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We construct analytic solutions in cubic open superstring field theory at higher superconformal ghost
numbers. The solutions are the pure ghost ones, given by combinations of Bell polynomials of bosonized
superconformal ghost fields multiplied by exponents of the bosonized ghosts. Based on the structure of the
solutions, we conjecture them to describe the ghost part of collective vacuum for higher spin modes in open

string theory.
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I. INTRODUCTION

String theory is known to be a powerful tool to approach
problems of describing consistently interacting higher spin
(HS) field theories, as well as higher spin holography. In
string theory, the higher spin modes appear naturally as
vertex operators and the symmetries of the higher spin
algebra are realized in terms of the operator algebras of
these vertices [1,1-6]. As the on-shell constraints and the
symmetry transformations on higher spin fields in space-
time follow from the Becchi-Rouet-Stora-Tyutin (BRST)
conditions on the corresponding vertex operators in open or
closed string theory, the N-point correlation functions of
higher spin vertex operators also define the gauge-invariant
HS interactions and, in the AdS case, the holographic
couplings in dual CFT [7]. Unfortunately, however, the on-
shell string theory is background dependent and it is
generally hard to approach string theory in AdS space
beyond the semiclassical limit. On the other hand, open
string field theory (OSFT) is currently our best hope to
advance towards background independent formulation of
strings, with the OSFT equations of motion in the cubiclike
theory formally reminiscent of the relations for the master
fields in the Vasiliev’s equations in the unfolding formalism
for higher spins—with the star products naturally appearing
in both theories [2,8-21]. At the same time, the form of the
vertex operators in Ramond-Neveu-Schwarz string theory,
describing the higher spin gauge fields in the framelike
formalism [22] already carries a strong hint on their
relevance to background independence and emergent
AdS geometry. Namely, consider open string vertex oper-
ators for Vasiliev type two-row higher spin gauge fields
opatlbrbiy = sl ()0 <t <s— 1) [2,3,23,.24]
where m is the curved d-dimensional space index and
a, b indices (corresponding to rows of lengths s — 1 and 1)
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label d-dimensional tangent space. In the case of t = s — 3
the expression for the spin s operator particularly simplifies
and is given by
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at minimal negative picture —s. The manifest expressions
for the spin s operators with 0 <t < s — 3 are generally
more complicated; however, at their canonical pictures
equal to —2s + t 4 3, they can be related to the operator
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where I'= :e?G: is the picture-changing operator
satisfying :I"I": = """ + {Qp» ---}» G is the full
matter + ghost world sheet supercurrent and :I™": ~:
e"’GOG...0"'G:. The operator identity (2) particularly
entails a set of generalized torsion zero constraints relating
the space-time extra fields in the framelike formalism for
the higher spins [22]:

Qs — 1]s — 3(x) ~ 371~ 1I=3(x). (3)
Although the canonical pictures for the V*~!I" (defined by
the singularity order in the asymtotic behavior of the

supermoduli approaching the insertion point of a vertex
operator) are different for various ¢ values, this should not
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be confused with ghost cohomology ranks which are the
same for all the vertex operators of the extra fields with
given s and only depend on the spin value s; that is, all
the operators for the framelike fields of spin s > 3 are the
elements of H_; ~ H,_, [6,22]. In the leading order, the
low-energy equations of motion for Q°~!!" extra fields are
defined by the Weyl invariance constraints on their vertex
operators. Naively, since the operators (1) are massless and
originally are defined in flat space-time, one would expect
the low-energy equations of motion to be given simply by
fo ~ p2Qsll (p) =0 in the leading order. However, as
was explained in [22], due to nontrivial ghost dependence
of the operators in H_; ~ H,_, there are anomalous “mass-
like” terms appearing in the low-energy equations of
motion which, in the leading order, are actually given by

aj...ds |
m

_ _ngzll ag_1|by...b, (p)
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1
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where X, , are the Fronsdal’s symmetrization operators [25]
and the prime stands for taking a trace over a couple of
indices. For t = 0, these leading order equations of motion
coincide with those for the Fronsdal’s massless higher spin
fields in AdS background, polarized along the boundary of
AdS, with the masslike term related to the covariant
derivative of the Laplacian in AdS. This leading order
calculation already provides an example of how curved
geometrical backgrounds (in this case, AdS) typically
appear in calculations involving vertex operators with
nontrivial ghost dependence. Unfortunately, the calculation
performed in [22] is hard to generalize beyond the leading
order, particularly because the operators with different ¢
values mix with each other at the level of three-point
functions and beyond, so the straightforward S-function
calculations become cumbersome and practically insur-
mountable. Given the fact that the conformal $ function is
essentially an off-shell object and, in the case of the higher
spin operators, demonstrates the background change, this
clearly makes a string field theory, extended to higher
superconformal ghost numbers, a natural framework to
approach the problem of higher spin interactions from a
string-theoretic point of view. First of all, recall that the
background independence in cubic string field theory
implies that the equations of motion

