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The melting of a heavy quark-antiquark bound state depends on the screening phenomena associated
with the binding energy, as well as scattering phenomena associated with the imaginary part of the
potential. We study the imaginary part of the static potential of heavy quarkonia moving in the strongly
coupled plasma. The imaginary potential dependence on the velocity of the traveling bound states is
calculated. Nonzero velocity leads to an increase of the absolute value of the imaginary potential. The
enhancement is stronger when the quarkonia move orthogonal to the quark-gluon plasma maximizing the
flux between the pair. Moreover, we estimate the thermal width of the moving bound state and find it
enhanced compared to the static one. Our results imply that the moving quarkonia dissociate easier than
the static ones in agreement with the expectations.
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I. INTRODUCTION

Recently there has been a lot of interest in the heavy
quarkonium suppression which has been observed in the
RHIC and LHC [1–4]. The suppression is a signal of
deconfinement and it was suggested that the bound states
dissociate in the hot thermal bath because of the color
screening [5]. There is a belief that the static potential apart
from the usual real part develops an imaginary one, which
contributes to the dissociation. For a bound state in the
plasma, the imaginary part induced by the Landau damping
of the gauge fields that mediate interactions between the
quarks, coming from the scattering of the gluons with the
particles of the medium with momenta of order T [6–8] and
the quark-antiquark color singlet break up [9]. Around the
deconfining temperature Tc, it has been found by obtaining
the Schrödinger equation in a nonperturbative way, that the
real part of the potential is modified milder while the
imaginary part is growing. From lattice calculations it has
been noticed that the increase of temperature which leads to
an increase of the number of collisions in the gluonic
medium plays important role in the destabilization of the
heavy quarkonium, at least comparable to that of the
screening effects [10,11]. As a result, there is a possibility
that the dominant mechanism for the quarkonium dissoci-
ation in particular scales is due to the thermal width rather
than the screening. Even more importantly, the screening

and the Landau damping contribute simultaneously in the
dissociation, since in principle it is easier to dissociate a
bound state with low binding energy by gluon scattering
phenomena, than a bound state with strong binding energy.
Therefore, the imaginary potential contribution in the dis-
sociation of the bound state is a very interesting phenomenon
to be studied. In the bibliography there are several methods
approaching the imaginary potential and extensive work has
been already done to this direction [2,12,13].
The width and the dissociation rate of a particular bound

state depends on the temperature, the quark content, and the
quantum numbers. Most of the above mentioned weakly
coupled results have been obtained using effective field
theory (EFT) with an appropriate hierarchy of scales. For
higher temperatures, where the heavy quark mass is the
highest energy scale present, it can be integrated out to end
up with nonrelativistic QCD [14,15]. The study of the width
of quarkonium states using nonrelativistic QCD gives
consistent results with the studies of the EFT calculation
by the appropriate fixing of the coupling constant [16,17].
Considering the fact that in the LHC, the heavy quarko-

nia are produced not only in large numbers but also with
high momenta, an interesting expansion of these studies is
the dependence of the thermal width on one more param-
eter, the speed of the bound state. In this paper we study the
effects of the velocity on the imaginary potential and the
thermal width of the heavy bound state in the strong
coupling limit using gauge/gravity duality methods.
It is expected that there is a dependence of the decay rate

on the speed. This is confirmed for the bottomonium S
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wave correlation in [18]. Similar studies were performed
in [19] using the EFT for temperatures much smaller than the
heavy quark mass, where the dependence of the thermal
width on the velocity was also noticed. In this work, a
different hierarchy of scales leads to a different qualitative
dependence of the decay width on the velocity. Moreover,
using the perturbative QCD and several approximations, the
thermal width was found to have comparable contributions
from the leading order (LO) and the next to the leading order
(NLO) due to the fact that the gluo-dissociation diagrams
that contribute in the LO, are suppressed in the NLO.
Calculating the total contribution, it has been found that
the increase of speed leads to higher decay rate for the
quarkonia, and therefore to higher suppression rates [20].
An alternative powerful tool for calculating observables in

