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The classical and quantum evolution of a generic probability distribution is analyzed. To that end, a
formalism based on the decomposition of the distribution in terms of its statistical moments is used, which
makes explicit the differences between the classical and quantum dynamics. In particular, there are two
different sources of quantum effects. Distributional effects, which are also present in the classical evolution
of an extended distribution, are due to the fact that all moments cannot be vanishing because of the
Heisenberg uncertainty principle. In addition, the noncommutativity of the basic quantum operators add
some terms to the quantum equations of motion that explicitly depend on the Planck constant and are not
present in the classical setting. These are thus purely quantum effects. Some particular Hamiltonians are
analyzed that have very special properties regarding the evolution they generate in the classical and
quantum sector. In addition, a large class of inequalities obeyed by high-order statistical moments, and in
particular uncertainty relations that bound the information that is possible to obtain from a quantum system,
are derived.
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I. INTRODUCTION

The classical limit of quantum mechanics is very subtle.
One of the main problems to define such a limit is the
difference between the formalisms used to describe these
theories. Quantum mechanics is analytical since it is based
on Hilbert spaces and operators acting thereon, whereas
classical mechanics is geometrical: it is defined on sym-
plectic manifolds and with Hamiltonian vector fields
describing the evolution. In addition, apart from the purely
quantum and purely classical theories, there are also
different attempts to construct hybrid theories that consider
a direct coupling between classical and quantum degrees of
freedom (see e.g. [1–6]). Nevertheless, many of these
theories suffer from several drawbacks [7] and will not
be considered here; see Ref. [8] for a discussion on these
hybrid theories within a formalism similar to the one
presented in this paper.
The intuitive idea one usually has in mind about a

semiclassical state is that of a peaked coherent state, whose
centroid (the coordinates on the phase space of the expect-
ation value of the position and momentum operators)
follows a classical orbit in phase space. Nonetheless, in
Ref. [9] a different idea was presented: the classical limit of
a quantum system is not a single classical orbit, but an
ensemble of orbits. Therefore, even if it is not peaked and
its centroid does not follow a classical trajectory, a quantum
state can behave essentially classically if it follows the
evolution given by the Liouville equation for an equivalent
classical ensemble. In particular it is well known that

generically the centroid of a quantum state does not follow a
classical trajectory. But this very same thing happens
with the evolution of the centroid of a classical distribution;
so such an effect cannot be regarded as completely quantum.
Another reason to work with classical probability dis-

tributions is that even if in the context of classical
mechanics in principle one could have a point in the phase
space as initial condition, in practice there are always
measurement errors that introduce some uncertainty on the
knowledge about the initial state. Hence, this issue forces
us to consider also the evolution of extended probability
distributions on a purely classical setting.
The difference between a quantum and classical distri-

butional evolution of an initial state could be of particular
importance in the context of quantum cosmology. Leaving
aside theories that involve multiverses, there is only one
realization of the Universe and thus one dynamical state
that describes it. If, at some point, we were able to measure
some properties of that state, it will be necessary to
compare its classical and quantum evolution in order to
know if the Universe is indeed behaving quantum mechan-
ically or this distributional behavior is just due to the error
on our measurements.
As will be made explicit in this paper, a formalism very

well suited to compare the classical and quantum evolu-
tions of a given physical system is the one developed in
[10] for Hamiltonians corresponding to a particle on a
potential. In that paper a decomposition of the wave
function into its infinite set of statistical moments is
considered. The moments contain the same physical
information as the wave function, but have the great
advantage of being observable. The evolution equations*david.brizuela@ehu.es
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of these variables give rise to the Hamilton equations for the
expectation values of the position and momentum oper-
ators, with corrections coming from the moment variables.
On the other hand, in the same way as for the quantum
theory, it is possible to define the moments corresponding
to a classical ensemble and obtain their evolution
equations. In this way, the classical and quantum evolution
of a given physical system is described in a very
similar setting and the comparison between them is
straightforward.
A similar formalism to the one developed in [10], but

with a different ordering of the basic variables, was
presented in [11] for generic Hamiltonians in a canonical
framework. This formalism has been widely applied to
different cosmological models (see [12] for a recent
review). One of the advantages of this approach is that it
can be applied also when the dynamics is described by a
Hamiltonian constraint, as opposed to a Hamiltonian
function [13]. In this context, isotropic cosmological
models with negative and positive cosmological constant
have been studied in Ref. [14] and [15], respectively. It has
also been applied to simple bounce scenarios in loop
quantum cosmology [16]. Furthermore, the problem of
time in semiclassical regimes, as well as the relational
quantum dynamics, has also been considered in [17,18].
In the present paper the classical counterpart to the

quantum formalism developed in [11] will be presented. In
this way, a formalism similar to the one introduced in [10]
will be obtained, but valid for generic Hamiltonians and
with a different ordering of the basic variables. In addition,
due to the generic formula between two moments obtained
in [15,19], much more compact evolution equations will be
presented, which allow for an easier understanding of the
terms involved. Harmonic and linear Hamiltonians will
be considered due to their special properties regarding
the classical and quantum evolution they generate.
Furthermore, making use of the Cauchy-Schwarz inequal-
ity, high-order inequalities obeyed by statistical moments
will be systematically obtained. In the quantum case, a
specific subset of these inequalities will give rise to high-
order uncertainty relations that generalize the well-known
Heisenberg uncertainty principle.
The rest of the paper is organized as follows. In Sec. II

the general formalism is explained. In subsection II A a
brief summary of the quantum formalism introduced
in [11] is given, whereas in subsection II B its classical
analog is developed. The rest of this section underlines
the differences between the classical and quantum settings,
and analyzes how to obtain dynamical and stationary
states in this context. Section III discusses the special
classical and quantum behavior of harmonic and linear
Hamiltonians. In Sec. IV high-order inequalities obeyed
by both classical and quantum statistical moments are
obtained and analyzed. Finally, Sec. V presents the con-
clusions and summarizes the main results of the paper.

II. GENERAL FORMALISM

A. Quantum moments

In this subsection the formalism developed in [11] is
briefly reviewed. Let us assume a quantum mechanical
system with one degree of freedom described by the basic
conjugate operators ðq̂; p̂Þ. We define the quantum
moments

Ga;b ≔ hðp̂ − pÞaðq̂ − qÞbiWeyl; ð1Þ

where p ≔ hp̂i, q ≔ hq̂i are the expectation values of the
momentum and position operator, respectively, and the
subscript Weyl stands for totally symmetric ordering.
The sum between its two indices ðaþ bÞ will be referred
as the order the moment Ga;b.
Note that through this decomposition the wave function

Ψðq; tÞ gets replaced by its infinite set of statistical
moments Ga;bðtÞ, which only depend on time. This is
quite similar to what is done in physical problems with
certain symmetry: use special functions adapted to that
symmetry and remove the dependence on the trivial
directions, like for example spherical harmonics when
dealing with spherical symmetry.
Performing the Taylor expansion of the Hamiltonian

operator Ĥ, an effective Hamiltonian HQ is obtained as
function of the expectation values and moments:

HQðq; p;Ga;bÞ ¼ hĤðq̂; p̂ÞiWeyl

¼ hĤðq̂ − qþ q; p̂ − pþ pÞiWeyl

¼
X∞
a¼0

X∞
b¼0

1

a!b!
∂aþbH
∂pa∂qb G

a;b

¼ Hðq; pÞ þ
X
aþb≥2

1

a!b!
∂aþbH
∂pa∂qb G

a;b: ð2Þ

The classical HamiltonianHðq; pÞ is obtained by replacing
q̂ and p̂ by their corresponding expectation values q and p,
respectively, in the explicit expression of the Hamiltonian
operator Ĥðq̂; p̂Þ. It can be shown that, if one defines the
Poisson bracket for expectation values of arbitrary oper-
ators f̂ and ĝ by the relation fhf̂i; hĝig ¼ −iℏ−1h½f̂; ĝ�i, the
evolution generated by this Hamiltonian is equivalent to the
Schrödinger flow of quantum states. Thus, this effective
Hamiltonian encodes the complete dynamical information
of our variables: the expectation values ðq; pÞ and the
infinite set of moments. With the mentioned definition, it is
immediate to see that, given the commutation relation
½q̂; p̂� ¼ iℏ, the Poisson bracket between conjugate varia-
bles reduces to the canonical one: fq; pg ¼ 1. Moreover,
one can easily show that moments have vanishing Poisson
brackets with the basic expectation values:
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fGa;b; pg ¼ 0 ¼ fGa;b; qg: ð3Þ

