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Using fluid-gravity correspondence, we determine the (linearized) stress energy tensor of N ¼ 4 super-
Yang-Mills theory at strong coupling with all orders in derivatives of fluid velocity included. We find that
the dissipative effects are fully encoded in the shear term and a new one, which emerges starting from the
third order. We derive, for the first time, closed linear holographic renormalization group flow-type
equations for (generalized) momenta-dependent viscosity functions. In the hydrodynamic regime, we
obtain the stress tensor up to third order in derivative expansion analytically. We then numerically
determine the viscosity functions up to large momenta. As a check of our results, we also derive the
generalized Navier-Stokes equations from the Einstein equations in the dual gravity.

DOI: 10.1103/PhysRevD.90.086003 PACS numbers: 11.25.Tq, 12.38.Mh

I. INTRODUCTION

The quark-gluon plasma produced in heavy ion collisions
behaves like a nearly perfect fluid reflecting a strongly
coupled regime of QCD [1,2]. Relativistic hydrodynamics
is found to describe QCD plasma expansion near thermal
equilibrium. Meanwhile, various microscopic models are
indispensable in order to understand the transport properties
of this fascinating QCD matter.
An important tool to address the strongly coupled dynam-

ics is the AdS-CFT correspondence [3], which reformulates
the largeN strongly interacting quantum field theory in terms
of classical gravity in (asymptotically) AdS spacetime. One
celebrated prediction of the AdS-CFT correspondence is the
universal value of shear viscosity over entropy density ratio
[4,5], valid for a large class of large N strongly coupled
gauge theory plasmas which have Einstein gravity duals.
Subsequent exploration of fluid dynamics from gravity in
AdS black hole geometries has become a major research
topic; see Ref. [6] for a review and references therein.
The authors of Refs. [7,8] (see also Refs. [9–11])

proposed a new generalized relativistic hydrodynamics with
all orders in derivatives of fluid velocity resummed in the
stress tensor. Higher order derivatives can be classified into
nonlinear [like ð∇uÞ2] and linear terms (like ∇∇u) with
respect to the local fluid velocity. The nonlinearities are
important when the velocity field amplitude is large.
However, even for small amplitude waves, one can get
large contributions from the linear terms when the momenta
associated with the wave are large. In [8], only linear terms
were kept in the stress tensor. Viscosity and other constant
value transport coefficients were generalized into momenta
dependent functions that collected all higher order terms in a
self-consistent manner. This viscosity function is expressed
in momentum space which follows from the replacement
∂μ → ð−iω; i~qÞ in the linear gradient expansion of stress

tensor Tμν. With constitutive relations at hand, these trans-
port coefficient functions were supposed to be deduced from
retarded correlators [12,13] computed in linearized bulk
gravity. However, a generic problem prevented the achieve-
ment of this goal: knowledge of the retarded correlators
happened to be insufficient to determine all the transport
coefficient functions. This paper reports on a major progress
in generalizing relativistic hydrodynamics to all orders, as
envisioned in [7,8]: We consistently derive the transport
coefficient functions by extending [14–16] to linearized
fluid-gravity correspondence.
The fluid-gravity correspondence maps construction of

fluid stress tensor and its conservation law (Navier-Stokes
equations) into the problem of solving Einstein equations in
asymptotically AdS spacetime. In particular, it provides a
systematic framework to study nonlinear fluid dynamics,
order by order in the boundary derivative expansion. In
principle, the perturbative calculations of Ref. [14] can be
extended to arbitrary order in terms of derivative expansion.
Our procedure is, however, somewhat different from that of
[14]. We will collect the dissipative contributions1 to the
stress tensor in a unified way, rather than appealing to an
order-by-order derivative expansion.
Our major new result is closed holographic renormaliza-

tion group (RG) flow-type equations derived for the vis-
cosity functions. These are linear equations, which we first
study analytically using perturbative expansion and then
exactly numerically, leading to new understanding of dis-
sipative structures of strongly coupled plasmas.

