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In recent years, there has been controversy concerning the anomaly-mediated gaugino mass in the
superspace formalism of supergravity. In this paper, we reexamine the gaugino mass term in this formalism
by paying particular attention to the symmetry that controls gaugino masses in supergravity. We first
discuss super-diffeomorphism invariance of path-integral measures of charged superfields. As we will
show, the super-diffeomorphism-invariant measure is not invariant under a super-Weyl transformation,
which is the origin of the anomaly-mediated gaugino mass. We show how the anomaly-mediated gaugino
mass is expressed as a local operator in a Wilsonian effective action in a super-diffeomorphism-covariant
way. We also obtain a gaugino mass term independent of the gauge choice of the fictitious super-Weyl
symmetry in the super-Weyl compensator formalism, which reproduces the widely accepted result. We also
discuss how to reconcile the gaugino mass term in the local Wilsonian effective action and the gaugino
mass term appearing in a nonlocal one-particle irreducible quantum effective action.
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I. INTRODUCTION

After the discovery of the Higgs boson with a mass of
about 126 GeV at the LHC [1], the anomaly-mediation
mechanism for the gaugino mass generation [2,3] (see also
Ref. [4]) is gathering renewed attention. The anomaly-
mediated gaugino mass plays a crucial role in constructing
a class of high-scale supersymmetry models where sfer-
mion masses are in the hundreds to thousands of TeV range
while gaugino masses are within the TeV range proposed in
Refs. [2,5] and subsequently in Refs. [6–16]. On top of a
successful prediction of the observed Higgs boson mass
[17–19], models in this class are free from the so-called
cosmological Polonyi problem [20] (see also Ref. [21]), for
no singlet supersymmetry-breaking fields are required in
the models.1 This class of models is also free from
infamous gravitino problems [24,25]. Besides, the lightest
supersymmetric particle is the almost pure wino in most of
the parameter space, which is a good candidate for dark
matter when it is produced either thermally [26,27] or
nonthermally [28,29] (see also Ref. [30]).2

As illustrated in Refs. [2,3], the most transparent way to
look at the anomaly-mediated gaugino mass is to use the
conformal compensator formalism of supergravity [40,41].
In this formalism, only the conformal compensator has a

nonvanishing F-term vacuum expectation value (VEV)
after supersymmetry breaking in the gravity sector, and
hence, the anomaly-mediated gaugino mass can be
extracted by looking at how the chiral compensator appears
in the gauge kinetic function. (See also Refs. [42–50]
for informative discussions on the anomaly-mediated
gaugino mass.)
In the last few years, however, there has been contro-

versy [48,51] over how the anomaly-mediated gaugino
mass appears in the superspace formalism of supergravity
[52,53]. In particular, the author of Ref. [51] examined the
gaugino mass in this formalism by introducing a chiral
super-Weyl compensator field, C, along the lines of
Ref. [54], so that the model possesses a fictitious (but
exact) super-Weyl gauge symmetry. Then, by looking at
how the super-Weyl compensator C appears in the gauge
kinetic function, the author claimed that the anomaly-
mediated gaugino mass derived in Refs. [2,3] vanishes.
This claim was refuted in a subsequent paper [48], which
pointed out that the gravity multiplets also possess non-
vanishing F-term VEVs for the gauge choice of the
fictitious super-Weyl gauge symmetry in Ref. [51]. Thus,
the full anomaly-mediated gaugino masses cannot be
extracted just by looking at the C dependence of the gauge
kinetic function. Eventually, by arguing that the gaugino
mass should be independent of the gauge choice of
the super-Weyl gauge symmetry, the gaugino mass in
Refs. [2,3] was reproduced in Ref. [48] by taking a gauge
in which the F-term VEVs of the gravity multiplets vanish.
In these discussions, there remain unsettled questions.

First of all, it is not clear whether the anomaly-mediated
gaugino mass can be expressed as a local operator in a
Wilsonian effective action in a super-diffeomorphism-
covariant way without invoking the super-Weyl symmetry

1A simple implementation of the μ term in this class of
“without-singlet” models was first done in Ref. [6] by coupling
the Higgs doublets to the R-symmetry-breaking sector along the
lines of the Casas-Munoz mechanism [22] (or the generalization
of the Giudice-Masiero mechanism [23]).

2For the current status and future prospects of wino dark matter
detection, see Refs. [31–34], and for collider searches see
Ref. [35]. See also Refs. [36–39] for related discussions on wino
dark matter.

PHYSICAL REVIEW D 90, 085028 (2014)

1550-7998=2014=90(8)=085028(14) 085028-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.90.085028
http://dx.doi.org/10.1103/PhysRevD.90.085028
http://dx.doi.org/10.1103/PhysRevD.90.085028
http://dx.doi.org/10.1103/PhysRevD.90.085028


compensator C. Second, the lack of the local term expres-
sion without C inevitably seems to mean that there is no
consistent expression of the anomaly-mediated gaugino
mass as a local operator independent of the gauge choice of
the fictitious super-Weyl gauge symmetry.
The main purpose of this paper is to settle these problems.

For that purpose, we reexamine the gaugino mass term in the
superspace formalism of supergravity without invoking the
fictitious super-Weyl gauge symmetry. We pay particular
attention to super-diffeomorphism invariance of path-integral
measures of charged supermultiplets. As we will show, the
super-diffeomorphism-invariant measure is not invariant
under an approximate super-Weyl symmetry which forbids
the gaugino mass at the classical level. Anomalous breaking
of the approximate super-Weyl symmetry (not to be confused
with the fictitious super-Weyl symmetry in Ref. [54]) is
the origin of the anomaly-mediated gaugino mass in the
superspace formalism.
Armed with the super-diffeomorphism invariant mea-

sure, we show that the anomaly-mediated gaugino mass
can be read off from a local operator in a Wilsonian action
when we change the path-integral measure from the super-
diffeomorphism-invariant one to the super-Weyl-invariant
one. There, we emphasize that the corresponding local
operator is not invariant under the super-diffeomorphism.
The noninvariance of the local term is required for the
super-diffeomorphism invariance of the quantum theory.
Once we learn how the local gaugino mass term arises in

the superspace formalism of supergravity, it is straightfor-
ward to derive the local term expression of the gaugino
mass term which is independent of the gauge choice of the
fictitious super-Weyl gauge symmetry in the super-Weyl
compensator formalism. We also discuss how to reconcile
the anomaly-mediated gaugino mass term in the Wilsonian
effective action and the nonlocal expression of the gaugino
mass term appearing in the one-particle irreducible (1PI)
quantum effective action derived in Ref. [42].
The organization of this paper is as follows. In Sec. II, we

discuss the gaugino mass appearing in the supergravity
action at the classical level. There, we show that the
gaugino mass is highly suppressed at the classical level
due to the approximate super-Weyl symmetry which is
respected by relevant interactions of gauge and charged
matter supermultiplets.3 In Sec. III, we discuss the super-
diffeomorphism-invariant path-integral measure of the
charged matter which has a nontrivial but unique depend-
ence on the chiral density of the gravity multiplet. There,
we see that the super-diffeomorphism-invariant measure
is not invariant under the approximate super-Weyl sym-
metry. This property is important to understand how the
anomaly-mediated gaugino mass term can be expressed
as a local term in the Wilsonian effective action in a

super-diffeomorphism-covariant way. In Sec. IV, we show
the local expression of the gaugino mass term which is
independent of the gauge choice of the fictitious super-
Weyl gauge symmetry in the super-Weyl compensator
formalism in Ref. [54]. We also show how the gaugino
mass term is related to the gaugino mass term in the
nonlocal 1PI quantum effective action derived in Ref. [42].
We summarize our discussion in Sec. V.