The general Poisson brackets between moments is more
involved, but a general formula is given by

fGa;b;Gc;dg ¼ adGa−1;bGc;d−1−bcGa;b−1Gc−1;d

þ
X⌊M−1

2
⌋

m¼0

ð−1Þmℏ
2m

22m
K2mþ1

abcd Gaþc−2m−1;bþd−2m−1;

ð4Þ

where M ≔ Minðaþ c; bþ d; aþ b; cþ dÞ and the coef-
ficients

Kn
abcd ¼

Xn
m¼0

ð−1Þmm!ðn −mÞ!
�

a

m

��
b

n −m

�

×

�
c

n −m

��
d

m

�

have been defined. Note that this expression mixes different
orders in a nontrivial way since the bracket between two
moments of order ðaþ bÞ and ðcþ dÞ, respectively, are a
combination of moments from at most order jðaþ bÞ −
ðcþ dÞj (or higher, depending which of the combinations
in the definition of M is the minimum), up to
order ðaþ bþ cþ d − 2Þ.
The evolution equations for different variables are then

obtained by simply computing their Poisson brackets with
the effective Hamiltonian (2). In this way, it is straightfor-
ward to get the following relations for the expectation
values:

dq
dt

¼ fq;HQg

¼ ∂Hðq; pÞ
∂p þ

X
aþb≥2

1

a!b!
∂aþbþ1Hðq; pÞ
∂paþ1∂qb Ga;b; ð5Þ

dp
dt

¼ fp;HQg

¼ −
∂Hðq; pÞ

∂q −
X
aþb≥2

1

a!b!
∂aþbþ1Hðq; pÞ
∂pa∂qbþ1

Ga;b: ð6Þ

Note that if the classical Hamiltonian Hðq; pÞ is at most
quadratic in the variables, the sums in these equations will
give no contribution and the expectation values will exactly
fulfill their corresponding classical equations of motion. In
Sec. III A this and other special features of quadratic
Hamiltonians will be analyzed.
On the other hand, the equations of motion for the

moments can be written as follows:

dGa;b

dt
¼fGa;b;HQg¼

X
cþd≥2

1

c!d!
∂cþdH
∂pc∂qd fG

a;b;Gc;dg; ð7Þ

where the Poisson bracket (4) should be replaced. As can be
seen, in principle (except for certain particular forms of the
Hamiltonian H) this equation will get contributions from
several orders.
Even if the infinite set of equations is equivalent to the

Schrödinger equation, for practical reasons in general, in
order to analyze the dynamics of the system, it will be
necessary to introduce a cutoff > N, that is, a maximum
order N, so that all Ga;b are assumed to be vanishing if
aþ b > N. Due to the special form of the brackets (4) that
mix higher- and lower-order moments, the introduction of
such a cut-off could be made in two different and
inequivalent ways regarding the equations of motion for
the moments (7). 1/ Truncate the Hamiltonian at order N,
calculate the equations of motion (7), and truncate again the
right-hand side of these equations. 2/ Consider the com-
plete Hamiltonian HQ without truncation, calculate the
equations of motion (7) and truncate then the result at
order N. (In practice, for this second procedure it is enough
to consider the Hamiltonian up to order 2N since higher
orders of the Hamiltonian will only introduce moments of
an order greater than N in the equations, which will be
made to vanish when truncating the result.) On the other
hand, the equations of motion for the expectation values q
and p do not depend on the way the truncation is done. The
truncation of the Hamiltonian at the desired order N is
sufficient to get only moments up to that order in their
equations of motion and considering the full Hamiltonian
HQ will not introduce new terms.
In principle, from a perturbative perspective, one would

say that the first route is more consistent: no knowledge of
higher-order terms is made use of at any step. Nevertheless,
this is a very peculiar perturbative expansion since, as
commented above, the Poisson brackets of a moment of
order N with a moment of order N þ 1 does not generate
only moments of order N and greater; lower-order terms
also appear. Following the second route guarantees that the
equations of motion truncated at a given order N will
contain all contributions from moments up to that order.
That is, when considering the truncation at order N þ 1, the
lower-order terms will not change.
This formalism is very practical because one deals

directly with measurable quantities (expectation values)
instead of with the wave function and it is immediate to see
the corrections for classical equations of motion. These
corrections are usually regarded as purely quantum but note
that there is no explicit ℏ involved in the definition of the
moments or the expansion of the Hamiltonian. Only the
Poisson brackets between two moments introduces ℏ terms.
A question then arises: is it possible to obtain a similar
formalism for classical mechanics? As will be explained in
the next section, the answer is in the affirmative.
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B. Classical moments

As explained in [10], it is possible to define the classical
analog of the moments define in the previous subsection.
Let us assume a classical mechanical system described by
the Hamiltonian H with a phase space coordinatized by the
conjugate pair ~q and ~p with Poisson bracket f ~q; ~pgc ¼ 1
(the subscript c is used not to confuse this bracket with the
one defined previously for expectation values). A classical
ensemble is defined via a probability distribution ρð ~q; ~p; tÞ
on the classical phase space. The evolution of this
distribution is given by the Liouville equation,

∂ρ
∂t ¼ −fρ; Hð ~q; ~pÞgc; ð8Þ

which asserts that the probability distribution is conserved
through physical trajectories dρ=dt ¼ 0.
In order to explode further the parallelism between the

classical and quantum worlds, the classical expectation
value for any function in the phase space fð ~q; ~pÞ can be
defined as

hfð ~q; ~pÞic ≔
Z

d ~qd ~pfð ~q; ~pÞρð ~q; ~p; tÞ; ð9Þ

where the integration extends to the whole domain of the
probability distribution on the phase space.
Making use of this operation, the classical mean values

for the position ~q and momentum ~p are defined:

qðtÞ ≔ h ~qic;
pðtÞ ≔ h ~pic:

These are the coordinates on the phase space of the centroid
of our distribution. The classical moments are further
defined as

Ca;b ≔ hð ~p − pÞað ~q − qÞbic: ð10Þ

Since all objects in this expression commute, contrary to
the quantum case, the ordering is absolutely irrelevant.
Note that the expectation value of any function can be
regarded as a function of the coordinates of the centroid
ð ~q; ~pÞ and the moments Ca;b. To make this explicit it is
enough to make a Taylor expansion around the position of
the centroid:

hfð ~q; ~pÞic ¼ hfðqþ ~q − q; pþ ~p − pÞic
¼ fðq; pÞ þ

X
aþb≥2

1

a!b!
∂aþbfðq; pÞ
∂qa∂pb Ca;b: ð11Þ

In order to obtain the equations of motion for different
variables, one should define the following Poisson bracket
between expectation values,

fhfð ~q; ~pÞic; hgð ~q; ~pÞicg ≔ hffð ~q; ~pÞ; gð ~q; ~pÞgcic: ð12Þ

This operation has the good properties one expects for a
bracket and gives the expected results for the expectation
values of fundamental variables, now defined as the
coordinates of the centroid of the distribution:

fq; pg ¼ hf ~q; ~pgcic ¼ 1; ð13Þ

fq; qg ¼ 0 ¼ fp; pg: ð14Þ

As in the quantum case, the classical moments commute
with these mean values,

fCa;b; qg ¼ 0 ¼ fCa;b; pg; ð15Þ

and the Poisson bracket between any two classical
moments is given as follows:

fCa;b; Cc;dg ¼ adCa−1;bCc;d−1 − bcCa;b−1Cc−1;d

þ ðbc − adÞCaþc−1;bþd−1: ð16Þ

Comparing these equations with the corresponding to the
quantum moments (4), it is possible to see that the key
difference between classical and quantum moments lies in
the noncommutativity of the quantum operators. The first
two summands of Eqs. (4) and (16) are identical, but the
last term differs. In the quantum case there is a sum in even
powers of ℏ whereas in the classical case only the first
summand, which is independent of ℏ, is kept. In the
quantum case, these terms appear due to the noncommu-
tativity of the basic operators and can be different for
different orderings chosen in the definition of the moments.
Nevertheless, it is not possible to make these terms
vanishing by a redefinition of the ordering [10]. As a side
remark, note that the Poisson bracket between a second-
order moment and any other moment give the same result in
the classical or in the quantum case. As it will be explained
below, this fact will make the quantum evolution of the
system up to second order completely equivalent to the
classical evolution.
With these definitions at hand, the evolution of any

expectation value hfic can be obtained in the following
way,

dhfic
dt

¼ d
dt

Z
d ~qd ~pρð ~q; ~p; tÞfð ~q; ~pÞ ð17Þ

¼ −
Z

d ~qd ~pfρð ~q; ~p; tÞ; Hð ~q; ~pÞgcfð ~q; ~pÞ; ð18Þ

where use of the Liouville equation has been made. Writing
the Poisson bracket as derivatives with respect to the
fundamental variables ð ~q; ~pÞ and integrating by parts, it
is easy to obtain
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dhfic
dt

¼
Z

d ~qd ~pρff;Hgc ¼ hff;Hgcic ¼ fhfic; hHicg:

ð19Þ

This shows explicitly that the evolution of the classical
ensemble described by the distribution ρð ~q; ~p; tÞ will be
given by the expectation value of the classical Hamiltonian,
which can be Taylor expanded around the centroid of the
distribution:

Hcðq; p; Ca;bÞ ≔ hHð ~q; ~pÞic
¼ hHðqþ ~q − q; pþ ~p − pÞic

¼ Hðq; pÞ þ
X
aþb≥2

1

a!b!
∂aþbHðq; pÞ
∂pa∂qb Ca;b:

ð20Þ

In particular, the equations of motion of the centroid are
given by

dq
dt

¼ fq;Hclassg

¼ ∂Hðq; pÞ
∂p þ

X
aþb≥2

1

a!b!
∂aþbþ1Hðq; pÞ
∂paþ1∂qb Ca;b; ð21Þ

dp
dt

¼ fp;Hclassg

¼ −
∂Hðq; pÞ

∂q −
X
aþb≥2

1

a!b!
∂aþbþ1Hðq; pÞ
∂pa∂qbþ1

Ca;b: ð22Þ

It is clear from here that the centroid of the distribution does
not generically follow a classical trajectory. Although in the
particular case that one chooses a Dirac delta centered at
ð ~qð0Þ; ~pð0ÞÞ as the initial distribution ρð ~q; ~p; t ¼ 0Þ all
moments will vanish and this point would follow a classical
trajectory. The first terms of the right-hand side of both
equations are the ones that corresponds to the usual
Hamilton equations, but then there are corrections due to
the moments. As in the quantum case, the moments and the
mean values of the distribution form an infinite system of
couple differential equations. The evolution of the classical
moments is given by

dCa;b

dt
¼

X
cþd≥2

∂cþdH
∂pc∂qd fC

a;b; Cc;dg: ð23Þ

These equations of motion can be recovered from the
evolution equations of the quantum moments (7) simply by
imposing ℏ ¼ 0.

C. Classical versus quantum dynamics

Note that remarkably, due to the properties of the
Poisson brackets between quantum expectation values,
there is no ℏ term in the equations for second-order
quantum moments (7) nor in the equations for the expect-
ation values q and p (5)–(6). Therefore, a truncation at
second order give the same set of equations both for
quantum and classical variables and thus it is necessary
to study at least a third-order truncation in order to find
differences between the classical and quantum evolutions.
The evolution equations for moments of higher order

will in general be different due to the explicit ℏ terms that
appear in the equations for quantum moments (7). In
addition, all equations are coupled and when considering
a third-(or higher) order truncation the evolution of expect-
ation values (q, p) and of second-order moments will be
affected due to the backreaction of other variables. In this
case their evolution with the classical or quantum system
will differ even if their equations of motion still have the
same formal form.
One important conclusion of this analysis is that quan-

tum effects have two different origins. On the one hand,
there are distributional effects due to the fact that in the
quantum theory one necessarily deals with the evolution of
a spread probability distribution, as opposed to a point
trajectory, on the phase space and thus moments are
nonvanishing. As has been explained, these effects are
also present in the classical setting when considering the
evolution of a probability distribution on the phase space as
correction terms to the usual Hamilton equations. On the
other hand, the noncommutativity (or purely quantum)
effects appear in the quantum equations of motion through
explicit ℏ terms. Their origin is the noncommutativity of
basic operators q̂ and p̂, and they are not present in the
classical setting. On the contrary to the distributional
effects, that may appear for instance when the initial
conditions of a classical system are known only with
certain finite precision, these latter effects are thus genu-
inely quantum.
It is difficult to measure the relative strength and

importance of each effect since all equations are coupled
and therefore both effects mix together. Intuitively the
distributional effects depend on the peakedness of the
distribution since, in general, the more spread the distri-
bution the larger the magnitude of different moments. The
noncommutativity effects enter in the equations of motion
as a power series in ℏ2, so the value of Planck constant can
give an estimate of their relative importance.
An idea that will be pursued in a forthcoming paper [20]

is to analyze three different evolutions of the system: the
classical and quantum evolution of the same initial dis-
tribution, as well as the classical point trajectory (taking all
moments to vanish). The comparison between the classical
point-trajectory and the classical evolution of the expect-
ation values with nonvanishing moments will estimate the
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strength of distributional effects, whereas the comparison
between the quantum and classical evolutions will estimate
the magnitude of the noncommutativity effects.

D. Stationary and dynamical states

Once the equations of motion for the Hamiltonian
system have been obtained [Eqs. (5)–(7) for the quantum
setting and (21)–(23) for the classical one], the complete
evolution of a dynamical state can be computed by solving
them. The only additional physical input that is needed are
the initial conditions for both the expectation values and the
moments.
Nevertheless, the stationary states of a quantum system

are also of remarkable importance. These states are
solutions of the time-independent Schrödinger equation
and, hence, eigenstates of the Hamiltonian operator. Their
unique time dependence is encoded on a pure-phase term
e−iEt=ℏ. In the present formalism, based on a decomposition
in moments of the wave function, it is possible to obtain the
stationary states by analyzing the dynamical system given
by the infinite set of moments (or, approximately, by its
truncated version). In fact, there is no need to solve any
differential equation: it is enough to equal to zero the right-
hand side of all equations of motion (5)–(7) and solve
the algebraic system in order to obtain the critical or
equilibrium points. [The same analysis can be applied to
Eqs. (21)–(23) to obtain the stationary classical distribu-
tions.] These equilibrium points are the equivalent of the
quantum stationary states. In general, these equilibrium
points would differ from the ones obtained in the case of a
Dirac delta distribution with vanishing moments
Ca;b ¼ 0 ¼ Ga;b, since the equations of motion of both
q and p get corrections by moments.
However, in some cases the commented algebraic system

of equations will not be complete [20], in such a way that
will not be possible to find all moments, and additional
relations must be found. Since this stationary states are
eigenstates of the Hamiltonian operator, they obey that
hĤi ¼ E, and in fact it is possible to find easily additional
restrictions for them. For instance, the expectation value
h½Ĥ; ½Ĥ; gðq̂Þ��i must vanish for such a state. For the
particular case of the Hamiltonian of a particle in a
potential, Ĥ ¼ p̂2=2þ Vðq̂Þ, that condition can be rewrit-
ten in the following way [21–23]:

2Ehg00i − 2hg00Vi − hg0V 0i þ ℏ2

4
hg000i ¼ 0; ð24Þ

for any gðq̂Þ. If the potential is polynomial in q̂, for instance
Vðq̂Þ ¼ q̂m, the free function can be chosen as gðq̂Þ ¼
ðq̂ − qÞnþ2=ðnþ 2Þ and, taking into account the relation

hq̂ni ¼
Xn
m¼0

qmG0;n−m; ð25Þ

write down a recursive relation for moments of the form
G0;n. In the particular case that the expectation value is
vanishing q ¼ 0, the recursive relation takes the following
form:

ð2nþmþ 2ÞG0;nþm ¼ 2Eðnþ 1ÞG0;n

þ ℏ2

4
ðnþ 1Þnðn − 1ÞG0;n−2: ð26Þ

This means that if moments up to order G0;m are known,
the higher-order fluctuations can be obtained through this
recursive relation. The equivalent computation for the
classical moments gives the same recursive relation but
with a vanishing ℏ ¼ 0. Therefore, the classical moments
will obey a simpler (two-point) recursive relation.
Finally, other states of interest are the coherent states,

which are defined as quantum dynamical states with an
almost classical behavior. More precisely, their expectation
value follow a classical trajectory on the phase space,
whereas all their quantum moments are constant. Usually
the value of the moments is taken to be of minimal
uncertainty. This kind of states can only be constructed
for the harmonic oscillator exactly. Although it might be
possible to introduce a generalization of these states
allowing for a relaxation of some of the commented
features.

III. SPECIAL HAMILTONIANS

In this section two different class of Hamiltonians will be
analyzed that have a very particular properties regarding the
classical and quantum evolution they generate. On the one
hand, as will be explained below, harmonic Hamiltonians
(that are at most quadratic in both basic variables q and p)
essentially generate the same classical and quantum
dynamics [24–26]. On the other hand, Hamiltonians that
are linear in one of the basic variables induce exactly the
same classical and quantum evolution on the expectation
values q and p, as well as on an infinite set of moments.

A. Harmonic Hamiltonians

Let us assume that we have a quantum Hamiltonian
Hðq; pÞ that is at most quadratic in both basic variables q
and p. The effective Hamiltonian will then be given by

HQ ¼ Hðq; pÞ þ 1

2

∂2H
∂p2

G2;0 þ ∂2H
∂q∂pG1;1 þ 1

2

∂2H
∂q2 G

0;2:

In this particular case the equations of motion both for
the classical and quantum expectation values take the
following form:

dq
dt

¼ ∂Hðq; pÞ
∂p ; ð27Þ
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dp
dt

¼ −
∂Hðq; pÞ

∂q : ð28Þ

These are the classical equations of motion for a point on
the phase space, and do not get any correction term from
the moments. In addition, the evolution equation for the
moments can be written as

dGa;b

dt
¼ b

∂2H
∂p2

Gaþ1;b−1 þ ðb − aÞ ∂2H
∂p∂qG

a;b

− a
∂2H
∂q2 G

a−1;bþ1: ð29Þ

It is easy to check that the equations of motion correspond-
ing to the moments of a classical ensemble have the same
structure as those for quantum variables just by replacing
Ga;b by Ca;b in the last relation.
Therefore the dynamics generated by the harmonic

Hamiltonian obey several special properties:
(i) On the one hand, the system of equations turns out to

be linear (both in moments as well as in q and p
variables) and with constant coefficients. Hence, the
system can be easily solved analytically.

(ii) On the other hand, all orders decouple: the equation
of motion for a moment of Oðaþ bÞ only contains
moments of that order.

(iii) In particular, as we have already commented, there
appears no moment on the Eqs. (27) and (28) so
there is no backreaction of the moments on the
trajectories followed by the mean values. Therefore,
the centroid of the distribution will exactly follow a
classical dynamical (point) trajectory in phase space.

(iv) In the general case, only the full HQ (and for the
classical treatment HC) is a constant of motion. But
in this particular case, due to the decoupling of the
equations of the centroid with the moments,
Ecentroid ¼ Hðq; pÞ is also a constant of motion.
This equality indeed describes the classical dynami-
cal trajectory. Therefore, in addition, this leads to
another conserved quantity: the combination of
moments given by HQ−Hðq;pÞ (and HC−Hðq;pÞ
for the classical moments).

(v) In this case all equations are independent of ℏ.
Therefore the evolution equations for the quantum
and classical moments coincide. Hence, given the
same initial data for classical and quantum proba-
bility distributions, the value of the moments and the
coordinates of the centroid will coincide for all times.

(vi) Finally, as will be made explicit in subsection IV E,
the combination of moments that appear in the
Heisenberg inequality is conserved through evolu-
tion: d

dt ½G2;0G0;2 − ðG1;1Þ2� ¼ 0. Therefore, if we
choose a state that saturates the uncertainty relation
as initial state, it will be kept saturated during the
whole evolution.

All these features explain, in this context, the possibility
of constructing exact dynamical coherent states for
Hamiltonians of this form, whose centroid follows exactly
a classical (point) trajectory in phase space [27].
Nevertheless, a quantum harmonic oscillator is very

different from a classical oscillator. Even if, given the
same initial data, the dynamical (distributional) states are
similar due to all the properties explained above, the
moments corresponding to stationary states differ as an
even-power series in ℏ due to the recursive relation (26). It
is straightforward to see that it is necessary to make use of
this recursive relation since the algebraic equations that are
obtained by equaling to zero the right-hand side of Eq. (29)
are not linearly independent [20].

B. Linear Hamiltonians

Another set of Hamiltonians that turn out to be very
interesting due to the properties of the equations it gen-
erates is given by those Hamiltonians that are linear in one
of the basic variables. For definiteness, let us assume a
Hamiltonian that is linear in the position q but have a
general dependence on the moment p. Its most general
form is given by,

H ¼ qφðpÞ þ ξðpÞ; ð30Þ

for arbitrary functions φ and ξ. Note that the case given by a
linear function φ and a quadratic function ξ is included
in the previous subsection about harmonic Hamiltonians.
The generalization for a Hamiltonian linear in p is
straightforward.
The effective quantum Hamiltonian is given by,

HQ ¼ qφðpÞ þ ξðpÞ

þ
X∞
n¼1

1

ðnþ 1Þ! ½qφ
ðnþ1ÞðpÞ þ ξðnþ1ÞðpÞ�Gnþ1;0

þ φðnÞðpÞ
n!

Gn;1: ð31Þ

From here it is straightforward to obtain the equations of
motion for expectation values:

dq
dt

¼ qφ0ðpÞ þ ξ0ðpÞ

þ
X∞
n¼1

1

ðnþ 1Þ! ½qφ
ðnþ2ÞðpÞ þ ξðnþ2ÞðpÞ�Gnþ1;0

þ φðnþ1ÞðpÞ
n!

Gn;1; ð32Þ

dp
dt

¼ −φðpÞ −
X∞
n¼2

1

n!
φðnÞðpÞGn;0: ð33Þ
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Contrary to the harmonic Hamiltonians, in this case the
equations of motion for expectation values do get contri-
butions from certain moments and, therefore, the centroid
of the system will not generically follow a classical orbit on
the phase space. In spite of this, the system under consid-
eration have very peculiar properties. Let us compute the
equations of motion for the moments that appear in the
equations above, namely Ga;0 and Gb;1:

dGa;0

dt
¼ a

X∞
n¼1

φðnÞðpÞ
n!

½Ga−1;0Gn;0 −Gaþn−1;0�; ð34Þ

dGb;1

dt
¼
X∞
n¼1

1

n!
½qφðnþ1ÞðpÞþ ξðnþ1ÞðpÞ�ðGbþn;0−Gb;0Gn;0Þ

þφðnÞðpÞ
n!