II. LINEARIZED FLUID-GRAVITY
CORRESPONDENCE

We consider the universal sector of the AdS-CFT
correspondence: the dynamics of Einstein gravity with a

*yybu@post.bgu.ac.il
†lublinm@bgu.ac.il

1While some of the high order derivative terms might not
necessarily lead to actual dissipation in the system, we collec-
tively refer to all of them as dissipative contributions.
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negative cosmological constant in five-dimensional
spacetime,

S ¼ 1

16πGN

Z
d5x

ffiffiffiffiffiffi
−g

p ðRþ 12Þ: ð1Þ

The 4-parameter family of solutions to action (1) is

ds2 ¼ −2uμdxμdrþ r2ðPμν − fðbrÞuμuνÞdxμdxν; ð2Þ

with

uv ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − β2
p ; ui ¼

βiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ; β2 ¼
X3
i¼1

βiβi;

ð3Þ

and the function fðrÞ ¼ 1 − 1=r4. We use notation xμ ¼
ðv; xiÞ with v to denote time direction in the Eddington-
Finkelstein coordinate. Indeed, v is equivalent to time in a
Poincare patch as r → ∞ and therefore is identified as time
of the boundary field theory. The Hawking temperature of
the above black hole is

T ¼ 1

πb
; ð4Þ

which will be identified as the temperature of the dual
fluid defined in the boundary. The projection operator is
Pμν ¼ ημν þ uμuν. Note that the parameters βi and b are
all constants so that the line element (2) does form a class
of solutions to the bulk Einstein equation

EMN ¼ RMN −
1

2
gMNR − 6gMN ¼ 0: ð5Þ

To discuss hydrodynamics, we follow Ref. [14] and
promote the constant parameters βi and b to slowly but
otherwise arbitrarily varying functions of the boundary
coordinates,

ds2 ¼ − 2uμðxαÞdxμdrþ r2PμνðxαÞdxμdxν
− r2fðbðxαÞrÞuμðxαÞuνðxαÞdxμdxν: ð6Þ

The metric (6) no longer solves the bulk equation (5). The
idea of Ref. [14] is to add suitable corrections in (6) so that
the bulk equation (5) is satisfied by the new metric.
Reference [14] introduced a systematic way of constructing
the corrected metric: the method is to first perform a
boundary derivative expansion for βiðxαÞ and bðxαÞ around
a chosen point, such as the origin xα ¼ 0, and then solve
linearized Einstein equations in the bulk order by order in
the derivative expansion.
Our goal is to sum all higher order terms in the fluid

stress tensor. In contrast to the boundary derivative expan-
sion of Ref. [14], we linearize the fluid fields uμðxαÞ and

bðxαÞ. We then determine the corrected metric by solving
the bulk equations. Our corrected metric accounts for all
order dissipative contributions to the fluid stress tensor.
The fluid velocity and temperature are expanded as

uμðxαÞ ¼ ð−1; ϵβiðxαÞÞ þOðϵ2Þ;
bðxαÞ ¼ b0 þ ϵb1ðxαÞ þOðϵ2Þ; ð7Þ

where, as in Ref. [14], we multiply βi and b1 by a small ϵ,
which will be set to one in the final expression of the fluid
stress tensor. b0 denotes temperature of the fluid in equi-
librium while the linear term b1ðxαÞ accounts for dissipative
corrections. Below, b0 is set to one by conformal invariance.
In accordance with (7), the seed metric, i.e., the linear-

ized version of (6) is,

ds2 ¼ 2drdv − r2fðrÞdv2 þ r2δijdxidxj

− ϵ½2βiðxαÞdrdxi þ 2r−2βiðxαÞdvdxi
þ 4r−2b1ðxαÞdv2� þOðϵ2Þ; ð8Þ

where the first line is exactly the line element of the
Schwarzschild-AdS5 black brane written in the ingoing
Eddington-Finkelstein coordinate. The terms linear in ϵ are
parts of the metric corrections we are after. We are to
introduce metric corrections up to OðϵÞ. The full metric is

g ¼ gð0Þ þ ϵgð1Þ½βi;b1� þOðϵ2Þ; ð9Þ

where gð0Þ is the first line of (8). The first order correction
gð1Þ has two sources: the first one is already known,
corresponding to linear terms in ϵ in (8); while the second
contribution will be determined from the bulk dynamics
and summarized in the line element (11).
Diffeomorphism invariance allows us to choose a