II. APPROXIMATE SUPER-WEYL SYMMETRY
IN THE CLASSICAL ACTION

Before discussing the anomaly-mediated gaugino mass,
let us first clarify the gaugino mass expected in the local
supergravity action at the classical level.4 In our discussion,
we concentrate ourselves in a situation where supersym-
metry is dominantly broken by some charged fields under
some symmetries or by composite fields. Otherwise direct
interactions between the supersymmetry-breaking fields and
gaugemultiplets lead to the “tree-level” gauginomass of the
order of the gravitinomass,m3=2. Under this assumption, the
direct interactions between the supersymmetry-breaking
fields and the gauge supermultiplets are suppressed at least
by a second power of the Planck scale, MPL, and hence,
resultant gaugino masses from those interactions are neg-
ligible. For the same reason, we also assume that no
supersymmetry-breaking field obtains avacuumexpectation
value of the order of the Planck scale.5

Oncewe assume that the gaugino mass from couplings to
the supersymmetry-breaking sector is highly suppressed,
remaining sources of the gaugino mass are couplings to the
supergravity multiplets. As is well known, however, gau-
gino masses from tree-level interactions to the supergravity
multiplets are also suppressed in spite of the apparent
F-term VEVs ofOðm3=2Þ in the supergravity multiplets. As
we shortly discuss, the absence ofOðm3=2Þ gaugino masses
from the supergravity multiplets is due to an approximate
super-Weyl symmetry, which is the key to understanding
the origin of the anomaly-mediated gaugino mass in the
next section. For the time being, we restrict ourselves to the
gaugino mass generation in a U(1) gauge theory with a
pair of vector-like matters. The following discussion can be
extended to general non-Abelian gauge theories (see
discussions in Sec. V).

A. Classical supergravity action

In this paper, we follow the notation and the formulation
in Ref. [52], except for the notation of complex conjugate

3Throughout this paper, relevant interaction terms denote the
interaction terms with mass dimensions less than or equal to four.

4Here, we assume that the classical action consists of local
interactions. If the classical action is allowed to be nonlocal, an
arbitrary gaugino mass of Oðm3=2Þ can be introduced by using
the nonlocal term in Eq. (42) without conflicting with the super-
diffeomorphism invariance.

5These assumptions also reduce contributions to gaugino
masses from the Kähler and sigma-model anomalies [42,47].
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(we use †) and for the normalization of gauge super-
multiplets for which we adopt the one in Ref. [55]. For a
simple model with charged chiral multipletsQ and Q̄, and a
U(1) gauge multiplet V, the classical supergravity action is
given by,

L ¼ M2
Pl

Z
d2Θ2E

3

8
ðD†2 − 8RÞ exp

�
−

K
3M2

Pl

�

þ 1

16g2

Z
d2Θ2EWαWα þ H:c:;

K ¼ Q†e2VQþ Q̄†e−2VQ̄þ � � � ;

Wα ≡ −
1

4
ðD†2 − 8RÞðe−2VDαe2VÞ; ð1Þ

where Θα, E, Dα, R, K, and g are the fermionic coordinate,
the chiral density, the covariant derivative, the superspace
curvature, the Kähler potential, and the gauge coupling
constant, respectively. Here, we have assumed that the
chiral multiplets Q and Q̄ are massless. By expanding the
chiral multiplets, we can extract relevant interactions,

Lkin;matter ¼ −
1

8

Z
d2Θ2EðD†2 − 8RÞ

× ðQ†e2VQþ Q̄†e−2VQ̄Þ þ H:c:; ð2Þ

Lkin;gauge ¼
1

16g2

Z
d2Θ2EWαWα þ H:c:; ð3Þ

from which we can extract gauge interactions and
kinetic terms. Other interactions are suppressed by the
Planck scale.
Now, let us expand Wα, E, and R in terms of component

fields:

Wα ¼ −2iλα þ � � � ;
2E ¼ eð1 −M�Θ2Þ þ � � � ;

R ¼ −
1

6
M −

1

9
jMj2Θ2 þ � � � : ð4Þ

Here, λα, e, and M are the gaugino, the determinant of the
vielbein, and the auxiliary scalar component of the gravity
multiplet, respectively. The ellipses denote terms which are
irrelevant for our discussion on the gaugino mass. The
auxiliary field M is fixed by the equation of motion as

M� ¼ −3m3=2; ð5Þ

where we have omitted contributions from the
supersymmetry-breaking sector which are negligible under
the assumption we have made at the beginning of this
section.
Since the chiral density E has a nonvanishing Θ2 term, it

may seem nontrivial that the gaugino mass ofOðm3=2Þ does

not appear from the interaction in Eq. (3). In the rest of this
section, we show that the absence of the gaugino mass
in the classical action is understood by an approximate
super-Weyl symmetry.

B. Approximate super-Weyl symmetry

Let us consider the super-Weyl transformation para-
metrized by a chiral scalar Σ [52],6

δSWE ¼ 6ΣE þ ∂
∂Θα ðSαEÞ;

δSWR ¼ −4ΣR −
1

4
ðD†2 − 8RÞΣ† − Sα

∂
∂Θα R;

δSWWα ¼ −3ΣWα þ � � � ;

δSWQ ¼ wΣQ − Sα
∂

∂Θα Q;

Sα ≡ Θαð2Σ† − ΣÞj þ Θ2DαΣj; ð6Þ

where the ellipses denote terms which are irrelevant for our
discussion. A parameter w is the Weyl weight of Q.7 The
Sα-dependent terms are inhomogeneous transformations
which can be canceled by the super-diffeomorphism [see
Eq. (11)]. From Eqs. (4) and (6), the transformation laws of
e, M and λα are given by

δSWe ¼ 4ðΣþ Σ†Þje;

δSWM ¼ −2ð2Σ − Σ†ÞjM þ 3

2
D†2Σ†j;

δSWλ
α ¼ −3Σjλα; ð8Þ

where X j denotes the lowest component of a superfield X .
From the transformation laws of the component fields in

Eq. (8), it is clear that the possible origin of the gaugino
mass of Oðm3=2Þ,

Z
d4xeMð�Þλλ; ð9Þ

is not invariant under the super-Weyl transformation. This
shows that the gaugino mass is generated only through
terms which break the super-Weyl symmetry.
As we immediately see, the kinetic term of the gauge

multiplet in Eq. (3) is invariant under the super-Weyl
transformation, and hence, does not contribute to the
gaugino mass. Higher-dimensional terms omitted in
Eq. (1) are, on the other hand, not invariant under the

6In this paper we define an infinitesimal transformation of
a superfield X by X 0 ¼ X − δX.

