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In the current paper the properties of a quantum field theory based on certain sets of Lorentz-violating
coefficients in the nonminimal fermion sector of the Standard Model extension are analyzed. In particular,
three families of coefficients are considered, where two of them are CPT even and the third is CPT odd. As
a first step the modified fermion dispersion relations are obtained. Then the positive- and negative-energy
solutions of the modified Dirac equation and the fermion propagator are derived. These are used to
demonstrate the validity of the optical theorem at tree level, which provides a cross-check for the results
obtained. Furthermore unitarity is examined and seems to be valid for the first set of CPT-even coefficients.
However for the remaining sets certain issues with unitarity are found. The article demonstrates that the
adapted quantum field theoretical methods at tree level work for the nonminimal, Lorentz-violating
framework considered. Besides, the quantum field theory based on the first family of CPT-even
coefficients is most likely well behaved at lowest order perturbation theory. The results are important
for future phenomenological investigations carried out in the context of field theory, e.g., the computation
of decay rates and cross sections at tree level.
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I. INTRODUCTION

Investigating Lorentz invariance violation has become
more and more attractive in recent years. A possible
violation of this fundamental symmetry of the laws of
Nature is motivated by physics at the Planck scale such as
string theory [1–4], loop quantum gravity [5,6], field theory
on noncommutative spacetimes [7], spacetime foam mod-
els [8,9], and quantum field theory on spacetimes with a
nontrivial topology [10,11]. An effective description of
Lorentz symmetry violation for energies that are much
smaller than the Planck scale is provided by the Standard
Model extension (SME) [12]. The latter forms a test
framework for experimental searches [13] for Lorentz
symmetry violation and it allows one to investigate the
properties of quantum field theories based on certain
sectors of this framework. The SME includes all operators
of Standard Model fields that are invariant with respect
to the gauge group SUð3Þc × SUð2ÞL ×Uð1ÞY and violate
particle Lorentz invariance. The minimal version is
restricted to only power-counting renormalizable operators,
whereas the nonminimal version also contains operators of
higher dimension [14–16].
In a series of articles quantum field theories based on a

Lorentz-violating modification of the minimal photon
sector were examined [17–23]. They applied to character-
istics of the modified photon propagator, the polarization
vectors, unitarity, and microcausality. In a recent paper
these methods are even employed for a quantum field

theory based on a special set of operators of the non-
minimal photon sector [24]. Although there is more knowl-
edge to be gained for the nonminimal photon sector, some
of the main properties of a quantum field theory based on
an isotropic operator of nonrenormalizable dimension were
obtained in the latter reference. To extend the picture the
current paper is devoted to similar investigations for the
nonminimal fermion sector. Before delving into phenom-
enological calculations, the properties of the underlying
quantum field theory should be investigated, which is one
of the goals of the paper. Furthermore the results obtained
such as the modified spinors and propagators are ready to
be used in phenomenology as long as the quantum theory
proves to be consistent. Note that the majority of both
experimental and theoretical investigations performed to
date has been restricted to the minimal fermion sector of
the SME.
The basis of a quantum field theory of spin-1/2 particles

is formed by the Dirac equation. Dirac introduced the
equation that is named after him in 1928 for several reasons
[25]. First, the number of stationary states in hydrogenlike
atoms were observed to be twice what the quantum theory
of a pointlike electron without internal quantum numbers
would suggest. To account for this doubling of states
quantum-mechanical spin was introduced by Pauli and
Darwin (see [25] and references therein). However it was
unsatisfactory that the spin had to be introduced by hand
and did not arise naturally from the theory. Second, the
relativistic wave equation proposed by Klein and Gordon
evidently would describe electrons of both negative and
positive charge where the latter are associated with a*mschreck@indiana.edu
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negative energy. Classically these solutions could be
discarded but quantum mechanically transitions between
states with negative and positive charge could be induced
by perturbation, which is not observed in Nature. These,
amongst other problems, were solved by the Dirac equa-
tion, which incorporates special relativity into quantum
mechanics and, therefore, naturally describes the electron
spin. Beyond the context of quantum mechanics it was
reinterpreted and used in quantum field theory to describe
fermions with spin 1/2.
Amodified version of the Dirac Lagrange density leading

to a modified Dirac equation forms the foundation of the
Lorentz-violating fermion sector. Quantum field theoretic
properties of the minimal fermion sector such as micro-
causality and stabilitywere investigated in [26]. Furthermore
the implications of a nonvanishing torsion coupling to the
fermion sector were considered in [27] where the occurring
termswere stated, classified, and embedded into theminimal
fermionic SME. Therefore already existing bounds on
minimal fermionic coefficients could be reinterpreted as
bounds on the torsion tensor coefficients.
In recent years a large collection of bounds have been

obtained in the minimal SME fermion sector, especially by
considering the gravitational interaction. Such an approach
is very reasonable, since certain coefficients of the minimal
fermion sector are not observable in Minkowski spacetime,
even if they lie several orders of magnitudes above the
current experimental bounds of observable coefficients.
In [28] it was shown that in the presence of gravity the
fluctuational part of a special sample of coefficients can be
detected if they couple to the gravitational field. This was
then exploited to obtain several bounds on these coeffi-
cients from experiment.
The gravitational interaction of the Lorentz-violating

minimal fermion sector was extensively studied in [29],
where a large number of bounds on the coefficients was
determined. This list of bounds was extended in [30] by
considering an additional experimental setup that had a
priori not been designed for experiments in a gravitational
background. Furthermore, in [31,32] it is proposed that
fermionic Lorentz-violating coefficients could be con-
strained by antimatter tests in gravitational physics.
The current paper is organized as follows. Section II

provides the action of the nonminimal free SME fermion
sector and restricts it to the operators that shall be
investigated. In Sec. III the modified fermion dispersion
laws will be examined and Sec. IV is dedicated to the
properties of the modified Dirac spinors. Section V deals
with the fermion propagator and the optical theorem at
tree level, which relates the propagator to the sums of
matrices in spinor space formed of the positive- and
negative-energy spinors, respectively. Finally, in Sec. VI
the analysis is extended to alternative sets of Lorentz-
violating operators of the nonminimal fermion sector.
The results are summarized and discussed in Sec. VII.

Calculational details are presented in Appendix A.
Throughout the article natural units with ℏ ¼ c ¼ 1 will
be used unless otherwise stated.

II. INTRODUCTION OF THE THEORY

The theory considered is a Lorentz-violating extension
of the free Standard Model fermion sector [15], which is
based on the following action:

S ¼
Z
R4

d4xL; L ¼ 1

2
ψ̄ðγμi∂μ −mψ14 þ Q̂Þψ þ H:c:;

ð2:1Þ
with the standard Dirac field ψ , the Dirac conjugate field
ψ̄ ≡ ψ†γ0, the fermion mass mψ , and the unit matrix 14
in spinor space. The standard gamma matrices γμ for
μ ¼ 0…3 satisfy the Clifford algebra fγμ; γνg ¼ 2ημν14
with the Minkowski metric ðημνÞ ¼ diagð1;−1;−1;−1Þ.
The part Q̂ contains all Lorentz-violating operators to
arbitrary operator dimension that are compatible with the
fermion sector. The Lagrange density is written such that
the corresponding Hamilton operator is Hermitian.
The modification Q̂ represents an infinite sum of differ-

ent composite operators, which are composed of momenta
and Lorentz-violating component coefficients. These oper-
ators can be grouped in different classes according to their
properties under (proper) observer Lorentz transformations
and C, P, T transformations. This was done in Table I of
[15]. In what follows, the properties of different classes of
operators shall be investigated, including m̂, ĉμ, and f̂. The
simplest one is undoubtedly m̂ in the first line of the table
previously referred to. Therefore, in the following section
the action of Eq. (2.1) will be restricted to this particular
operator. In Sec. VI the methods chosen will be applied to
ĉμ and f̂, as well.