QU + Uxl =0 (5)

are invariant under the shift ¥ — U + U, where ¥, is a
solution of (5), provided that the BRST charge is shifted
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according to Q — Q + ¥, implying Q¥ — Q¥ = QU +
WoxW + W, for any string field W. It is important that,
in this approach, the new BRST charge Q defines new
BRST cohomology and string field theory around in a
certain geometrical background, even though the original
theory is often defined around the flat vacuum (making it
possible to compute the off-shell correlators). For this
reason, exact analytic solutions in OSFT are crucial
ingredients to analyze the off-shell interactions in various
space-time geometries (such as AdS), holding a key to
background independence. Unfortunately, because of the
complexity of the equations (5) very few concrete examples
of the analytic OSFT solutions are known so far. One
remarkable example is of course the nonperturbative
tachyon vacuum solution proposed by Schnabl [26],
generalized in many subsequent important papers
[27-29] and particularly used to prove Sen’s conjectures
on tachyon condensation [26,27]. The solutions found
by Schnabl [26] particularly used the basis of the wedge
states where the star product simplifies significantly
[16,26]. Nevertheless, because of the complexity of the
star product (7) calculating the star products of string fields
is generally an extremely cumbersome and tedious prob-
lem. The reason for this complexity is that, in terms of
correlation functions in OSFT, the star product involves
conformal transformations mapping the world sheets of
interacting strings to wedges of a single disc. For example,
in the case of N interacting strings the transformation
mapping the world sheet of the nth string to the nth wedge
(1 £n <N) is given by

N() — ) 1 —iz\#
e = e (1 1F) G

and the star product of two string fields is defined according
to

(1 W% D)) = (f1o®(0)£3291(0)f3292(0))  (7)

for an arbitrary string field ®. Here foW is a conformal
transformation acting on all the operators (generically, off
shell) entering W. For primary fields V; of conformal
dimension £, the transformation is simply given by

rovit0) = (41) Vatrio) ®)

and in the case when descendants are given by the
derivatives of the primaries the transformation is given
by differentiating (8). However, for generic nonprimaries
the global transformation laws are far more complicated
and cannot be reduced to differentiating the combinations
of (8) (e.g. recall the simplest example—the global trans-
formation law of a stress tensor involving Schwarzian
derivatives). Therefore a generic string field transforms
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under (6) in a complicated manner that is hard to control, so
straightforward calculation of the star product through
correlators is not accessible. However, as we point out
in this work, there exists a substantially large class of
operators for which the global conformal transformations
simplify significantly, having an elegant and compact form.
This class includes Bell polynomials of bosonized super-
conformal ghost fields multiplied by exponents of the
bosonized ghosts. These operators altogether form an
invariant subspace under global conformal transformations,
making it possible to directly deduce the star product from
the correlation functions for the string fields restricted to
this subspace. In this paper we consider the cubic super-
string field theory [10,12,30]. We impose no restrictions on
superconformal ghost numbers of string field components,
allowing them to have any positive or negative pictures. We
furthermore impose weak cohomology condition (44) on
the string field replacing the standard gauge fixing (see
below); this condition ensures that string field components
at different superconformal ghost numbers are not mixed
by picture changing. For this reason, there is no need for the
midpoint insertions of inverse picture-changing operators
(unlike the cases when the ghost number and picture of
string fields are fixed or the model of democratic super-
string field theory considered in [31]). In this paper we
particularly propose an ansatz for an analytic solution in
string field theory with the structure

U =0 4 g
oo N-2
g — Z ﬂ}r{lceﬁ/\uﬁBkln-ﬁn-n] (p.1.0)
N=1 n=0
oo N-2
T = Z /1}’\,06_<N+2)4’B£,a”’ﬁ”’y”] (¢, x,0). (9)
N=1 n=0

The limits of summations over n are related to the ghost
cohomology constraints on ¥(+) and U(-) (see below). The
A, coefficients in front of ce?*V* and ce~(N*2)¢ are chosen
equal in order to preserve the isomorphism between
negative and positive ghost cohomologies H, ~ H_(,»)
[6] and a,,f,,y, are certain numbers chosen to satisfy
ghost cohomology constraints on ¥ (see below). The Bell
polynomials in bosonized ghost fields can be computed
according to

dn
BL% Bl (p.y.0) = e~ @b=Pur=120 () e e HPurtrno (7)

(10)

implying x; = a;0¢ + B0y + y;Oc in the formal defini-
tion (14), (15). The analytic solution with the structure (9)
is then calculated in our work in terms of recurrence
relations satisfied by A% coefficients:
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Ny +N,=N—-2 N, ~1 N,—1
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Our purpose is to determine the coefficients p;(,“';‘,;lnf\,z by

directly computing the star product, i.e. the relevant
correlators

(¥, QW) = (¥(0)1oQV(0))
and
(U, UxT)) = <hof?o\I/<0)hof%o\11(0)hofgo\lf(0)>

where I(z) = —1 and

- wten) (1 =iz \ 7
1) = (15 (12

maps the world sheets of » interacting strings putting them
together on a single disc and

z—1
l
z+1

h(z) = - (13)
maps this disc back to the half-plane.