7If Q is not a chiral scalar but rather a chiral density with a
density weight ~w, the super-Weyl transformation is given by,

δSWQ ¼ wΣQ − Sα
∂

∂Θα Qþ ~wQ
∂

∂Θα S
α: ð7Þ
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super-Weyl transformation. Contributions from such terms
to the gaugino mass are, however, at the largest of
Oðm2

3=2=MPlÞ, and hence are negligible. Altogether, we
find that there is no gaugino mass of Oðm3=2Þ from
couplings to the supergravity multiplets due to the approxi-
mate super-Weyl symmetry.8

For later convenience, let us also note that the terms of
massless matter fields in Eq. (2) are also invariant under the
super-Weyl symmetry. That is, for w ¼ −2, it can be shown
that

δSWððD̄2 − 8RÞðQ†QÞÞ ¼ −6ΣðD̄2 − 8RÞðQ†QÞ

− Sα
∂

∂Θα ððD̄2 − 8RÞðQ†QÞÞ:
ð10Þ

From Eqs. (6) and (10), the terms in Eq. (2) are invariant
under the super-Weyl transformation.
Finally, let us stress that interaction terms of the gauge

supermultiplets which are unsuppressed by the Planck scale
are uniquely determined to be of the form of Eqs. (2) and
(3) by the super-diffeomorphism invariance and by the
gauge invariance. Thus, one may regard the approximate
super-Weyl symmetry as an accidental one. Due to this
accidental symmetry, the gaugino mass of Oðm3=2Þ is
suppressed at the classical level.

III. ANOMALY OF THE SUPER-WEYL
SYMMETRY AND THE GAUGINO MASS

In the last section, we have shown that no gaugino mass
of Oðm3=2Þ is generated through couplings to the super-
gravity multiplets even after supersymmetry breaking due
to the approximate super-Weyl symmetry. However, the
approximate super-Weyl symmetry is in general broken by
quantum effects. In this section, we investigate effects of
quantum violation of the approximate super-Weyl sym-
metry by Fujikawa’s method [56] in a Wilsonian effective
action.

A. Wilsonian effective action

To discuss quantum effects on the super-Weyl symmetry,
we take the local classical action in the previous section
[Eq. (1)] as the Wilsonian effective action with a cutoff at
the Planck scale. Here, let us remind ourselves that effective
quantum field theories suffer from ultraviolet divergences,
and hence, they are well defined only after the divergences
are properly regularized. In our arguments, we presume
an ultraviolet regularization such that the “tree-level” action
at the cutoff scale is manifestly invariant under the

super-diffeomorphism and the gauge transformations. We
refer to this super-diffeomorphism-invariant tree-level
action at the cutoff scale as the Wilsonian effective action.9

The Wilsonian effective action, in general, includes
higher-dimensional interactions than those in Eq. (1) sup-
pressed by the cutoff scale. As we have discussed, however,
contributions from those terms to the gaugino mass are
highly suppressed by the cutoff scale and hence negligible.
One concern is whether nonlocal interaction terms appear
in the Wilsonian effective action at the cutoff scale, which
could lead to the gaugino mass of Oðm3=2Þ. In our argu-
ment, we presume that such nonlocal interactions do not
show up in the Wilsonian effective action, which is
reasonable since we are dealing with effective field theories
after integrating out ultraviolet modes.

B. Super-diffeomorphism invariance

In the above definition of the super-diffeomorphism-
invariant theory, there is a missing ingredient: the measure
of the path integral. As elucidated in Ref. [56], the path-
integral measure plays a crucial role in discussing quantum
violations of symmetries. Moreover, the definition of the
“tree-level” interactions in the Wilsonian effective action
depends on the choice of the path-integral measure, which
we will encounter shortly. To clarify these issues, let us first
discuss which path-integral measure we should use in
conjunction with the “tree-level” Wilsonian action.
Under the infinitesimal (chiral) super-diffeomorphism

transformation, Q and E transform as

Q → Q0 ¼ Q − ηMðx;ΘÞ∂MQ;

E → E0 ¼ E − ηMðx;ΘÞ∂ME − ð−ÞMð∂Mη
Mðx;ΘÞÞE;

ð11Þ

where M ¼ ðm; αÞ denotes the indices of the chiral super
coordinate ðxm;ΘαÞ, ηMðx;ΘÞ parametrizes the super-
diffeomorphism, and ð−ÞM ¼ ð1;−1Þ for M ¼ ðm; αÞ. As
is shown in Appendix A, path-integral measures of chiral
fields are not invariant under the super-diffeomorphism due
to the anomaly of the gauge interactions, i.e.

½DQ� → ½DQ0� ≠ ½DQ�; ½DQ̄� → ½DQ̄0� ≠ ½DQ̄�: ð12Þ

Instead, anomaly-free measures are given by

½Dð2EÞ1=2Q�; ½Dð2EÞ1=2Q̄�: ð13Þ

For a later purpose, we define weighted chiral fieldsQdiff ¼
ð2EÞ1=2Q (Q̄diff ¼ ð2EÞ1=2Q̄) which are no longer chiral

8The term in Eq. (9) is invariant under the R symmetry and the
dilatational symmetry, which are parts of the super-Weyl sym-
metry. Thus, the gaugino mass from the couplings to the super-
gravity multiplets cannot be forbidden by the R symmetry or the
dilataional symmetry.

9Although we fix the cutoff scale to the Planck scale for a
while, the following discussion is essentially unchanged as long
as the cutoff scale is far larger than the gravitino mass. We also
discuss effects of the change of the cutoff scale later.
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scalar fields but rather chiral density fields with density
weights 1=2.
In our discussion, we take the super-diffeomorphism-

invariant Wilsonian effective action. Therefore, in order to
obtain a super-Diffeomporphism-invariant quantum theory,
we inevitably use the super-diffeomorphism-invariant path-
integral measure in Eq. (13). If we use different measures,
instead, we need to add appropriate super-diffeomorphism-
variant counterterms to the tree-level Wilsonian action so
that the super-diffeomorphism is restored in the quantum
theory.

C. Anomalous breaking of the super-Weyl symmetry

Once we choose appropriate path-integral measures for
the charged fields, we can discuss quantum violation of the
super-Weyl symmetry. Here, since we are interested in the
gaugino mass, we only look at the breaking of the super-
Weyl symmetry by the anomaly of the corresponding gauge
interaction.
Before proceeding further, let us comment on a technical

point. As in Eq. (6), the super-Weyl transformation is
accompanied by a super-diffeomorphism parametrized by
Sα, so that the super-Weyl symmetry can be expressed
in terms of the component fields defined in the chiral
superspace spanned by ðx;ΘÞ. The accompanied super-
diffeomorphism, however, makes it complicated to discuss
the quantum violation of the super-Weyl symmetry. To
avoid such a complication, we only consider a subset of the
super-Weyl transformation where Σ has only an F-term, i.e.

Σðx;ΘÞ ¼ fðxÞΘ2: ð14Þ

Here, f is an arbitrary function of the space-time. Under
this restricted super-Weyl transformation, we find Sα ¼ 0,
and hence, no super-diffeomorphism is accompanied.
We refer to this type of super-Weyl transformation as
a “F-type” super-Weyl transformation. It should be noted
that the F-type super-Weyl transformation is sufficient to
forbid the gaugino mass from the term in Eq. (3) in the
discussion in Sec. II. In the following, we concentrate on
the anomalous breaking of the F-type super-Weyl
symmetry.
Now let us examine the invariance of the path-integral

measures in Eq. (13) under the F-type super-Weyl trans-
formation. Under the transformation,Qdiff and Q̄diff are not
invariant but transform by

Qdiff ¼ ð2EÞ1=2Q → Q0
diff ¼ e−ΣQdiff ;

Q̄diff ¼ ð2EÞ1=2Q̄ → Q̄0
diff ¼ e−ΣQ̄diff : ð15Þ

Here, we have used the fact that the super-Weyl weight
of the massless chiral fields are −2 so that Eq. (2) is
invariant under the super-Weyl symmetry. Thus, due to the
Konishi-Shizuya anomaly [57], we find that the super-
diffeomorphism-invariant measure is not invariant under

the F-type super-Weyl transformation. Instead, the F-type
super-Weyl-invariant measures are given by