the strong coupling limit is the AdS/CFT duality [21,22].
There is an extended methodology for the calculation of
several observables in the isotropic quark-gluon plasma
(QGP) at equilibrium [23] as well as in anisotropic ones
[24,25]. In the context of the gauge/gravity dualities there are
different ways that lead to a complex static potential, e.g.,
[26–28]. Although there are advantages and disadvantages
of each way, a more complete picture of the imaginary
potential generation technique in the AdS/CFT duality is still
needed. Some of the methods use a modified way for the UV
divergences cancellation. Taking into account however that
there are physical and mathematical reasons to follow the
known cancellation schemes of UV divergences in the
Wilson loop minimal surfaces [29–31], a better argument
is needed when the Wilson loop UV divergences cancella-
tion is done with alternative methods. In our case we use the
usual divergence cancellation technique by subtracting the
infinite masses of the quarks and choose an approximate
method to generate the imaginary potential from the fluc-
tuations at the deepest point in the bulk of the string world
sheet [27]. It has been found that for a static QQ̄ pair the
imaginary potential can be calculated for any background
with diagonal metric through a simple formula derived in
[25,32]. Using this method, the imaginary part and the
thermal width were calculated in the axion deformed
spatially anisotropic QGP and its dependence on the
anisotropic parameter was found [32]. Moreover, an estimate
of how the thermal width changes with the shear viscosity to
entropy density ratio was given in [33] and a study of the
higher order corrections was done in [34].
Apart from the static pair in the gauge/gravity dualities,

there is a considerable amount of work done studying the
dissociation of moving bound states [35–42]. The usual
trick is to boost the pair into a frame which is at rest while
the hot wind of QGP moves against it. Calculating the
expectation value of the Wilson loop in this setup, the
dependence of the binding energy on the velocity was
found. The screening length of the bound state in an
isotropic plasma depends on the angle between the direc-
tion of the QQ̄ and the velocity of the wind. Increasing the

angle from zero (parallel motion) to π=2 (perpendicular
motion) the screening length for a fixed velocity is decreas-
ing. The screening length turns out to be decreasing with
increasing velocity and being proportional to the
ðenergy densityÞ−1=4. The velocity scaling in the screening
length function has been shown to be a universal feature for
several strongly coupled theories. However this particular
power dependence is modified in anisotropic gauge/gravity
dualities [43] (also studied in [44]). This is not completely
unexpected since when spatial anisotropies are present,
several universal relations are violated like inequalities
between the components of the Langevin coefficients
[45,46] and the known shear viscosity over the entropy
ratio [47].
In this paper, employing gauge/gravity duality tech-

niques we calculate the imaginary potential for the two
extreme pair alignments, one transverse and one parallel to
the speed of the wind, and we estimate the thermal width.
We find that the imaginary potential does depend on the
velocity of the moving pair as well as the angle between the
alignment of the pair and the direction of velocity. Increase
of speed, independent of the angle of motion, leads to an
increase of the absolute value of the imaginary potential.
It leads also to a decrease of the minimum pair distance L
such that the ImV takes the nonzero value. Using certain
approximations we find that the thermal width is a
monotonically increasing function of the speed.
Increasing the angle for a fixed velocity, we find that the

absolute value of the imaginary potential and the thermal
width are increased. This can be explained by the fact that
the flux of the QGP between the quark-antiquark pair
increases and becomes maximum for perpendicular motion,
allowing the pair to dissociate earlier. Therefore, using the
gauge/gravity duality we find that the screening phenomena
and the Landau damping phenomena, both contribute to the
dissociation of the QQ̄ pair in the same qualitative way while
depending on the angle and the velocity of the motion.
Notice that the screening and the Landau damping operate
simultaneously in the dissociation, since in principle it is
easier to dissociate a bound state with low binding energy by
scattering than a bound state with strong binding.
This paper has the following structure. In Sec. II we use a