½bGb−1;1Gn;0−nGb;0Gn−1;1

þðn−bÞGbþn−1;1�: ð35Þ
In obtaining these equations it is useful to note that Poisson
brackets between moments Ga;0 and Gb;0 is vanishing for
any value of a and b. For generic functions φ and ξ, these
equations are quite involved. Nevertheless, the equations
for the expectation values (32)–(33), in combination with
those for moments of the form Ga;0 and Gb;1 (34)–(35)
constitute a closed, though infinite, system of differential
equations. Note that even if the derivatives of the functions
φðnÞ and ξðnÞ are vanishing for all n greater or equal to
certain value nmax the mentioned subsystem will only close
by considering infinite moments. Therefore there is no
decoupled finite system. Let us explain this in more detail.
If φðnÞ ¼ 0 for all n > nmax only moments Ga;0 and Gb;1 up
to order nmax would appear in the equations for the
expectation values. But, for instance, in the equation for
Gnmax;0 higher-order moments will appear due to the last
term in Eq. (34) and thus the finite system will not close.
In any case, this is an interesting observation since one

does not need to consider all infinite moments in order to
obtain the trajectory of the centroid of the distribution. In
fact a decoupled system is formed for expectation values
(q, p), and moments ðGa;0; Ga;1; Ga;2;…; Ga;mÞ for all a
and a fixed m ≥ 1. This gives a way to solve the infinite
system. One can first solve for the system given by
ðq; p;Ga;0; Ga;1Þ. Once this is known, it is possible to
solve for all Ga;2 making use of the previous solution, and
so on. Even though, in practice this method is hardly
applicable since all those are, in principle, infinite systems.
In addition to the commented features, there is no ℏ term

present in any of the Eqs. (32)–(35). Therefore, the
moments Ca;0 and Cb;1 as well as the expectation values
q and p corresponding to the classical distribution will
follow the same equations as their quantum counterparts.
This means that for Hamiltonians of the form (31), the
centroid of the quantum distribution will not follow a

classical orbit in the phase space but will indeed follow the
trajectory given by the centroid of the classical distribution
with same initial conditions. Thus, in these quantum
systems the departure from a classical orbit on phase space
is completely due to distributional effects that are also
present in the evolution of a classical distribution.
Nevertheless, the evolution of moments that are not of

the form Ga;0 or Ga;1 will be different for the classical and
quantum distributions due to the ℏ terms that appear in the
quantum equations of motion. Therefore, in order to
measure pure-quantum effects it is necessary to consider
the evolution of such moments. [Note that, even if in the
particular case of the equation of motion forG0;2 there is no
explicit ℏ term, its evolution differs from its background
counterpart C0;2 because it is coupled with other moments
that indeed present pure-quantum terms in their equations
of motion.]
Technically, the form of these equations and particularly

the decoupling of equations for the variables
ðq; p;Ga;0; Gb;1Þ, for all a and b, from the rest of the
moments can be traced back to the fact that the mentioned
moments form a closed Poisson algebra:

fGa;0; Gb;0g ¼ 0; ð36Þ

fGa;0; Gb;1g ¼ aðGa−1;0Gb;0 −Gaþb−1;0Þ; ð37Þ

fGa;1;Gb;1g¼aGa−1;1Gb;0−bGa;0Gb−1;1þðb−aÞGaþb−1;1:

ð38Þ
This does not happen if one considers also moments with a
higher index in the position variable. Already including
moments of the form Ga;2 would make the Poisson algebra
not to close. It is easy to see from the general form of the
brackets (4) that even if the Poisson brackets between
moments of the form Ga;0 and Ga;1 with those of the form
Gb;2 do close, the brackets between two moments of the
form Ga;2 give other kind of contributions. For instance:

fG1;2; G0;2g ¼ −2G0;3: ð39Þ

Therefore, instead of being linear if the Hamiltonian was
quadratic in the position q, moments of the form Ga;2

would appear in the effective Hamiltonian. And this fact
would not permit a decoupling of the equations of motion
similar to the one explained above.
Finally, let us briefly explain the particular case of a

Hamiltonian that depends only on one of the two basic
variables. Following with the notation above, this corre-
sponds to φðpÞ ¼ 0. In this case, the procedure explained
above is very useful. The momentum p and all its pure
fluctuations Ga;0 turn out to be constants of motion. From
Eq. (35), it is easy to solve for moments Ga;1, obtaining a
linear dependence with time,
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Ga;1ðtÞ ¼ Ga;1ðt0Þ þ Φðp;Ga;0Þðt − t0Þ; ð40Þ

with a function Φ that depends on the constants of motion.
With this solution at hand one can solve forGa;2, which will
give a dependence quadratic in time. The procedure can be
iterated for higher values of the index of the position and
obtain that a generic moment Ga;b will have a polynomial
dependence on time of order ðt − t0Þb. Explicit ℏ terms, that
will encode the differences between the classical and
quantum evolution, first appear for moments of the
form Ga;3.

IV. INEQUALITIES FOR
STATISTICAL MOMENTS

Any set of numbersMa;b does not need to correspond to
statistical moments Ga;b of a given probability distribution
function. Indeed, they need to obey certain inequalities. In
this section we will derive several set of inequalities starting
from the Cauchy-Schwarz inequality. In particular, we will
derive the generalized inequality relations for quantum
moments, that do not allow all moments to be vanishing.
This analysis has theoretical importance by its own in

order to know what kind of distributions are allowed.
Furthermore, it will provide us with additional information
that constraint the values of high-order moments. This
information could be used for different purposes in many
scenarios. For example to constraint the moments corre-
sponding to a stationary state [20], in the construction of
effective group coherent states [28], or to control the
validity of a prospective numerical implementation of
the system.
In addition, they could also be used to generate physi-

cally viable random initial data in order to check the
evolution of the complete parameter space. Nonetheless, as
will be commented below, it is not completely guaranteed
that if a set of numbers Ma;b obey the inequalities that will
be derived here, they will correspond to the moments of
valid probability distribution.
By construction, we have that both for quantum and

classical variables, the moments with both even indices
must be positive definite:

C2n;2m ≥ 0; ð41Þ

G2n;2m ≥ 0; for n;m ∈ N: ð42Þ

A. Inequalities for the classical moments

In order to derive the rest of the inequalities, we will
make use of the Cauchy-Schwarz inequality that, for the
classical expectation value operation, takes the following
form,

hfgi2c ≤ hf2ichg2ic; ð43Þ

f and g being any function of the position q and
momentum p. We will make two different choices for
those functions: i=f¼ðp−hpiÞaðq−hqiÞb and g¼
ðp−hpiÞcðq−hqiÞd, and ii=f ¼ ½ðq − hqiÞ þ ðp − hpiÞ�a
and g ¼ ½ðq − hqiÞ þ ðp − hpiÞ�b. These forms of func-
tions are chosen because, as will be shown below, they lead
to a sufficiently large class of inequalities that heavily
constraint the values of moments at different orders and
give us some information about the kind of distributions
that are allowed. Nevertheless, Cauchy-Schwarz inequality
is obeyed for any pair of functions, f and g, and thus we do
not have the certainty that we are saturating the complete
information contained in that inequality by choosing the
functions of the forms mentioned above. That is, in
principle choosing moments that obey the inequalities
we will derive will not completely guarantee that they
correspond to a valid probability distribution.
The first choice, f ¼ ðp − hpiÞaðq − hqiÞb and g ¼

ðp − hpiÞcðq − hqiÞd, leads to the following relation:

ðCaþc;bþdÞ2 ≤ C2a;2bC2c;2d; ð44Þ
for all non-negative integers a, b, c, d. This relation can
also be rewritten as

ðCn;mÞ2 ≤ C2ðn−cÞ;2ðm−dÞC2c;2d; ð45Þ
for all n ≤ c and m ≤ d. This is an infinite set of inequal-
ities that, for its lowest order, reproduces the well-known
relation between the covariance C1;1≔hðq−hqiÞðp−hpiÞi
between two random variables, in this case q and p, and
their corresponding variances C0;2 ¼ hðq − hqiÞ and
C2;0 ¼ hðp − hpiÞ:

ðC1;1Þ2 ≤ C2;0C0;2: ð46Þ
For quantum moments this particular relation, as will be
explained below, will take the form of the Heisenberg
uncertainty relation.
Note that even if we choose the indices of the moment

that appear on the left-hand side of inequality (44), we are
only imposing a fix value for the sums aþ c ¼ n and
bþ d ¼ m. Once this is fixed, the right-hand side can take
⌈ðnþ 1Þðmþ 1Þ=2⌉ different forms. Therefore, from
Eq. (44) we obtain, for each Cn;m, ⌈ðnþ 1Þðmþ 1Þ=2⌉
different quadratic combinations of moments that must be
greater or equal to its square. For instance, let us choose the
moment aþ c ¼ 1 and bþ d ¼ 2. This particular choice
provides us with the following three independent relations:

ðC1;2Þ2 ≤ C2;4;

ðC1;2Þ2 ≤ C0;2C2;2;

ðC1;2Þ2 ≤ C0;4C2;0; ð47Þ

where we have made use of the fact that C0;0 ¼ 1.
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The second choice, f ¼ ½ðq − hqiÞ þ ðp − hpiÞ�a and
g ¼ ½ðq − hqiÞ þ ðp − hpiÞ�b, gives rise to the general
inequality,

�Xaþb

n¼0

�
aþ b

n

�
Cn;aþb−n

�2

≤
X2a
j¼0

X2b
k¼0

�
2a

j

��
2b

k

�
Cj;2a−jCk;2b−k: ð48Þ

This inequality relates the square of a given sum that
contains all moments of order Oðaþ bÞ to quadratic
combinations of moments of order Oð2aÞ and Oð2bÞ.
Note that for the case a ¼ b, both sides give the same result
and hence this relation trivially reduces to an equality. In
general, this inequality is independent of the previous one
(44), but in some simple cases, it is contained in there. For
instance, imposing a ¼ 1 and b ¼ 0, the left-hand side
vanishes and we obtain

0 ≤ C0;2 þ 2C1;1 þ C2;0; ð49Þ

which is trivially obeyed if these objets fulfilled
relation (46).
In summary, the most important results of this section are

the two infinite collections of inequalities, (44) and (48),
that must be fulfilled by the classical statistical moments.
These relations are direct consequence of the well-known
Cauchy-Schwarz inequality but, up to the best of our
knowledge, this is the first time in the literature that they
are presented in this form.

B. Inequalities for quantum moments

Previous analysis should also be reproduced for quantum
moments. In particular, we should obtain relations so that
when ℏ is taken to be vanishing, they reduce to the ones
obtained in the previous subsection. As we will see, the ℏ
terms present in these quantum inequalities come from
applying the Weyl symmetrization to reproduce the defi-
nition of the moments.
In this case Cauchy-Schwarz inequality is written as

jhf̂†ĝij2 ≤ hf̂†f̂ihĝ†ĝi; ð50Þ

where f̂ and ĝ are combinations of q̂ and p̂ operators. In
order to generalize the inequalities derived for the classical
moments, we will consider again the two different forms of
operators f̂ and ĝ: on the one hand i=½ðq̂ − hq̂iÞ þ ðp̂ −
hp̂iÞ�a and, on the other hand, ii=ðp̂ − pÞaðq̂ − qÞb.
Interestingly, the first choice for the operators, f̂ ¼ ½ðq̂ −

hq̂iÞ þ ðp̂ − hp̂iÞ�a and ĝ ¼ ½ðq̂ − hq̂iÞ þ ðp̂ − hp̂iÞ�b,
leads formally to the same inequalities as their classical
counterparts:

�Xaþb

n¼0

�
aþ b

n

�
Gn;aþb−n

�2

≤
X2a
j¼0

X2b
k¼0

�
2a

j

��
2b

k

�
Gj;2a−jGk;2b−k; ð51Þ

which provides independent inequalities for all b > a. Note
that in these relations there is no presence of ℏ. This is due
to the fact that, for the above mentioned form of the
operators, f̂ and ĝ are self-adjoint and their products f̂ ĝ,
f̂ f̂ and ĝ ĝ are already in completely symmetrical Weyl
ordering. Therefore, the definition of quantum moments is
obtained without any use of the commutation relations.
On the contrary, the inequalities derived from the second

choice of operators ii=f̂ ¼ ðp̂ − pÞaðq̂ − qÞb and
ĝ ¼ ðp̂ − pÞcðq̂ − qÞd, for different values of the powers
ða; b; c; dÞ and with different orderings, will in general
have explicit ℏ terms.
Some particular cases that do not involve any ℏ terms are

those for which f̂ and ĝ commute, for instance f̂ ¼ ðp̂ −
hp̂iÞa and ĝ ¼ ðp̂ − hp̂iÞd. In this way, we obtain the
following general relations for quantum moments, that
do not involve ℏ and are formally the same as the classical
inequalities:

ðGaþb;0Þ2 ≤ G2a;0G2d;0; ð52Þ

ðG0;aþdÞ2 ≤ G0;2aG0;2b ð53Þ
The rest of the cases, that are not included in relations

(52)–(53) are more complicated due to the noncommuta-
tivity of operators and involve new terms as a power series
in ℏ2. All of them can be formally written as

ðGaþc;bþdÞ2 ≤ G2a;2bG2c;2d þ
X

n;i;j;k;l

ℏ2nαijklabcdG
i;jGk;l; ð54Þ

with certain coefficients αijklabcd. The sum on n runs over all
integers from 1 to the integer part of ðaþ bþ cþ dÞ=2 and
relation 4nþ iþ jþ kþ l ¼ 2ðaþ bþ cþ dÞ is obeyed
for all terms in the sum.
It is quite difficult to obtain the analytical form of the

coefficients αijklabcd, thus we have obtained these relations by
direct computation by making use of the iterative algebraic
code presented in Ref. [15]. All combinations between
operators of the form f̂ ¼ ðp̂ − hp̂iÞaðq̂ − hq̂iÞb and
ĝ ¼ ðp̂ − hp̂iÞaðq̂ − hq̂iÞb, for all internal orderings of
operators q̂ and p̂, from first up to fifth order (that is from
aþ b ¼ 1 up to aþ b ¼ 5, and the same for cþ d) have
been considered. In this way, we have obtained 1449
different inequalities that involve moments up to tenth
order. All of them might not be independent and there are
several inequalities that have the same classical limit, that
is, with different coefficients αijklabcd. In those cases, one
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should take the most restrictive ones but this is not a simple
analysis with so many variables. Therefore, for practical
reasons, we keep all of them. In order to illustrate the form
of these quantum inequalities here we will just show the
quantum generalization of the particular examples shown in
the previous subsection. In addition, in the next subsection,
a particularly important set of inequalities will be analyzed:
the uncertainty relations.
Regarding the examples shown explicitly in the previous

subsection, on the one hand the classical relation between
the covariance and the variance (46) is generalized by the
Heisenberg uncertainty principle:

ðG1;1Þ2 ≤ G2;0G0;2 −
ℏ2

4
: ð55Þ

On the other hand relations (47), derived from (44) for a
left-hand side of the form ðC1;1Þ2, are generalized by the
following inequalities between quantum moments:

ðG1;2Þ2 ≤ G2;4 þ ℏ2G0;2;

ðG1;2Þ2 ≤ G0;2G2;2 þ ℏ2

2
G0;2;

ðG1;2Þ2 ≤ G0;4G2;0:

As can be seen, some inequalities, as the last one, do not
change and keep the same form as the one corresponding to
the classical moments.

