
New analytic solutions in string field theory:
Towards a collective higher spin vacuum

Dimitri Polyakov*

Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University,
Chengdu 610064, China; Center for Quantum Space-Time (CQUeST), Sogang University,

Seoul 121-742, Korea; and Institute for Information Transmission Problems (IITP),
Bolshoi Karetny per. 19/1, 127994 Moscow, Russia

(Received 21 August 2014; published 3 October 2014)

We construct analytic solutions in cubic open superstring field theory at higher superconformal ghost
numbers. The solutions are the pure ghost ones, given by combinations of Bell polynomials of bosonized
superconformal ghost fields multiplied by exponents of the bosonized ghosts. Based on the structure of the
solutions, we conjecture them to describe the ghost part of collective vacuum for higher spin modes in open
string theory.
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I. INTRODUCTION

String theory is known to be a powerful tool to approach
problems of describing consistently interacting higher spin
(HS) field theories, as well as higher spin holography. In
string theory, the higher spin modes appear naturally as
vertex operators and the symmetries of the higher spin
algebra are realized in terms of the operator algebras of
these vertices [1,1–6]. As the on-shell constraints and the
symmetry transformations on higher spin fields in space-
time follow from the Becchi-Rouet-Stora-Tyutin (BRST)
conditions on the corresponding vertex operators in open or
closed string theory, the N-point correlation functions of
higher spin vertex operators also define the gauge-invariant
HS interactions and, in the AdS case, the holographic
couplings in dual CFT [7]. Unfortunately, however, the on-
shell string theory is background dependent and it is
generally hard to approach string theory in AdS space
beyond the semiclassical limit. On the other hand, open
string field theory (OSFT) is currently our best hope to
advance towards background independent formulation of
strings, with the OSFT equations of motion in the cubiclike
theory formally reminiscent of the relations for the master
fields in the Vasiliev’s equations in the unfolding formalism
for higher spins—with the star products naturally appearing
in both theories [2,8–21]. At the same time, the form of the
vertex operators in Ramond-Neveu-Schwarz string theory,
describing the higher spin gauge fields in the framelike
formalism [22] already carries a strong hint on their
relevance to background independence and emergent
AdS geometry. Namely, consider open string vertex oper-
ators for Vasiliev type two-row higher spin gauge fields
Ωa1…as−1jb1…bt

m ðxÞ≡Ωs−1jtðxÞð0 ≤ t ≤ s − 1Þ [2,3,23,24]
where m is the curved d-dimensional space index and
a; b indices (corresponding to rows of lengths s − 1 and t)

label d-dimensional tangent space. In the case of t ¼ s − 3
the expression for the spin s operator particularly simplifies
and is given by

Vs−1js−3ðpÞ
≡Ωa1…as−1jb1…bs−3

m ðpÞVm
a1…as−1jb1…bs−3

ðpÞ
¼ Ωa1…as−1jb1…bs−3

m ðpÞ

×
I

dze−sϕψm∂ψb1∂2ψb2…∂s−3ψbs−3∂Xa1…∂Xas−2e
ipX

ð1Þ

at minimal negative picture −s. The manifest expressions
for the spin s operators with 0 ≤ t < s − 3 are generally
more complicated; however, at their canonical pictures
equal to −2sþ tþ 3, they can be related to the operator
Vm
a1…as−1jb1…bs−3

(1) by

∶Γs−t−3Ωa1…as−1jb1…bt
m ðpÞVm

a1…as−1jb1…bt
∶ ðpÞ

¼ Ωa1…as−1jb1…bs−3
m ðpÞVm

a1…as−1jb1…bs−3
ðpÞ ð2Þ

where Γ ¼ ∶eϕG∶ is the picture-changing operator
satisfying ∶ΓmΓn∶ ¼ ∶Γmþn∶þ fQbrst;…g, G is the full
matter þ ghost world sheet supercurrent and ∶Γn∶ ∼ ∶
enϕG∂G…∂n−1G∶. The operator identity (2) particularly
entails a set of generalized torsion zero constraints relating
the space-time extra fields in the framelike formalism for
the higher spins [22]:

Ωs − 1js − 3ðxÞ ∼ ∂s−3−tΩs−1js−3ðxÞ: ð3Þ
Although the canonical pictures for the Vs−1jt (defined by
the singularity order in the asymtotic behavior of the
supermoduli approaching the insertion point of a vertex
operator) are different for various t values, this should not*polyakov@sogang.ac.kr; twistorstring@gmail.com
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be confused with ghost cohomology ranks which are the
same for all the vertex operators of the extra fields with
given s and only depend on the spin value s; that is, all
the operators for the framelike fields of spin s ≥ 3 are the
elements of H−s ∼Hs−2 [6,22]. In the leading order, the
low-energy equations of motion for Ωs−1jt extra fields are
defined by the Weyl invariance constraints on their vertex
operators. Naively, since the operators (1) are massless and
originally are defined in flat space-time, one would expect
the low-energy equations of motion to be given simply by
βΩ ∼ p2Ωs−1jtðpÞ ¼ 0 in the leading order. However, as
was explained in [22], due to nontrivial ghost dependence
of the operators in H−s ∼Hs−2 there are anomalous “mass-
like” terms appearing in the low-energy equations of
motion which, in the leading order, are actually given by

βa1…as−1
m

¼−p2Ωa1…as−1jb1…bt
m ðpÞ

þΣ1ða1ja2;…as−1Þpdpa1Ωa2…as−1djb1…bt
m

−
1

2
Σ2ðas−2;as−1ja1;…;as−3Þpas−1pas−2ðΩ0

mÞa1…as−3jb1…bt

−4ðs−1ÞΩa1…as−1jb1…bt
m ð4Þ

where Σ1;2 are the Fronsdal’s symmetrization operators [25]
and the prime stands for taking a trace over a couple of
indices. For t ¼ 0, these leading order equations of motion
coincide with those for the Fronsdal’s massless higher spin
fields in AdS background, polarized along the boundary of
AdS, with the masslike term related to the covariant
derivative of the Laplacian in AdS. This leading order
calculation already provides an example of how curved
geometrical backgrounds (in this case, AdS) typically
appear in calculations involving vertex operators with
nontrivial ghost dependence. Unfortunately, the calculation
performed in [22] is hard to generalize beyond the leading
order, particularly because the operators with different t
values mix with each other at the level of three-point
functions and beyond, so the straightforward β-function
calculations become cumbersome and practically insur-
mountable. Given the fact that the conformal β function is
essentially an off-shell object and, in the case of the higher
spin operators, demonstrates the background change, this
clearly makes a string field theory, extended to higher
superconformal ghost numbers, a natural framework to
approach the problem of higher spin interactions from a
string-theoretic point of view. First of all, recall that the
background independence in cubic string field theory
implies that the equations of motion