generic boosted metric with nondiagonal elements and
obtain the imaginary potential and other useful formulas in
terms of the generic background metric elements. The work
is done for both the transverse and parallel directions of
motion of the pair. In Sec. III we apply our analysis to the
gravity dual of the finite temperature N ¼ 4 sYM and we
find the dependence of the ImV on the angle and the
velocity of motion. We analyze the effects of the velocity
and the relative angle of the motion of the pair, on the
imaginary potential and estimate the thermal width. In
Sec. IV, we compare our results to others known in the
literature and we point out the similarities. In the final
section we summarize and discuss our findings.
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II. SETUP FOR THE MOVING QUARKONIUM
IN FINITE TEMPERATURE

In this section we present a generic analysis of the
imaginary part of the static potential for a quark-antiquark
pair moving in the plasma. The gravity background has the
following form:

ds2 ¼ − ~G00dx20 þ
X3
i¼1

~Giidx2i þ ~Guudu2; ð2:1Þ

where all the metric elements depend on the radial distance
u only, and the rest of the directions are isometries of
the space. Boosting this metric along the x3 direction with
t ¼ γðt0 − vx03Þ, x3 ¼ γð−vt0 þ x03Þ, and dropping the
primes we get to

ds2 ¼ G00dx20 þ
X2
i¼1

Giidx2i þ G33dx23 þ 2G03dx0dx3

þGuudu2; ð2:2Þ
where the metric components in terms of the original metric
(2.1), are

G00 ¼ γ2ð ~G00 þ v2 ~G33Þ; Guu ¼ ~Guu; Gii ¼ ~Gii; ð2:3Þ

G33 ¼ γ2ð ~G00v2 þ ~G33Þ; G03 ¼ −γ2vð ~G00 þ ~G33Þ;
ð2:4Þ

where γ2 ¼ 1=ð1 − v2Þ. We consider the usual rectangular
Wilson loop with a short side of length L in the spatial
direction and a long side along a time direction. We align
the loop in two different ways, one where the short side of
the Wilson loop is parallel to the direction of the wind and
one transverse to it:

x3 ¼ σ; x0 ¼ τ; u ¼ uðσÞ;
parallel to the wind; ð2:5Þ

x1 ¼ σ; x0 ¼ τ; u ¼ uðσÞ;
transverse to the wind: ð2:6Þ

Using the Nambu-Goto action and working generally we
obtain

SNG ¼ T
2πα0

Z
L=2

−L=2
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðuÞu02 þ FðuÞ

q
; ð2:7Þ

where we have defined

gðuÞ≔− G00Guu; fiðuÞ≔−G00Gii; ð2:8Þ

FðuÞ≔
�
G2

03 þ f3; ∥to the wind;

f1; ⊥to the wind:
ð2:9Þ

The Hamiltonian is a constant of motion equal to −c and is
obtained as

c ¼ FðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðuÞu02 þ FðuÞ

p ; ð2:10Þ

while the turning point u0 of the string world sheet can be
found by solving the equation c2 ¼ Fðu0Þ. The distance L
between the quark and antiquark pair is given by

L ¼ 2

Z
∞

u0

du

�
F
g

�
F
F0

− 1

��
−1=2

; ð2:11Þ

where F0≔Fðu0Þ. To extract ImVQQ̄ we consider thermal
world sheet fluctuations about the classical configuration.
The profile of the string configuration is a string with a
turning point at u ¼ u0 at σ ¼ 0. The expansion around this
point is done by considering that the fluctuations is
uðσÞ≃ u0 þ σ2u000=2. One can separate the real and imagi-
nary part of the action with the imaginary contributions
coming from the region around the turning point of the
string, defined by the σc as follows:

iS ∝
−T
2πα0

�Z
jσj<σc

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2 − σ2c1

q

þ i
Z
jσj>σc

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðuÞ þ gðuÞu02

q �
; ð2:12Þ

where

c1 ≃ 1

2
u000ð2g0u000 þ F0

0Þ; c2 ≃ F0 þ δuF0
0 þ

1

2
δu2F00

0:

ð2:13Þ

From (2.10) we find that u000 ¼ F0
0=ð2g0Þ. To obtain the

imaginary part in the action we need c2 < 0 and σ to be
between the roots of the quadratic equation, then
σc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2=c1

p
. Using Eqs. (2.12) and (2.13) we obtain

the expression of the imaginary potential

ImVQQ̄ ¼
ffiffiffiffiffi
g0

p
2

ffiffiffi
2

p
α0

�
F0

jF0
0j
−
jF0

0j
2F00

0

�
: ð2:14Þ

Notice that this formula has a similar functional form to the
formula derived in [25,32] for the imaginary part of the
potential of a static QQ̄ pair. However the functions F have
different structure in the two cases and here are given
by (2.9).
From the imaginary potential one can in principle extract

the thermal width as

ΓQQ̄ ¼ −hψ jImVjψi; ð2:15Þ
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where jψi can be thought as the ground state of the
unperturbed static Coulomb potential.
In the next sections we apply our formulas to a QQ̄ pair

moving in the boosted finite temperature AdS5 metric and
we study the effect of the motion on imaginary potential of
a heavy quark pair moving in the dualN ¼ 4 sYM plasma.

A. Imaginary potential of a moving pair in finite
temperature

The boosted finite temperature anti–de Sitter (AdS)
metric along the x3 direction reads

ds2 ¼
�
u
R

�
2
�
−
�
1 − γ2

�
uh
u

�
4
�
dt2 þ dx2

þ
�
1þ γ2v2

�
uh
u

�
4
�
dx23

�

þ 2γ2v

�
u2h
Ru

�
2

dtdx3 þ
du2

ðuRÞ2ð1 − ðuhu Þ4Þ
; ð2:16Þ

where R is the AdS5 radius and we take it equal to unit. The
functions gðuÞ and FðuÞ can be read from (2.8) and (2.9) as

gðuÞ ¼ u4 − γ2u4h
u4 − u4h

ð2:17Þ

and

FðuÞ ¼
�
u4 − u4h; ∥to wind;

u4 − γ2u4h; ⊥to wind:
ð2:18Þ

Applying our results of the previous section to this
particular metric, we get for the two possible directions
of motion.

1. Pair alignment parallel to the wind

The turning point of the string depends on the direction
of the motion and is given by u40 ¼ c2 þ u4h. The distance
between quark and antiquark can be found using the (2.11)
and it is given by

L
2
¼

Z
∞

u0

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu40 − u4hÞðu4 − γ2u4hÞ
ðu4 − u4hÞ2ðu4 − u40Þ

s
: ð2:19Þ

In order to have real values for the length we need to satisfy
u40 ≥ u4hγ

2. This integral can be integrated to give elliptic
functions which can be approximated for small lengths to
polynomials. The imaginary part of the potential can be
written analytically in terms of the radial coordinate u.
Using (2.14) we get

ImVQQ̄ ¼ −
1

8
ffiffiffi
2

p
α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − u4hγ

2
p
u30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − u4h

p �
u4h −

u40
3

�
: ð2:20Þ

We are interested in studying the bound states for which the
ImV < 0. This condition constrains the turning point and
by taking into account the previous constraint for real
length we get

γ2u4h < u40 < 3u4h: ð2:21Þ

This condition puts directly an upper limit on the velocity
v <

ffiffiffiffiffiffiffiffi
2=3

p
in order to have negative ImV for motion along

the direction of the wind.