A. Scalar operator

The operator m̂ is CPT even and does not have a
dimension-4 field operator equivalent. Then Q̂ is given by

Q̂ ¼ −m̂14; m̂ ¼
X∞
d odd
d≥5

mðdÞα1…αðd−3Þpα1…pαðd−3Þ : ð2:2Þ

The α1…αðd−3Þ are Lorentz indices in this context. Since
m̂ does not have any free Lorentz indices, it is a scalar
under observer Lorentz transformations by construction.
However the additional momentum dependence makes it
transform nontrivially under particle Lorentz transforma-
tions. In [15] these expansions are directly defined in
momentum space. Then no additional signs have to be taken
into account, which simplifies the notation. The number d
does not give the mass dimension of the component
coefficients but the dimensionality of the corresponding
field operator, which is ψ̄∂α1…∂αðd−3Þψ in configuration
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space. In what follows, the dimensional expansion of m̂ in
Eq. (2.2) will be restricted to the dimension-5 field operator
ψ̄∂α1∂α2ψ . The corresponding 10 component coefficients
mð5Þα1α2 have mass dimension −1, so we have to consider

m̂ ¼ m̂ðp0;pÞ ¼ mð5Þα1α2pα1pα2 : ð2:3Þ

The arguments of m̂ will be suppressed unless caution is
required. The advantage of using the particular operator m̂ is
that we can solely concentrate on effects that are character-
istic for higher-dimensional operators and that do not have
an equivalent for relevant or marginal operators (operators
with dimension smaller than 4 and those with dimension
equal to 4, respectively). It is reasonable to follow the same
steps as in [24] and to consider three different sectors of the
ten component coefficients:

mð5Þ ¼

0
BBBBB@

mð5Þ00 mð5Þ01 mð5Þ02 mð5Þ03

mð5Þ01 mð5Þ11 mð5Þ12 mð5Þ13

mð5Þ02 mð5Þ12 mð5Þ22 mð5Þ23

mð5Þ03 mð5Þ13 mð5Þ23 mð5Þ33

1
CCCCCA: ð2:4Þ

The sector consisting of the single coefficient mð5Þ00 will
be called “temporal,” the sector made up of the three
coefficients mð5Þ0i for i ¼ 1…3 will be named “mixed,”
and the set of the remaining coefficients mð5Þij for i, j ¼
1…3 will be denoted as “spatial.”

III. MODIFIED FERMION DISPERSION LAWS

In the current section the modified fermion dispersion
relations shall be computed and their properties will be
discussed. The left-hand side of Eq. (39) with the definition
(35) in [15] states thegeneraloff-shell dispersion relation1 for
the Lorentz-violating fermion sector defined by the action
of Eq. (2.1). For the special case considered here we have
that Ŝ� ¼ −ðmψ þ m̂Þ, V̂μ

� ¼ pμ, T̂ μν
� ¼ 0, which leads to

p2 − ðmψ þ m̂Þ2 ¼ 0; ð3:1Þ

where p ¼ ðp0;pÞ≡ ð ~Eψ ;pÞ is the fermion four-
momentum with the spatial momentum p. The solutions
of Eq. (3.1) with respect to ~Eψ correspond to the modified
dispersion relations of a fermion.2 There are both zeros

~Eð>Þ
ψ > 0 and ~Eð<Þ

ψ < 0 where only the positive-energy
solutions will be given in what follows. For the temporal
sector they read

~EðtempÞ
ψ ;1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2mð5Þ00mψ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4mð5Þ00ðmψ þmð5Þ00p2Þ

qr
ffiffiffi
2

p jmð5Þ00j ;

ð3:2aÞ

with the expansions

~EðtempÞ
ψ ;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
ð1þmð5Þ00mψ Þ þO½ðmð5Þ00Þ2�;

ð3:2bÞ

~EðtempÞ
ψ ;2 ¼ 1

jmð5Þ00j −mψsgnðmð5Þ00Þ − 1

2
ðp2 þ 2m2

ψÞjmð5Þ00j

þO½ðmð5Þ00Þ2�; ð3:2cÞ

where

sgnðxÞ ¼
8<
:

1 for x > 0;

0 for x ¼ 0;

−1 for x < 0:

ð3:2dÞ

Hence there are two modified dispersion laws. The first is a
perturbation of the standard dispersion relation for a Dirac
fermion with spatial momentum p and mass mψ . However
the second does evidently not have a limit for a vanishing
Lorentz-violating coefficient mð5Þ00. Instead there is an
energy gap, which is inversely proportional to the absolute
value of the coefficientmð5Þ00. The latter dispersion lawmay
become important for large fermion momenta indicating
that it is related to Planck scale physics. Such dispersion
relations can be considered as spurious for momenta that
are much smaller than the Planck scale. They also appear in
the context of the nonminimal photon sector (cf. [14,24]) and
how to deal with them will be described later.
For the mixed sector one obtains

~EðmixedÞ
ψ ¼ p2 þm2

ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − ðm̂1Þ2�p2 þm2

ψ

q
þ m̂1mψ

;

m̂1 ¼ 2mð5Þ0ipi; ð3:3aÞ

~EðmixedÞ
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
− m̂1mψ þO½ðm̂1Þ2�: ð3:3bÞ

Here no spurious dispersion law appears in contrast to the
mixed sector of the particular set of nonminimal photon
coefficients considered in [24]. Last but not least, for the
spatial sector the modified dispersion law is given by

1In the literature the expression “off-shell dispersion relation”
is sometimes used for the polynomial in p0, whose zeros give
the dispersion relations for an on-shell particle.

2Tildes are used throughout the paper to distinguish modified
quantities such as the particle energy from the standard results
for these quantities. Particles with modified properties will carry a
tilde as well to emphasize that this particular type of particles is
affected by Lorentz violation and to oppose them to particles,
which remain unaffected.
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~EðspatialÞ
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðmψ þ m̂2Þ2

q
; m̂2 ¼ mð5Þijpipj;

ð3:4aÞ

~EðspatialÞ
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q �
1þ mψ

p2 þm2
ψ
m̂2

�
þO½ðm̂2Þ2�:

ð3:4bÞ

For the spatial sector there is no spurious dispersion
relation, too, in accordance to the nonminimal photon
theory discussed in the latter reference.
For fermions the negative-energy solutions have a

physical meaning as well. They will not be given explicitly
but they are related to the positive-energy solutions as

follows: ~Eð>Þ
ψ ðp; mð5Þα1α2Þ ¼ − ~Eð<Þ

ψ ð−p; mð5Þα1α2Þ. Now
the negative-energy solutions have to be reinterpreted.
The basis for this is the idea of the Dirac sea telling us
that the vacuum consists of an infinite number of filled
negative-energy states. The corresponding positive-energy
excitations, which are understood as positively charged
holes in the Dirac sea, are interpreted as antiparticles.
According to the Feynman-Stückelberg interpretation a
negative-energy particle propagating backwards in time,
i.e., having four-momentum ðpμÞ ¼ ð−p0;−pÞT , is inter-
preted as a positive-energy antiparticle propagating for-
wards in time with ðpμÞ ¼ ðp0;pÞT . This concept, which
describes the behavior of antiparticles in the framework of
the Dirac sea, is very helpful for understanding how the
positive energy of the physical antiparticle can be obtained
from the negative-energy solution of the Dirac equation.

This is possible by reinterpreting p0 ¼ ~Eð<Þ
ψ ðp; mð5Þα1α2Þ

with pμ↦ − pμ where the latter transforms to p0 ¼
~Eð>Þ
ψ ðp; mð5Þα1α2Þ. While ~Eð>Þ

ψ ðp; mð5Þα1α2Þ is the energy of
a spin-1/2 matter particle, this can also be understood as the
energy of the corresponding antimatter particle. Since the
operator m̂, which is closely linked to the fermion massmψ ,
is CPT even [15], the sign of the corresponding component
coefficients is not reversed when considering the negative-
energy solutions. As a result, the particle and antiparticle
energies are equal. This is in accordance with the corre-
sponding rules for the minimal fermion sector [26].
It can be checked that the expansions of Eqs. (3.2b),

(3.3b), and (3.4b) at first order in Lorentz violation are in
agreement with the upper 2 × 2 block of Eq. (59) in [15] for
particles and the reinterpreted lower 2 × 2 block for
antiparticles.

IV. MODIFIED DIRAC SPINORS

The Lagrange density in Eq. (2.1) leads to a modified
Dirac equation for the spinor field ψ that is given as
follows:

ðp −mψ14 þ Q̂Þψ ¼ 0;

ðγμÞ ¼ ðγ0; γÞT;
γ ¼ ðγ1; γ2; γ3ÞT: ð4:1Þ

After having obtained the modified fermion dispersion
laws in the last section, the solutions of the modified Dirac
equation will be determined in the current section. The
procedure described in [15] shall be used for this purpose.
First of all, according to the latter reference we choose a
special representation of gamma-matrices—the chiral rep-
resentation, in which the γ0;1;2;3 are block off diagonal and
γ5 is diagonal. Explicitly the matrices are given by

γ0 ¼
�

0 12
12 0

�
;

γ1;2;3 ¼
�

0 σ1;2;3

−σ1;2;3 0

�
;

γ5 ¼ iγ0γ1γ2γ3 ¼
�−12 0

0 12

�
; ð4:2aÞ

with the Pauli matrices

σ1¼
�
0 1

1 0

�
; σ2¼

�
0 −i
i 0

�
; σ3¼

�
1 0

0 −1

�
; ð4:2bÞ

and the two-dimensional unit matrix 12. For the particular
case considered the solutions of the Dirac equation can be
determined from Eqs. (51), (53), and (54) in [15]. The
procedure will be briefly reviewed for the standard Dirac
equation first, i.e., Eq. (4.1) with Q̂ ¼ 0. The initial step is
to construct a unitary transformation matrix U depending
on an energy scale E ≥ 0 and a mass scale m, which looks
as follows:

UðE;m;pÞ ¼ V ·WðE;m;pÞ;

V ¼ 14 þ γ0γ5ffiffiffi
2

p ;

WðE;m;pÞ ¼ ðEþmÞ14 þ p · γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðEþmÞp : ð4:3Þ

For the standard theory with zero Lorentz violation, m
corresponds to the fermion mass mψ and E to the fermion

energy Eψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
. Using the matrix U, the Dirac

operator can be diagonalized leading to the following
eigenvalue problem for the Hamiltonian H:

ðE14−HÞUψ ¼0; H¼−γ5Eψ ¼
�
Eψ12 0

0 −Eψ12

�
:

ð4:4Þ
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Once the Dirac matrix has been brought to this form it is
straightforward to obtain its solutions for the transformed
spinor ψ 0 ≡Uψ. However since the interest lies in the
solutions for the spinor ψ, the obtained solutions have to
be transformed back with U†. Note that this procedure
looks very similar to a Foldy-Weythousen transformation;
cf. Eq. (17) in [33] (with βα ¼ γ and β2 ¼ 1). The differ-
ence is that Foldy and Weythousen considered different
transformation matrices for positive- and negative-energy
solutions of the Dirac equation, which are given by their
Eqs. (17) and (18). On the contrary, in [15] only the single
transformation matrix of Eq. (4.3) is considered, since the
negative-energy solutions are obtained from the positive-
energy ones by a reinterpretation.
According to [15], the diagonalization of the Dirac

operator with the transformation given by Eq. (4.3) still
works in case of a nonvanishing operator m̂. The only
modification is that Eψ has to be replaced by ~Eψ andmψ by
~mψ (defined below) in Eq. (4.3). With the diagonalization
performed, both the positive- and the negative-energy
spinors of the modified Dirac equation can be obtained.
The positive-energy spinors u are then given by

uðαÞð ~Eð>Þ
ψ ;pÞ ¼ 1ffiffiffiffiffiffiffiffiffi

NðαÞ
u

q U†ð ~Eð>Þ
ψ ; ~mψ ;pÞuðαÞð ~mψ ; 0Þ;

ð4:5aÞ

uð1Þð ~mψ ; 0Þ ¼
�
ϕð1Þ

0

�
; uð2Þð ~mψ ; 0Þ ¼

�
ϕð2Þ

0

�
;

ϕð1Þ ¼
�
1

0

�
; ϕð2Þ ¼

�
0

1

�
; ð4:5bÞ

~mψ ≡mψ þ m̂ð ~Eð>Þ
ψ ;pÞ: ð4:5cÞ

where α ¼ 1, 2 and ~Eð>Þ
ψ is the positive fermion energy that

is modified due to Lorentz violation [cf. Eqs. (3.2a), (3.3a),
and (3.4a), respectively, for the three different sectors
considered]. The spinors are a solution of the modified

Dirac equation: ðp − ~mψ14ÞuðαÞðpÞ ¼ 0 with p0 ¼ ~Eð>Þ
ψ .

The mormalization NðαÞ
u of the spinors is chosen such that

ūðαÞðpÞuðβÞðpÞ ¼ uðαÞ†ðpÞγ0uðβÞðpÞ ¼ 2 ~mψδ
αβ; ð4:6aÞ

uðαÞ†ðpÞuðβÞðpÞ ¼ 2 ~Eð>Þ
ψ δαβ: ð4:6bÞ

In what follows, the matrices formed from the spinors,
e.g., uðαÞðpÞūðαÞðpÞ, will be denoted as “spinor matrices.”
The sum over the positive-energy spinor matrices then
reads X

α¼1;2

uðαÞðpÞūðαÞðpÞ ¼ pþ ~mψ14: ð4:7Þ

On the other hand, the negative-energy spinors are given by

vðαÞð ~Eð>Þ
ψ ;pÞ ¼ 1ffiffiffiffiffiffiffiffiffi

NðαÞ
v

q U†ð ~Eð>Þ
ψ ; ~mψ ;−pÞvðαÞð ~mψ ; 0Þ;

ð4:8aÞ

vð1Þð ~mψ ; 0Þ ¼
�

0

χð1Þ

�
; vð2Þð ~mψ ; 0Þ ¼

�
0

χð2Þ

�
;

χð1Þ ¼
�
1

0

�
; χð2Þ ¼

�
0

1

�
; ð4:8bÞ

~mψ ¼ mψ þ m̂ð− ~Eð>Þ
ψ ;−pÞ ¼ mψ þ m̂ð ~Eð>Þ

ψ ;pÞ: ð4:8cÞ

Note the minus signs associated with the four-momentum
components p0 and p. These spinors are a solution of
the modified Dirac equation ðp − ~mψ14ÞvðαÞðpÞ ¼ 0 with

ðpμÞ ¼ ð− ~Eð>Þ
ψ ;−pÞT . Here the normalization NðαÞ

v is
chosen so that the following relationships hold:

v̄ðαÞðpÞvðβÞðpÞ ¼ vðαÞ†ðpÞγ0vðβÞðpÞ ¼ −2 ~mψδ
αβ ð4:9aÞ

vðαÞ†ðpÞvðβÞðpÞ ¼ −2 ~Eψδ
αβ: ð4:9bÞ

The sum over the negative-energy spinor matrices is
given by X

α¼1;2

vðαÞðpÞv̄ðαÞðpÞ ¼ p − ~mψ14: ð4:10Þ

On the right-hand sides of Eqs. (4.7) and (4.10), ðpμÞ ¼
ð ~Eð>Þ

ψ ;pÞT is understood. An explicit derivation of all these
relations can be found in Appendix A 1.

V. MODIFIED FERMION PROPAGATOR AND
THE OPTICAL THEOREM

Having obtained the modified spinors and sums over the
spinor matrices in the last section, the fermion propagator
will be computed in what follows. The fermion propagator
SðpÞ is the inverse (modulo a factor of i) of the operator
S−1ðpÞ≡ p −mψ14 þ Q̂ that appears in the modified
Dirac equation: SðpÞS−1ðpÞ ¼ S−1ðpÞSðpÞ ¼ i14. In the
case of a nonvanishing operator m̂ it holds that
S−1ðpÞ ¼ p − ðmψ þ m̂Þ14. From the latter equation the
propagator can be determined and it is expressed in terms of
gamma matrices as follows:

SðpÞ ¼ i
p2 − ðmψ þ m̂Þ2 ½pþ ðmψ þ m̂Þ14�: ð5:1Þ

As a good cross-check for the electron propagator of
Eq. (5.1) and the sum over the spinor matrices of
Eq. (4.7) the optical theorem can be used. Therefore we
consider a modified electron ~e− scattering at a standard
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photon γ (Compton scattering). The forward scattering
amplitude at tree level corresponds to the left-hand side of
the equation shown in Fig. 1 and it is denoted by
M≡Mð~e−γ → ~e−γÞ. If the optical theorem is valid, the
forward scattering amplitude will be related to the total
cross section of the process ~e−γ → ~e− at tree level where a
summation over the spins of the final electron has to be
performed.3 If the spin state of the initial electron is denoted
as α and the polarization state of the initial photon as λ, the
forward scattering amplitude reads

M ¼ −
Z

d4p
ð2πÞ4 δ

ð4Þðk1 þ p1 − pÞe2ūðαÞðp1Þγν

×
pþ ~mψ14

p2 − ~m2
ψ þ iϵ

γμuðαÞðp1ÞεðλÞμ ðk1Þε̄ðλÞν ðk1Þ: ð5:2Þ

Here uðαÞðp1Þ is a positive-energy spinor describing a
modified electron in the spin state α and with four-
momentum p1. These were obtained in the previous section
and are given by Eq. (4.5). The elementary charge is e and
the Feynman propagator poles are treated with the usual iϵ
prescription. The polarization vector of a standard photon
with polarization state λ and momentum k1 is named

εðλÞμ ðk1Þ. Total energy-momentum conservation of the
process is encoded in the four-dimensional δ function.
The interest lies in the imaginary part of Eq. (5.2). First

of all only the mixed and the spatial sector of the theory,

whose dispersion relations were obtained in Sec. III, are
considered. These sectors are characterized by a single
positive and a negative fermion energy and the denominator
of the corresponding propagator can be factorized with
respect to the poles as follows:

1

p2 − ~m2
ψ þ iϵ

¼ 1

ðp0 − ~Eð>Þ
ψ þ iϵÞðp0 − ~Eð<Þ

ψ − iϵÞ
; ð5:3Þ

with the positive fermion energy ~Eð>Þ
ψ and the negative-

energy counterpart ~Eð<Þ
ψ . Due to energy-momentum

conservation only the pole with a positive real part, i.e.,

p0 ¼ ~Eð>Þ
ψ − iϵ, contributes to the imaginary part.