QΨþΨ⋆Ψ ¼ 0 ð5Þ

are invariant under the shift Ψ → ΨþΨ0 where Ψ0 is a
solution of (5), provided that the BRST charge is shifted

according to Q → QþΨ0, implying QΨ → ~QΨ ¼ QΨþ
Ψ0⋆ΨþΨ⋆Ψ0 for any string field Ψ. It is important that,
in this approach, the new BRST charge ~Q defines new
BRST cohomology and string field theory around in a
certain geometrical background, even though the original
theory is often defined around the flat vacuum (making it
possible to compute the off-shell correlators). For this
reason, exact analytic solutions in OSFT are crucial
ingredients to analyze the off-shell interactions in various
space-time geometries (such as AdS), holding a key to
background independence. Unfortunately, because of the
complexity of the equations (5) very few concrete examples
of the analytic OSFT solutions are known so far. One
remarkable example is of course the nonperturbative
tachyon vacuum solution proposed by Schnabl [26],
generalized in many subsequent important papers
[27–29] and particularly used to prove Sen’s conjectures
on tachyon condensation [26,27]. The solutions found
by Schnabl [26] particularly used the basis of the wedge
states where the star product simplifies significantly
[16,26]. Nevertheless, because of the complexity of the
star product (7) calculating the star products of string fields
is generally an extremely cumbersome and tedious prob-
lem. The reason for this complexity is that, in terms of
correlation functions in OSFT, the star product involves
conformal transformations mapping the world sheets of
interacting strings to wedges of a single disc. For example,
in the case of N interacting strings the transformation
mapping the world sheet of the nth string to the nth wedge
(1 ≤ n ≤ N) is given by

fNn ðzÞ ¼ e
iπðn−1Þ

N

�
1 − iz
1þ iz

�2
N ð6Þ

and the star product of two string fields is defined according
to

hhΦ;Ψ1⋆Ψ2ii ¼ hf31∘Φð0Þf32∘Ψ1ð0Þf33∘Ψ2ð0Þi ð7Þ

for an arbitrary string field Φ. Here f∘Ψ is a conformal
transformation acting on all the operators (generically, off
shell) entering Ψ. For primary fields Vh of conformal
dimension h, the transformation is simply given by

f∘Vhð0Þ ¼
�
df
dz

�
h
Vhðfð0ÞÞ ð8Þ

and in the case when descendants are given by the
derivatives of the primaries the transformation is given
by differentiating (8). However, for generic nonprimaries
the global transformation laws are far more complicated
and cannot be reduced to differentiating the combinations
of (8) (e.g. recall the simplest example—the global trans-
formation law of a stress tensor involving Schwarzian
derivatives). Therefore a generic string field transforms
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under (6) in a complicated manner that is hard to control, so
straightforward calculation of the star product through
correlators is not accessible. However, as we point out
in this work, there exists a substantially large class of
operators for which the global conformal transformations
simplify significantly, having an elegant and compact form.
This class includes Bell polynomials of bosonized super-
conformal ghost fields multiplied by exponents of the
bosonized ghosts. These operators altogether form an
invariant subspace under global conformal transformations,
making it possible to directly deduce the star product from
the correlation functions for the string fields restricted to
this subspace. In this paper we consider the cubic super-
string field theory [10,12,30]. We impose no restrictions on
superconformal ghost numbers of string field components,
allowing them to have any positive or negative pictures. We
furthermore impose weak cohomology condition (44) on
the string field replacing the standard gauge fixing (see
below); this condition ensures that string field components
at different superconformal ghost numbers are not mixed
by picture changing. For this reason, there is no need for the
midpoint insertions of inverse picture-changing operators
(unlike the cases when the ghost number and picture of
string fields are fixed or the model of democratic super-
string field theory considered in [31]). In this paper we
particularly propose an ansatz for an analytic solution in
string field theory with the structure

Ψ ¼ ΨðþÞ þΨð−Þ

ΨðþÞ ¼
X∞
N¼1

XN−2

n¼0

λnNce
χþNϕB½αn;βn;γn�

n ðϕ; χ; σÞ

Ψð−Þ ¼
X∞
N¼1

XN−2

n¼0

λnNce
−ðNþ2ÞϕB½αn;βn;γn�

n ðϕ; χ; σÞ: ð9Þ

The limits of summations over n are related to the ghost
cohomology constraints on ΨðþÞ and Ψð−Þ (see below). The
λnN coefficients in front of ceχþNϕ and ce−ðNþ2Þϕ are chosen
equal in order to preserve the isomorphism between
negative and positive ghost cohomologies Hn ∼H−ðnþ2Þ
[6] and αn; βn; γn are certain numbers chosen to satisfy
ghost cohomology constraints on Ψ (see below). The Bell
polynomials in bosonized ghost fields can be computed
according to

B½αn;βn;γn�
n ðϕ; χ; σÞ ¼ e−αnϕ−βnχ−γnσðzÞ dn

dzn
eαnϕþβnχþγnσðzÞ

ð10Þ

implying xk ¼ αk∂ϕþ βk∂χ þ γk∂σ in the formal defini-
tion (14), (15). The analytic solution with the structure (9)
is then calculated in our work in terms of recurrence
relations satisfied by λnN coefficients:

λnN ¼
XN1þN2¼N−2

N1;N2¼1

XN1−1

n1¼0

XN2−1

n2¼0

ρnjn1;n2NjN1;N2
λn1N1

λn2N2
: ð11Þ

Our purpose is to determine the coefficients ρnjn1;n2NjN1;N2
by

directly computing the star product, i.e. the relevant
correlators

hhΨ; QΨii ¼ hΨð0ÞI∘QΨð0Þi

and

hhΨ;Ψ⋆Ψii ¼ hh∘f31∘Ψð0Þh∘f32∘Ψð0Þh∘f33∘Ψð0Þi

where IðzÞ ¼ − 1
z and

fnkðzÞ ¼ e
iπðk−1Þ

n

�
1 − iz
1þ iz

�2
n ð12Þ

maps the world sheets of n interacting strings putting them
together on a single disc and

hðzÞ ¼ −i
z − 1

zþ 1
ð13Þ

maps this disc back to the half-plane.
The rest of this paper is organized as follows. In Sec. II

we review basic facts about Bell polynomials and derive the
global conformal transformation rules for operators enter-
ing the proposed ansatz for the exact analytic solution. In
Sec. III we compute the relevant correlators in OSFT and
derive the recursion relations for the coefficients defining
the solution. In the concluding section we discuss the
relevance of the solution to higher spin algebras in AdS and
possible generalizations.