2. Pair alignment transverse to the wind

For the pair alignment transverse to the wind, the turning
point of the string depends additionally on the velocity of
the wind and is given by u40 ¼ c2 þ γ2u4h, where again we
get u40 ≥ u4hγ

2. The distance between quark and antiquark
takes the form

L
2
¼

Z
∞

u0

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − u4hγ

2

ðu4 − u4hÞðu4 − u40Þ

s
; ð2:22Þ

which when integrated leads again to elliptic functions and
at particular limits can be approximated to a polynomial
form. The imaginary part of the potential can be written
analytically in terms of the radial coordinate u and has an
additional factor γ compared to the parallel case

ImVQQ̄ ¼ −
1

8
ffiffiffi
2

p
α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − u4hγ

2
p
u30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u40 − u4h

p �
γ2u4h −

u40
3

�
: ð2:23Þ

To have negative ImV we are interested in string world
sheets that satisfy the following constraint for the turning
point u0:

γ2u4h < u40 < 3γ2u4h: ð2:24Þ

Notice that the left inequality is trivially satisfied from the
turning point equation, while the right inequality does not set
a bound to the speed of the pair directly, in contrast to what
happens for the parallel motion to the wind (2.21).
Alternatively this inequality can be seen as setting a
constraint on the proximity of the turning point of the world
sheet to the horizon of the black hole for a given speed.
A comment is in order for the profile of the string

corresponding to the motion of the pair along the two
different directions. The form of the shape of the string
depends on the initial and boundary conditions. In the cases
in which we are interested and with the particular con-
ditions imposed, the shape of the string remains similar in
the two directions of motion and the reason is that the force
must be constant and zero along the string, while it moves
everywhere with constant velocity. The only way that the
string may have a more complicated profile is to allow a

M. ALI-AKBARI, D. GIATAGANAS, AND Z. REZAEI PHYSICAL REVIEW D 90, 086001 (2014)

086001-4



more involved dependence on the time, with modified
initial and boundary conditions [40].

III. ANALYSIS OF THE IMAGINARY POTENTIAL

In this section we study the behavior of the imaginary
potential with respect the velocity of the wind, the size of
the bound state and the direction of the motion of the pair.
We treat separately the parallel and transverse cases.

A. Bound state parallel to the wind

The bound states we study are those that have negative
imaginary potential, real values of the length and need to be
in the energetically favorable and stable side of the double
valued function ReVðLÞ. The first two requirements are
satisfied by using the constraint (2.21) and the other is
imposed in the analysis.
Using the expressions (2.19) and (2.20) we find numeri-

cally the relations ImVðLÞ for fixed values of the velocity
and ImVðvÞ for fixed distances between the pair. We find
that for fixed velocities and increasing size of the bound
state, the absolute value of ImV increases. This later
behavior generalizes the findings of the zero velocity
[27,32] to nonzeroth speeds. Moreover, the imaginary part
of the potential is generated at lower distances between the
pairs. It is also interesting to notice that there is a maximum
value for the absolute value of ImV, similar to a turning
point of the real potential and as the velocity increases, it
decreases. This peculiarity exists also for zero velocities,
and a reason that appears is the form of the function
Lðu0; uh; vÞ for the distance between the pair, which is the
same with binding energy analysis. This was discussed in
more detail in [32] and a straightforward proposed way to
deal with it for the calculation of the thermal width, is an
extrapolation of the straight part of the curve to larger
lengths. The findings described in this paragraph are shown
in Fig. 1.
Fixing the size of the bound state and changing the

velocity, we find that increase of the velocity leads to an
increase of the absolute value of the imaginary potential.
This implies that the pair moving parallel to the wind is
more likely to decay as its velocity is increased. Higher
speeds lead to a higher rate of increase in the jImVj and also
the generation of it for shorter lengths L between the pair.
We also notice that larger distances L have always larger
values of jImVj for any fixed velocity. These findings are
depicted in the Fig. 2.

