan-
ics is a more fundamental theory and the classical phenom-
ena are emergent from quantum physics. Then the NC
spacetime requires us to take a radical departure from the
20th century physics. First of all, it introduces a new kind of
duality, known as the gauge/gravity duality, as formalized
by the identity (4.20). But we have to recall that quantum
mechanics has already illustrated such a kind of novel
duality where the NC phase space obeying the commuta-
tion relation [x', p;] = ixd' is responsible for the so-called

(5.64)

|

wave-particle duality. Remarkably there exists a novel form
of the equivalence principle stating that the electromagnetic
force can always be eliminated by a local coordinate
transformation as far as spacetime admits a symplectic
structure. The novel equivalence principle is nothing but
the famous mathematical theorem known as the Darboux
theorem or the Moser lemma in symplectic geometry
[41,42]. Tt proves the equivalence principle for the gravi-
tational force in the context of emergent gravity. Therefore
we may conclude [12,16] that the NC nature of spacetime
is the origin of the gauge/gravity duality and the first
principle for the duality is the equivalence principle for the
electromagnetic force.

The AdS/CFT correspondence [3,26,27] is a well-tested
gauge/gravity duality and a typical example of emergent
gravity and emergent space. But we do not understand yet
why the duality should work. We argued that the AdS/CFT
correspondence is a particular example of emergent gravity
from NC U(1) gauge fields and the duality between large N
gauge fields and a higher-dimensional gravity is simply a
consequence of the novel equivalence principle for the
electromagnetic force. We note [12,16] that the emergent
gravity from NC U(1) gauge fields is an inevitable
conclusion as far as spacetime admits a symplectic struc-
ture; in other words, a microscopic spacetime becomes NC.
Moreover, the emergent gravity is much more general than
the AdS/CFT correspondence because it holds for general
background spacetimes as exemplified by the identity
(5.17). Therefore we believe that the emergent gravity
from NC gauge fields provides a lucid avenue to under-
stand the gauge/gravity duality or large N duality.

For example, it is interesting to notice that the trans-
formation (4.20) between NC U(1) gauge fields and an
emergent gravitational metric holds even locally. Thus one
may imagine an (infinitesimal) open patch U where the
field strength Fy; of fluctuating U(1) gauge fields has a
maximal rank such that (U, Fy) is a symplectic Darboux
chart. Then one can apply the Darboux theorem on the local
patch to transform the local U(1) gauge fields into a
corresponding local spacetime geometry supported on U.
But this local geometry is unfledged yet to be materialized
into a classical spacetime geometry. Hence this kind of
immature geometry describes a bubbling geometry or
spacetime foams that intrinsically correspond to a quantum
geometry. Even we may consider fluctuating U(1) gauge
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fields on a local patch U whose field strengths F; do not
support the maximal rank. The dimension of emergent
bubbling geometry will be determined by the rank of F;; on
U. This implies that the dimension of quantum geometries
is not fixed but fluctuates. This picture is in a sense
well-known folklore in quantum gravity.

Then one may raise a question why NC spacetime
reproduces all the results in string theory. The connection
between string theory and symplectic geometry becomes
most manifest by Gromov’s J-holomorphic curves. See
Sec. 7 in Ref. [12] for this discussion. The J-holomorphic
curve for a given symplectic structure is nothing but the
minimal world sheet in string theory embedded in a target
spacetime. Moreover, « corrections in string theory
correspond to derivative corrections in NC gauge theory.
In this sense the string theory can be regarded as a stringy
realization of symplectic geometry or more generally
Poisson geometry. But the NC spacetime provides a more
elegant framework for the background independent formu-
lation of quantum gravity in terms of matrix models
[16,28], which is still elusive in string theory.