gauge. Following [14], we work in the “background field”
gauge,

grr ¼ 0; grμ ∝ uμ; Tr½ðgð0ÞÞ−1gð1Þ� ¼ 0: ð10Þ

The line element for the undetermined metric is [14]

ds2ð1Þ ¼ ϵ½−3hdrdvþ r−2kdv2 þ r2hδijdxidxj

þ2r2ð1 − fðrÞÞjidvdxi þ r2αijdxidxj�; ð11Þ

where αij is a symmetric traceless tensor of rank two. All
the components fh; k; ji; αijg are explicit functions of the
bulk coordinates fxα; rg. Their precise forms have to be
determined from Eq. (5), supplemented with proper boun-
dary conditions to be discussed next.
The first boundary condition is a regularity requirement

for all the components over the whole range of r, in
particular at the unperturbed horizon r ¼ 1. This is a
natural choice since the ingoing Eddington-Finkelstein
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coordinate we are working in is free of coordinate singu-
larity. The second boundary condition comes from the
asymptotic consideration at r → ∞. Since the dual fluid is
in Minkowski space with metric ημν, we will require that the
metric corrections should not change the asymptotic
behavior of the metric (6). The latter condition strongly
constrains the large r behavior of different components
fh; k; ji; αijg: as r → ∞, their falling-off behaviors should
be restricted as

h < Oð1Þ; k < Oðr4Þ;
ji < Oðr4Þ; αij < Oð1Þ: ð12Þ

Some of the integration constants remain unfixed by the
above considerations. This is due to the freedom of defining
fluid velocity. This ambiguity will be removed by appro-
priately choosing a frame for the dual fluid. To be specific,
we will work in the “Landau frame”

uμTDiss
μν ¼ 0; ð13Þ

where TDiss
μν is the dissipative part of Tμν.

Once the dual metric is worked out, the stress tensor of
the dual fluid is calculated from the formula [17,18]

Tμ
ν ¼ − lim

r→∞
r4ð2Kμ

ν − 2Kγμν þ 6γμν −Gμ
νÞ; ð14Þ

where γμν and Kμν are the induced metric and extrinsic
curvature on the hypersurface with fixed r, respectively.
The Einstein tensor Gμν is compatible with γμν.

III. FLUID DYNAMICS DUAL TO BULK GRAVITY

We are now to study the bulk dynamics. The Einstein
equations are divided into dynamical and constraints. Our
strategy is to first solve the former. This will lead to a
construction of an “off-shell” boundary stress tensor. The
constraints will be later shown to be equivalent to the stress
tensor conservation. We start from Err ¼ 0,

5∂rhþ r∂2
rh ¼ 0; ð15Þ

which is Eq. (4.7) of Ref. [14]. The generic solution is

hðxα; rÞ ¼ s0ðxαÞ þ s1ðxαÞr−4; ð16Þ

where s0 and s1 are arbitrary functions of boundary
coordinates xα. A nonzero function s0 violates the asymp-
totic requirement for h as specified in Eq. (12). In addition,
s1 ≠ 0 is equivalent to TDiss

00 ≠ 0. Therefore, the constraint
from asymptotic infinity and “Landau frame” convention
leads to h ¼ 0.

The function k will be found from Erv ¼ 0,

3r2∂rk ¼ 6r4∂β þ r3∂v∂β − 2∂j − r∂r∂j − r3∂i∂jαij;

ð17Þ

where ∂j≡ ∂iji. The scalar function k cannot be deter-
mined until ji and αij are found. Fortunately, the dynamical
equations for ji and αij are not entangled with k, so we
integrate Eq. (17) after solving for ji and αij.
In order to determine ji, we consider Eri ¼ 0,

∂2
rji ¼ ð∂i∂β − ∂2βiÞ − 3r∂vβi þ

3

r
∂rji − r2∂r∂jαij;

ð18Þ

where ∂2 ≡ ∂i∂i. To find αij is more involved as its
diagonal and nondiagonal components have to be treated
separately. Here we report the final result,