Interpreting the propagator as a distribution, one can use
the following relation to treat the contributing pole where
this procedure corresponds to applying Cutkosky’s cutting
rules [34]:

1

p0 − ~Eð>Þ
ψ þ iϵ

¼ P
1

p0 − ~Eð>Þ
ψ

− iπδðp0 − ~Eð>Þ
ψ Þ: ð5:4Þ

Here the first term involves the principal value P, which is
purely real. The second summand is imaginary and forces

p0 to be equal to the fermion energy ~Eð>Þ
ψ in the integrand.

With this input the imaginary part of Eq. (5.2) can be
computed where additionally Eq. (4.7) is used:

2ImðMÞ ¼
Z

d3p

ð2πÞ32 ~Eð>Þ
ψ

δð4Þðk1 þ p1 − pÞe2ūðαÞðp1Þγνðpþ ~mψ14ÞγμuðαÞðp1ÞεðλÞμ ðk1Þε̄ðλÞν ðk1Þ

¼
Z

d3p

ð2πÞ32 ~Eð>Þ
ψ

δð4Þðk1 þ p1 − pÞe2ūðαÞðp1Þγν
�X
β¼1;2

uðβÞðpÞūðβÞðpÞ
�
γμuðαÞðp1ÞεðλÞμ ðk1Þε̄ðλÞν ðk1Þ

¼
Z

d3p

ð2πÞ32 ~Eð>Þ
ψ

δð4Þðk1 þ p1 − pÞ
X
β¼1;2

ðieūðβÞðpÞγνuðαÞðp1ÞεðλÞν ðk1ÞÞ†ieūðβÞðpÞγμuðαÞðp1ÞεðλÞμ ðk1Þ

¼
Z

d3p

ð2πÞ32 ~Eð>Þ
ψ

δð4Þðk1 þ p1 − pÞ
X
β¼1;2

jM̂j2: ð5:5Þ

Hence the imaginary part can be expressed with the
matrix element M̂≡Mð~e−γ → ~e−Þ of the process on the
right-hand side of the equation in Fig. 1. This shows that
the optical theorem is valid for this particular process.

Note that this proof is rather general and no relations were
used that are supposedly only valid for the process
considered.
An analogous computation can be done for spin-1/2

antimatter by considering the process ~eþγ → ~eþγ, with a
modified positron ~eþ. Then the electron lines in the
diagrams shown in Fig. 1 have to be replaced by positron
lines. Since the momentum of the internal line flows in
the opposite direction of the arrow on this line, the
propagator momentum is now −pμ instead of pμ [35].
Furthermore a global factor of −1 has to be considered due
to the interchange of fermionic operators when applying
Wick’s theorem:

3At tree level Compton scattering has an additional contribu-
tion with the two vertices interchanged. The sum of both
amplitudes is gauge invariant where a single contribution is
not. Nevertheless to check the optical theorem we restrict
ourselves to only the first contribution. If the optical theorem
is valid, the imaginary part of the first amplitude will be related to
the cross section of a physical process, which must be a gauge-
invariant quantity. Hence the imaginary part of the corresponding
forward scattering amplitude is then gauge invariant, as well.
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M̄ ¼
Z

d4p
ð2πÞ4 δ

ð4Þðk1 þ p1 − pÞe2v̄ðαÞðp1Þγμ
−pþ ~mψ14
p2 − ~m2

ψ þ iϵ
γνvðαÞðp1ÞεðλÞμ ðk1Þε̄ðλÞν ðk1Þ; ð5:6Þ

where M̄≡Mð~eþγ → ~eþγÞ. Then the roles of the poles in Eq. (5.3) are interchanged where again the positive-energy pole
is taken into account. A similar computation to what was done before together with the sum over the spinor matrices,
Eq. (4.10), for the positron spinors leads to

2ImðM̄Þ ¼
Z

d3p

ð2πÞ32 ~Eð>Þ
ψ

δð4Þðk1 þ p1 − pÞe2v̄ðαÞðp1Þγμ
�X
β¼1;2

vðβÞðpÞv̄ðβÞðpÞ
�
γνvðαÞðp1ÞεðλÞμ ðk1Þε̄ðλÞν ðk1Þ

¼
Z

d3p

ð2πÞ32 ~Eð>Þ
ψ

δð4Þðk1 þ p1 − pÞ
X
β¼1;2

iev̄ðαÞðp1ÞγμvðβÞðpÞεðλÞμ ðk1Þðiev̄ðαÞðp1ÞγνvðβÞðpÞεðλÞν ðk1ÞÞ†

¼
Z

d3p

ð2πÞ32 ~Eð>Þ
ψ

δð4Þðk1 þ p1 − pÞ
X
β¼1;2

j ~Mj2; ð5:7Þ

with ~M≡Mð~eþγ → ~eþÞ. Hence the validity of the optical
theorem at tree level can also be demonstrated for spin-1/2
antifermions. This is a good independent cross-check for
the modified spinors, the sums over the spinor matrices,
and the propagator. Since no relations were used that only
hold for the particular process considered, this proof is
rather general and valid for any tree-level process with an
internal electron or positron line.
A last caveat is formed by the temporal sector of Sec. III.

The latter is characterized by the two distinct positive-
energy dispersion laws of Eq. (3.2a) where the first of them
(and its negative-energy counterpart) is a perturbation of
the standard one and the other is spurious. However the
spurious solutions cannot simply be discarded when con-
sidering the optical theorem. In this case the denominator of
the propagator in Eq. (5.3) has four distinct poles and the
above proof has to be modified. Note that this issue also
occurs in the context of the nonminimal CPT-even and

isotropic modified Maxwell theory [24]. The problem may4

occur if there are additional time derivatives in the Dirac
operator leading to an unconventional time evolution for
the Dirac field (see [36] for a related problem in the
minimal fermion sector). In the minimal sector it is resolved
by a field redefinition at first-order Lorentz violation.
This might be possible for the nonminimal case as well,
but the approach introduced in [24] will be employed
instead. By doing so, all additional p0 components in the
off-shell dispersion relation of Eq. (3.1) are replaced by

the standard fermion dispersion law p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
:

FIG. 1. Forward scattering amplitude of tree-level electron photon scattering that is related to the total cross section of electron photon
scattering, if the optical theorem is valid. A modified electron is denoted by ~e− and a photon by γ. The momenta are stated next to the
particle symbols and the one-particle phase space is called dΠ1.

4For the nonminimal photon sector considered in [24] the issue
appeared, if there was at least one additional time derivative.
However in the context of the nonminimal fermion sector
considered here there are no spurious dispersion relations for
the mixed case ofmð5Þα1α2 with only one additional derivative, for
example.
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mð5Þ00p2
0 ¼ mð5Þ00ðp2 þm2

ψÞ. The resulting expression is
then still valid at first-order Lorentz violation. Computing
the modified positive-energy dispersion relation after the
replacement has been performed results in the only solution

~EðtempÞ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ½mψ þ ðp2 þm2

ψ Þmð5Þ00�2
q

; ð5:8Þ

which coincides with Eq. (3.2a) at first-order Lorentz
violation. A spurious solution does not appear any more.
Then all the steps of the above proof can be redone
analogously and the optical theorem at tree level is
demonstrated to be valid at first-order Lorentz violation
for the temporal sector as well.

A. Analysis of unitarity

The Lorentz-violating operators involving additional
time derivatives may be expected to have problems with
unitarity, which will be investigated in the current section.
A useful method to study unitarity is the investigation of a
property of the Euclidean propagator, which is called
reflection positivity [17,37]. It states that a scalar quantum
field theory obeys a positive semidefinite self-adjoint
Hamiltonian H in Minkowski spacetime with a unitary
time evolution if for the Euclidean two-point function
(propagator) SEðp4;pÞ the following property is valid [17]:

SEðx4;xÞ≡
Z

d3p
Z

∞

−∞
dp4 expð−ip4x4ÞSEðp4;pÞ

≡
Z

d3pSEðx4;pÞ

≥ 0: ð5:9Þ

Here p4 ¼ −ip0 is the Wick-rotated zeroth component
of the momentum four-vector and x4 ¼ −ix0 is the Wick-
rotated time. The Euclidean propagator follows from
the propagator Sðp0;pÞ in Minkowski spacetime via
SEðp4;pÞ≡ −Sðip4;pÞ. The Wick-rotated propagator
comes with a global minus sign, which is compensated
in the latter definition (see also [20]). First of all let us
look at the standard quantum field theory of a scalar with
mass mϕ:

Sðp0;pÞ ¼ 1

p2 −m2
ϕ

; ð5:10aÞ

SEðp4;pÞ ¼ −Sðip4;pÞ ¼ 1

ðp4Þ2 þ p2 þm2
ϕ

: ð5:10bÞ

To check reflection positivity the integration over p4 in
Eq. (5.9) will be done first. This is possible by using
Eq. (3.723.2) of [38]:

SEðx4;pÞ ¼
Z

∞

−∞
dp4

expð−ip4x4Þ
ðp4Þ2 þ p2 þm2

ϕ

¼ 2

Z
∞

0

dp4
cosðp4x4Þ

ðp4Þ2 þ p2 þm2
ϕ

¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ϕ

q exp
�
−jx4j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ϕ

q �
: ð5:11Þ

The latter result is manifestly positive. Hence the additional
integral over the spatial momentum will be positive as well,
granting reflection positivity. The integration can also be
performed explicitly by introducing spherical coordinates
with jpj≡ p and using Eq. (3.462.21) of [38]:

Z
d3pSEðx4;pÞ ¼ 4π2

Z
∞

0

dp
p2 exp

�
−jx4j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ϕ

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ϕ

q
¼ 4π2

mϕ

jx4jK1ðjx4jmϕÞ; ð5:12Þ

where K1ðxÞ is a particular hyperbolic Bessel function of
the second kind [see Eq. (8.432) in [38]] where K1ðxÞ > 0
for x > 0.
The considerations have been performed for a scalar

quantum field theory. This procedure is still justified for a
Dirac theory of spin-1/2 fermions, when omitting the
matrix structure in spinor space. The reason is that the
crucial information on reflection positivity of a quantum
field theory is encoded in the pole structure of the
propagator. Therefore it should be sufficient to concentrate
on its scalar part and this will be done for the Lorentz-
violating cases as well.
Now let us investigate reflection positivity for the scalar

propagator part of the temporal case of m̂ with the single
Lorentz-violating coefficient mð5Þ00. The scalar part of the
Wick-rotated propagator reads as follows:

SEðp4;pÞ ¼ 1

ðp4Þ2 þ p2 þ ½mψ −mð5Þ00ðp4Þ2�2

¼ 1

ðmð5Þ00Þ2
1

½ðp4Þ2 þ β21�½ðp4Þ2 þ β22�
; ð5:13aÞ

β1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2mð5Þ00mψ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4ðmð5Þ00Þ2p2− 4mð5Þ00mψ

qr
ffiffiffi
2

p jmð5Þ00j :

ð5:13bÞ
Now to investigate reflection positivity we have to evaluate
the following integral:
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SEðx4;pÞ ¼
2

ðmð5Þ00Þ2
Z

∞

0

dp4
cosðp4x4Þ

½ðp4Þ2 þ β21�½ðp4Þ2 þ β22�
;

ð5:14Þ

with β1 and β2 from above. Using Eq. (3.728.1) in [38] the
analytical result reads as follows:

SEðx4;pÞ¼
1

ðmð5Þ00Þ2
π

β1β2

β2expð−jx4jβ1Þ−β1expð−jx4jβ2Þ
β22−β21

:

ð5:15Þ

In the limit mð5Þ00↦0 the standard result of Eq. (5.11) is
recovered. Since β1;2 are positive, the question of reflection
positivity reduces to positivity of the two-dimensional
function

fðx; yÞ ¼ y expð−axÞ − x expð−ayÞ
y − x

; a ≥ 0; ð5:16Þ

where ðx; yÞ ∈ Rþ ×Rþ. For y > x the denominator is
larger than zero as well as the numerator since y=x >
exp½−aðy − xÞ�, which renders fðx; yÞ positive in this case.
An analogous argument holds for y < x. Hence SEðx4;pÞ is
positive for all mð5Þ00. Then it can be concluded that
SEðx4;xÞ is positive as well and reflection positivity plus
unitarity is granted.
Now let us consider the mixed case with the three

coefficients mð5Þ0i (i ¼ 1…3) and the remaining ones set to
zero. Here the Wick-rotated scalar part of the propagator is

SEðp4;pÞ ¼ 1

1 − m̂2
1

1

ðp4Þ2 − iap4 þ b2
;

a ¼ 2m̂1mψ

1 − m̂2
1

; b2 ¼ p2 þm2
ψ

1 − m̂2
1

; ð5:17Þ

with m̂1 given in Eq. (3.3a). Note that this result is even
complex in contrast to Eqs. (5.10b) and (5.13a). However the
integral overp4 is manifestly real, which is shown as follows:

SEðx4;pÞ ¼
1

1 − m̂2
1

Z
∞

−∞
dp4

expð−ip4x4Þ
ðp4Þ2 − iap4 þ b2

¼ 1

1 − m̂2
1

�Z
∞

0

dp4
expð−ip4x4Þ

ðp4Þ2 − iap4 þ b2
þ
Z

∞

0

dp4
expðip4x4Þ

ðp4Þ2 þ iap4 þ b2

�

¼ 2

1 − m̂2
1

Z
∞

0

dp4
½ðp4Þ2 þ b2� cosðp4x4Þ þ ap4 sinðp4x4Þ

½ðp4Þ2 þ b2�2 þ a2ðp4Þ2 : ð5:18Þ

This integral can be computed using Eqs. (3.728.1)–(3.728.3) in [38], which gives the intermediate result

SEðx4;pÞ ¼
1

1 − m̂2
1

π

δεðδ2 − ε2Þ fδ½b
2 þ ðsgnðx4Þa − εÞε� expð−jx4jεÞ − ε½b2 þ ðsgnðx4Þa − δÞδ� expð−jx4jδÞg; ð5:19aÞ

δ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b2

p
þ sgnðx4Þa

�
;

ε ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b2

p
− sgnðx4Þa

�
; ð5:19bÞ

with the sign function defined by Eq. (3.2d). The latter
SEðx4;pÞ can be further simplified using

b2 þ ðsgnðx4Þa − εÞε ¼ 2sgnðx4Þaε;
b2 þ ðsgnðx4Þa − δÞδ ¼ 0; ð5:20aÞ

δ2 − ϵ2 ¼ sgnðx4Þa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b2

p
; ð5:20bÞ

to obtain the final amazingly short result

SEðx4;pÞ ¼
2π

1 − m̂2
1

expð−jx4jεÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b2

p : ð5:21Þ

As long as 1 − m̂2
1 > 0, which is the case for sufficiently

small Lorentz-violating coefficients mð5Þ0i, Eq. (5.21)
is manifestly larger than zero. As a result, the three-
dimensional integral over SEðx4;pÞ, which produces
SEðx4;xÞ, will also be larger than zero establishing re-
flection positivity. Note that for mð5Þ0i↦0 one obtains
the standard result given by Eq. (5.11). To summarize,
unitarity for the temporal and mixed sectors of m̂ is
granted for sufficiently small Lorentz-violating controlling
coefficients.
Another quantum field theoretic property that could be

studied for the nonminimal fermion sector is stability. In
general this refers to the absence of energies lying below a
particular choice of ground state energy. It is known that for
certain frameworks in the minimal fermion sector there
exist spacelike four-momenta with a positive energy in one
particular frame [26]. However negative energies may be
generated in a sufficiently boosted observer frame. This is

QUANTUM FIELD THEORETIC PROPERTIES OF … PHYSICAL REVIEW D 90, 085025 (2014)

085025-9



why any analysis is usually restricted to a “concordant
frame,” whose boosts are not too large. Considering the
issue of stability in the nonminimal fermion sector seems to
be even more complicated than in the minimal sector. To
obtain the modified fermion dispersion laws in the current
paper we have restricted ourselves to particular subsets
of coefficients due to heavy computational difficulties.
Now any observer transformation may generate additional
coefficients, which leads us back to these complications.
For example, applying an observer transformation in the
temporal sector of m̂ with the only nonzero coefficient
mð5Þ00 may introduce some of the mixed or spatial
coefficients mð5Þ0i, mð5Þij (for i, j ¼ 1…3), which renders
the exact dispersion relations very complicated. For this
reason studying the issue of stability will be postponed to
future work.

VI. APPLICATION TO OTHER
LORENTZ-VIOLATING OPERATORS

In the previous sections certain properties of the quantum
field theory based on the nonminimal Lorentz-violating
composite operator m̂ were investigated and discussed.
This particular operator was chosen in the first place
because it is CPT even and it forms a scalar under observer
Lorentz transformations. Hence the corresponding param-
eters were supposed to be treatable in the simplest manner.
In the current section we intend to apply the considerations
above to other sets of Lorentz-violating coefficients in the
nonminimal fermion sector, which have richer character-
istics and may, therefore, lead to additional complications.
All operators plus their most important properties are listed
and summarized in Table I in [15].

A. CPT-even vector operator

The first choice is the CPT-even vector operator ĉμ,
which can be decomposed into a sum of operators of even
operator dimension:

ĉμ ≡ ĉμα1pα1 ¼
X∞
d even
d≥4

ĉðdÞμ;

ĉðdÞμ ≡ cðdÞμα1…αðd−3Þpα1…pαðd−3Þ ;

Q̂ ¼ ĉμγμ: ð6:1Þ
The operator ĉμ has one free Lorentz index, which makes
it transform as an observer vector by construction.
Therefore it is referred to by the term “vector operator.”
The component coefficients of the minimal dimension-4
field operator have two indices where the second is
contracted with the four-momentum: ĉð4Þμ ¼ cð4Þμα1pα1 .
Restricting the dimensional expansion of Eq. (6.1) to the
coefficients associated with the dimension-6 field operator
ψ̄∂α1∂α2∂α3ψ in configuration space, we deal with
ĉð6Þμ ¼ cð6Þμα1α2α3pα1pα2pα3 . The latter is made up

of the 64 component coefficients cð6Þμα1α2α3 with mass
dimension −2.