II. BELL POLYNOMIALS AND GLOBAL
CONFORMAL TRANSFORMATIONS

The standard definition of the complete Bell polynomials
[32–34] Bnðx1;…xnÞ is given by

Bnðx1;…xnÞ ¼
Xn
k¼1

Bnjkðx1;…xn−kþ1Þ ð14Þ

where Bnjkðx1;…xn−kþ1Þ are the partial Bell polynomials
defined according to

Bnjkðx1;…xn−kþ1Þ ¼
X

p1;…pn−kþ1

n!
p1!…pn−kþ1!

xp1

1

�
x2
2!

�
p2

…

�
xn−kþ1

ðn − kþ 1Þ!
�

pn−kþ1 ð15Þ

with the sum taking over all the combinations of non-
negative pj satisfying
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Xn−kþ1

j¼1

pj ¼ k
Xn−kþ1

j¼1

jpj ¼ n: ð16Þ

In number theory, Bell polynomials are known to satisfy a
number of useful and beautiful identities and properties,
with some of them important for the calculations performed
in this paper [32,33]. Just to mention a couple of examples,

Bnjkð1;…1Þ ¼ Sðn; kÞ ð17Þ

is the second kind of Stirling number and Bnjkð0!;1!;…;
ðn−kÞ!Þ can be expressed in terms of combinations of
Bernoulli numbers (note the appearance of Bernoulli
numbers in the analytic SFT solutions describing the
tachyonic vacuum [26]). Also, given a Taylor’s expan-
sion of a function fðxÞ ¼ P

n
anxn

n! one has efðxÞ ¼P
nBnða1; ::anÞ xnn! in terms of formal series, so e.g. vertex

operators in string theory are typically given by combina-
tions of Bell polynomials in the expansion modes. Note that
the SFTansatz (9) is actually bilinear in Bell polynomials of
the ghost expansion modes. If one identifies xn ¼ ∂nϕðzÞ,
where ϕðzÞ is some scalar field, one obtains Bell poly-
nomials in derivatives of ϕ; note that in the particular case
ϕðzÞ ∼ z2 this would reduce to Hermite polynomials in z.
Other useful objects to define are the Bell generators

Hnðyjx1;…; xnÞ ¼
Xn
k¼1

Bnjkðx1;…; xn−kþ1Þyn ð18Þ

and more generally

Gnðy1…ynjx1;…; xnÞ ¼
Xn
k¼1

Bnjkðx1;…; xn−kþ1Þy1;…; yk:

ð19Þ

In the context of two-dimensional CFT, one can think of
Bell polynomials as higher derivative generalizations of the
Schwarzian derivative, appearing in the global conformal
transformation law for the stress tensor. That is, under
z → fðzÞ one has

TðzÞ →
�
df
dz

�
2

TðfðzÞÞ þ c
12

SðfðzÞÞ ð20Þ

where the Schwarzian derivative

SðfðzÞÞ ¼
�
f00ðzÞ
f0ðzÞ

�0
−
1

2

�
f00ðzÞ
f0ðzÞ

�
2

ð21Þ

can be expressed in terms of the second order Bell
polynomials in the log of f0, with xk ≡ dk−1

dzk−1
logðf0Þ:

SðfðzÞÞ ¼ B2j1

�
logðf0Þ; d × logðf0Þ

dz

�
−
1

2
B2j2ðlogðf0ÞÞ

≡ −2H2

�
−
1

2
j logðf0Þ

�
≡ −2B2

�
−
1

2
logðf0Þ

�

ð22Þ

where, for the sake of brevity, we adopt the notation

BnðgðxÞÞ≡ Bnð∂g;…∂ngÞ ¼ Bnðx1;…xnÞjxk¼∂k
xgðxÞ;k¼1;…;n

ð23Þ

for any function gðxÞ. This point is of importance as the
higher order Bell polynomials will naturally enter the
global transformation law for the string fields of the type
(9) (see below). We now turn to the question of finding a
global conformal transformation law for the OSFT ansatz
(9). Our strategy will be to find the infinitesimal form of the
transformation first and then to deduce the global trans-
formation by requiring it to reproduce the infinitesimal one
while preserving its form under the composition of two
global transformations. We start with the infinitesimal
transformation following from the operator product expan-

sion (OPE) of the stress tensor TðzÞ with B½αn;βn;γn�
n e½α:βγ�

where α; αn;…. are some numbers and

e½α:βγ� ≡ eαϕþβχþγσ

in our notations. Consider the transformation of B½αn;βn;γn�
n

first. It is calculated easily noting that

B½αn;βn;γn�
n e½αn:βnγn� ¼ ∂ne½αn:βnγn� ð24Þ

and

TðzÞe½αn:βnγn�ðwÞ ¼ h½αn;βn;γn�

ðz − wÞ2 þ
∂e½αn:βnγn�
z − w

þ… ð25Þ

where

h½αn;βn;γn� ¼ 1

2
ð−α2 þ β2 þ γ2Þ − α −

β

2
−
3γ

2
ð26Þ

stands for conformal dimensions of the exponents (with
similar notations below). One then easily computes

TðzÞB½αn;βn;γn�
n e½αn:βnγn�ðwÞ

¼
Xnþ1

k¼0

n!
ðn − kþ 1Þ!

kh½αn;βn;γn� þ n − kþ 1

ðz − wÞkþ1
B½αn;βn;γn�
n−kþ1

× e½αn:βnγn�ðwÞ þ… ð27Þ

To compute the variation of B½αn;βn;γn�
n under infinitesimal

conformal transformation, we note that
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δϵðB½αn;βn;γn�
n Þe½αn:βnγn� ¼ δϵðB½αn;βn;γn�

n e½αn:βnγn�Þ
− B½αn;βn;γn�

n δϵðe½αn:βnγn�Þ − overlap

ð28Þ

with the overlap contribution stemming from the leading
order singularity in the OPE of the quadratic part of the
stress-energy tensor with one of ∂ϕ; ∂χ; ∂σ coupling with
Bn and another with the exponent.
To compute this contribution, one first has to calculate

the OPE of ∂ϕ with B½αn;βn;γn�
n (analogously, for ∂χ and ∂σ).

This can be done directly, by using a straightforward
expression for Bn:

B½αn;βn;γn�
n ¼

Xn
m¼1

X
njp1…pm

n!
p1!…pm!qp1

!…qpm
!

Ym
j¼1

ðα∂pjϕ

þ β∂pjχ þ γ∂pjσÞ ð29Þ

where njp1…pm are the ordered partitions of n into m
numbers 0 < p1 ≤ p2… ≤ pm and qpj

are multiplicities of
pj’s entering a partition. Then the OPE is easily computed
to give

∂ϕðzÞB½αn;βn;γn�
n ðwÞ ¼ −αn

Xn
k¼1

n!
ðn − kÞ!