½DQSW�≡ ½Dð2EÞ1=3Q� ¼ ½Dð2EÞ−1=6Qdiff �; ð16Þ

½DQ̄SW�≡ ½Dð2EÞ1=3Q̄� ¼ ½Dð2EÞ−1=6Q̄diff �; ð17Þ

where QSW and Q̄SW are invariant under the F-type super-
Weyl transformation. Here, the weighted chiral superfields
QSW and Q̄SW have density weights 1=3.
It should be noted that the component fields of QSW

(Q̄SW) defined by

QSW ¼ e1=3½AQSW
þ

ffiffiffi
2

p
ΘχQSW

þ Θ2FQSW
�; ð18Þ

have the canonical kinetic terms at the leading order
which decouple from the supergravity multiplets in the
flat limit. That is, for a generic chiral scalar super-
field, X ¼ Aþ ffiffiffi

2
p

Θχ þ Θ2F, the chiral projection of its
complex conjugate is given by

ðD2 − 8RÞX† ¼ −4F� þ 4

3
MA� þ Θα½−4i

ffiffiffi
2

p
σm∂mχ

†�

þ Θ2

�
−4∂2A� −

8

3
M�F� þ 8

9
A�jMj2

�

þ � � � ; ð19Þ

where the ellipses denote higher-dimensional terms. Then,
by remembering that the component fields of QSW are
related to those of Q via

Q ¼
�
1þ 1

3
M�Θ2

�
ðAQSW

þ
ffiffiffi
2

p
ΘχQSW

þ Θ2FQSW
Þ þ � � � ;

ð20Þ

we find that the kinetic terms of the component fields of
QSW are canonical and decouple from M.10 Therefore, it
is appropriate to identify the component fields of QSW as
the component fields of the corresponding chiral field in the
rigid supersymmetry,11

Qrigid supersymmetry ¼ AQSW
þ

ffiffiffi
2

p
θχQSW

þ θ2FQSW
; ð21Þ

with θ being the fermionic coordinate of the rigid
superspace.

10In terms of the component fields of Q, M does not
decouple from the kinetic term and mixes with the scalar fields
via, M�F�

QAQ as well as jAQj2jMj2 terms.
11Here, we have neglected higher-dimensional terms. If we

take them into account, we need to perform a Kähler-Weyl
transformation to achieve the canonical normalization in the
Einstein frame.
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D. Gaugino mass in the Wilsonian
effective action

As we have discussed in the previous section, the
gaugino mass vanishes if the F-type super-Weyl symmetry
is preserved, and it is generated only through violations of
the F-type super-Weyl symmetry. As relevant terms of the
gauge supermultiplet preserve the super-Weyl symmetry,
the gaugino mass appearing in the super-diffeomorphism-
invariant “tree-level” Wilsonian action is highly
suppressed.
The approximate F-type super-Weyl symmetry is, how-

ever, anomalously broken by the super-diffeomorphism-
invariant measure ½DQdiff �. To read off the gaugino mass
from this violation, it is transparent to change the path-
integral measure to the F-type super-Weyl-invariant
measure, ½DQSW�, so that the super-Weyl variance is
apparent in the corrected “tree-level” Wilsonian action.
In fact, the change of the measures from ½DQdiff � to
½DQSW� is accompanied by the Konishi-Shizuya
anomaly [57],12

½DQdiff �½DQ̄diff �½DQ†
diff �½DQ̄†

diff �
¼ ½DQSW�½DQ̄SW�½DQ†

SW�½DQ̄†
SW� × exp ½iΔS�;

ΔS ¼ 1

16

1

2π2
×
Z

d4xd2Θ2E lnð2EÞ1=6WαWα þ H:c: ð22Þ

Accordingly, the “tree-level” Wilsonian effective action
which should be taken in conjunction with ½DQSW� is
given by,

S ¼ SSD þ ΔS: ð23Þ

Here, SSD denotes the super-diffeomorphism-invariant
local Wilsonian effective action discussed above.
Without surprise, ΔS is not invariant under the super-
diffeomorphism, which cancels the anomalous breaking of
the super-diffeomorphism invariance by ½DQSW�. We
summarize properties of the measures in Table I.13

Armed with a correct “tree-level”Wilsonian action along
with the super-Weyl-invariant measure, we can now read
off the gaugino mass directly from the local term in the
action, ΔS, which leads to

mλ=g2 ¼ −
1

2

1

2π2
lnð2EÞ1=6jΘ2

¼ 1

24π2
M� ¼ −

1

16π2
× 2m3=2; ð24Þ

where X jΘ2 denotes the Θ2 component of a superfield X .
This gaugino mass reproduces the anomaly-mediated
gaugino mass given in Refs. [2,3]. In this way, we find
that the anomaly-mediated gaugino mass can be read off
from the non-super-diffeomorphism-invariant term ΔS in
the superspace formalism of supergravity.14

E. Radiative corrections from path integration

So far, we have fixed the Wilsonian scale to MPL and
have not performed any path integration. Here, let us
discuss effects of the path integration. After integrating
out modes above a scaleΛð< MPLÞ, the Wilsonian effective
action at Λ is again given by the form of Eq. (23), with
renormalized coefficients and higher-dimensional operators
suppressed not only by MPl but also by Λ. Due to the
presence of cutoff scales, the super-Weyl symmetry in the
Wilsonian action at the scale Λ is hardly preserved. As we
havediscussed, however, the relevant terms of thematter and
the gauge supermultiplets have an accidental approximate
super-Weyl symmetry due to the super-diffeomorphism
invariance. Therefore, radiative corrections do not generate
the gaugino mass term beyond the one in Eq. (24) up toΛ or
MPl suppressed corrections.
It should also be noted that, among various corrections,

the ones from diagrams which involve Planck-suppressed
interactions lead to higher-dimensional operators sup-
pressed at least by a single power of MPL in the effective
action at Λ.15 Effects leading to lower-dimensional oper-
ators through ultraviolet divergences are renormalized by
the shifts of the corresponding operators [61]. Visible
effects of higher-dimensional operators only show up

TABLE I. Properties of two path-integral measures. Here,
SD and SW denote the super-diffeomorphism and the F-type
super-Weyl invariances, respectively. The cancel lines denote
noninvariances.

Measure Action Gaugino mass

½DQdiff � SD, SW SD, SW Hidden in the measure
½DQSW� SD, SW SD, SW Apparent in the action

12The identity in Eq. (22) is not quite correct. In general, ΔS
involves higher-dimensional terms suppressed by the cutoff of the
Wilsonian effective action. However, such higher-dimensional
terms are negligible.

13Throughout this paper, we presume the regularization
scheme of the path-integral measure which reproduces
the Konishi-Shizuya anomaly in the form in Eq. (22). In the
dimensional regularization/reduction, on the other hand,
the change of the path-integral measures is not accompanied
by the rescaling anomaly, while the approximate super-Weyl
symmetry is explicitly broken by the relevant interactions which
eventually leads to a consistent gaugino mass [43].

14In this paper, we concentrate on the anomaly-mediated gaugino
mass at the one-loop level.