B. Bound state transverse to the wind

For a pair moving orthogonal to the wind we use
Eqs. (2.22) and (2.23) to find numerically the functions
ImVðLÞ and ImVðvÞ, for fixed values of the velocity and
for fixed distances between the pair, respectively.
Qualitatively the results are similar to the parallel case

although quantitatively the results for the transverse motion
of the pair are more sensitive to the speed.
Like the parallel case we find that increase of length for

constant velocity leads to an increase of the jImVj. Here
however we have a solution with a negative imaginary part
for velocities v ¼ 0.9 in contrast to the parallel case. We
also notice that the ImV is decreasing faster than the
parallel case. These findings are depicted in Fig. 3. By
fixing the lengths of the pair and changing the velocities we
see that increase of velocity leads to an increase of the
absolute value of the imaginary potential (Fig. 4).

v 0

v .1

v .5

0.78 0.80 0.82 0.84 0.86 0.88
L T

0.020

0.015

0.010

0.005

0.000

ImV

T

FIG. 1 (color online). Dependence of the imaginary potential on
the distance between the pair for parallel motion and fixed
velocities v ¼ 0, 0.1, 0.5, corresponding to the curves from right
to left respectively. The imaginary part is generated for Lmin and
decreases until the value Lmax. Increase of the speed causes the
imaginary potential to be generated for smaller distances between
the pair, implying easier dissociation. The dimensionless quantities
are constructed with the use of the temperature scaled as T̄≔πT.

LT 0.845

LT 0.835

0.05 0.10 0.15 0.20 0.25 0.30 0.35
v

0.010

0.008

0.006

0.004

0.002

0.000

ImV

T

FIG. 2 (color online). Dependence of the ImV on the velocity of
the pair, for two fixed lengths L and parallel motion to the wind.
As the speed increases the imaginary potential is decreasing with
a higher rate. Bound states of larger sizes have lower imaginary
potential. Notice that for the lower size of the bound state, the
imaginary potential takes zero value for nonzero speed.
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C. Transverse vs parallel motion

It is very interesting to compare the effect of the velocity
on the imaginary potential for a pair orthogonal to the wind
and a pair moving parallel to the wind. We notice that the
imaginary potential for the motion transverse to the wind is
modified stronger than the parallel case. The particular
behavior can be observed in Fig. 5. By placing a pair of the
same size moving in a QGP, we observe that for low speeds
the ImV values are very close for both directions of motion.
As the velocity increases, the imaginary potential appears
to reduce stronger for the motion transverse to the wind in
comparison with the parallel motion, implying a higher

decay rate for the transverse motion (Fig. 6). This is
physically expected since the pair is easier to dissociate
when oriented orthogonal to the direction of the wind
where the flux of the QGP between the quark-antiquark
pair is maximum for perpendicular motion.
Notice that the implication of the dissociation mecha-

nism corresponding to the imaginary potential matches
qualitatively the screening effects results. The binding
energy analysis shows that the screening length is mini-
mum for motion transverse to the wind, and for motion in
any direction it is reduced compared to the static case [35].
Therefore, the imaginary part of the potential contributes in
the same way to the dissociation as the binding energy.

v 0

v .1

v .5

v .9

0.5 0.6 0.7 0.8
L T

0.015

0.010

0.005

0.000

ImV

T

FIG. 3 (color online). Dependence of the ImV on the distance
between the pair for transverse motion for fixed velocities v ¼ 0,
0.1, 0.5, 0.9 corresponding to the curves from right to left,
respectively. Notice that in the transverse case there is a solution
for v ¼ 0.9 with negative ImV that did not exist in the case of
parallel motion. The effect of the velocity in the transverse motion
is much stronger than the parallel motion.