1. Modified fermion dispersion relations

In the current section the modified dispersion relations
will be determined. Equation (35) in [15] gives the
quantities Ŝ� ¼ −mψ , V̂

μ
� ¼ pμ þ ĉμ, and T̂ μν

� ¼ 0 that
are used in Eq. (39) in the latter reference to obtain

ðpþ ĉÞ2 −m2
ψ ¼ 0: ð6:2Þ

From this polynomial the positive- and negative-energy
eigenvalues can be deduced. In what follows, the positive
dispersion laws will be given. The temporal sector is
characterized by the set of coefficients cð6Þμν00. This is
the most complicated sector to handle since it involves two
additional time derivatives in configuration space. The
modified dispersion relations for the whole temporal sector
are involved, which is why the dispersion laws for certain
subsets are given. For a theory with only a nonvanishing
cð6Þ0000 the modified dispersion law reads as follows:

~Eðtemp;1Þ
ψ ¼ 1ffiffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24=3

Ĉ
þ 22=3

ĉ21
Ĉ −

4

ĉ1

s
; ð6:3aÞ

Ĉ ¼
	
ĉ31½2þ 27ðp2 þm2

ψ Þĉ1�

þ 3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

ψ Þĉ71½4þ 27ðp2 þm2
ψ Þĉ1�

q 

1=3

;

ð6:3bÞ

ĉ1 ¼ cð6Þ0000: ð6:3cÞ

Besides this perturbed dispersion law there are two further
dispersion relations, which are spurious. Therefore they
will not be stated here. The occurrence of fractional powers
other than square roots in Eq. (6.3) traces back to six
powers of p0 in Eq. (6.2).
For the set of coefficients cð6Þ0i00 with i ¼ 1…3 and the

remaining ones vanishing the dispersion relations are

~Eðtemp;2Þ
ψ ;1;2 ¼

1∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
ĉ2

r
2ĉ2

; ð6:4aÞ

ĉ2 ¼ cð6Þ0i00pi: ð6:4bÞ

The third set of coefficients, which shall be considered
for the temporal sector, is cð6Þij00 with the spatial indices i
and j leading to the following dispersion relations:
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~Eðtemp;3Þ
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ĉ3∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ĉ3Þ2 − 4ðp2 þm2

ψÞĉ4
q

2ĉ4

vuut
;

ð6:5aÞ

ĉ3 ¼ 2cð6Þij00pipj; ĉ4 ¼ cð6Þij00cð6Þik00pjpk:

ð6:5bÞ

The first of Eqs. (6.4) and (6.5) are again perturbed ones
and the second are spurious. The double square root
structure is specific for the dispersion relations of the
temporal sector as long as the polynomial in Eq. (6.2) is of
degree four. The spurious dispersion laws can again be
removed at first order in Lorentz violation. For the first of
the cases considered, in Eq. (6.2) cð6Þ0000p2

0 has to be
replaced by cð6Þ0000ðp2 þm2

ψ Þ, for the second cð6Þ0i00p2
0 by

cð6Þ0i00ðp2 þm2
ψÞ, and for the third cð6Þij00p2

0 by
cð6Þij00ðp2 þm2

ψ Þ. One then obtains

~Eðtemp;1Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
j1þ ðp2 þm2

ψ Þĉ1j
; ð6:6aÞ

~Eðtemp;2Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q �
1þ ĉ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q �
; ð6:6bÞ

and

~Eðtemp;3Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

ψ Þ½1 − ĉ3 þ ðp2 þm2
ψÞĉ4�

q
; ð6:6cÞ

respectively. These are perturbed dispersion laws that
coincide with the original perturbed ones [the first of
Eqs. (6.3), (6.4), and (6.5), respectively] at first order in
Lorentz violation. The spurious versions are removed by
this procedure.

The mixed sector is defined by the family of component
coefficients cð6Þμν0i, cð6Þμνi0 where μ, ν are Lorentz indices
and i a spatial index. Hence there appears one additional
time derivative in configuration space in combination with
these coefficients. The modified dispersion relation asso-
ciated with the whole coefficient set is involved, which is
why certain subsets are considered. For nonvanishing
cð6Þ00i0 and cð6Þ000i, i.e., with the first two Lorentz indices
set to zero one obtains

~Eðmixed;1Þ
ψ ;1;2 ¼

1∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
ĉ5

r
2ĉ5

; ð6:7aÞ

ĉ5 ¼ ðcð6Þ00i0 þ cð6Þ000iÞpi: ð6:7bÞ

For the latter coefficients both a perturbed and a spurious
dispersion law appear again.
For cð6Þijk0 and cð6Þij0k, i.e., with the first two indices

restricted to spatial values the modified dispersion law is
given by

~Eðmixed;2Þ
ψ ¼

ĉ6 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĉ26 þ ðp2 þm2

ψÞð1 − ĉ7Þ
q

1 − ĉ7
; ð6:8aÞ

ĉ6 ¼ ðcð6Þijk0 þ cð6Þij0kÞpipjpk; ð6:8bÞ

ĉ7 ¼ ðcð6Þijk0 þ cð6Þij0kÞðcð6Þilm0 þ cð6Þil0mÞpjpkplpm:

ð6:8cÞ
For this case there is only a perturbed dispersion relation,
but not a spurious one.
For one of the first two indices set to zero and the

remaining ones restricted to spatial values the positive-
energy dispersion laws read

~Eðmixed;3Þ
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ĉ8Þ2 þ 2ĉ9∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þ ĉ8Þ2 þ 2ĉ9�2 − 4ðp2 þm2

ψÞĉ10
q

2ĉ10

vuut
; ð6:9aÞ

ĉ8 ¼ ðcð6Þ0i0j þ cð6Þ0ij0Þpipj; ð6:9bÞ
ĉ9 ¼ ðcð6Þi0j0 þ cð6Þi00jÞpipj; ð6:9cÞ
ĉ10 ¼ ðcð6Þi00j þ cð6Þi0j0Þðcð6Þi00k þ cð6Þi0k0Þpjpk: ð6:9dÞ

The spurious solutions in Eqs. (6.7), (6.9) can be removed
by the replacements

fcð6Þ00i0; cð6Þ000igp0↦fcð6Þ00i0; cð6Þ000ig
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
;

ð6:10aÞ

fcð6Þ0i0j; cð6Þ0ij0; cð6Þi0j0; cð6Þi00jgp0

↦fcð6Þ0i0j; cð6Þ0ij0; cð6Þi0j0; cð6Þi00jg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
; ð6:10bÞ

in the off-shell dispersion relation of Eq. (6.2). This leads to
the following perturbed dispersion laws where the spurious
versions are removed:

~Eðmixed;1Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

1þ ĉ5½ðp2 þm2
ψÞĉ5 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
�

vuut
ð6:11aÞ
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~Eðmixed;3Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

ψÞfðĉ8 þ ĉ9Þ2 þ ð1 − ĉ28Þ½1 − ðp2 þm2
ψÞĉ10�g

q
− ðĉ8 þ ĉ9Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
1 − ðp2 þm2

ψÞĉ10
: ð6:11bÞ

Finally, the spatial sector is characterized by the coef-
ficients cð6Þμνij with the Lorentz indices μ, ν and the spatial
indices i and j. Due to the complexity of the general case
we restrict this sector to the set of coefficients cð6Þμijk with
only one Lorentz index μ and three spatial indices i, j,
and k. The following dispersion relation is then associated
with these coefficients:

~EðspatialÞ
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ þ ĉ11
q

þ ĉ12; ð6:12aÞ

ĉ11 ¼ cð6Þijklcð6Þimnopjpkplpmpnpo − 2cð6Þijklpipjpkpl;

ð6:12bÞ

ĉ12 ¼ cð6Þ0ijkpipjpk: ð6:12cÞ

Note that at least for some coefficients of the mixed and
the spatial sector there are no spurious dispersion laws but
only perturbed ones.
The dispersion laws given in the current section corre-

spond to positive energies ~Eð>Þ
ψ ¼ ~Eð>Þ

ψ ðp; cð6Þμα1α2α3Þ.
The relation between the positive-energy and the

negative-energy solutions ~Eð<Þ
ψ is ~Eð>Þ

ψ ðp; cð6Þμα1α2α3Þ ¼
− ~Eð<Þ

ψ ð−p; cð6Þμα1α2α3Þ. This means that both are related
by reversing the sign of the four-momentum pμ where the
Lorentz-violating coefficients cð6Þμα1α2α3 remain untouched.
In this case the Feynman-Stückelberg interpretation tells us
as well that a negative-energy particle with four-momentum
ðpμÞ ¼ ð−p0;−pÞT can be considered as a positive-energy
antiparticle with ðpμÞ ¼ ðp0;pÞT . Hence, given the particle
energies ~Eð>Þ