B½αn;βn;γn�
n−k

ðz − wÞkþ1

þOðz − wÞ0 ð30Þ

and similarly for ∂χ and ∂σ. Using (30), the overlap
contribution to (28) is given by

TðzÞB½αn;βn;γn�
n ðwÞ ¼ ð−α2 þ β2 þ γ2Þ

Xn
k¼1

B½αn;βn;γn�
n−k

ðz − wÞkþ2
:

ð31Þ
Combining (28) and (31), the infinitesimal conformal
transformation of B½αn;βn;γn�

n is given by

δϵB
½αn;βn;γn�
n ¼ ϵ∂B½αn;βn;γn�

n þ n∂ϵB½αn;βn;γn�
n

þ
Xnþ1

k¼2

n!
ðn − kþ 1Þ!k! ∂

kϵðzÞkh½αn;βn;γn�

þ n − kþ 1þ ðα2n − β2n − γ2nÞB½αn;βn;γn�
n−kþ1 ðzÞ:

ð32Þ
Finally, the infinitesimal conformal transformation of terms
entering the OSFT ansatz (9) is given by

δϵðB½αn;βn;γn�
n e½α;β;γ�ÞδϵðB½αn;βn;γn�

n Þe½α;β;γ�

þ B½αn;βn;γn�
n δϵðe½α;β;γ�Þ þ overlap ð33Þ

with the overlap contribution in (33) stemming from the
leading order singularity in the OPE of the quadratic part of
TðzÞ with B½αn;βn;γn�

n e½α;β;γ� with one of ∂ðϕ; χ; σÞ contracting
with Bn and another with e½α;β;γ� so the overall infinitesimal
transformation of the string field components is

δϵðB½αn;βn;γn�
n e½α;β;γ�Þ ¼ ϵ∂ðB½αn;βn;γn�

n e½α;β;γ�Þ þ ∂ϵðnþ h½α;β;γ�ÞB½αn;βn;γn�
n e½α;β;γ�

þ
Xnþ1

k¼2

n!
ðn − kþ 1Þ!k! ∂

kϵðzÞ½kh½αn;βn;γn� þ n − kþ 1

þ ðα2n − αnα − β2n þ βnβ − γ2n þ γnγÞ�B½αn;βn;γn�
n−kþ1 e½α;β;γ�ðzÞ: ð34Þ

Given the infinitesimal transformation (34) with some
effort one can deduce the correct form of the global
conformal transformation of the string field components
(9) under z → fðzÞ by requiring that
(1) it reproduce the transformation (34) for fðzÞ ¼

zþ ϵðzÞ
(2) its form be preserved under the composition of two

transformations
[as in the standard derivation of the transformation law for
the stress tensor, leading to the appearance of Schwarzian
derivative, which is simply the second order Bell poly-
nomial in the log of f0 (22)].
Regarding the first condition, note that

Bnðlogðf0ðzÞÞÞjfðzÞ¼zþϵðzÞ ¼ ∂nϵðzÞ þOðϵ2Þ: ð35Þ

Regarding the second, note the binomial property of BnðfÞ:

BnðfðxÞ þ gðxÞÞ≡ Bnð∂ðf þ gÞ;…; ∂nðf þ gÞÞ

¼
Xn
k¼0

n!
k!ðn − kÞ!BkðfÞBn−kðgÞ ð36Þ

which obviously follows from the chain rule applied to the
derivative ∂n

zefðzÞþgðzÞ and, finally, d
dz logðgðfðzÞÞÞ ¼

log ðg0ðfÞÞ þ log ðf0ðzÞÞ for the composition of two con-
formal transformations f and g. This altogether fixes the
form of the global conformal transformation according to
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B½αn;βn;γn;�
n e½α;β;γ�ðzÞ →

�
df
dz

�
nþh½α;β;γ�

B½αn;βn;γn�
n e½α;β;γ�ðfðzÞÞB½αn;βn;γn�

n−kþ1 e½α;β;γ�ðfðzÞÞ

þ
Xnþ1

k¼2

n!
k!ðn − kþ 1Þ!

�
df
dz

�
n−kþ1þh½α;β;γ�

Bk−1ðλðk; n; h½αn;βn;γn�Þ logðf0ðzÞÞÞ × B½αn;βn;γn�
n−kþ1 e½α;β;γ�ðfðzÞÞ

ð37Þ
with the weight factor λ given by

λðk; n; h½αn;βn;γn�Þ ¼ kh½αn;βn;γn� þ n − kþ 1þ α2n − αnα − β2n þ βnβ − γ2n þ γnγ: ð38Þ

This defines the global conformal transformations for all
the string field components (9) under z → fðzÞ. Finally, to
prepare for the computation of the SFT correlators, we need
to determine the BRST transformation of the string field
(9), in order to compute hhΨ; QΨii ¼ hΨI∘ðQΨÞi where I
is the conformal transformation z → w ¼ − 1

z. Since all the
components of Ψ carry b − c ghost number þ1, it shall be
sufficient to compute the terms of QΨ carrying the b − c
ghost number þ2, that is, the commutator of Ψ with the
stress tensor part of Q given by

H
dz
2iπ ðcT − bc∂cÞ.

Moreover, since Ψ is pure ghost, it is sufficient to consider
the ghost part of TðzÞ. Another simplification stems from
the fact that the bosonized expression for cTb−c − bc∂c

[where Tb−c ¼ 1
2
ð∂σÞ2 þ 3

2
∂2σ is the b − c part of the stress

tensor] is given by

∶cTb−c − bc∂c∶ ¼ eσðTb−cðzÞ − ∂2σÞ ð39Þ

so the effect of the second term is just reducing the
background charge by 1 unit; in particular, in our compu-
tations of I∘ðQΨÞ ¼ QðI∘ΨÞ this results in effective shifts
of the conformal dimensions of e½αn;βn;γn� according to

h½αn;βn;γn� → ~h½αn;βn;γn� ¼ h½αn;βn;γn� þ γn: ð40Þ

Straightforward computation of QðI∘ΨÞ then gives

QðI∘B½α;β;γ;�
n e½α;β;γ�ÞðwÞjw¼−1

z
¼

Xnþ1

k¼1

n!
k!

× ½ðk − δk1Þh½αn;βn;γn� þ δk1h
½α;β;γ;� þ ð1 − δk1Þðα2n − αnα − β2n þ βnβ − γ2n þ γnγÞ�

× w2ðh½α;β;γ;�þn−kþ1ÞBk−1ðx1;…xkÞjxj¼ð−1Þj2ðk−1Þ!wj;j¼1;…;k

×

� Xn−kþ1

l¼1

Xn−kþ1−l

m¼0

ð−1Þm
ðn − k − lþ 2Þ!ðlþmÞ!

× ½ðl − δl1Þ ~h½αn;βn;γn� þ δl1 ~h
½α;β;γ;� þ ð1 − δl1Þðα2n − αnα − β2n þ βnβ − γ2n þ γnγÞ�

× ½∂lþmcBn−k−l−mþ2jn−k−lþ2

001jαnβnγn e½α;β;γ�ðwÞ
�

þ
Xn
k¼1

ð−1Þk
ðk − 1Þ!