LT 0.845

LT 0.835

0.05 0.10 0.15 0.20 0.25
v

0.012

0.010

0.008

0.006

0.004

0.002

0.000

ImV

T

FIG. 4 (color online). Dependence of the imaginary potential
on the velocity of the pair for two fixed lengths L, for the
transverse motion. As the speed increasing the imaginary
potential decreases, quarks in larger distances have lower
imaginary potential for all the speeds. Qualitatively this is the
same behavior noticed for the parallel motion.

v 0

v .5

v .5

0.75 0.80 0.85 LT

0.015

0.010

0.005

0.000

ImV

T

FIG. 5 (color online). Dependence of the imaginary potential
on the distance of the pair for different directions of motion. The
velocities v ¼ 0, v∥ ¼ 0.5, v⊥ ¼ 0.5 correspond to the curves
from right to left, respectively. Orthogonal motion results in a
reduced imaginary potential compared to the parallel case,
implying easier disassociation of the heavy bound state.

LT 0.845

L T 0.845

0.05 0.10 0.15 0.20 0.25 0.30 0.35
v
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0.010

0.008

0.006

0.004

0.002

0.000

ImV

T

FIG. 6 (color online). The imaginary potential depending on the
velocity of the pair for two fixed lengths L between the pair,
compared for parallel and transverse motion to the wind. As the
speed increases, the reduction of the ImV for the transverse
motion is stronger compared to the parallel motion to the wind.
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D. Thermal width

The thermal width can be found from the imaginary
potential. Following one of the suggestions of [32], we use
an approximation where the almost straight ImVðLÞ curve
before the turning point is extended to larger values of L.
To find the thermal width we choose a low speed and
isolate the 1=L dependence of the binding energy which
depends on the velocity and subsequently we specify the
velocity dependent “Bohr radius” of the wave function.
Having therefore specified the wave function appearing in
(2.15) we integrate the corresponding equation using the
extrapolated straight line ImVðLÞ, where we choose as the
minimum length the point where the ImV becomes nonzero
and integrate to an infinite maximum.
For low speeds we get the following inequalities for the

ratios:

Γ⊥
Γ0

>
Γ∥

Γ0

>
Γ⊥
Γ∥

> 1; ð3:1Þ

where Γ0, Γ∥, Γ⊥ are the thermal widths for a static pair, a
pair moving parallel to the wind, and a pair moving
transverse to it, respectively. The pair moving orthogonal
to the wind has increased thermal width compared to that of
the moving pair aligned parallel to the wind as expected.
Moreover, the thermal width for a moving pair is always
increased compared to a static pair irrespective of the
direction of motion. Notice, that in our comparison between
the moving pair and the static one, we suppose that there are
no other parameters except the ones mentioned above that
depend on the velocity and affect the result. We present our
results for low speeds in the Figs. 7 and 8.
Therefore, in agreement with what is naturally expected

we find that increase of speed leads to an increase of the

decay rate of a pair. As the moving pair rotates from a
parallel motion to larger angles to get eventually aligned to
a transverse motion, such that the flux of the QGP that
flows between the pair becomes maximum, the imaginary
potential and the thermal width are increased.

IV. QUALITATIVE COMPARISON WITH OTHER
METHODS AND RESULTS

In this section we attempt to discuss qualitatively and
compare our results with the ones obtained in weakly
coupled or strongly coupled plasmas using alternative
methods. Our purpose here is to examine if there is a
consistency of the known results and to point out possible
similarities and differences. We remark that although this
discussion is very interesting, part of it refers to results
obtained at different ranges of the coupling constant,
between theories with different degrees of freedom or field
content and therefore there is no reason a priori for the
findings to agree. Nevertheless, we find that there is an
extensive qualitative agreement between our results and
other results in bibliography.
The dependence of our results on the temperature of the

plasma for a fixed velocity is qualitatively the same to the
one obtained in [27,32]. Increase of the temperature leads
to an increase of the imaginary potential, for a fixed
velocity. In [19] the weakly coupled quarkonium propa-
gating through a quark-gluon plasma has been studied. The
results obtained there depend on the hierarchy of scales
involved in the calculation: the binding energy, the size of
the bound state, the screening mass, and the heavy mass of
the quark. In relatively low temperatures TL ≪ 1 a
decreasing decay width as a function of the velocity was
found, while in higher temperatures TL ≫ 1 the width
increases for low velocities and decrease for ultrarelativ-
istic ones.