C. Uncertainty relations

It is interesting to note that in the classical setting, a
Dirac delta distribution is consistent with all derived
inequalities. That is, it is possible to take all Ca;b moments
to be vanishing. On the contrary, as it is well known from
the Heisenberg uncertainty principle, in the quantum case
the limit Ga;b → 0 is not consistent.
In fact, most of derived inequalities for quantum

moments allow for a distribution given by Dirac delta;
that is, they are not violated if one imposes all quantum
moments to be vanishing. Heisenberg uncertainty relation
(55) is the most simple inequality that does not allow for
such a limit. In addition to that, among the 1449 different
relations that have been obtained, there are 160 relations
that forbids the mentioned limit. These relations are the
ones that, as well as the uncertainty relation, encode the
necessary lack of information of the quantum system an
observer must have.
All uncertainty relations come from the quantum version

of the classical inequalities (45) with n ¼ m and can be
formally written as

ðGn;nÞ2 þ γncdℏ2n ≤ G2ðn−cÞ;2ðn−dÞG2c;2d

þ
Xn−1
i¼1

αnijklmℏ2iGj;kGl;m: ð56Þ

Interestingly the uncertainty relations are only those
inequalities for which c ≠ d, since in that case the constant
γncd turns out to be positive. The case c ¼ d ¼ n=2, for
even n, trivially reduces to an equality; whereas for the rest
of the c ¼ d cases, γncd is a negative constant and thus does
not constitute an uncertainty relation since it is obeyed
when choosing all Ga;b moments to be vanishing.
Uncertainty relations with n ¼ 1 and n ¼ 2 are explicitly
shown in the Appendix.
Essentially, all these uncertainty relations bound from

below products of the form G2a;0G0;2a. In fact, it is possible
to choose all moments vanishing except G2a;0 and G0;2a.
Under this particular choice, the 160 uncertainty relations
reduce to five inequalities of the form,

γnℏ2n ≤ G0;2nG2n;0; ð57Þ

with a positive constant γn for each value of n. More
precisely: γ1 ¼ 1=4, γ2 ¼ 3=8, γ3 ¼ 81=64, γ4 ¼ 9=4,
and γ5 ¼ 225=16.
Following with this choice of moments (all vanishing

except G2a;0 and G0;2a), one could choose to have the same
uncertainty both in momentum and position by imposing
G2a;0 ¼ G0;2a ¼ gaℏa and uncertainty relations (57) will
simply impose a minimum value for each adimensional
moment gn. In addition to those inequalities, it is also
necessary to take into account the rest of the quantum
inequalities that have been derived in the previous section.
In particular, it is interesting to note that with this simple
choice all quantum inequalities that contain up to eighth-
order moments are reduced to the following constraints on
the adimensional moments ga:

g1 ≥
1

2
; g2 ≥ 6ðg1Þ2; g3g1 ≥

9

4
ðg2Þ2; g4g2 ≥

25

14
ðg3Þ2:

If one wishes to find a minimum value for the moments, as
can be seen in this expression, one would have to face the
tension that exist between lower-order moments and
higher-order ones. For instance, from the third inequality
with a fixed value of g2, the lower g1 the larger g3 will have
to be chosen. In any case, one could choose the saturation
of every inequality starting from the lowest one, which is
not affected by higher-order moments, and solve the
inequalities order by order. Nevertheless, as has been
commented on the previous subsection, there is no certainty
that solving all derived inequalities will lead to a valid state
since there could be other constraints on the moments that
have not been considered.

D. Other allowed distributions

Apart from the vanishing moments limit of a Dirac delta,
there are other distribution of moments that are allowed by
the classical inequalities we have derived, but not by
the quantum ones. This is the case for instance of
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Ca;b ¼ ℏðaþbÞ=2, or Ca;b ¼ AaþbℏðaþbÞ=2, with an adimen-
sional constant A. (The factor ℏðaþbÞ=2 stands for dimen-
sional reasons.)
Apparently, in order to fulfill the corresponding inequal-

ities, the quantum moments need a factor in front of
ℏðaþbÞ=2 that increases faster than Aaþb with the indices
a and b. In particular, the following distributions are
allowed both by classical and quantum inequalities:

Ga;b ¼ a!b!ℏðaþbÞ=2; ð58Þ

Ga;b ¼ aabbℏðaþbÞ=2; ð59Þ

Ga;b ¼ aa−1bb−1ℏðaþbÞ=2: ð60Þ

Interestingly the distribution Ga;b ¼ aa−2bb−2ℏðaþbÞ=2 is
allowed by classical but not by quantum inequalities;
whereas Ga;b ¼ aa−3bb−3ℏðaþbÞ=2 is neither allowed by
quantum nor by classical relations.
On the other hand, defining the moments as functions of

their order only, like Ga;b ¼ ðaþ bÞ!ℏðaþbÞ=2 obey all
inequalities except Heisenberg uncertainty relation.
Finally all these considerations leads to think that the

quantum moments necessarily form a divergent series. If
we assume that this divergent series is asymptotic, it is
possible to analyze up to which order they converge, that is,
which will the smallest term of the series. Usually the
truncation at that order is the optimal truncation in the sense
that the accuracy of the result improves as one includes
more and more orders up to the mentioned smallest term.
From that order on, adding more orders will worsen the
result. For instance, for the distribution given by
a!b!ℏðaþbÞ=2, two moments of consecutive orders Gn−1;0

and Gn;0 will be of the same order when n ¼ 1=
ffiffiffi
ℏ

p
.

Therefore, the smaller the value of ℏ is chosen, the more
orders can be considered in order to improve the result.

E. Evolution of the uncertainty relations

Let us analyze the evolution of the Heisenberg uncer-
tainty principle. Given a generic Hamiltonian Hðq; pÞ, it is
straightforward to obtain

d
dt
½G2;0G0;2 − ðG1;1Þ2�

¼
X
aþb≥3

2

a!b!
∂aþbH
∂pa∂qb ½aG

2;0Ga−1;bþ1 − bG0;2Gaþ1;b−1

þ ðb − aÞG1;1Ga;b�; ð61Þ

where the sum is for all non-negative a and b that obeys
the constraint aþ b ≥ 3. It is interesting to note that in the
right-hand side of that expression only derivatives of the
Hamiltonian higher than two appear. In the evolution
equation for each of the moments second-order derivatives
of the Hamiltonian are present but, for that specific

combination of moments, these terms cancel each other.
Therefore, this leads to another important property of
harmonic Hamiltonians: the combination of moments in
the Heisenberg uncertainty principle is a constant of
motion. Certainly, this does not mean that the initial state
will not be deformed through evolution. All moments will
generically grow in absolute value with time but keeping
that relation constant. For squeezed states, defined as those
that saturate Heisenberg uncertainty relation, this saturation
will be kept throughout evolution. However, this property
does not apply to the higher-order uncertainty relations that
have been presented in the previous subsection. The
combination of moments appearing in those relations are
not generically conserved even for harmonic Hamiltonians.
On the other hand, as a general feature of second-order

moment evolution, there are no ℏ terms present in Eq. (61).
Thus for second-order moments the classical and quantum
equations of motion are exactly the same, and the above
considerations also apply to the relation C0;2C2;0 −
ðC1;1Þ2 ≥ 0 between classical moments. This, of course,
does not mean that considering the full dynamics under a
generic nonharmonic Hamiltonian the behavior of the
classical and quantum system will be the same. The
quantum corrections enter at third order and, due to
the backreaction, they will also affect the evolution of
background quantities and second-order moments.