The rest of this paper is organized as follows. In Sec. 11
we review basic facts about Bell polynomials and derive the
global conformal transformation rules for operators enter-
ing the proposed ansatz for the exact analytic solution. In
Sec. Il we compute the relevant correlators in OSFT and
derive the recursion relations for the coefficients defining
the solution. In the concluding section we discuss the
relevance of the solution to higher spin algebras in AdS and
possible generalizations.

II. BELL POLYNOMIALS AND GLOBAL
CONFORMAL TRANSFORMATIONS

The standard definition of the complete Bell polynomials
[32-34] B, (xy, ...x,) is given by

Bn<'x1v ”'xn) = ZBn\k(xlv "‘xn—k—H) (14)
k=1

where B, (X1, ...x,_4) are the partial Bell polynomials
defined according to

n! x5\ P2
Bn|k(x1, ...xn_kH) = Z 7}(}171 <E)

! |
PloePnektl Prie--Pnk+1:

Xn—k+1 Pt
| —————— 15
((n —k+ 1)!) (13)

with the sum taking over all the combinations of non-
negative p; satisfying
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n—k+1 n—k+1

Z pj=k Z jpj=n. (16)
= =

In number theory, Bell polynomials are known to satisfy a
number of useful and beautiful identities and properties,
with some of them important for the calculations performed
in this paper [32,33]. Just to mention a couple of examples,

By(1,...1) = S(n, k) (17)

is the second kind of Stirling number and Bn‘k(O!,l!,...,
(n—k)!) can be expressed in terms of combinations of
Bernoulli numbers (note the appearance of Bernoulli
numbers in the analytic SFT solutions describing the
tachyonic vacuum [26]). Also, given a Taylor’s expan-

sion of a function f(x)=)>, % one has e/(x) =
>-.Bu(ay, ..a,)% in terms of formal series, so e.g. vertex
operators in string theory are typically given by combina-
tions of Bell polynomials in the expansion modes. Note that
the SFT ansatz (9) is actually bilinear in Bell polynomials of
the ghost expansion modes. If one identifies x, = 9" ¢(z),
where ¢(z) is some scalar field, one obtains Bell poly-
nomials in derivatives of ¢; note that in the particular case
¢(z) ~ z* this would reduce to Hermite polynomials in z.
Other useful objects to define are the Bell generators

Hy5l51s o) = S Bugxts ooy (18)
k=1

and more generally

Gt ynl %1 o) = 3 Bugel1, oo 910 oo Vi
k=1
(19)

In the context of two-dimensional CFT, one can think of
Bell polynomials as higher derivative generalizations of the
Schwarzian derivative, appearing in the global conformal
transformation law for the stress tensor. That is, under
z — f(z) one has

16~ (L) 1@ + 550 o

where the Schwarzian derivative

o (A

can be expressed in terms of the second order Bell
polynomials in the log of f’, with x; = %bg(f’):
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%fm) _1 By (log(f"))

S(6)) = By (toe(s), -

1 1
=-2H, <—§ | 10g(f’)> =-2B, (— EIOg(f/)>
(22)
where, for the sake of brevity, we adopt the notation

B,(9(x)) = B,(9g,...0"9) = B, (x1. ...

for any function g(x). This point is of importance as the
higher order Bell polynomials will naturally enter the
global transformation law for the string fields of the type
(9) (see below). We now turn to the question of finding a
global conformal transformation law for the OSFT ansatz
(9). Our strategy will be to find the infinitesimal form of the
transformation first and then to deduce the global trans-
formation by requiring it to reproduce the infinitesimal one
while preserving its form under the composition of two
global transformations. We start with the infinitesimal
transformation following from the operator product expan-

sion (OPE) of the stress tensor T(z) with B! elapr)
where a, a,,, .... are some numbers and

e[a-ﬂy] = ea¢+ﬁx+7”

i i i i Pt
in our notations. Consider the transformation of BE? whnl

first. It is calculated easily noting that

BLan’ﬁ"’y”]e[an‘/jnyn] — ane[an'ﬁn%z] (24)
and
h[an-ﬂn-yn] ae[anﬂn}'n]
T [@-Btn] = . 25
(2)e () (z—w)2+ —w (25)
where
1 p_3r
hlanBurn] — Z (—g2 2 2y _ ., _F_ 27 26
V@ i) g

stands for conformal dimensions of the exponents (with
similar notations below). One then easily computes

T(Z)BL(IH Vﬁnvyn] e[(l,, .ﬂ,,}/n] (W)

_ i I S N Blarba]
= CE SR
X e[awﬁnyn] (W) + . (27)

To compute the variation of Bl Pt ynder infinitesimal
conformal transformation, we note that
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5€(B£;1n-ﬂn~yu])e[(l,,-ﬂn}’n] — 6€(B£:xnvﬂna7n]e[an,ﬂn}/”])

_ kan.ﬂn,m 5€<e[an-ﬂm]) — overlap
(28)

with the overlap contribution stemming from the leading
order singularity in the OPE of the quadratic part of the
stress-energy tensor with one of d¢, dy, o coupling with
B,, and another with the exponent.