0 ¼ðr7 − r3Þ∂2
rαij þ ð5r6 − r2Þ∂rαij

þ 2r5∂v∂rαij þ 3r4∂vαij þ r3½½αij��
þ ð1 − r∂rÞ½½j�� þ 2ð3r4 þ r3∂vÞσij; ð19Þ

with σij ¼ 1
2
ð∂iβj þ ∂jβi − 2

3
δij∂βÞ. Two functionals were

introduced in Eq. (19),

½½αij��≡ ∂2αij −
�
∂i∂kαjk þ ∂j∂kαik −

2

3
δij∂k∂lαkl

�
;

½½j��≡ ∂ijj þ ∂jji −
2

3
δij∂j:

ji and αij are uniquely decomposed as

�
ji ¼ aðω; q; rÞβi þ bðω; q; rÞ∂i∂β;
αij ¼ 2cðω; q; rÞσij þ dðω; q; rÞπij; ð20Þ

where πij ¼ ∂i∂j∂β − 1
3
δij∂2∂β. The decomposition (20) is

inspired by the source terms in (18) and (19). On the one
hand, the homogeneous part of the solutions for (18) and
(19) did not appear in the above decomposition due to the
“Landau frame” convention (13) and the large r require-
ment (12). On the other hand, since b1 does not contribute
in the source terms of (18) and (19), we do not consider
derivatives of b1 as basis vector or tensor in (20). Explicit
calculations can be done to show that adding derivatives
of b1 in the above decomposition will result in similar
equations as (21) but without source terms. Then, the
boundary conditions force these added modes to vanish.
For convenience, we prefer to express the coefficient
functions in momentum space but with tensors σij and
πij formulated as explicit derivatives of the fluid velocity.
The momentum variables are in one-to-one correspondence
with derivative operators in accordance with the
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replacement rule ∂μ → ð−iω; i~qÞ. We are led to a system of
ordinary differential equations,

8>>>>>>>>>>><
>>>>>>>>>>>:

0 ¼ r∂2
ra − 3∂ra − q2r3∂rc − 3iωr2 − q2r;

0 ¼ r∂2
rb − 3∂rbþ 1

3
r3∂rc − 2

3
r3q2∂rd − r;

0 ¼ ðr7 − r3Þ∂2
rcþ ð5r6 − r2Þ∂rc − 2iωr5∂rc

− r∂raþ a − 3iωr4cþ 3r4 − iωr3;

0 ¼ ðr7 − r3Þ∂2
rdþ ð5r6 − r2Þ∂rd − 2iωr5∂rd

þ q2

3
r3d − 3iωr4dþ 2b − 2r∂rb − 2

3
r3c:

ð21Þ

The temperature is normalized to πT ¼ 1, so all momenta
should be understood as dimensionless: ω=ðπTÞ and
qi=ðπTÞ.
To find Tμν, we consider large r behavior for the metric.

Near r ¼ ∞, detailed analysis of Eqs. (21) and (17) plus the
boundary conditions (12) and (13) reveal

8>>>>>>><
>>>>>>>:

kðrÞ ¼ 2
3
ðr3 þ iωr2Þ∂β þO

�
1
r2

�
;

jiðrÞ ¼ −iωr3βi − 1
3
r2∂i∂β þO

�
1
r

�
;

αijðrÞ ¼
�

2
r −

ηðω;q2Þ
4r4

�
σij − ζðω;q2Þ

4r4 πij þO
�

1
r5

�
;

ð22Þ

where precise forms of η and ζ will be determined via
solving Eqs. (21). The large r behavior (22) for the metric is
related o the stress tensor of the boundary theory,

Tμν ¼ TIdeal
μν þ TDiss

μν ; ð23Þ

where the ideal part TIdeal
μν is 1

b4 ðημν þ 4uμuνÞ, which is
linearized to

TIdeal
00 ¼ 3ð1 − 4b1Þ;

TIdeal
0i ¼ −4βi;

TIdeal
ij ¼ δijð1 − 4b1Þ: ð24Þ

The dissipative part TDiss
μν is nonzero only for spatial

components,

TDiss
ij ¼ −½ηðω; q2Þσij þ ζðω; q2Þπij�; ð25Þ

where ηðω; q2Þ is the generalized viscosity function pro-
posed in Ref. [8] and ζðω; q2Þ is a new viscosity function
emerging starting from the third order.2 Equation (21) is the
main equation of this paper, which could be viewed as exact
RG flow equations for the viscosity functions.