15If there are ultraviolet divergences which are canceled only
by nonlocal terms, MPL suppressed interactions could lead to
higher-dimensional operators suppressed not by MPL but only
by Λ at the cutoff scale Λ. The Bogoliubov-Parasiuk-Hepp-
Zimmermann prescription [58–60] shows that ultraviolet diver-
gences in general can be renormalized away by local terms.
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through higher-dimensional operators even in the effective
action at Λ.
Concretely, radiative corrections from loop diagrams

involving gravity supermultiplets (in particular gravitinos
with small momenta) may lead to higher-dimensional
operators such as jMjnM�λλ (n ≥ 0) suppressed only by
M2

PLΛ
n−2. Such diagrams involving the gravitinos however

damp for Λ ≪ m3=2. Therefore, their contribution to the
gaugino mass is at most Oðm3

3=2=M
2
PLÞ.

From these arguments, we see that higher-dimensional
operators which are not suppressed byMPL but only by Λ in
the Wilsonian effective action at the cutoff scale Λ are
generated only from relevant interactions of the matter and
gauge supermultiplets. Such effects can be properly taken
care of within the renormaizable effective theory of the
matter and the gauge supermultiplets with softly broken
supersymmetry.
Let us emphasize again that the super-diffeomorphism

violation is not arbitrary in the Wilsonian effective action
at Λ, although the super-diffeomorphism invariance is
broken by ½DQSW�. The super-diffeomorphism violation
in the Wilsonian action is uniquely given by ΔS at each
Wilsonian scale, so that the super-diffeomorphism is pre-
served in the quantum theory. Thus, the accidental approxi-
mate super-Weyl symmetry which is the outcome of the
super-diffeomorphism invariance is justified even after
performing path integration.
Putting it all together, we find that the anomaly-

mediated gaugino mass can be extracted from the non-
super-diffeomorphism-invariant local term in the
Wilsonian effective action at the scale Λ ≫ m3=2 in
the superspace formalism of supergravity. Radiative
corrections to the gaugino mass operator are dominantly
given by relevant interactions of the matter and the
gauge supermultiplets. Therefore, once we extract a
gaugino mass at some high cutoff scale, we can use
the gaugino mass as the boundary condition of the
renormalization group equation at Λ in the low-energy
effective renormalizable supersymmetric theory with
soft supersymmetry breaking.

F. Decoupling effects of massive matter

Before closing this section, let us consider the contri-
bution to the gaugino mass from charged matter multiplets
with a supersymmetric mass m far larger than m3=2,

Lmass ¼
Z

d2Θ2EmQQ̄þ H:c: ð25Þ

If the cutoff scale of the Wilsonian effective action is far
above m, the mass m is negligible in comparison with
the kinetic term and hence the above discussion holds.
When the cutoff scale is below m, the mass term
dominates over the kinetic term. In that situation, the
approximate super-Weyl symmetry is such that the mass

term is invariant.16 This observation leads to the Weyl
weights of −3 for Q and Q̄, i.e. δSW;massiveQ ¼
−3ΣQþ � � �, and hence, the super-Weyl-invariant mea-
sures of the massive matter are given by

½DQSW;massive�≡ ½Dð2EÞ1=2Q�;
½DQ̄SW;massive�≡ ½Dð2EÞ1=2Q̄�; ð26Þ

which coincide with the super-diffeomorphism-invariant
measures in Eq. (13). Thus, below the scale m, the
approximate super-Weyl symmetry is well described by
the super-diffeomorphism-invariant Wilsonian effective
action, i.e. ΔS ¼ 0, and hence, no anomaly-mediated
gaugino mass term appears up to Oðm2

3=2=mÞ contribu-
tions. This argument reconfirms the insensitivity of the
anomaly-mediated gaugino mass to ultraviolet physics [2].
If m is close to m3=2, the decoupling does not hold in

general. The Wilsonian effective action below the mass
threshold ofQ and Q̄ includes terms suppressed only bym,
which might make a contribution to the gaugino mass as
large as m2

3=2=m. Integration of Q and Q̄ should be
performed explicitly, as is the case with the Higgsino
threshold correction in the minimal supersymmetric stan-
dard model [2].

IV. FICTITIOUS SUPER-WEYL
GAUGE-SYMMETRIC FORMULATION

In the discussion in Refs. [48,51], the origin of the
gaugino mass has been discussed in the superspace
formalism of supergravity with the help of a fictitious
(and exact) super-Weyl gauge symmetry by introducing a
chiral super-Weyl compensator field, C, along the lines of
Ref. [54]. We call this super-Weyl symmetry the fictitious
super-Weyl gauge symmetry throughout the paper to dis-
tinguish it from the approximate super-Weyl symmetry we
havediscussed so far. One of the keys to settling the puzzle in
the discussion in Refs. [48,51] is how to write down
the anomaly-mediated gaugino mass term of the fictitious
super-Weyl gauge symmetry in a gauge-independent
way. In this section, we show how to write down the
gauge-independent gaugino mass term, where the knowl-
edge of the super-diffeomorphism-invariant path-integral
measure plays a crucial role.

A. Fictitious super-Weyl gauge symmetry

The fictitious (and exact) super-Weyl gauge symmetry is
introduced to the action in Eq. (1) by performing a finite
super-Weyl transformation in Eq. (6) with Σ ¼ lnC=2 and
w ¼ 0 [54]. The resulting classical acton is given by

16In the Pauli-Villars regularization, the anomaly-mediated
gaugino mass is understood by the difference of super-Weyl-
invariant measures between massive Pauli-Villars fields and
massless matter fields (see Appendix B).
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L ¼ M2
Pl

Z
d2Θ2E0 3

8
ðD0†2 − 8R0ÞCC† exp

�
−

K0

3M2
Pl

�

þ 1

16g2

Z
d2Θ2E0W0αW0

α þ H:c:; ð27Þ

where primes denote fields after the transformation.
Now, the action is exactly invariant under the super-
Weyl symmetry in Eq. (6) in terms of E0, W0α, Q0 and
Q̄0 with w ¼ 0, while giving a Weyl weight −2 to the
“super-Weyl compensator” C,

δSW;ficC ¼ −2ΣC − Sα
∂

∂Θα C: ð28Þ

It should be noted that the compensator C is a gauge degree
of freedom, which can be completely eliminated by
performing the fictitious super-Weyl transformation. In
other words, one may take any C so that the calculation
that one performs is as simple as possible.17 In particular, in
the presence of the compensator, the equation of motion of
M0 is changed from Eq. (5) to

FC −
1

3
M0� ¼ m3=2; ð29Þ

where we have taken C ¼ 1þ FCΘ2. Thus, for example, it
is convenient to take the gauge where M0 ¼ 0, which
was taken in Ref. [48] up to higher-dimensional terms (see
also Ref. [62]).

B. Gaugino mass

As we have discussed in the previous section, the super-
Weyl transformation performed to introduce C is anoma-
lous where the measure is transformed from ½DQdff � to
½DQ0

dff �.18 The transformation invokes the following term in
the Wilsonian effective action:

ΔS0C ¼ þ 1

16

3

4π2

Z
d4xd2Θ2E0 lnCW0αW0

α þ H:c: ð30Þ

This term can also be derived from the condition that the
fictitious super-Weyl symmetry is free from the gauge
anomaly [54]. Further, let us eliminate C from the kinetic
term of the matter fields by the redefinitions,Q00 ≡Q0C and
Q̄00 ≡ Q̄0C. After the redefinitions, the integration of the
matter fields does not generate the gaugino mass propor-
tional to FC at the one-loop level, so that the gaugino mass
is directly read off from the Wilsonian effective action.
By combining the counterterms of the anomalies to reach
Q00

diff ¼ ð2E0Þ1=2Q0C and Q̄00
diff ¼ ð2E0Þ1=2Q̄0C, we eventu-

ally obtain

ΔSC ¼ 1

16

1

4π2
×
Z

d4xd2Θ2E0 lnCW0αW0
α þ H:c:; ð31Þ

where the corresponding path-integral measures are given
by ½DQ00

dff � and ½DQ̄00
dff �.