To compute this contnbutlon one first has to calculate
the OPE of d¢ with B ") (analogously, for 9y and 95).
This can be done directly, by using a straightforward
expression for B,:

0!,, ﬂn }/u Z Z H 8[)]
m=1n|py...p, pm‘ql’l j=1
+ poPix + y0Pio) (29)
where n|p,...p,, are the ordered partitions of n into m

numbers 0 < p; < p,... < p,, and g p, are multiplicities of
p;’s entering a partition. Then the OPE is easily computed
to give

n anﬁn n
B ) = -, 3 B
n £ I’l _ )k+1
+0(z— w)o (30)
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and similarly for dy and Jo. Using (30), the overlap
contribution to (28) is given by

) ) ) n B[an}(ﬂnvyn]
(31)

Combining (28) and (31), the infinitesimal conformal
transformation of By is given by

T(Z)BLan ~ﬁn!yn] (W) —

5€B£:lmﬂn»7n] — SaB[awﬁnJ/n] + naeB’[lan’ﬂnvyn]

n+1

+ Z n —_ k + 'k' a €(Z)kh[an‘ﬁn-7n]

Fn—k+ 1+ (a2 =2 —2)Belr ().
(32)

Finally, the infinitesimal conformal transformation of terms
entering the OSFT ansatz (9) is given by

5, (BL:I" Puitnl elabyl )5€ (BL% Pl )e[a./}.y]

+ BionPrtnl 5 (elab1]) + overlap (33)

with the overlap contribution in (33) stemming from the
leading order smgularlty in the OPE of the quadratic part of
T(z) with B 7 lab7] with one of (¢, 7. o) contracting
with B, and another with e[*#7] so the overall infinitesimal
transformation of the string field components is

5€(B£lan’ﬂnsyn]e[(l,/],]/]) — ea(BLan P yn e[(l/jy]) _|_ ae( + h[(l,ﬂ,y])BLlanvﬂn’Yn]e[(l.ﬂ,y]

n+1 |
n:
" pk kh|@nButa) —k+1
2 (n—k+1)k! €@l Tk
+ (o = aya— 2+ BB — 1i + var)|Binlieleb ) (2). (34)

Given the infinitesimal transformation (34) with some
effort one can deduce the correct form of the global
conformal transformation of the string field components
(9) under z — f(z) by requiring that

(1) it reproduce the transformation (34) for f(z) =

z+€(z)

(2) its form be preserved under the composition of two

transformations
[as in the standard derivation of the transformation law for
the stress tensor, leading to the appearance of Schwarzian
derivative, which is simply the second order Bell poly-
nomial in the log of f’ (22)].
Regarding the first condition, note that

B, (10g(f'(2)))| )=z 4e(c) = 0"€(2) + O(€?).  (35)

|
Regarding the second, note the binomial property of B,,(f):

B, (f(x) + 9(x)) = B,((f + 9), ... 9"(f + 9))
=3 S BB (36)

which obviously follows from the chain rule applied to the
derivative 0%e/(919) and, finally, Llog(g(f(2) =
log (¢/(f)) +log (f'(z)) for the composition of two con-
formal transformations f and g. This altogether fixes the
form of the global conformal transformation according to
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. df\
BL n'ﬂnvyn’] e[(l,/}.}’] (Z) — <l> BL H’ﬂn’}/n] e[(l-ﬂvy] (f(z))B

dz

n+1

i (n — k + 1)1 \ dz

with the weight factor 1 given by

/I(k’ n’ h[awﬂnvyn]) — kh[amﬂmyn] + n— k + 1 + a%

This defines the global conformal transformations for all
the string field components (9) under z — f(z). Finally, to
prepare for the computation of the SFT correlators, we need
to determine the BRST transformation of the string field
(9), in order to compute ((V, Q¥)) = (VIo(QV)) where [
is the conformal transformation z — w = —1 Since all the
components of ¥ carry b — ¢ ghost number +1 it shall be
sufficient to compute the terms of QU carrying the b — ¢
ghost number +2, that is, the commutator of ¥ with the
stress tensor part of @ given by 3921” (¢T = bedc).
Moreover, since W is pure ghost, it is sufficient to consider
the ghost part of 7(z). Another simplification stems from
the fact that the bosonized expression for c¢T'),_. — bcdc

|

|
QUIoBI et ) (w)],__y = Z -

x [(k = &%) hlawPuril 4 skplabr] 4
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eI (2)

! df\n k+1+hler1] »
Y o (o) Bucs (ko Wt log(7/(2))) x B elot ((2)

(37)

_ana_ﬁ% +ﬁn/}_y% +}/n}/- (38)

[
[where T),_, = 1 (00)* +3 s is the b — ¢ part of the stress
tensor] is given by

2¢Ty_. —bcoc: = e°(Ty_.(z) — &*0) (39)
so the effect of the second term is just reducing the
background charge by 1 unit; in particular, in our compu-
tations of Jo(QW) = Q(IoW) this results in effective shifts

of the conformal dimensions of e®#+7:] according to
h[anvﬂmyn] — i:l[an‘ﬂn-yn] — h[an-ﬂm}’n] + 7/”. (40)

Straightforward computation of Q(/o¥) then gives

(1 _5k)( - a0 — ﬁz +ﬂnﬁ yn T VaY )]

k!
XWz(h[aMM kH)Bk 1(xs xk)|x7 1)72(k=1)wizj=1,... k
n—k+1 n—k+1-1
( l)m
X
XY sy

x [(1 - 5ll)h[anﬁnn+5lh[aﬂ7]