We showed that the world-volume effective action of a
supersymmetric probe D3-brane in AdSs x S° geometry
can be directly derived from the four-dimensional A" = 4
supersymmetric Yang-Mills theory on the Coulomb branch
defined by the NC space (1.7). Since our result, for
example, described by the identity (5.17) should be true
for general U(1) gauge fields in an arbitrary background
geometry, the remaining problem is to identify a corre-
sponding dual (super)gravity whose solution coincides
with the emergent metric ®,,y. One may use the method
in Refs. [48,49] to attack this problem. See also [50]. It
was shown there that the world-volume effective action
of a probe D3-brane is a solution to the Hamilton-Jacobi
equation of type IIB supergravity defined by the Arnowitt-
Deser-Misner formalism adopting the radial coordinate as
time for type IIB supergravity reduced on S°. In particular,
the radial time corresponds to the vev of the Higgs field in
the dual Yang-Mills theory as our case. It will be interesting
to find the relation between the DBI action obtained in
Refs. [48,49] and the HEA derived in this paper. Also there
are several works [7—11] to address the relation of the HEA
with the low-energy effective actions of A =4 super
Yang-Mills theory on the Coulomb branch. Thus it may
be a vital project to understand any relation between our
approach based on the Coulomb branch defined by the NC
space and other approaches for the HEA cited above.

Recently there have been some developments [51,52]
that describe D-branes in the framework of generalized
geometry. A D-brane including fluctuations in a static
gauge is identified with a leaf of foliations generated by the
Dirac structure of a generalized tangent bundle, and the
scalar fields and vector fields on the D-brane are unified as
a generalized connection [51]. It was also argued in [52]
that the equivalence between commutative and NC DBI
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actions is naturally encoded in the generalized geometry of
D-branes. In particular, when considering a D-brane as a
symplectic leaf of the Poisson structure, describing the
noncommutativity, the SW map is naturally interpreted in
terms of the corresponding Dirac structure. Thus NC gauge
theories can be naturally interpreted within the generalized
geometry. Since the Darboux transformation relating the
deformation of a symplectic structure with diffeomorphism
symmetry is one of the pillars for emergent gravity, we
think that the emergent gravity from NC gauge fields can
be formulated in a natural way within the framework of
generalized geometry. It will be interesting to inquire
further into this idea.
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APPENDIX: KAHLER MANIFOLDS FROM U(1)
GAUGE FIELDS

In this appendix we will illustrate how to determine
four- and six-dimensional Kéhler metrics from U(1) gauge
fields by solving the identities (4.14) and (4.15) between
DBI actions. For this purpose, let us introduce d = 2n-
dimensional complex coordinates

F 2l Y i 2t . o
7i = x21 4y 7i = X2 2

and corresponding complex U(1) gauge fields

1 . < 1 :
A= ) (Agioy — iAy;), A; = ) (Agi +iAy). (A2)

Then the field strengths of (2,0) and (1,1) parts are,
respectively, given by

1 i

Fi; :Z(FZi—l,Zj—l —Fi2)) _Z(FZi—l,Zj +Finj1),  (A3)
1 i

Fig=—(Fai_ijo1 T Fainj) +5(Faiciaj = Fainjo1).  (A4)

4 4

If U(1) gauge fields in Eq. (A2) are the connection of a
holomorphic vector bundle, i.e., F' ij=F 7= 0, Eq. (A3)
leads to the following relations:
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Fai_12j-1 = Faigjs Faii0j = =Fainjs

ihj=1,....n. (AS)
The connections of a holomorphic line bundle can be
obtained by solving the condition F;; = F;; = 0, and they
are given by

A =—i 8¢(§ZZ 9 = —i0;(z, %),
Z
A; = ia‘ﬁ(f; ) _ Bz 2). (A6)
07

where ¢(z,Z) is a real smooth function on C". Then the
(1,1) field strength (A4) is given by

Fj; = 2i0,0:¢(z.2). (A7)
Similarly the condition for a Hermitian metric, i.e.,
Q,-j = g;; =0, can be solved by

Gri12j-1 = Gainjs Gri12j = =G2inj-1- (A8)
If we further impose the Kihler condition, dQ2 = 0, for the
Hermitian metric ds? = gi;dzidzj where Q = ig,-]dz" A
dz/ is a Kihler form, the metric is solely determined by
a Kihler potential K(z,7) as
gi; = 618;(2K(Z7 Z) - KO)? (Ag)

where K, = z¥zF and our choice of Kihler potential is just
for a later convenience.