In Ref. [51], it was claimed that there is no anomaly-
mediated gaugino mass (derived in Refs. [2,3]) by taking a
gauge with FC ¼ 0. On the other hand, in Ref. [48], taking
another gauge withM0 ¼ 0, the anomaly-mediated gaugino
mass was reproduced. These arguments pose a puzzle, as
the gaugino mass should not depend on the gauge choice
of FC.
This puzzle is solved by remembering the discussion in

Sec. III. There, in order to read off the gaugino mass from
the Wilsonian effective action, we used the canonical
measure ½DQSW�≡ ½Dð2EÞ1=3Q�. Similarly, we should
use this measure again,

½DQc�≡ ½Dð2E0Þ1=3CQ0� ¼ ½Dð2E0Þ−1=6Q00
diff �; ð32Þ

which is again invariant under the “approximate” super-
Weyl symmetry. The kinetic term of Qc is free from the
mixings to both M0 and FC, and hence, canonical.
Eventually, by translating the measure from ½DQ00

diff � to
½DQc�, the Wilsonian effective action obtains a correction
ΔS, which add up with ΔSC,

19

ΔSþ ΔSC ¼ 1

16

1

4π2
×
Z

d4xd2Θ2E0ðln ð2E0Þ1=3

þ lnCÞW0αW0
α þ H:c: ð34Þ

This expression is manifestly invariant under the fictitious
super-Weyl transformation. Again the counterterm is
not invariant under the super-diffeomorphism, which is
inevitable in order to cancel the anomaly of the super-
diffeomorphism due to ½DQc�. From this expression, we
obtain the anomaly-mediated gaugino mass

mλ=g2 ¼ −
1

2

1

4π2
ðlnð2E0Þ1=3 þ lnCÞjΘ2

¼ −
1

8π2

�
FC −

1

3
M0�

�
¼ −

1

16π2
× 2m3=2; ð35Þ

which is independent of the gauge choice of FC.
In our argument, the super-diffeomorphism-variant

counterterm ΔS is the key to obtaining the manifestly
invariant expression of the anomaly-mediated gaugino
mass under the fictitious super-Weyl gauge symmetry. It
should also be stressed that the combination,

17The singular transformation leading to C ¼ 0 should be
avoided.

18The weighted chiral field Qdiff has a Weyl weight 3 for
w ¼ 0.

19One may obtain the following counterterm directly from the
relation:

½DQc� ¼ ½Dð2EÞ−1=6C−1=2Qdiff �: ð33Þ
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Z
d4xd2Θ2E0ðln ð2E0Þ1=3 þ lnCÞW0αW0

α þ H:c:; ð36Þ

is invariant under the fictitious super-Weyl symmetry.
Thus, the mere knowledge of the anomaly of the fictitious
super-Weyl gauge symmetry cannot determine the overall
coefficient of Eq. (34), and it is crucial to start with the super-
diffeomorphism-invariant measure to obtain Eq. (34).20

C. Relation to the 1PI quantum effective action (I)

As is clear from Eq. (35), the gaugino mass is simply
read off from the counterterm in the Wilsonian effective
action, ΔSC, by taking the gauge with M0 ¼ 0 and
FC ¼ m3=2. In the 1PI quantum effective action, on the
other hand, it should also be possible to write down the
gaugino mass term without using the compensator C. To
see how the gaugino mass appears in the 1PI action, let us
consider a finite super-Weyl transformation of R,

R0 ¼ −
1

8
e4ΣðD†2 − 8RÞe−2Σ† þ � � � : ð37Þ

Here, ellipses denote terms which are irrelevant for the
transformation of the lowest component of R. Then, by
taking Σ such that

ðD2 − 8R†Þe−2Σ ¼ 0; ð38Þ

we can eliminate the lowest component of R. The solution
of Eq. (38) is given by [53,63]

e−2Σ ≡ Ω ¼ 1þ 1

2□þ
ðD†2 − 8RÞR†;

□þ ≡ 1

16
ðD†2 − 8RÞðD2 − 8R†Þ: ð39Þ

Thus, by setting C ¼ Ω−1, we can achieve the desirable
gauge choice of the fictitious super-Weyl gauge symmetry
whereM0 ¼ 0. It should be noted that the apparent nonlocal
expression of Ω does not cause problems since the chiral
field Ω is reduced to a local field expression,

Ω≃ 1þ 1

3
M�Θ2; ð40Þ

in the flat limit. Thus, as long as we are interested in the flat
limit, Ω can be treated as a local field.

In this gauge, ΔSC is now expressed by,

ΔSC¼Ω−1 ¼ 1

16

1

4π2
×
Z

d4xd2Θ2E0 lnΩ−1W0αW0
α þ H:c:

ð41Þ

By expanding this expression around Ω ¼ 1, we obtain

ΔSC¼Ω−1 ≃ −
1

16

1

8π2

Z
d4xd2Θ2E

1

□þ
ðD†2 − 8RÞ

× R†WαWα þ H:c:; ð42Þ

at the leading order. Here, we have reverted E0 andW0α to E
andWα. Since this term is expressed in terms of the gravity
multiplet and is independent of C, this provides an
appropriate expression for the super-Weyl variance in the
1PI effective action. In fact, the final expression reproduces
the 1PI quantum effective action given in Ref. [42].21 By
substituting Eq. (40), we again obtain the anomaly-
mediated gaugino mass from Refs. [2,3].

D. Relation with 1PI quantum effective action (II)

The chiral field Ω is also useful for discussing the 1PI
quantumeffective action along the lines of Sec. III, wherewe
did not introduced the super-Weyl compensator C. There,
instead, we relied on the F-type super-Weyl-invariant but
super-diffeomorphism-variant measure to read off the gau-
gino mass from the Wilsonian effective action. The 1PI
quantum effective action, however, must be invariant under
the super-diffeomorphism by itself. Thus, ΔS should be
replaced by a super-diffeomorphism-invariant expression in
the 1PI quantum effective action.
To find an appropriate expression, let us remember that

the chiral field Ω transforms,

δSWΩ ¼ −2ΣΩ − Sα
∂

∂Θα Ω; ð43Þ

under the super-Weyl transformation. From this property,
we can construct a measure

½DQSW;diff �≡ ½DΩ1=2ð2EÞ1=2Q� ¼ ½DΩ1=2Qdiff �; ð44Þ

which is invariant under both the F-type super-Weyl and
the super-diffeomorphism transformations.22 Thus, in a
similar way to Sec. III, the Wilsonian effective action
receives a correction by changing the measure from
½DQdiff � to ½DQSW;diff �,

20Correspondingly, in the 1PI effective action, the fictitious
super-Weyl gauge invariance alone cannot determine the gaugino
mass term up to the contribution from Eq. (36) with lnð2E0Þ1=3
replaced by lnΩ−1, where the chiral field Ω is defined in the
following.

21The apparent difference by a factor of 4 between our result
and that in Ref. [42] is due to the difference of the normalization
of the gauge multiplet.