+ (1 =84) (a2 — aya— 2+ B —7v2 +7.7)]

[81+mCBn k—l—-m+2|n—k—1+2 [aﬂy]( )}

001 |(l”/j‘ﬂ Yn
n (_1)k oFtle n—k|n (]
+;(k— D1 [+ 1 00taibr, (w)
o c n—kln [@.B.7] (@ Bal aBy]
+76(B001|anﬁn}'ne o ( ))+ a( e )( ) (41)

Here lef‘;\aﬂr
polynomials with exponential fields, defined according to

are the conformal dimension m polynomials in bosonized ghost fields appearing in the OPE of Bell

B (z1)elP(z,):

n_.
}: pqrlapy

B’[;z,,.ﬂ,,.yn-](zl)e[psq,r] (22) = (
ot 1 — ZQ)

(42)

n—m

[note the upper script for B”!" chosen here in order not to confuse them with the incomplete Bell polynomials for which the

lower indices are reserved according to (15)]. It is straightforward to compute the manifest expressions for B;"q";laﬁy in terms
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of incomplete Bell polynomials. Using the representation (15) for the Bell polynomials in terms of partitions, computing the

OPE (42) and extracting the relevant coefficients we get

n  min(n—m:k)
m|n

(=) ""n!
B pgriapy = mz Z

" k=1 I=max(1;k—m)

Here B[ ﬂ Y] are the incomplete Bell polynomials in
the ghost f1elds defined according to (10), (14). The
numerical ~ coefficients  B,,_,,;(0%, 1!, ..., (n —m —I)!)
given by the values of incomplete Bell polynomials
Bn—rn\l(x17--xn —m— l+1)atx _(.1_1) (J_l sh—m-=
[ + 1) coincide with (n — )th order expansion coefficients
of log!(1 + x) around x = 0.

III. COMPUTATION OF THE STAR PRODUCT

Finally, before starting the computation of the correla-
tors, we shall comment on cohomology constraints on W(+)
and W), playing the role of fixing the gauge in SFT and
defining the limits of summation over n in (9). Since the
analytic solution we are looking for is aiming to describe
the higher spin vacuum, and the higher spin algebras are
determined by the structure of OPEs between ghost
cohomologies H,, ~ H_,_»(n > 0), we impose the follow-
ing weak cohomology constraints according to

()T (w) ~ 0z —w)'T(2) ¥ ~ 0. (44)
The first of these conditions ensures that ¥(-) is non-
singular under the picture-changing transformation; the
second constraint requires that U'(-) is annihilated by I" in a
weak sense, that is, up to terms not contributing to the
correlation functions we are considering. Technically, this
implies that, with the picture-changing operator

1 1
['= 5 ey 0X" + 3¢ (Oy + o) + ce Oy (45)

() is annihilated by the first two terms of I" but is allowed
to have a nonvanishing nonsingular OPE with the last one.
However, as the transformation by cO¢ shifts the b — ¢ and
& — n ghost numbers of the string field components by 1
unit, the terms obtained as a result of the picture-changing
will not contribute to the correlators. Since positive and
|

By (01,11, ...,

(n=m = 1))BIT, (43)

|
negative cohomologies are isomorphic, it is sufficient to
consider the constraints on W(~). The constraints (44)
ensure that string field components of different ghost
numbers are unrelated by picture changing (up to terms
irrelevant for correlators). This leads to

Pr=0y,=0;1n <N-—1. (46)
With the constraints (44) ¥(H) is also automatically
annihilated by the inverse picture-changing operator I'"!
at least in the weak sense. This condition is stronger than
standard gauge constraints on string fields. Note that the
vanishing of f, particularly ensures the standard gauge
condition 7, ¥ = 0. This is the condition typically imposed
on string fields at a particular fixed ghost number. In our
case, however, the constraints clearly have to be stronger
than that since we allowed the contributions from all the
ghost numbers. Note that the condition g, =0 also
technically reduces the string field (9) to the small
Hilbert space (although for generic a,,f,,7, ¥ belongs
to the large space). Indeed, the only y dependence of ¥ is
the common e factor for the components of ¥(+), But this
factor simply ensures the cancellation of the y ghost’s
background charge and does not affect the rest of the
calculations which are effectively in the small space. Also,
in our calculation of the correlators we fix the gauge
a,, = n. This is done for simplicity of our calculations; it is
straightforward to generalize them for arbitrary «,,. Finally,
we find that the y, = 1 choice in (46) is the only one
leading to nontrivial recursion relation on A}, coefficients in
(11) with the opposite the y,, = 0 choice trivializing the
correlators and destroying the general structure of the
solutions. With /oQWU determined, we are now prepared
to calculate ((¥, QW)) for the string field (9).