�∂kþ1c
kþ 1

Bn−kjn
001jαnβnγne

½α;β;γ�ðwÞ

þ ∂kc
k

∂ðBn−kjn
001jαnβnγne

½α;β;γ�ðwÞÞ þ c∂ðB½αn;βn;γn�
n e½α;β;γ�ÞðwÞ: ð41Þ

Here Bmjn
pqrjαβγ are the conformal dimension m polynomials in bosonized ghost fields appearing in the OPE of Bell

polynomials with exponential fields, defined according to

B½αn;βn;γn;�
n ðz1Þe½p;q;r�ðz2Þ ¼

Xn
m¼0

∶Bmjn
pqrjαβγðz1Þe½p;q;r�ðz2Þ∶

ðz1 − z2Þn−m
ð42Þ

[note the upper script for Bmjn chosen here in order not to confuse them with the incomplete Bell polynomials for which the
lower indices are reserved according to (15)]. It is straightforward to compute the manifest expressions for Bmjn

pqrjαβγ in terms
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of incomplete Bell polynomials. Using the representation (15) for the Bell polynomials in terms of partitions, computing the
OPE (42) and extracting the relevant coefficients we get

Bmjn
pqrjαβγ ¼

ð−1Þn−mn!
ðn −mÞ!m!

Xn
k¼1

Xminðn−m;kÞ

l¼maxð1;k−mÞ
Bn−mjlð0!; 1!;…; ðn −m − lÞ!ÞB½α;β;γ�

mjk−l : ð43Þ

Here B½α;β;γ�
mjk−l are the incomplete Bell polynomials in

the ghost fields defined according to (10), (14). The
numerical coefficients Bn−mjlð0!; 1!;…; ðn −m − lÞ!Þ
given by the values of incomplete Bell polynomials
Bn−mjlðx1;…xn−m−lþ1Þ at xj ¼ ðj − 1Þ!ðj ¼ 1;…; n −m −
lþ 1Þ coincide with ðn −mÞth order expansion coefficients
of loglð1þ xÞ around x ¼ 0.

III. COMPUTATION OF THE STAR PRODUCT

Finally, before starting the computation of the correla-
tors, we shall comment on cohomology constraints onΨðþÞ
and Ψð−Þ, playing the role of fixing the gauge in SFT and
defining the limits of summation over n in (9). Since the
analytic solution we are looking for is aiming to describe
the higher spin vacuum, and the higher spin algebras are
determined by the structure of OPEs between ghost
cohomologies Hn ∼H−n−2ðn > 0Þ, we impose the follow-
ing weak cohomology constraints according to

ΓðzÞΨð−ÞðwÞ ∼Oðz − wÞ0ΓðzÞΨð−Þ ≈ 0: ð44Þ
The first of these conditions ensures that Ψð−Þ is non-
singular under the picture-changing transformation; the
second constraint requires that Ψð−Þ is annihilated by Γ in a
weak sense, that is, up to terms not contributing to the
correlation functions we are considering. Technically, this
implies that, with the picture-changing operator

Γ ¼ −
1

2
eϕψm∂Xm þ 1

4
be2ϕ−χð∂χ þ ∂σÞ þ ceχ∂χ ð45Þ

Ψð−Þ is annihilated by the first two terms of Γ but is allowed
to have a nonvanishing nonsingular OPE with the last one.
However, as the transformation by c∂ξ shifts the b − c and
ξ − η ghost numbers of the string field components by 1
unit, the terms obtained as a result of the picture-changing
will not contribute to the correlators. Since positive and

negative cohomologies are isomorphic, it is sufficient to
consider the constraints on Ψð−Þ. The constraints (44)
ensure that string field components of different ghost
numbers are unrelated by picture changing (up to terms
irrelevant for correlators). This leads to

βn ¼ 0γn ¼ 0; 1n ≤ N − 1: ð46Þ

With the constraints (44) ΨðþÞ is also automatically
annihilated by the inverse picture-changing operator Γ−1,
at least in the weak sense. This condition is stronger than
standard gauge constraints on string fields. Note that the
vanishing of βn particularly ensures the standard gauge
condition η0Ψ ¼ 0. This is the condition typically imposed
on string fields at a particular fixed ghost number. In our
case, however, the constraints clearly have to be stronger
than that since we allowed the contributions from all the
ghost numbers. Note that the condition βn ¼ 0 also
technically reduces the string field (9) to the small
Hilbert space (although for generic αn; βn; γn Ψ belongs
to the large space). Indeed, the only χ dependence of Ψ is
the common eχ factor for the components of ΨðþÞ. But this
factor simply ensures the cancellation of the χ ghost’s
background charge and does not affect the rest of the
calculations which are effectively in the small space. Also,
in our calculation of the correlators we fix the gauge
αn ¼ n. This is done for simplicity of our calculations; it is
straightforward to generalize them for arbitrary αn. Finally,
we find that the γn ¼ 1 choice in (46) is the only one
leading to nontrivial recursion relation on λnN coefficients in
(11) with the opposite the γn ¼ 0 choice trivializing the
correlators and destroying the general structure of the
solutions. With I∘QΨ determined, we are now prepared
to calculate hhΨ; QΨii for the string field (9).
To compute the correlators, the following operator

products are of importance:

B½α;β;γ�
n ðzÞe½p;q;r�ðwÞ ¼

Xn
k¼1

Xk
l¼o

Xn−kþl

m¼l

ðz − wÞ−m ×
n!

m!ðn −mÞ!Bmjlð0!; 1!;…ðm − lÞ!Þ∶B½α;β;γ�
n−mjk−lðzÞe½p;q;r�ðwÞ∶ ð47Þ

B½α;β;γ�
n1jk1 ðzÞB

½p;q;r�
n2jk2 ðwÞ ¼

Xminðk1;k2Þ

l¼0

Xn1−k1þl

m1¼l

Xn2−k2þl

m2¼l

ðz − wÞ−m1−m2
n1!n2!

ðn1 −m1Þ!ðn2 −m2Þ!

× ΛBellðm1; m2jlÞ∶B½α;β;γ�
n1−m1jk1−lðzÞB

½p;q;r�
n2−m2jk2−l∶ðwÞ ð48Þ
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where the signs of the normal ordering imply the absence of contractions on the right-hand side and the generalized Bell
numbers ΛBellðm1; m2jlÞ are defined as follows. Let 0 < p1 ≤ p2… ≤ pl and 0 < q1 ≤ p2… ≤ ql be the ordered length l
partitions of m1 and m2. Then

ΛBellðm1; m2jlÞ ¼ m1!m2!
Xpartitions

m1jp1;…;pl

Xpartitions

m2jq1;…;ql

Xpairings
pik

;qjk ;ik;jk¼1;…;l

ðpi1 þ qj1 − 1Þ!…ðpil þ qjl − 1Þ!
p1!…pl!q1!…ql!rp1

!…rpl
!rq1 !…rql!