22The component fields of QSW;diff defined by, QSW;diff ¼
e1=2½AQSW;diff

þ ffiffiffi
2

p
ΘχQSW;diff

þ Θ2FQSW;diff
�, have the same canoni-

cal kinetic term with those of QSW in Eq. (18).
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½DQdiff �½DQ̄diff �½DQ†
diff �½DQ̄†

diff � ¼ ½DQSW;diff �½DQ̄SW;diff �½DQ†
SW;diff �½DQ̄†

SW;diff � × exp ½iΔSdiff �;

ΔSdiff ¼
1

16

1

4π2
×
Z

d4xd2Θ2E lnΩ−1WαWα þ H:c: ð45Þ

Unlike ΔS, ΔSdiff is invariant under the super-
diffeomorphism. Thus, ΔSdiff is an appropriate expression
of the super-Weyl breaking in the 1PI quantum effective
action. Again, this expression reproduces the super-Weyl-
breaking term in the 1PI effective action in Ref. [42].

V. SUMMARY

In this paper, we have reexamined the anomaly-mediated
gaugino mass term in the superspace formalism of
supergravity. The absence of the gaugino mass term of
Oðm3=2Þ in the classical supergravity action is understood
by an approximate super-Weyl symmetry of the super-
diffeomorphism-invariant local classical action. Then, we
find that the anomaly-mediated gaugino mass originates
from the anomalous breaking of the approximate super-
Weyl symmetry caused by the super-diffeomorphism-
invariant measure of the charged field. By changing the
path-integral measure from the super-diffeomorphism-
invariant one to the super-Weyl-invariant one, we have
shown that the gaugino mass term can be read off from the
local counterterm in the Wilsonian action. It should be
stressed that the counterterm is not invariant under the
super-diffeomorphism, which is required for the super-
diffeomorphism invariance of the quantum theory. As is
clear from our discussion, the path-integral measure plays a
crucial role in determining the gaugino mass term. This
observation fills a gap in the literature on the anomaly-
mediated gaugino mass.
We have also discussed the gaugino mass in the formula-

tion with a fictitious super-Weyl gauge symmetry. There,
the action is made invariant under a fictitious super-Weyl
gauge symmetry by introducing a chiral compensator C.
Since C is a gauge degree of freedom, the gaugino mass
should be independent of the choice of the value of C. A
gauge-independent expression of the local gaugino mass
term was, however, not known in the literature, which is
one of the origins of the controversy in Refs. [48,51]. In our
discussion, we have shown how the gauge-independent
expression is obtained with the aid of the super-
diffeomorphism-invariant measure. We have also discussed
how to reconcile the gaugino mass term appearing in the
nonlocal 1PI effective action given in Ref. [42] and the one
in the local effective Wilsonian action.
In our discussion, we have concentrated on the anomaly-

mediated gaugino mass at the one-loop level. At the
one-loop level, the violation of the F-type super-Weyl
symmetry in the gauge kinetic function, which is the origin
of the gaugino mass, is extracted by calculating the
anomalous Jacobian associated with the change of the

measure from the super-diffeomorphism-invariant one to
the F-type super-Weyl-invariant one [see Eq. (22)]. This
corresponds to the fact that a one-loop beta function of a
gauge theory is extracted by calculating the anomalous
Jacobian associated with the Weyl transformation [64].
Note that the approximate super-Weyl symmetry is also
broken by anomalous dimensions of the matter and gauge
multiplets, which contributes to the gaugino mass at the
two-loop level and higher. It is difficult to extract these
contributions in the Wilsonian effective action. It would be
easier to discuss the violation of the super-Weyl symmetry
in the 1PI effective action.
As a final remark, let us sketch the gaugino mass in a

non-Abelian gauge theory. In the non-Abelian gauge
theory, the path-integral measure of the gauge multiplet
should be taken into account. The super-diffeomorphism-
invariant measure and the F-type super-Weyl-invariant
measure are given by

½DVdiff � ¼ ½DE1=2V�;
½DVSW� ¼ ½Dð2EÞ−1=6ð2E†Þ−1=6Vdiff �; ð46Þ

where E is the determinant of the supersymmetric vielbein
in a real superspace. The super-Weyl transformation law of
E is given by

δSWE ¼ 2ðΣþ Σ†ÞEþ � � � ; ð47Þ
where the ellipses denote inhomogeneous terms which
can be canceled by the super-diffeomorphism. Here, we
collectively represent the gauge multiplet and the ghost
multiplets by V, and Vdiff and VSW are also represented
accordingly.
The translation from ½DVdiff � to ½DVSW� is easily

performed in the following way. Let us introduce a chiral
compensator C as in Sec. IV, which defines E0 via,

E ¼ CC†E0: ð48Þ
By remembering that the super-Weyl transformation is
anomalous, the gauge kinetic function receives a counter-
term depending on C as [54],

½DE1=2V� ¼ ½DE01=2V� × eiΔS
V
C ;

ΔSVC ¼ −
1

16

3TG

8π2
×
Z

d4xd2Θ2E0 lnCW0αW0
α þ H:c:;

ð49Þ
where TG is the Dynkin index of the adjoint representation.
It should be noted that ΔSVC includes the rescaling anomaly
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form the ghost multiplets. Then, by comparing Eqs. (47),
(48) and (49), we find that the counterterm appearing in the
translation from ½DVdiff � to ½DVSW� is given by replacing C
to ð2EÞ1=3,23 which leads to

½DVdiff � ¼ ½DVSW� × eiΔS
V
C ; C ¼ ð2EÞ1=3: ð50Þ

By putting Eqs. (22) and (50) together, we obtain

Y
R

½DQR
diff �½DQR†

diff �½DVdiff � ¼
Y
i

½DQR
SW�½DQR†

SW�½DVSW� × eiΔS;

ΔS ¼ −
1

16

3TG −
P

TR

8π2
×
Z

d4xd2Θ2E ln ð2EÞ1=3WαWα þ H:c:; ð51Þ

where TR is the total Dynkin index of matter fieldsQR. As a
result, we find an expression for the gaugino mass,

mλ=g2 ¼
1

2

3TG − TR

8π2
lnð2EÞ1=3jΘ2 ¼ 3TG − TR

16π2
×m3=2;

ð52Þ

which reproduces the anomaly-mediated gaugino mass
found in Refs. [2,3]. We may also obtain the manifestly
gauge-independent expression in the fictitious super-Weyl
symmetry for the non-Abelian gauge theory by using
Eq. (50) along the lines of Sec. IV.
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APPENDIX A: SUPER-DIFFEOMORPHISM-
INVARIANT MEASURE

In this appendix, we show that the measure given in
Eq. (13) is invariant under the super-diffeomorphism.
Under the tranformation given in Eq. (11), the variable
Qdiff transforms as