To compute the correlators, the following operator
products are of importance:

n k n—k+I |
a, 7 —m n . plap, r .
Bt =3 3 3 (e e B (O L m = D):B @)z (47)
wpr mm(kl ko) my—ky+1ny—ky+1 ny'n,!
Ba. N z PCIV 7 —w)"mTm ~ e
ny kg ( ) ”2|k7 IZ: et ’;l ( ) (nl - ml)!(}’lz - mz)'
X Agen(my. mo|): BEP ()BT (w) (48)
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where the signs of the normal ordering imply the absence of contractions on the right-hand side and the generalized Bell
numbers Aggy(m;, m,|l) are defined as follows. Let 0 < p; < p,... < p;and 0 < ¢; < p,... < g, be the ordered length [
partitions of m; and m,. Then

partitions  partitions pairings ) o ' ) o |

gy 1| 1) = my (Pi, + 4, = D' (pi, + 45, = 1)!
Bell \/7¥1, 1142 -2 | [ | | | | |
pilpilg gty ey g Lrg !

My |ProesDr Mol nqy Piy 34y sikedk =10

(49)

where r, , are multiplicities of p and ¢ entering the partitions.

The ghost number anomaly cancellation condition requires that each correlator (both two-point and three-point) must
have b — ¢ ghost number 3, ¢-ghost number —2 and y ghost number 1. It is this condition that ensures the triangular form of
(11), making it a well-defined recurrence relation.

The straightforward calculation of ((¥, QW)) gives

(U, 00) =>"N (1) - m:);)(n_k-z—m+2§7<'z)+m—1)z(n-L1)!

N=1 n=0 k=1
x {[(k = &) nn00 4 SKpl=WNF2)00) 1 (1 — §5Y (N +2)(n + 1) = 1)]
x [(1 = 8ROV 4 8 AENEDOT (1 — ) (N +2)(n +1) = 1)

n I+m—1 n—k—I+2 min(L;:k;—1) min(m,k;—1)

X Z Z Z Z Z (=1)kHI 2L (2 4 p(N +2)))

X BL]lll(O!’ N (Ll - ll)!)BLzllz(O!’ ceey (L2 - lz)')

k3—I3 n+2—k—l-m—k;+Il—q
x> > (nN = 1)9Byy, (0L, ... (M — q)!)

g=1 M=1

n—L—k,=l,—ks+1+q <_1)Q+"—L1 (n - L ),

1 .
X AB1](Q,n+2_k—l—m—M|k3—l3—q)
o, OU-L-or

X {I’lkzég_k'%_ll+ZZ+qABe]l(n - L] - Q, l + m — 1|k2)

— (14 m = Dbt op T Ay (n = Ly = Q314 m = 2]ky)]} (50)

The next step is to compute the three-point correlator

<<\I/, Uxl = <hof%o\IJ(O)hofgo\IJ(O)hofgo\IJ(O»

where, for the convenience of the computation, the conformal transformation

(51)

further maps the disc to the half-plane (upon mapping the world sheets of three interacting strings to the disc). The
straightforward computation of the three-point function, using the operator products (47), (48) gives
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N+N,=N-2 n+1 nj+1n,+1 n'nl'nz'
(U, UxT)) AN —
=2 NIZN;ZI 2,;; n—k+ D)l(ny =k + D)1y — ky + 1)1klk, ey !

x [(k = SRl O1 - SERINOAT (1 — ) (n? — nN)]
x [(ky = &' )alm O 4 SEREN=2 00 (1= 571) (0] + my (N +2))]
% [(k2 _ 511<z)h[n2.0,1] + 5]lfzh[—Nz—2,0.l] + (1 _ 5’;2)
2\ ANV pENT=200 y =N =20y oy —k—ky —ky
(34 m% + )]
x By (A(k, n, h["’0~1])10g(ho(f3)'( M=o
< By (A my W) log(ho(£3) () o Bioms (ka0 og (o £3) (2))) o
(

n—k+1 (n—ky+1) (ma—ky+1) m m—s; my my—t; my my—u; (n—k+1—m+s;) (n—k+1—m+s,—L)

> Z 222200 0 D by

=1 =0 5,=0 1,=0 1,=0 u;=0 u,= Li=s; Ly=s,
(ni—ky+1=—m+1) ("1—k1+1—m1+lz—M1) (ma=ky+1=my+u,) (ny—ky+1=m;+u—Py)
X
M=t My=t, Pr=u, Py=u,

X ABLjs, (0L 1, oo, (Ly = 51)) By, (0L 11, oy (Lo = 52) 1) By, (OL 1L Lo (M — 1))

X BM2|,2(O!, ..., (M- tz)!)BPl‘ul(O!, ..., (P - u])!)sz‘uz(O!, 1, (Py—uy)!)