ð49Þ

where rp;q are multiplicities of p and q entering the partitions.
The ghost number anomaly cancellation condition requires that each correlator (both two-point and three-point) must

have b − c ghost number 3, ϕ-ghost number −2 and χ ghost number 1. It is this condition that ensures the triangular form of
(11), making it a well-defined recurrence relation.
The straightforward calculation of hhΨ; QΨii gives

hhΨ; QΨii ¼
X∞
N¼1

XN−1

n¼0

ðλnNÞ2
Xnþ1

k¼1

Xn−kþ1

l¼1

Xn−k−l
m¼0

Xn
L1¼0

ðn!Þ2
ðn − k − l −mþ 2Þ!ðlþm − 1Þ!ðn − L1Þ!

× f½ðk − δk1Þh½n;0;0� þ δk1h
½−ðNþ2Þ;0;1� þ ð1 − δk1ÞððN þ 2Þðnþ 1Þ − 1Þ�

× ½ðl − δl1Þ ~h½n;0;0� þ δl1 ~h
½−ðNþ2Þ;0;1� þ ð1 − δl1ÞððN þ 2Þðnþ 1Þ − 1Þ�

×
Xn
k1¼1

Xlþm−1

k2¼1

Xn−k−lþ2

k3¼1

XminðL1;k1−1Þ

l1¼1

Xminðm;k3−1Þ

l2¼1

ð−1Þkþl1þl2þL1ð2þ nðN þ 2ÞÞl1

× BL1jl1ð0!;…; ðL1 − l1Þ!ÞBL2jl2ð0!;…; ðL2 − l2Þ!Þ

×
Xk3−l3
q¼1

Xnþ2−k−l−m−k3þl2−q

M¼1

ðnN − 1ÞqBMjqð0!;…; ðM − qÞ!Þ

×
Xn−L1−k1−l1−k3þl2þq

Q¼k3−l2−q

ð−1ÞQþn−L1ðn − L1Þ!
Q!ðn − L1 −QÞ! ΛBellðQ; nþ 2 − k − l −m −Mjk3 − l3 − qÞ

× ½nk2δk1−k3−l1þl2þq
k2

ΛBellðn − L1 −Q; lþm − 1jk2Þ
− ðlþm − 1Þnk2−1δk1−k3−l1þl2þq

k2−1 ΛBellðn − L1 −Q; lþm − 2jk2Þ�g: ð50Þ

The next step is to compute the three-point correlator

hhΨ;Ψ⋆Ψ ¼ hh∘f31∘Ψð0Þh∘f32∘Ψð0Þh∘f33∘Ψð0Þi

where, for the convenience of the computation, the conformal transformation

hðzÞ ¼ −i
z − 1

zþ 1
ð51Þ

further maps the disc to the half-plane (upon mapping the world sheets of three interacting strings to the disc). The
straightforward computation of the three-point function, using the operator products (47), (48) gives
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hhΨ;Ψ⋆Ψii ¼
X

N¼1

∞
XN1þN2¼N−2

N1;N2¼1

λnNλ
n1
N1
λn2N2

Xnþ1

k¼1

Xn1þ1

k1¼1

Xn2þ1

k2¼1

n!n1!n2!
ðn − kþ 1Þ!ðn1 − k1 þ 1Þ!ðn2 − k2 þ 1Þ!k!k1!k2!

× ½ðk − δk1Þh½n;0;1� þ δk1h
½N;0;1� þ ð1 − δk1Þðn2 − nNÞ�

× ½ðk1 − δk11 Þh½n1;0;1� þ δk1h
½−N1−2;0;1� þ ð1 − δk11 Þðn21 þ n1ðN1 þ 2ÞÞ�

× ½ðk2 − δk21 Þh½n2;0;1� þ δk21 h
½−N2−2;0;1� þ ð1 − δk21 Þ

× ðn22 þ n2ðN2 þ 2ÞÞ�
�
2

3

�
h½N;1;1�þh½−N1−2;0;1�þh½−N2−2;0;1�þnþn1þn2−k−k1−k2

× Bk−1ðλðk; n; h½n;0;1�Þ logðh∘ðf31Þ0ðzÞÞÞjz¼0

× Bk1−1ðλðk1; n1; h½n1;0;1�Þ logðh∘ðf32Þ0ðzÞÞÞjz¼0Bk2−1ðλðk2; n2; h½n2;0;1�Þ logðh∘ðf33Þ0ðzÞÞÞjz¼0

×
Xn−kþ1

m¼1

Xðn1−k1þ1Þ

m1¼1

Xðn2−k2þ1Þ

m2¼1

Xm
s1¼0

Xm−s1

s2¼0

Xm1

t1¼0

Xm1−t1

t2¼0

Xm2

u1¼0

Xm2−u1

u2¼0

Xðn−kþ1−mþs1Þ

L1¼s1

Xðn−kþ1−mþs2−L1Þ

L2¼s2

×
Xðn1−k1þ1−m1þt1Þ

M1¼t1

Xðn1−k1þ1−m1þt2−M1Þ

M2¼t2

Xðn2−k2þ1−m2þu1Þ

P1¼u1

Xðn2−k2þ1−m2þu2−P1Þ

P2¼u2

× fBL1js1ð0!; 1!;…; ðL1 − s1Þ!ÞBL2js2ð0!; 1!;…; ðL2 − s2Þ!ÞBM1jt1ð0!; 1!;…; ðM1 − t1Þ!Þ
× BM2jt2ð0!; 1!;…; ðM2 − t2Þ!ÞBP1ju1ð0!; 1!;…; ðP1 − u1Þ!ÞBP2ju2ð0!; 1!;…; ðP2 − u2Þ!Þ
× ð−ðN1 þ 2Þn − 1ÞL1ð−ðN2 þ 2Þn − 1ÞL2ð−n1N þ 1ÞM1