ψ ðp; cð6Þμα1α2α3Þ, after reinterpreting p0 ¼
~Eð<Þ
ψ ðp; cð6Þμα1α2α3Þ with pμ↦ − pμ the corresponding anti-

particle energies result in p0 ¼ ~Eð>Þ
ψ ðp; cð6Þμα1α2α3Þ. Then

the particle and antiparticle dispersion laws are equal.
The minimal coefficients cð4Þμα1 , which are linked to the

dimension-4 field operator, are both CPT even and C-even
(see [13] for the transformation properties of the various
Lorentz-violating operators with respect to C, P, and T).
For this reason the cð4Þμα1 in the positive-energy solutions
do not come with a different sign in comparison to the
negative-energy solutions [26]. The same holds for the
coefficients cð6Þμα1α2α3 , which substantiates the computed
results.
However, caution is required when talking about ĉμ,

which includes additional, contracted four-derivatives
in configuration space. For example, the dimension-4
coefficients are contracted with one four-derivative ∂α1 .
A four-derivative transforms odd under CPT, whereby

cð4Þμα1∂α1 is CPT odd as well. Hence based on the CPT
handedness of the minimal coefficients the transformation
properties of the coefficients contracted with additional
four-derivatives depends on the number of these deriva-
tives. Therefore the nonminimal dimension-6 coefficients
contracted with three derivatives, cð6Þμα1α2α3∂α1∂α2∂α3 ,
transform as a CPT-odd object. Similar arguments are
valid in momentum space. This is why for the antiparticle
energies of Eq. (65) in [15] the sign in the second term is
different from the sign of the particle energies of Eq. (61).
The expansions of Eqs. (6.6a)–(6.12) at first order in

Lorentz violation agree with the upper 2 × 2 block of
Eq. (59) in [15] and the results for antiparticles agree with
the reinterpreted lower 2 × 2 block of the latter equation.

2. Effective operators

Certain operators in the fermion sector are related, e.g.,
m̂ and ĉμ [15]. For example, expanding the dispersion
relation of Eq. (6.3) for the temporal sector of ĉμ the
following result is obtained at first order in the single
nonzero Lorentz-violating coefficient:

~EðtempÞ
ψ ;ĉ0 ¼ Eψ − cð6Þ0000E3

ψ ¼ Eψ − ĉ0; ð6:13Þ

with the standard fermion energy Eψ. Compare this result to
the first-order expansion of the dispersion relation of
Eq. (3.2b),

~EðtempÞ
ψ ;m̂ ¼ Eψ þmψmð5Þ00Eψ ¼ Eψ þmψ

Eψ
m̂; ð6:14Þ

which is valid for the temporal sector of m̂. They have a
similar structure, i.e., the respective Lorentz-violating
operators may be related to each other. For this reason
an effective operator can be introduced that incorporates
both the m̂ and ĉμ operator. Since ĉμ transforms as a
Lorentz vector and m̂ as a Lorentz scalar, the following
Ansatz is proposed for the effective operator:

ĉμeff ¼ αĉμ þ βpμm̂; ð6:15Þ

where the four-momentum pμ is used to provide m̂ a vector
structure. Now the parameters α and β ∈ R have to be
determined. By contracting the Ansatz above with −pμ=Eψ

and setting ĉi ¼ 0 (for i ¼ 1…3) we try to reproduce the
first-order terms in the dispersion laws:

−
1

Eψ
pμĉ

μ
eff ¼ −αĉ0 − β

m2
ψ

Eψ
m̂: ð6:16Þ
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Comparing this with Eqs. (6.13) and (6.14), respectively,
delivers α ¼ 1 and β ¼ −1=mψ . Hence the effective oper-
ator would be given by

ĉμeff ¼ ĉμ −
1

mψ
pμm̂: ð6:17Þ

This is in accordance with the second equation of Eqs. (26)
in [15]. Now let us look at the zeroth component:

ĉ0eff ≡ ĉ0 −
Eψ

mψ
m̂;

cð6Þ0000eff ¼ cð6Þ0000 −
1

mψ
mð5Þ00: ð6:18Þ

The latter result coincides with the second equation of
Eqs. (27) in [15] for d ¼ 6. The next step is to compare the
expansions of the dispersion relations for the spatial sector
of Eqs. (3.4b) and (6.12):

~EðspatÞ
ψ ;m̂ ¼ Eψ þmψ

Eψ
mð5Þklpkpl ¼ Eψ þmψ

Eψ
m̂; ð6:19aÞ

~EðspatÞ
ψ ;ĉi ¼ Eψ −

1

Eψ
cð6Þijklpipjpkpl ¼ Eψ þ 1

Eψ
ĉipi:

ð6:19bÞ

Repeating the procedure above, i.e., contracting the Ansatz
for the effective operator with −pμ=Eψ and setting ĉ0 ¼ 0,
results in

−
1

Eψ
pμĉ

μ
eff ¼

1

Eψ
αpiĉi − β

m2
ψ

Eψ
m̂; ð6:20Þ

from which α ¼ 1 and β ¼ −1=mψ follows when it is
compared to Eqs. (6.19a) and (6.19b). Hence the Ansatz is
consistent for both sectors. Considering the ith component
of ĉμeff and multiplying it with pi leads to

ĉieffp
i ≡ ĉipi −

1

mψ
δijpipjm̂;

cð6Þijkleff ¼ cð6Þijkl þ 1

mψ
δijmð5Þkl; ð6:21Þ

which is again in accordance with the second equation
of Eqs. (27) in [15] for d ¼ 6. Similar deliberations can
be done for the other coefficients. This provides a good
cross-check for the results obtained.

3. Modified spinors and sums over spinor matrices

On the one hand, according to [15] the positive-energy
spinors can be written as follows:

uðαÞð ~Eð>Þ
ψ ;pÞ¼ 1ffiffiffiffiffiffiffiffiffi

NðαÞ
u

q U†ð ~Eð>Þ
ψ þ ĉ0;mψ ;pþ ĉÞuðαÞðmψ ;0Þ;

ĉμ¼ ĉμð ~Eð>Þ
ψ ;pÞ; ð6:22Þ

where the uðαÞðmψ ; 0Þ are given in Eq. (4.5b). These spinors
are a solution of the modified Dirac equation ðpþ ĉ −
mψ14ÞuðαÞðpÞ ¼ 0 with ðpμÞ ¼ ð ~Eð>Þ

ψ ;pÞT . The modified
Dirac equation and the spinor solution show that ĉμ is
tightly connected to the particle four-momentum. On the
other hand, the negative-energy spinors are given by

vðαÞð ~Eð>Þ
ψ ;pÞ¼ 1ffiffiffiffiffiffiffiffiffi

NðαÞ
v

q U†ð ~Eð>Þ
ψ þ ĉ0;mψ ;−p− ĉÞvðαÞðmψ ;0Þ;

ð6:23aÞ

ĉμ ¼ ĉμð− ~Eð>Þ
ψ ;−pÞ ¼ −ĉμð ~Eð>Þ

ψ ;pÞ; ð6:23bÞ

with the vðαÞðmψ ; 0Þ of Eq. (4.8b). The property (6.23b) of
the ĉμ operator is valid since it contains a combination
of three four-momenta. These spinors obey the modified
Dirac equation ðpþ ĉ −mψ14ÞvðαÞðpÞ ¼ 0 with ðpμÞ ¼
ð− ~Eð>Þ

ψ ;−pÞT . The normalizations NðαÞ
u and NðαÞ

v of the
positive- and negative-energy spinors are chosen such that

ūðαÞðpÞuðβÞðpÞ¼ 2mψδ
αβ; v̄ðαÞðpÞvðβÞðpÞ¼−2mψδ

αβ:

ð6:24Þ
The sums over the positive- and negative-energy spinor
matrices are given byX

α¼1;2

uðαÞðpÞūðαÞðpÞ ¼ pþ ĉþmψ14; ð6:25aÞ

X
α¼1;2

vðαÞðpÞv̄ðαÞðpÞ ¼ pþ ĉ −mψ14; ð6:25bÞ

where ðpμÞ ¼ ð ~Eð>Þ
ψ ;pÞT on the right-hand sides of the

latter two equations. All these relations can be shown
analogously to the relations for the operator m̂,
cf. Appendix A 1, A 2, which again indicates that m̂
and ĉμ are related. With the propagator

SðpÞ ¼ i
ðpþ ĉÞ2 −m2

ψ
ðpþ ĉþmψ14Þ; ð6:26Þ

the proof of the optical theorem for the process considered
in the last section can be done completely analogously.
Note that in the forward scattering amplitude for the
positron given by Eq. (5.6) the sign of the four-momentum
vector has to be reversed where, as a result of this, the sign
of ĉμ changes as well. This leads to the second relation of
Eq. (6.25). Furthermore for the check of the optical theorem
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for sets of component coefficients with spurious dispersion
relations their replacements, which are valid at first-order
Lorentz violation, have to be used [e.g., Eqs. (6.6a)–(6.6c)
for the temporal sector and Eqs. (6.11a), (6.11b) for the
mixed sector of the operator ĉμ].