Generalized Navier-Stokes equations can be derived by
focusing on the remaining Einstein equations. More spe-
cifically, the large r limits of r2fðrÞEvr þ Evv ¼ 0 and
r2fðrÞEri þ Evi ¼ 0 result in

∂vb1 ¼
1

3
∂β;

∂ib1 ¼ ∂vβi −
ηð∂v; ∂2Þ

24
ð∂i∂β þ 3∂2βiÞ

−
ζð∂v; ∂2Þ

6
∂2∂i∂β: ð26Þ

Fully consistently, Eq. (26) can be shown to be equivalent
to the conservation law ∂μTμν ¼ 0. Our task of deriving
fluid dynamics from gravity is mathematically reduced to
the boundary value problem of ordinary differential
equations (21).
We first perturbatively solve Eq. (21) by assuming ω and

q to be small. This procedure is equivalent to the usual
derivative expansion. We present the final results,

ηðω; q2Þ ¼ 2þ ð2 − ln 2Þiω −
1

4
q2 −

1

24
½6π − π2

þ12ð2 − 3 ln 2þ ln22Þ�ω2 þ � � � ;

ζðω; q2Þ ¼ 1

12
ð5 − π − 2 ln 2Þ þ � � � ; ð27Þ

where, within our normalization, the first term in η
corresponds to η=s ¼ 1=ð4πÞ; the second term in η is
the relaxation time [14,19,20]. The remaining two terms in
(27) are new third order transport coefficients.
To include all orders of boundary derivatives in Tμν, we

now solve Eqs. (21) numerically. Since we have to impose
boundary conditions both at the horizon and asymptotic
infinity, we resort to a shooting technique. We first find
regular series solutions to Eq. (21) near r ¼ 1, with 6

FIG. 1 (color online). Transport coefficient functions ηðω; q2Þ
and ζðω; q2Þ as functions of ω and q2.2In Ref. [8], ζ was apparently incorrectly argued to be zero.
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expansion coefficients unknown. The regular solutions near
r ¼ 1 enable us to evolve Eq. (21) to r ¼ ∞. The require-
ments (12) and (13) then completely fix these 6 coeffi-
cients. We show our numerical results for the transport
coefficient functions in Fig. 1.
Two features of Fig. 1 are worth mentioning. In the

hydrodynamic regime ω; q ≪ 1, the higher order terms
have the effect of reducing the real parts of η and ζ, as
already noticed in [7]. A decrease in the effective viscosity
affects dispersion relations in the fluid, such as sound
waves. It was argued in [7] that these finite momenta effects
could be responsible for the extra low viscosity observed in
plasmas produced in heavy ion collisions. We anticipate
that both viscosity functions vanish at very large momenta
as seen in Fig. 1. This behavior is important for reliable
discussion of early times in heavy ion collisions, thermal-
ization, and entropy production [10,21]. The second point
is that, as far as the absolute values of η and ζ are
concerned, ζ is highly suppressed. Therefore, it looks
reasonable to ignore ζ in construction of an improved
hydrodynamic model in the spirit of Ref. [8].

IV. CONCLUSION

We determined the linearized energy stress tensor of
N ¼ 4 super-Yang-Mills theory at strong coupling using
the fluid-gravity correspondence. We obtained closed linear
RG flow equations for the viscosity functions. Intriguingly,

an analogous RG flow equation for conductivity derived in
[22] is nonlinear. We also derived the generalized Navier-
Stokes equations for the dual fluid and checked the
consistency of our formalism. To third order in derivative
expansion, we analytically computed the stress tensor for
the dual fluid. We summarized our results for the viscosity
functions including all order derivative terms in Fig. 1.
While our results on the stress tensor are exact even far
beyond the hydrodynamic limit of small momenta, we
obviously do not recover the entire UV physics, but only
part of the dynamics related to the energy-momentum
conservation.
We will report more details about this work in a forth-

coming expanded publication [23].
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