To deduce Kihler metrics from U(1) gauge fields
obeying Eqs. (4.14) and (4.15), let us take their local form
given by

V/det(g + kF) = \/det(G + kB) (A10)
:é—i\/det(G—i-K(f’—B)). (A1)

For our case at hand, g, =G, =6,.uv=
l,...d=2n, and B, =-21,Qis’> in Egs. (Al0)
and (Al1l). We will choose the same complex structure
as (Al) for all DBI densities in Eqs. (A10) and (All).
In terms of complex coordinates, their nonvanishing
components are given by g; =G; =06; and Bj; =
—£5ij for i,j=1,...,n. Thus they are Ké&hler metrics
and a Kihler form on C”, ie., g; = G; = 8,@;[(0 and
B; = —10,0;K, with K, = zzF, respectively. However,
the RHS of Eq. (A10) needs some care since G, (x) is
regarded as a nontrivial metric on a Riemannian manifold.
For this case, it is convenient to distinguish local coordinate
indices (u,v, ...) from tangent space indices (a, b, ...) by
introducing vielbeins E, i.e., EjE] = G,,. Let us split both
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coordinate indices into holomorphic and antiholomorphic
ones: u = (a,@), v= (,B), a=(i,i), b= (j,j). The
Hermitian condition (A8) can be solved by taking the
vielbeins as

E,=E, =0,

E? = E? = 0. (A12)

Then the nonvanishing components of the B field in
Eq. (A10) are given by Bj; = E?E?Baﬁ where B3 = —id,j.
Our primary concern is to find U(1) gauge fields that
give rise to the Kéhler metric (A9). This means that the
RHS of Eq. (A10) is purely of (1,1) type. Therefore, to
satisfy Eq. (A10), the U(1) gauge fields on the LHS must
be connections of a holomorphic line bundle obeying
F;; = F;; = 0. Moreover, F = Fdz' A dZ/ is a nonde-
generate, closed (1,1) form, and so a Kihler form, i.e.,6
F =i0,0;(2¢(z.2) — Ko)dz' A d?/, (A13)
because B is a symplectic two-form and F in Eq. (A7)
satisfies the Bianchi identity, dF' = 0. By the same reason-
ing, we have to impose a similar condition F; = I:";; =0
for symplectic U(1) gauge fields in Eq. (All). This
condition is equivalent to Eq. (A5) and replaced F by F.
Before proceeding to the particular dimensions we are
interested in, let us first discuss general properties of the
above determinant equation. Suppose that S and A are
d x d symmetric and antisymmetric matrices, respectively.
Then we have the relation

P(S,A) =det(S+ A) = det(S - A)

= (=1)%det(-S + A). (Al4)
This means that the polynomial P(S,A) has only even
powers in A, or equivalently, only even (odd) powers of S
appear in P(S,A) for d =even (odd). When S is a
Hermitian metric $ on an n-dimensional (i.e., d = 2n)
complex manifold M, there is a remarkable property. As we
noticed above, the DBI densities in Egs. (A10) and (A11)
are involved only with (1,1)-type quantities when we
restrict ourselves to the Kihler metric (A9). The poly-
nomial P(®,A) can then be written as the form

det(®,, +A,,) = |det(G,; + A,3)|* (A15)
where ©,5 + A,z is an n x n complex matrix.

The proof goes as follows. Take the LHS of Eq. (A15)
as the form, det(® + A) =det®det(l +M) where
MF, = &*A,,. Because of the Hermiticity property of
® and A, we have the following split:

®Note that F ;7 alone in Eq. (A7) cannot be a Kéhler form
because it becomes degenerate, e.g., at an asymptotic infinity.
This is a reason why the symplectic B field is necessary to attain a
Kéhler form.
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miy=0%A, pu=a

e S _ Al6
R B A N
where m and m are now regarded as n X n matrices.
A critical step is to use the determinant formula,

det(1+ M) =expd 2, (_)]:H TrM*. Then the split (A16)

induces the same split for the trace,

Tr,,M* = Tr,mF 4 Tr,m*, (A17)
where the subscript in the trace denotes the size of the
matrix. Therefore we get the result

det(1 + M) = det(1 4+ m) det(1 4 m). (A18)
Similarly the formula, det® = exp Trin®, leads to the
result, det®,, = det®,; det G5 Combining all together,
we finally get the formula (A15).