Qdiff → Q0
diff ¼ Qdiff − ηMðx;ΘÞ∂MQdiff

−
1

2
ð−ÞMð∂Mη

Mðx;ΘÞÞQdiff : ðA1Þ

Then, the path-integral measure ½DQdiff � transforms,

½DQ0
diff � ¼ ½DQdiff � × exp ½sTrOðz0; zÞ�; ðA2Þ

Oðz0; zÞ≡ −
�
ηM∂M þ 1

2
ð−1ÞMð∂Mη

MÞ
�
δ6ðz0 − zÞ; ðA3Þ

where we have collectively represented x and Θ by z.
Formally, the supertrace sTr is expressed by

sTrOðz0; zÞ ¼
Z

d6zd6z0δ6ðz0 − zÞOðz0; zÞ: ðA4Þ

A naive conclusion is that the supertrace vanishes due to the
saturation of Grassmann variables Θ and Θ0 from the delta
functions in Eqs. (A3) and (A4). However, since there is
also a factor of δ4ðx0 − xÞ, which is well defined only after
integrating over x or x0, one should carefully investigate the
integration.
To examine the integration, let us expand the delta

function by plane waves,

δ6ðz0 − zÞ ¼
Z

d4k
ð2πÞ4 d

2τΨ−k;−τðz0ÞΨk;τðzÞ; ðA5Þ

Ψk;τðzÞ≡ expðikxþ 2iτΘÞ: ðA6Þ

By substituting this expression into Eq. (A4), the above
supertrace is expressed by,

sTrOðz0; zÞ ¼ −
Z

d6z
Z

d4k
ð2πÞ4 d

2τΨ−k;−τðzÞ

×

�
ηM∂M þ 1

2
ð−ÞMð∂Mη

MÞ
�
Ψk;τðzÞ: ðA7Þ

Now, let us notice an identity,
Z

d6zΨk;ηðzÞ
�
ηM∂M þ 1

2
ð−ÞMð∂Mη

MÞ
�
Ψk;ηðzÞ

¼ 1

2
ð−ÞM

Z
d6z∂M½Ψk;ηðzÞηMΨk;ηðzÞ�

¼ 0; ðA8Þ
23The expression for the rescaling anomaly does not depend on

whether the rescaling factor is a chiral superfield or a chiral
density superfield.
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where we have used the property that an integration of a
total derivative vanishes. By using this identity several
times, the supertrace can be rearranged as

sTrOðz0;zÞ¼−
1

2

Z
d6z

Z
d4k
ð2πÞ4d

2τðΨk;τðzÞþΨ−k;−τðzÞÞ

×

�
ηM∂Mþ1

2
ð−ÞMð∂Mη

MÞ
�
ðΨk;τðzÞþΨ−k;−τðzÞÞ

¼−
1

4
ð−ÞM

Z
d6z

Z
d4k
ð2πÞ4d

2τ∂M½ðΨk;τðzÞ

þΨ−k;−τðzÞÞηMðΨk;τðzÞþΨ−k;−τðzÞÞ�
¼0: ðA9Þ

This shows that the measure given in Eq. (13) is actually
invariant under the super-diffeomorphism. It should be
noted that the transformation law in Eq. (A1) is crucial
when using Eq. (A8), and hence, the super-diffeomorphism
invariance does not hold for measures with different
weights ½Dð2EÞnQ� ðn ≠ 1=2Þ. In fact, the super-
diffeomorphism transformation of ½Dð2EÞnQ� ðn ≠ 1=2Þ
is accompanied by the Konishi-Sizuya anomaly [57]. This
argument provides a superfield expression for the argu-
ments in Ref. [65].
There is a quicker route to show the super-

diffeomorphisim invariance of ½DQdiff � from the very
definition of the path-integral measure [65]. Let us a
consider a superfield ~Qðx;ΘÞ defined in a chiral super-
space. The path-integral measure ½D ~Q� is defined by a
Gaussian integration,

Z
½D ~Q� exp

�
i
2

Z
d6zΘ ~Q ~Q

�
¼ N; ðA10Þ

where N is a normalization constant. It should be noted that
we have not specified the transformation law of ~Q under the
super-diffeomorphism at this point.
Next, let us introduce Q≡ ð2EÞ−1=2 ~Q, and choose the

transformation property of ~Q as a chiral density multiplet
with density weights 1=2, where Q is a chiral scalar
multiplet. Then, from Eq. (A10), we obtain

Z
½Dð2EÞ1=2Q� exp

�
i
2

Z
d6z2EQQ

�
¼ N: ðA11Þ

Now, since
R
d6zEQQ is invariant under the super-

diffeomorphism since Q is the chiral scalar multiplet, the
path-integral measure is as well ½Dð2E1=2ÞQ�.
In fact, under the super-diffeomorphism,

E0 ¼ E − δSDE; Q0 ¼ Q − δSDQ; ðA12Þ

we have the following identities:

N ¼
Z

½Dð2EÞ1=2Q� exp
�
i
2

Z
d6z2EQQ

�
;

¼
Z

½Dð2E0Þ1=2Q0� exp
�
i
2

Z
d6z2E0Q0Q0

�
;

¼
Z

½Dð2E0Þ1=2Q0� exp
�
i
2

Z
d6z2EQQ

�
: ðA13Þ

Here, the second equality is just a change of variable. We
have used the super-diffeomorphism invariance of the
exponent in the third equality. Thus, from these identities,
we find that

½Dð2E0Þ1=2Q0� ¼ D½ð2EÞ1=2Q�; ðA14Þ
which again shows the super-diffeomorphism invariance of
the measure ½DQdiff �. In the same token, we can derive the
super-diffeomorphism invariance of the measure of a scalar
multiplet V in a real superspace,

½DVdiff � ¼ ½DE1=2V�; ðA15Þ
which we briefly mentioned in Sec. V.

APPENDIX B: GAUGINO MASS IN
PAULI-VILLARS REGULARIZATION

In this appendix, we show how our method of extracting
the gaugino mass works in the Pauli-Villar regularization
[66]. In the Pauli-Villar regularization scheme, we intro-
duce Pauli-Villars fields—a pair of fermonic chiral scalar
multiplets P and P̄ with a unit charge—and give them a
supersymmetric mass term Λ which corresponds to the
cutoff scale:

L ¼
Z

d2Θ2EΛPP̄þ H:c: ðB1Þ

As we discussed in Sec. III, it is convenient to use the F-
type super-Weyl-invariant measure, ½DQSW�, to extract the
gaugino mass from theWilsonian action. If we also take the
measure of the Pauli-Villars fields to be ½DPSW�, however,
the counterterms appearing when we change the measures
are canceled due to the opposite statistic of the Pauli-Villars
fields. Thus, in this case, the F-type super-Weyl-invariant
measure does not invoke the counterterm in Eq. (22), ΔS.
In the absence of ΔS, what is the origin of the gaugino

mass? As we discuss in the main text, the gaugino mass is
generated only from violations of the approximate F-type
super-Weyl symmetry. For a energy scale well below Λ, the
approximate F-type super-Weyl symmetry is explicitly
broken by the mass term of the Pauli-Villars fields.
Thus, the integration of the Pauli-Villars fields generates
the gaugino mass, as was discussed in Ref. [2].24

24More explicitly, the masses of the fermions and the scalars in
the Paulli-Villars multiplets are split by the coupling toM throughR
d2Θð2EÞ1=3ΛPSWP̄SW.

KEISUKE HARIGAYA AND MASAHIRO IBE PHYSICAL REVIEW D 90, 085028 (2014)

085028-12



We can also extract the gaugino mass without explicitly
performing the integration of the Pauli-Villars fields. Well
below the mass scale Λ, a good approximate super-Weyl
symmetry is the one which is consistent with the mass term
of the Pauli-Villars fields. Thus, the appropriate measure to

read off the gaugino mass from the action is the combi-
nation of ½DQSW� and ½DPdiff �. With these measures, the
counterterm is again given by ΔS in Eq. (22), from which
we can directly read off the anomaly-mediated gau-
gino mass.
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