× ð−n1ðN2 þ 2Þ − 1ÞM2ð−n2N − 1ÞP1ðn2ðN1 þ 2Þ þ 1ÞP2ð
ffiffiffi
3

p
ÞNðN1þ2Þ−ðN1þ2ÞðN2þ1Þþ2−L1−M1−M2−P2

× ð2
ffiffiffi
3

p
ÞNðN2þ2Þþ1−L2−P1g

× ð−nn1 þ 1Þr1ð−nn2 þ 1Þr2ð−n1n2 þ 1Þr3
Xn−kþ1þr1

R1¼r1

Xn1−k1þ1þr2

R2¼r2

Xn2−k2þ1þr3

R3¼r3

× ð
ffiffiffi
3

p
Þ−R1þR3ð2

ffiffiffi
3

p
Þ−R1−R3ΛBellðR1;R2jr1ÞΛBellðR1;R3jr2ÞΛBellðR2;R3jr3Þg ð52Þ

where

r1 ¼
1

2
ðmþm1 −m2 − s1 − s2 − t1 − t2 þ u1 þ u2Þr2 ¼

1

2
ðm −m1 þm2 − s1 − s2 þ t1 þ t2 − u1 − u2Þr1

¼ 1

2
ð−mþm1 −m2 þ s1 þ s2 − t1 − t2 þ u1 þ u2Þ: ð53Þ

The values of the complete Bell polynomials appearing as a result of conformal transformations by h∘f3jðj ¼ 1; 2; 3Þ in
the cubic term (52) are calculated to be given by

Bkðλðk; n; h½n;0;1�Þ logðh∘ðf3jÞ0ðzÞÞÞjz¼0 ¼
Xk
p¼0

Xp
l¼0

Xk−p
m¼0

ipþ1ð−1Þlþmk!
l!ðp − lÞ!m!ðk − p −mÞ!

×
Γðλ − 2

3
ÞΓðλþ 2

3
ÞðΓðλþ 1ÞÞ2

Γðλ − 2
3
− lÞΓðλþ 2

3
þ l − kÞΓðλþ 1 −mÞΓðλþ 1þmþ p − kÞ : ð54Þ

Combining our results for two-point and three-point correlators (50)–(52) we deduce the following recurrence relation for
the λnN structure constants entering the analytic solutions:

ρnjn1;n2NjLN1;N2
¼

ðκ3Þnjn1;n2NjN1;N2

ðκ2ÞnN
ð55Þ
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with

ðκ2ÞnN ¼
Xnþ1

k¼1

Xn−kþ1

l¼1

Xn−k−l
m¼0

Xn
L1¼0

ðn!Þ2
ðn − k − l −mþ 2Þ!ðlþm − 1Þ!ðn − L1Þ!

× f½ðk − δk1Þh½n;0;0� þ δk1h
½−ðNþ2Þ;0;1� þ ð1 − δk1ÞððN þ 2Þðnþ 1Þ − 1Þ�

× ½ðl − δl1Þ ~h½n;0;0� þ δl1 ~h
½−ðNþ2Þ;0;1� þ ð1 − δl1ÞððN þ 2Þðnþ 1Þ − 1Þ�

×
Xn
k1¼1

Xlþm−1

k2¼1

Xn−k−lþ2

k3¼1

XminðL1;k1−1Þ

l1¼1

Xminðm;k3−1Þ

l2¼1

ð−1Þkþl1þl2þL1ð2þ nðN þ 2ÞÞl1BL1jl1ð0!;…; ðL1 − l1Þ!Þ

× BL2jl2ð0!;…; ðL2 − l2Þ!Þ
Xk3−l3
q¼1

Xnþ2−k−l−m−k3þl2−q

M¼1

ðnN − 1ÞqBMjqð0!;…; ðM − qÞ!Þ

×
Xn−L1−k1−l1−k3þl2þq

Q¼k3−l2−q

ð−1ÞQþn−L1ðn − L1Þ!
Q!ðn − L1 −QÞ! ΛBellðQ; nþ 2 − k − l −m −Mjk3 − l3 − qÞ

× ½nk2δk1−k3−l1þl2þq
k2

ΛBellðn − L1 −Q; lþm − 1jk2Þ
− ðlþm − 1Þnk2−1δk1−k3−l1þl2þq

k2−1 ΛBellðn − L1 −Q; lþm − 2jk2Þ�g ð56Þ

and

ðκ3Þnjn1;n2NjN1;N2
¼
Xnþ1

k¼1

Xn1þ1

k1¼1

Xn2þ1

k2¼1

n!n1!n2!
ðn−kþ1Þ!ðn1−k1þ1Þ!ðn2−k2þ1Þ!k!k1!k2!

× ½ðk−δk1Þh½n;0;1� þδk1h
½N;0;1� þð1−δk1Þðn2−nNÞ�

× ½ðk1−δk11 Þh½n1;0;1� þδk1h
½−N1−2;0;1� þð1−δk11 Þðn21þn1ðN1þ2ÞÞ�

× ½ðk2−δk21 Þh½n2;0;1� þδk21 h
½−N2−2;0;1� þð1−δk21 Þðn22þn2ðN2þ2ÞÞ�

�
2

3

�
h½N;1;1�þh½−N1−2;0;1�þh½−N2−2;0;1�þnþn1þn2−k−k1−k2

×Bk−1ðλðk;n;h½n;0;1�Þ logðh∘ðf31Þ0ðzÞÞÞjz¼0

×Bk1−1ðλðk1;n1;h½n1;0;1�Þ logðh∘ðf32Þ0ðzÞÞÞjz¼0Bk2−1ðλðk2;n2;h½n2;0;1�Þlogðh∘ðf33Þ0ðzÞÞÞjz¼0

×
Xn−kþ1

m¼1

Xðn1−k1þ1Þ

m1¼1

Xðn2−k2þ1Þ

m2¼1

Xm
s1¼0

Xm−s1

s2¼0

Xm1

t1¼0

Xm1−t1

t2¼0

Xm2

u1¼0

Xm2−u1

u2¼0

Xðn−kþ1−mþs1Þ

L1¼s1

Xðn−kþ1−mþs2−L1Þ

L2¼s2

×
Xðn1−k1þ1−m1þt1Þ

M1¼t1

Xðn1−k1þ1−m1þt2−M1Þ

M2¼t2

Xðn2−k2þ1−m2þu1Þ

P1¼u1

Xðn2−k2þ1−m2þu2−P1Þ

P2¼u2

×fBL1js1ð0!;1!;…;ðL1−s1Þ!ÞBL2js2ð0!;1!;…;ðL2−s2Þ!ÞBM1jt1ð0!;1!;…;ðM1− t1Þ!Þ
×BM2jt2ð0!;1!;…;ðM2− t2Þ!ÞBP1ju1ð0!;1!;…;ðP1−u1Þ!ÞBP2ju2ð0!;1!;…;ðP2−u2Þ!Þ
×ð−ðN1þ2Þn−1ÞL1ð−ðN2þ2Þn−1ÞL2ð−n1Nþ1ÞM1ð−n1ðN2þ2Þ−1ÞM2ð−n2N−1ÞP1