V. CONCLUSIONS

Quantum effects have two different origins. On the one
hand, distributional effects are a direct consequence of the
Heisenberg uncertainty relation, since the state of a
quantum system is necessarily given by an extended
probability distribution, instead of a single point in phase
space. Technically this means that the statistical moments
that describe this distribution cannot be vanishing, and they
back-react on the evolution of the position of the centroid.
Thus generically the centroid of a quantum distribution
does not follow a classical (point) trajectory in the phase
space. On the other hand, due to the noncommutativity of
the basic quantum operators, the noncommutative effects
appear in the evolution equations of quantum statistical
moments as terms that come with an explicit dependence
on ℏ. Due to the smallness of this constant, the distribu-
tional effects may be more important than these latter ones.
In the formalism used in this paper, based on a decom-
position on statistical moments of the wave function, the
distinction between these two sources of quantum correc-
tions is very neat.
Furthermore, the evolution of a classical probability

distribution has also been considered in terms of its
statistical moments. This is particularly important since,
even if in the context of classical mechanics is ideally
possible to study the evolution of an initial point in the
phase space, in practice there are always errors in the initial
conditions and thus one needs to deal with an extended
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probability distribution. In the classical case, the distribu-
tional effects are also present and generically the centroid
of a distribution does not either follow a classical orbit in
the phase space. In fact, the only difference between the
quantum and classical evolution equations are the explicit ℏ
factors that appear in the quantum system. Therefore, when
taking the ℏ ⟶ 0 limit on the quantum system, one does
not recover a unique classical trajectory on the phase space,
but an ensemble of them.
There are some Hamiltonians that have very peculiar

properties regarding the classical and quantum evolution
they generate. The harmonic Hamiltonians, those that are at
most quadratic on the basic variables, are very special. One
of their most important property is that they generate the
same dynamics both in the classical and quantum sector.
The Hamiltonians that are linear in one of the basic
variables also generate the same classical and quantum
flux for the position of the centroid of the distribution and
certain infinite set of moments. Therefore, in order to look
for pure-quantum effects in this kind of systems, one should
check the evolution of moments that are not contained in
that set.
Finally, a large set of inequalities obeyed by classical and

quantum moments have been obtained by making use of
the Cauchy-Schwarz inequality. Among these, the uncer-
tainty relations obeyed by quantum moments, that are
defined as those that do not allow for all moments to be
vanishing. The simplest of these relations is the well-known
Heisenberg uncertainty principle. The rest constitute its
higher-order generalizations. In essence they provide addi-
tional information that constraint the value of high-order
moments. This information could be used in different
analysis; for instance, to constraint the value of the
moments corresponding to a stationary state [20], in the
construction of effective group coherent states [28], or to
control the validity of a prospective numerical implemen-
tation of the system. The distribution of moments allowed
by these inequalities have also been analyzed, as well as the
evolution of the uncertainty relations under generic
Hamiltonians.
As future work, the formalism developed in this paper

will be applied to different simple physical systems, like the
harmonic and quartic oscillators, in order to measure the
strength of each kind of quantum effect and to obtain the
statistical moments corresponding to their (classical and
quantum) stationary states [20]. It would also be interesting
to revisit the different cosmological models commented in
the introduction, like the ones studied in [14–16], to
compare their quantum and classical distributional
evolution.
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APPENDIX: UNCERTAINTY RELATIONS

In order not to extend this Appendix in excess, here the
uncertainty relations that contain moments only up to sixth
order are presented. The generalized uncertainty relations,
defined as those inequalities that are not obeyed for the case
Ga;b ¼ 0, are the quantum equivalent of the inequalities
(44) for classical moments and can be generically written as
shown in (56). In particular, the well-known Heisenberg
uncertainty relation is given as

ℏ2=4þ ðG1;1Þ2 ≤ G0;2G2;0: ðA1Þ
The generalizations of ðC2;2Þ2 ≤ C2a;2cC2b;2d with

aþ b ¼ 2 and cþ d ¼ 2 gives rise to the following
inequalities:

ℏ4=4þðG2;2Þ2 ≤G2;0G2;4þℏ2½3G0;2G2;0−G2;2�;
ℏ4=4þðG2;2Þ2 ≤G2;0G2;4þℏ2½G0;2G2;0þG2;2−4ðG1;1Þ2�;
ℏ4=4þðG2;2Þ2 ≤G0;4G4;0þℏ2½G2;2−4ðG1;1Þ2�;
ℏ4=4þðG2;2Þ2 ≤G0;2G4;2þℏ2½3G0;2G2;0−G2;2�;
ℏ4=4þðG2;2Þ2 ≤G0;2G4;2þℏ2½G0;2G2;0þG2;2−4ðG1;1Þ2�:

Note that the first two relations (as well as the last two) are
identical except for the coefficient of ℏ2. Summing them
up, it is possible to define the relation

ℏ4=4þ ðG2;2Þ2 ≤ G2;0G2;4 þ 2ℏ2½G2;0G0;2 − ðG1;1Þ2�;
where the combination of moments inside the square
bracket is the same that appears in the Heisenberg uncer-
tainty principle. The same can be done with the last couple
of inequalities. Note that, as explained in Sec. IV C, the
fourth classical relation derived from that inequality,
ðC2;2Þ2 ≤ C4;4, does not give rise to a quantum uncertainty
relation because the corresponding γncd coefficient (56) is
negative and thus allows the Ga;b → 0 limit.
The uncertainty relations at next order are the quantum

analog of the classical relations (44) with n ¼ m ¼ 3:

ðC3;3Þ2 ≤ C4;2C2;4; ðC3;3Þ2 ≤ C6;0C0;6;

ðC3;3Þ2 ≤ C4;0C2;6; ðC3;3Þ2 ≤ C6;2C0;4;

ðC3;3Þ2 ≤ C4;4C2;2; ðC3;3Þ2 ≤ C6;4C0;2;

ðC3;3Þ2 ≤ C4;6C2;0; ðC3;3Þ2 ≤ C6;6:
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All these relations are converted into quantum uncertainty relations except for ðC3;3Þ2 ≤ C4;4C2;2 and ðC3;3Þ2 ≤ C6;6 that
has a negative γncd coefficient (56) in the free term. Nonetheless, only the quantum generalization of the first two relations
will be explicitly shown since the rest involve moments of an order higher than six. These are given as follows:

9ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½3G0;2G2;0 − 9=4ððG1;1Þ2 þ G2;2Þ�
þ ℏ2½−9=4ðG2;2Þ2 þ 3G2;0G2;4 − 3G1;1G3;3 þ G0;2G4;2�;

ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½−9=4ðG1;1Þ2 þ 3G0;2G2;0 − 1=4G2;2�
þ ℏ2½−ðG2;2Þ2=4þ 3G2;0G2;4 − 3G1;1G3;3 þG0;2G4;2�;

ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½−ðG1;1Þ2=4þG0;2G2;0 − 3=4G2;2�
þ ℏ2½−9=4ðG2;2Þ2 þG2;0G2;4 −G1;1G3;3 þ G0;2G4;2�;

ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½−ðG1;1Þ2=4þG0;2G2;0 − 5=4G2;2�
þ ℏ2½−25=4ðG2;2Þ2 þ G2;0G2;4 þG1;1G3;3 þ G0;2G4;2�;

ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½−25=4ðG1;1Þ2 þG0;2G2;0 þ 7=4G2;2�
þ ℏ2½−49=4ðG2;2Þ2 þ G2;0G2;4 þ 5G1;1G3;3 þ G0;2G4;2�;

9ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½3G0;2G2;0 − 9=4ððG1;1Þ2 þ G2;2Þ�
þ ℏ2½−9=4ðG2;2Þ2 þG2;0G2;4 − 3G1;1G3;3 þ 3G0;2G4;2�;

ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½−9=4ðG1;1Þ2 þ 3G0;2G2;0 − 1=4G2;2�
þ ℏ2½−ðG2;2Þ2=4þ G2;0G2;4 − 3G1;1G3;3 þ 3G0;2G4;2�;

ℏ6=16þ ðG3;3Þ2 ≤ G2;4G4;2 þ ℏ4½−9=4ðG1;1Þ2 þ 9G0;2G2;0 − 1=4G2;2�
þ ℏ2½−ðG2;2Þ2=4þ 3G2;0G2;4 − 3G1;1G3;3 þ 3G0;2G4;2�;

9ℏ6=16þ ðG3;3Þ2 ≤ G0;6G6;0 − 27=4ℏ4½3ðG1;1Þ2 −G2;2� þ ℏ2½−81=4ðG2;2Þ2 þ 9G1;1G3;3�:
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