There is another interesting representation of the deter-
minant (Al4) that was used to formulate the kappa
symmetry of supersymmetric D-branes [29-34]. The poly-
nomial P(®,A) can be written as the form

det(® + A) = pg(A)Tpg(A), (A19)
where
6 1
pe(A) = 3 mAmuz YW -l U
(A20)
Here y matrices on M are defined as usual as y, = Ejjy, and

the y matrices y,, obey the Dirac algebra {y,,7,} = 28,, on
flat space. For the proof of Eq. (A19), see, in particular,
Appendix A in Ref. [30] and Appendix B in Ref. [31].
See also [53] [Eq. (2.18)]. It is convenient to introduce
the skew-exponential function [34] (the usual exponential
function with completely skew-symmetrized indices of
gamma matrices at every order in the expansion)

[(EI] (_1)1
SC_A = 21[; yﬂlmMZIAlllﬂz e AﬂzHllzt (A21)
=0 :
to rewrite pg(A) as
po(A) = se T, (A22)

=1, m
where A =3y*A,, and

T = ety ., = (=) TVdet®yu,.  (A23)

Using the formula (A22), we get the skew exponentials for
each DBI density,
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d(d-1)

po(F) = (=)= se Ty, (A24)

po(B) = (i) T \/detGse " Py, . (A25)
A Ndd=1) g

pe(F) = (=i) 7 se™” f”7d+lv (A26)

where F=F-B and 73, =1 We set k=1 for
convenience.

Note that, using the results (A9) and (A13), we get the
expression

g+ Fij = i0,0;2¢ — Ko — iKg),  (A27)

where we did not discriminate curved and flat space
indices because it is no longer necessary. Now, using the
relation (A15), we can phrase the equivalence (A10) in
terms of Kéhler potentials (up to holomorphic gauge
transformations),

$(z,2) = K(z.2).

The real function ¢(z, Z) and so the Kéhler potential K(z, 7)
will be determined by solving the equations of motion of
either commutative or NC U(1) gauge fields. We remark
that the relation (A29) is completely consistent with that in
Ref. [54] [see Egs. (30) and (31)] for the equivalence
between hyper-Kéhler manifolds and symplectic U(1)
instantons. (See also [55].) Therefore the relation (A29)
generalizes the one in [54,55] to general 2n-dimensional
Kihler manifolds. Recall that the Ricci tensor and the
Ricci form for a 2n-dimensional Kihler manifold are
given by

(A29)

0 Indet &5
0707/
p=—id0Indet &

ijs

(A30)

respectively. In particular, the Ricci tensor (A30) vanishes
if det®,; is constant, and so the Kihler manifold reduces
to a 2n-dimensional Calabi-Yau manifold. Hence we can
translate the statement for Kéahler manifolds into that
for U(1) gauge theory and vice versa using the relation
(A29). For example, one may wonder what is the gauge
theory object that gives rise to the 2n-dimensional
Calabi-Yau manifold. It was verified in [54,55] for the
four-dimensional case that it is the commutative limit of
NC U(1) instantons [56]. Later it was conjectured in [12]
that Calabi-Yau threefolds arise from a semiclassical limit
of NC Hermitian U(1) instantons in six dimensions.
Now we will show that the conjecture in [12] is true. First
we will illustrate our method with the four-dimensional
case since this case was well established in [54,55]. Then
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we will generalize our approach to the six-dimensional
case. Consider four-dimensional symplectic U(1) instan-
tons as the commutative limit of NC U(1) instantons [56]
obeying the self-duality equations

. 1 A
FW::I:Eeﬂ,/’ Fs (A31)

or in a compact notation

A

p.F=o0, (A32)

where P, =1(1+ys) and [AF:%}/”"IA’W. In terms

of complex coordinates (Al), the self-duality
equations (A31) can be stated as’