×ðn2ðN1þ2Þþ1ÞP2ð
ffiffiffi
3

p
ÞNðN1þ2Þ−ðN1þ2ÞðN2þ1Þþ2−L1−M1−M2−P2ð2

ffiffiffi
3

p
ÞNðN2þ2Þþ1−L2−P1g

×ð−nn1þ1Þr1ð−nn2þ1Þr2ð−n1n2þ1Þr3
Xn−kþ1þr1

R1¼r1

Xn1−k1þ1þr2

R2¼r2

Xn2−k2þ1þr3

R3¼r3

×ð
ffiffiffi
3

p
Þ−R1þR3ð2

ffiffiffi
3

p
Þ−R1−R3ΛBellðR1;R2jr1ÞΛBellðR1;R3jr2ÞΛBellðR2;R3jr3Þg: ð57Þ

This concludes the computation of the coefficients defining the analytic OSFT solution.
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IV. BELL POLYNOMIALS AND HIGHER SPIN
ALGEBRAS

In this concluding section we shall present some
arguments relating the structure of the analytic OSFT
solution, studied in this work, to free field realizations
of the higher spin algebras in AdS. An insightful hint,
relating Bell polynomials to free field realizations of higher
spin algebras in AdS, comes from the c ¼ 1 model, i.e.
one-dimensional noncritical string theory.
The one-dimensional string compactified on S1 has no

standard massless modes (like a photon) but does have an
SUð2Þ multiplet of massless states existing at nonstandard
b − c ghost numbers and discrete momentum values
[12,35,36].
The SUð2Þ symmetry at self-dual radius R ¼ 1ffiffi

2
p is

realized by the operators:

T� ¼
I

dze�iX
ffiffi
2

p
; T0 ¼

I
dz∂X: ð58Þ

The SU(2) multiplet of discrete states can be constru-
cted by acting with the lowering T− of SUð2Þ on the
highest weight vectors given by tachyonic primaries Vl ¼
eðilXþðl−1ÞφÞ ffiffi

2
p

(with integer l):

Uljm ¼ Tl−m
− Vl: ð59Þ

Manifest expressions for Uljm vertex operators are com-
plicated; however, their structure constants have been
deduced by [35,36] by using symmetry arguments. One has

Ul1jm1
ðzÞUl2jm2

ðwÞ
∼ ðz − wÞ−1Cðl1; l2; l3jm1; m2; m3Þfðl1; l2ÞUl3;m3

ð60Þ

where the SUð2Þ Clebsch-Gordan coefficients are fixed by
the symmetry while the function of Casimir eigenvalues
fðl1; l2Þ is nontrivial and was deduced to be given by
[35,36]

fðl1; l2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2

p ð2l1 þ 2l2 − 2Þ!ffiffiffiffiffiffiffiffiffiffi
2l1l2

p ð2l1 − 1Þ!ð2l2 − 1Þ! : ð61Þ

Remarkably, these structure constants coincide exactly
with those of higher spin algebra in AdS3 in a certain basis,
computed by Fradkin and Linetsky [37,38] in 1989, in a
seemingly different context. On the other hand, the explicit
structure of the vertex operators for the discrete states
realizing this algebra is given by

Uljm ∼
X

1
2
ðlðl−1Þ−mðm−1ÞÞjp1;…;pl−m

Bp1
ð−iX

ffiffiffi
2

p
Þ…Bpl−m

× ð−iX
ffiffiffi
2

p
Þe

ffiffi
2

p ðimXþðl−1ÞφÞ ð62Þ

with the sum taken over ordered partitions of
1
2
ðlðl − 1Þ −mðm − 1ÞÞjp1;…; pl−m.
This is a relatively simple example of Bell polynomials

multiplied by exponentials realizing the higher spin algebras
in AdSd in terms of vertex operator algebras in (d − 1)-
dimensional string theory. One can further think of extend-
ing the symmetry of the c ¼ 1model by supersymmetrizing
it on the world sheet and coupling to the β − γ enhancing
the symmetry from SUð2Þ to SUð4Þ. The SU(4) algebra can
be realized by taking the raising generators:

T0; 1 ¼
I

dzeiXψT−3;2 ¼
I

dze−3ϕþ2iXψ

T−4;3 ¼
I

dze−4ϕþ3iXψ ð63Þ

and the remaining 12 generators are obtained by acting
on (63) with the lowering generators of SUð2Þ,
T0;−1 ¼ H

dze−iXψ :

T−4;k ¼ ðT0;−1Þ3−kT−4;3

T−3;l ¼ ðT0;−1Þ2−kT−3;2

T0;m ¼ ðT0;−1Þ1−kT0;1

−3 ≤ k ≤ 3

−2 ≤ l ≤ 2

−1 ≤ m ≤ 1 ð64Þ

with T0;0; T−3;0; T−4;0 being the Cartan generators of
SUð4Þ. The SUð4Þ multiplet is then obtained by the
combinations of lowering operators of SUð4Þ with negative
k; l; m acting on the same dressed tachyonic primaries
entering (59). The structure constants of the operators of the
SUð4Þ are again given by the Clebsch-Gordan coefficients
of SUð4Þ multiplied by certain functions of the eigenvalues
of SU(4) Casimir operators. Unfortunately, because of the
complexity of the SU(4) operators, the explicit form of
these functions has never been worked out. Evaluating
them would be important in order to point out the relation
of this operator algebra to the structure constants of the
higher spin algebra in AdS5. With the techniques explained
in this paper, we hope to be able to perform this compu-
tation in future work. As in the SUð2Þ case, the structure of
the manifest vertex operator expressions for the SUð4Þ
multiplet involve products of Bell polynomials in X;ψ and
ghost fields multiplied by exponents of X, although the
structure of the Bell polynomials in the SUð4Þ case is
clearly more complicated than (62). Thus one can think of
Bell polynomial products (multiplied by exponents) as
natural vertex operator realizations of various AdS higher
spin algebras in string theory. The string field theory
analytic solution presented in this paper is a simple
example of this class of the operators. By itself, it is
clearly incomplete to describe the full higher spin vacuum,

NEW ANALYTIC SOLUTIONS IN STRING FIELD … PHYSICAL REVIEW D 90, 086002 (2014)

086002-11



despite some of its attractive properties. In particular, one
clearly has to generalize this string field theory solution to
include products of multiple Bell polynomials, in order to
make connections to the full higher spin algebras inAdS.Our
particular conjecture is that the OSFT solutions of the type

Ψ ¼
X

N;n1;…;nk

λn1…nk
N Bn1ðϕ; χ; σÞ…Bnkðϕ; χ; σÞ

× ðcξeNϕ þ ce−ðNþ2ÞϕÞ ð65Þ

can be related to contributions of the k-row higher spin fields
with mixed symmetries to the collective higher spin vacuum
configuration. In general, the full space of these solutions
would form an “enveloping” of higher spin algebra. It would
be interesting to point out the connection of this enveloping
to multiparticle extensions of the higher spin algebras
proposed by Vasiliev [39]. With the on-shell arguments,

showing the relevance of the vertex operators for the
framelike higher spin fields to the background independence,
relating the languages and concepts of higher spin gauge
theories and string field theory promises a fascinating ground
for future work.
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