0
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1.10

1.15

1.20

0

FIG. 7 (color online). The estimated thermal widths normalized
with the zero velocity thermal width. Both ratios are larger than
the unit indicating the increase of the thermal width for a moving
bound state.
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FIG. 8 (color online). The ratio of the thermal widths for
transverse and parallel motion to the wind. Notice the slowly
increasing ratio with the speed of motion.
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Recent lattice QCD computations with two flavors of
light quarks using nonrelativistic dynamics and at relatively
low temperatures show no dependence or a weak depend-
ence of the thermal width on the velocity that is within the
computational error [18]. This is not in contrast to what we
find here since the dependence of the ImV and the thermal
width on the velocity are continuous smooth functions that
for low velocities are expected to give small contributions.
The thermal width of heavy quarkonia has been also
investigated in the perturbative QCD. The NLO contribu-
tion to the decay width was found to be larger than the LO
due to suppression of the gluo-dissociation diagrams at that
order [20]. The sum of the LO and the NLO lead to an
increase of thermal width for increasing velocity and this is
in agreement with what we have found. We remark that
there are certain approximations in this work, since the
same formula is used for the parton scattering and the gluo-
dissociation widths and the Pauli blocking is ignored [48].

V. CONCLUSIONS

In this paper we have extended the studies [27,32] of the
imaginary potential for a moving pair of quarks in quark-
gluon plasma. We have worked with a boosted metric with
nondiagonal terms and we have considered a moving string
with endpoints on the boundary and a turning point close to
the horizon. We have analyzed two extremal directions of
motion, one that the pair is aligned parallel to the direction
of speed of the wind and another that the pair is aligned
transverse to the direction of the wind such that the flux of
the plasma between the pair is maximized. Fluctuations
around the turning point lead to an imaginary part of the
potential which is given by a formula that depends on the
velocity and turns out that it can be written in a functional
form as a generalization of the corresponding formula
derived in [25,32].
For the moving pair we find that the imaginary potential

is increased in absolute value compared to that of a static
pair with the same length. Increase of speed leads to further
increase of the ImV in both directions. Furthermore,
increase of length leads to enhanced ImV as has been also
noticed for the static pair. A further interesting result is that

the pair moving orthogonal to the wind is affected stronger
compared with the one moving parallel to it, leading to a
stronger modification of the jImVj. This can be compared
with the binding energy analysis, where the screening
length decreases as the pair is rotated to the transverse angle
with respect to the wind [35]. The imaginary potential and
thermal width analysis gives results to that direction too,
since the jImVj is increased. This finding is natural, since
when the angle between the direction of the pair and the
velocity is increased, the flux of the plasma that passes
between the quark-antiquark pair is increased and becomes
maximum when the pair is aligned orthogonal to its speed.
This is an indication that the pair is expected to be
disassociated easier as the angle increases.
To study the ratio of the thermal width at low speeds we

are making several reasonable approximations. We isolate
the Coulombic part of the binding energy to obtain a
Coulombic wave function which depends on the speed and
we calculate the quantity hψ jImVjψi. At low velocities we
find that the thermal width is increased stronger for motion
in the orthogonal direction compared to the parallel one.
Moreover, nonzero QQ̄ velocities lead to an increase of the
thermal width for the pairs moving in both parallel and
transverse directions. Therefore, we show that the screen-
ing phenomena related to the binding energy and the
Landau damping phenomena related to the imaginary part
of the potential, which both contribute to the dissociation of
the QQ̄ pair, have similar qualitative dependence on the
angle and the velocity of the motion. We conclude that the
heavy bound states moving in the QGP are dissociated
easier than the static ones, while orthogonal motion makes
the dissociation easier. Our results have been compared to
others coming from the EFT and perturbative QCD and
they are in qualitative agreement.
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