X (=(Ny +2)n = 1)F (=(Ny + 2)n = 1)2(=n N + 1)

% (_n1<N2 + 2) _ 1)M2(_n2N _ I)P1 (”2(N1 +2)+ I)PZ(\/§>N(N,+2)—(N1+2)(Nz+1)+2—L,—MI—MZ—P2
(2\/‘) (Ny+2)+1-L,— Pl}

n—k+1+ry ny—k +1+r, ny—ky+1+r3
X (—nny + 1)"1(=nny + 1)2(=nyny + 1) Z

Ri=r,  Ry=r Ry=r3
x (V3)7RHRs (20/3) R Ay (Ry5 Ry |ry ) Apen (Ry; Rs|72) Apen (Ra: Rs|r3) } (52)
where
1 1
r = E(erm] My —S; — Sy — 1 — by + Uy +u2)r2:§(m—ml +my—s =Sy +t + 1 —u —u)r
:%(—m—i—ml—m2+s1+s2—t1—t2+u1+u2). (53)

The values of the complete Bell polynomials appearing as a result of conformal transformations by /o f? (j=1,2,3)in
the cubic term (52) are calculated to be given by

k—p lp—H 1)1+mky

By (A(k, n, h"1)) log(ho(f7)'(z ii (p

p=0 1=0 m=0

—D!m!(k—p—m)!

5 F(A-3HC(A+3)(C(A+1))? (54)
T(A=-2-DFA+2+1-KCA+1-mTA+1+m+p—k)

Combining our results for two-point and three-point correlators (50)—(52) we deduce the following recurrence relation for
the Ay structure constants entering the analytic solutions:

)"\nl;nz

nlnysn o (K3 N|N;N
pN\LINIZ;Nz = (KQ)XI; : (55)
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with
n+1 n—k+1n—k=l n (I/l')
K)h =
(ko) = ; ; ZO LZ (n—k—=l—m+2)!(I+m—1)(n—L)!
x {[(k = 5) 00 4 SKp=WNF2)00) (1 — S5V (N +2)(n + 1) = 1)]
x [(1 = 8100 4 sl =00 g s (N4 2)(n+ 1) = 1))
n I4+m—1 n—k—I+2 min(L;k;—1) min(m,k3—1)
x> Y > (=D)L (N 4 2))1By ), (0L (Ly = 1))
k=1 k=1 k=1 L=1 L=1
k3—l3 n+2—k—l-m—ky+Il,—q
X B, (0L .o (Lo = 1)) Y > (nN = 1)7By, (0L, ..., (M — q)!)
q=1 M=1
n—Ll—kl—ll—k3+lz+Q( 1)Q+n L (n _ )
1
X ABell(Q n—|—2 k—1—m-— M|kg—l3 )
Q];z—q Q!(n—L,-Q)!
x [nosy TR IA  (n = Ly — Qi1+ m — 1]ky)
—(I+m =)kl g T I (0 — Ly — Qs 14+ m = 2]k,)]} (56)
and

n+1n;+1n,+1

n|n1 Ny n!nl 'nz'
3w, = Zzzn k4 1)y —ky + 1) (ny —ky + 1)k ky Ty !

lk—lk—l

x [(k— &%) RO 4 SEpINOIT 4 (1 5%) (n? = nN))
x [(ky = 8y ) Al 0N 4 Gpl=N1=20.0 4 (1 - 611 (n} 41 (N +2)))]
2 h[N’l’1]+h[_N1_2'0‘1]+h[_N2_2‘0‘1]+l’l+n|+n2—k—k1 —kz
(k=004 N2 (15803 + s +2)] 5
x By (A(k,n, k") log(ho(f3)(2)))].—0
XBkl 1(A(ky.ny h hlm: 0"])log(h0(f%)’( )l ,OBkz_l(l(kz,nz,h[”2~°"])log(ho(fg)’(z)))|Z:0

n—k+1(ni=ki+1) (ny=ko+1) 'm m—s; my my—t; my my—u, (n=k-+1=m+s;) (n—k-+1-=m+-s,—L;)

2. 2 200 00 ) D

my=1 my=1 =0s5,=017,=0 t,=0 u;=0 up,= Li=s, Ly=s,

(nl—k1+1—m1+t|)(n]—k]+1—m]+t2—M|)(nz—k2+1—m2+u1) (ny—ky+1—my+u,—Py)

<> 2.

M=t My=t, Pr=u, Pr=u,
XABpL s, (0L 1Y (L =51))By,)s, (01,11, (Lo = $2) ) By, 1, (0L 1L, (M = 1))
X By, 1, (0L 11, (My = 15))Bp 1, (01, 11, s (P = 1)) B, (OL 1L, (Py— 1))
X (=(Ny+2)n=1)" (=(Ny +2)n=1)"(=n; N+ DMt (=n (N5 +2) = )*> (=n,N = 1)
% (n2<Nl +2)+I)PZ(\/g)N(N,+2)—(N1+2)(N2+l)+2—L1—MI—MZ—PZ (2\/§)N(N2+2)+1—L2—P1}

n—k+1+4r; ny =k +1+ryny—ky+1+4r3
X (—=nny 4+ 1) (=nny+ 1) (=niny+1)" E E E
Ry=r, Ry=ry Ry=r;

X (\/3)_R1+R3 (2\/§)_R1_R3AB611(R1;R2|r1)ABeH(Rl;RB'rZ)ABeH (Ry:R5|13)}. (57)

This concludes the computation of the coefficients defining the analytic OSFT solution.
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IV. BELL POLYNOMIALS AND HIGHER SPIN
ALGEBRAS

In this concluding section we shall present some
arguments relating the structure of the analytic OSFT
solution, studied in this work, to free field realizations
of the higher spin algebras in AdS. An insightful hint,
relating Bell polynomials to free field realizations of higher
spin algebras in AdS, comes from the ¢ = 1 model, i.e.
one-dimensional noncritical string theory.