Fj=F;=0, (A33)

Fz;=0. (A34)

To see what kind of condition the instanton equations (A33)
and (A34) impose on the Kéhler metric G5, let us apply the
SW map (4.10) to them. An important part is to note that
07 = —is or 6*~12 =157 due to the relation
BMGW = 0. Then it is easy to see that Eq. (A33) can
be solved by F;; = F;; = 0 for which N,* = &, + F ;60"
is split into holomorphic and antiholomorphic parts such as
Eq. (A16). In particular, N/ = &8, + F ;08 = 65 + iF 5 =
—81-(7);(245 — Ky) = —G,;; where Egs. (A7) and (A29) were
used. Then we can easily solve Eq. (A34),

Fi= (N} Fi = =i(N") (N = 8))

=—i(2-TtN"1) =0. (A35)
Using the relation TrN~! =TrN/detN, we get
TrN = 2det N. Motivated by this relation, we define a
new matrix ® as N =3(1+®) so that det®; = 1. In
consequence, the Kéhler metric ®;; is Ricci flat because
of the formula (A30). In other words, the four-manifold
described by the metric ®;; is a hyper-Kéhler manifold
or a Calabi-Yau twofold. In the end we have checked
the equivalence between symplectic U(1) instantons and
Calabi-Yau twofolds in [54,55].8

Now we consider the six-dimensional case. The
analysis is almost the same as the four-dimensional case.
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We consider six-dimensional symplectic U(1) instantons
satisfying the Hermitian Yang-Mills equations [47]

(A36)

A 1 A
F/u/ = _ZguvpaaﬂFpalaﬂ’
where I = 15 ® ic” is a complex structure of RS. They can
be written with the complex coordinates (Al), and the
result takes the same form as Eqgs. (A33) and (A34).
The same argument shows that Eq. (A33) can be solved
by F;j=F;; =0 and Eq. (A34) leads to the result
Fo= (N Fi;=-i(3-TrN"') =0, ie, TTN"! =3,
The trace of 3 x 3 complex matrix N~! is given by

dCtNTI'N_l = NIINZQ + N22N33 +N3§N11
— (N13Nai + N3Ny + N3gNy3). (A37)

By a similar reasoning to the four-dimensional case, we
introduce a new metric ¢ defined by N :%(1 + ).
A straightforward calculation shows that TrN~! = 3 can
be written as the form
det® =2 + Tr®. (A38)

Note that ¢ = i(ﬁi;dzi A d7/ is a closed two-form of type
(1,1), and so we may assume, up to an addition of an
exact two-form, that ¢ is harmonic. And the trace Tr®
is equal to the contraction of ¢ with the Kihler form
w=131,d* Adx*, ie, Trt® = (¢, ). Since ¢ is a
harmonic (1,1)-form, its trace Tr® is then constant [57]
(see 2.33). In consequence, the six-manifold described by
the metric (55,; is a Ricci flat and Kihler manifold, i.e., a
Calabi-Yau threefold. Therefore we confirm the conjecture
in [12] for the equivalence between Hermitian U(1)
instantons and Calabi-Yau threefolds.

To check our conjecture for the AdSs x S° geometry,
it is necessary to sum up the stack of Hermitian U(1)
instantons obeying (A36). This may be a challenging
problem, and we do not know yet how to sum up the
lump of infinitely many Hermitian U(1) instantons near
the origin of R®. We leave this problem and an
explicit construction of emergent Kéhler metrics for future
works.

"The complex structure in Eq. (A33) is correlated with the self-dual structure in Eq. (A31). In this appendix we will fix the complex
structure with the coordinates (A1). Instead, we will flip the orientation for the definition of the self-duality equations (A31), e.g.,

£l2-(2n)(2n-1) 2n—-1)2n

= 1 for the self-dual case and &'>"(

= 1 for the anti-self-dual case.

¥*Note that we are solving the determinant equations (A10) and (A11), and so G;; = —N; leads to the relation G, = %(6”1, +6,)

according to the formula (A15), which was used in [54,55] to identify a gravitational metric ,, from the emergent metric G

determined by U(1) gauge fields.

v
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