The one-dimensional string compactified on S! has no
standard massless modes (like a photon) but does have an
SU(2) multiplet of massless states existing at nonstandard
b — ¢ ghost numbers and discrete momentum values
[12,35,36].

The SU(2) symmetry at self-dual radius R =
realized by the operators:

4
s

Tj: = fdzeiixﬁ; TO = %dz@X (58)

The SU(2) multiplet of discrete states can be constru-
cted by acting with the lowering 7_ of SU(2) on the
highest weight vectors given by tachyonic primaries V; =
eIX+(=D0)V2 (with integer 1):

U = TE"V. (59)

Manifest expressions for Uy, vertex operators are com-
plicated; however, their structure constants have been
deduced by [35,36] by using symmetry arguments. One has

Ul||m| (Z) Ulz\mz (W)
~(z=w)T'C(ly, by, llmy,my, m3) f(1, 1)Uy, (60)

where the SU(2) Clebsch-Gordan coefficients are fixed by
the symmetry while the function of Casimir eigenvalues

f(l},1,) is nontrivial and was deduced to be given by
[35,36]

VI FL21) + 21, — 2)!
V2L5L(20 — )12 — 1)1

Remarkably, these structure constants coincide exactly
with those of higher spin algebra in AdS; in a certain basis,
computed by Fradkin and Linetsky [37,38] in 1989, in a
seemingly different context. On the other hand, the explicit
structure of the vertex operators for the discrete states
realizing this algebra is given by

flh ) = (61)

Ul ~ B, (-iXV?2)...B,,
F(UU=1)=m(m=1))|py..c.piom

% (_iX\/E)e\/E(imX-&-(l—l)(p) (62)

PHYSICAL REVIEW D 90, 086002 (2014)

with the sum taken over ordered partitions of
(U= 1) = m(m = 1) Py -.e. Prc.

This is a relatively simple example of Bell polynomials
multiplied by exponentials realizing the higher spin algebras
in AdS,; in terms of vertex operator algebras in (d — 1)-
dimensional string theory. One can further think of extend-
ing the symmetry of the ¢ = 1 model by supersymmetrizing
it on the world sheet and coupling to the f# — y enhancing
the symmetry from SU(2) to SU(4). The SU(4) algebra can
be realized by taking the raising generators:

T0;1 = ]{dzefxy/T—3i2 = j{dze—3¢+2ixw
743 = fdze—4¢+3ixw (63)

and the remaining 12 generators are obtained by acting
on (63) with the lowering generators of SU(2),
T = §dze Xy

T—4;k — (TO;—1)3—kT—4;3
T—3;l — (TO;—I)Z—kT—S;Z
TO;m — (TO;—I)l—kTO;l

-1<m<1 (64)

with 790 730 T7-%0 being the Cartan generators of
SU(4). The SU(4) multiplet is then obtained by the
combinations of lowering operators of SU(4) with negative
k,l,m acting on the same dressed tachyonic primaries
entering (59). The structure constants of the operators of the
SU(4) are again given by the Clebsch-Gordan coefficients
of SU(4) multiplied by certain functions of the eigenvalues
of SU(4) Casimir operators. Unfortunately, because of the
complexity of the SU(4) operators, the explicit form of
these functions has never been worked out. Evaluating
them would be important in order to point out the relation
of this operator algebra to the structure constants of the
higher spin algebra in AdSs. With the techniques explained
in this paper, we hope to be able to perform this compu-
tation in future work. As in the SU(2) case, the structure of
the manifest vertex operator expressions for the SU(4)
multiplet involve products of Bell polynomials in X, y and
ghost fields multiplied by exponents of X, although the
structure of the Bell polynomials in the SU(4) case is
clearly more complicated than (62). Thus one can think of
Bell polynomial products (multiplied by exponents) as
natural vertex operator realizations of various AdS higher
spin algebras in string theory. The string field theory
analytic solution presented in this paper is a simple
example of this class of the operators. By itself, it is
clearly incomplete to describe the full higher spin vacuum,
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despite some of its attractive properties. In particular, one
clearly has to generalize this string field theory solution to
include products of multiple Bell polynomials, in order to
make connections to the full higher spin algebras in AdS. Our
particular conjecture is that the OSFT solutions of the type

U = Z Ay "B, (¢p.x.0)...B, (¢, x.0)
g

N.ny,...,
x (c&eN? + ce=(N+27) (65)

can be related to contributions of the k-row higher spin fields
with mixed symmetries to the collective higher spin vacuum
configuration. In general, the full space of these solutions
would form an “enveloping” of higher spin algebra. It would
be interesting to point out the connection of this enveloping
to multiparticle extensions of the higher spin algebras
proposed by Vasiliev [39]. With the on-shell arguments,

PHYSICAL REVIEW D 90, 086002 (2014)

showing the relevance of the vertex operators for the
framelike higher spin fields to the background independence,
relating the languages and concepts of higher spin gauge
theories and string field theory promises a fascinating ground
for future work.
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