4. Analysis of unitarity

The vector operator ĉμ also involves sectors with addi-
tional time derivatives, which may be expected to cause
issues with unitarity. Therefore the property of reflection
positivity shall be studied for a particular subset of
coefficients such as it was done for the temporal and
mixed sector of m̂ in Sec. VA. We will do this for the case
of the single component coefficient cð6Þ0000 and all others
set to zero. TheWick-rotated scalar part of the propagator is
given by

SEðp4;pÞ ¼ 1

ðp4Þ2½1 − ðp4Þ2cð6Þ0000�2 þ p2 þm2
ψ

: ð6:27Þ

Now the first step to show reflection positivity is to
compute the integral

SEðx4;pÞ¼
Z

∞

−∞
dp4expð−ip4x4ÞSEðp4;pÞ

¼2

Z
∞

0

dp4
cosðp4x4Þ

ðp4Þ2½1−ðp4Þ2cð6Þ0000�2þp2þm2
ψ

:

ð6:28Þ
The denominator of the integrand involves a polynomial of
sixth degree in p4, which makes the computation of the
integral quite involved. However it is possible to perform
some general and also numerical analyses.
For small p4, which means that ðp4Þ2cð6Þ0000 ≪ 1, the

denominator resembles the standard case ðp4Þ2 þ p2 þm2
ψ ,

whereby the integrand is only slightly modified. However

there are regions of p4 where the structure of the denom-
inator is highly modified compared to the standard case.
There always exists a particular intermediate ðp4Þint for
which 1 − ðp4Þ2cð6Þ0000 vanishes. In the neighborhood of
ðp4Þint the integrand strongly differs from the standard
result. Last but not least, for very large p4, i.e.,
ðp4Þ2cð6Þ0000 ≫ 1, the quartic term in p4 is dominant,
which heavily suppresses the integrand in comparison to
the standard one.
Due to the region around ðp4Þint it is not clear whether

reflection positivity can still be granted even for a small
Lorentz-violating coefficient. Since the Euclidean propa-
gator is isotropic, spherical coordinates can be introduced
with p≡ jpj. This leads to the following integral:

SEðx4;xÞ ¼ 8π

Z
∞

0

dpp2

Z
∞

0

dp4

×
cosðp4x4Þ

ðp4Þ2½1 − ðp4Þ2cð6Þ0000�2 þ p2 þm2
ψ

:

ð6:29Þ

In Fig. 2(a) the integrand of SEðx4;xÞ is plotted for a
vanishing Lorentz-violating component coefficient and in
Fig. 2(b) for a nonzero value much smaller than 1. This was
done to illustrate that there exist regions for which the
integrand is strongly modified compared to the standard
case even for a small Lorentz-violating coefficient. The
modification in Fig. 2(b) is not simply proportional to
cð6Þ0000, but it may exceed the value of the coefficient by
several orders of magnitude.
A numerical integration of Eq. (6.29) is complicated as

well because of the highly oscillatory integrand for large
p4. Cutting off the integration over p at Λ ¼ 102 seems to
help where it was checked that the result does not change
significantly by using a larger cutoff. For special values of

(a) (b)

FIG. 2 (color online). Plots of the integrand of Eq. (6.29) as a function of p4 and p with the choicesmψ ¼ 1, x4 ¼ 1 for distinct values
of the Lorentz-violating component coefficient; (a) for cð6Þ0000 ¼ 0 and (b) for cð6Þ0000 ¼ 10−5.
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x4, mψ , and the Lorentz-violating coefficient we obtain the
numerical results shown in Table I.
Hence there exist particular choices of the Lorentz-

violating coefficient, for which reflection positivity is
violated. This also indicates a possible violation of
unitarity and it is an interesting result, which must be
substantiated in future research. Note that such a behavior
does not occur for the scalar operator m̂. In fact, for the
latter sector p4 can be chosen such that the mass term
in the denominator of the propagator vanishes;
cf. Eq. (5.13a). However this does not drastically modify
the p4 dependence. Only for very large p4, i.e.,
ðp4Þ2mð5Þ00 ≫ 1, the integrand is also suppressed com-
pared to the standard case. But this does not seem to
violate reflection positivity as was shown in Sec. VA.

B. CPT-odd pseudoscalar operator

Only for the Lorentz-violating operators previously
considered, the diagonalization of the Dirac operator
p −mψ14 þ Q̂ can be performed with the matrix U given
by Eq. (4.4). For all remaining cases diagonalization is
more involved and an analogue of U valid at all orders in
Lorentz violation is not at hand so far. However it was
shown that in these cases the Dirac operator can be block-
diagonalized at least at first-order Lorentz violation by the
following matrix [15]:

Uð1Þ ¼
�
14 þ

1

4Eψ
½γ5; R�

�
VW;

R ¼ VWγ0Q̂W†V†;

W ¼ WðEψ ; mψ ;pÞ; ð6:30Þ

with V and W of Eq. (4.3). Here the index of U indicates
that this result is valid at first order in Lorentz violation.
Note that the expression involves the standard fermion
dispersion relation Eψ (except of in Q̂).
As a next example the CPT-odd observer pseudoscalar

operator f̂ ≡ f̂α1pα1 will be considered. It can be written
as a series of composite operators with even operator
dimension:

f̂ ≡ f̂α1pα1 ¼
X∞
d even
d≥4

f̂ðdÞ;

f̂ðdÞ ≡ fðdÞα1…αðd−3Þpα1…pαðd−3Þ ;

Q̂ ¼ if̂γ5: ð6:31Þ

First of all, f̂ does not have a free Lorentz index, which
makes it transform as a scalar under proper observer Lorentz
transformations. Due to the γ5 matrix, a parity transforma-
tion gives an additional sign, which is why this operator is
denoted as an observer “pseudoscalar.” The minimal exten-
sion comprises the dimension-4 operator with f̂ð4Þ ¼
fð4Þα1pα1 where the corresponding coefficients fð4Þα1 are
contracted with the four-momentum. In this particular
section the composite operator f̂ð6Þ ¼ fð6Þα1α2α3pα1pα2pα3
will be considered, which is associated to the dimension-6
field operator ψ̄∂α1∂α2∂α3ψ. The 20 component coefficients
fð6Þα1α2α3 have mass dimension −2. We again split this set of
component coefficients into a temporal, mixed, and a spatial
sector. The temporal sector consists of the single coefficient
fð6Þα100, the mixed sector is made up of fð6Þα10i, fð6Þα1i0 with
the spatial index i and the spatial sector comprises fð6Þα1ij
with i, j ¼ 1…3.
Note that care has to be taken when talking about the

CPT handedness of the operator f̂. The corresponding
operator in the Lagrange density is CPT odd, but this
property may be fictitious. That will be elaborated on in
Sec. VI B 2. Nevertheless referring to Table I of [15], the
operator f̂ will be calledCPT odd within the current article.

1. Modified dispersion relations

The modified positive-energy dispersion laws ~Eð>Þ
ψ

follow from the condition detðp −mψ14 þ Q̂Þ ¼ 0 with

Q̂ ¼ if̂γ5. An alternative is to use Eq. (39) of [15] with
Ŝ� ¼ −mψ � if̂, V̂μ

� ¼ pμ, and T̂ μν
� ¼ 0. For the temporal

sector with the single nonvanishing coefficient fð6Þ000 there
are two distinct positive energies. The first reads

~Eðtemp;1Þ
ψ ;1 ¼ 1

31=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

jf̂1j
sin

�
u
3
þ π

6

�s
; ð6:32aÞ

u ¼ − arctan

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 − 81ðp2 þm2

ψÞ2ðf̂1Þ2
q

9ðp2 þm2
ψÞjf̂1j

1
CA; ð6:32bÞ

f̂1 ¼ fð6Þ000; ð6:32cÞ

and the second is given by

TABLE I. The current table presents numerical results for
Eq. (6.29) for the special values x4 ¼ 1 and mψ ¼ 1. The
particular Lorentz-violating coefficient chosen is shown in the
first column where the second column gives the integration result.

cð6Þ0000 SEðx4;x)
10−6 96.9042
10−5 −40.0508
10−4 139.043
10−3 148.369
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~Eðtemp;1Þ
ψ ;2 ¼ 1

61=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 · 31=3

v1=3
þ ð2vÞ1=3

ðf̂1Þ2

s
; ð6:33aÞ

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81ðp2 þm2

ψÞ2ðf̂1Þ8 − 12ðf̂1Þ6
q

− 9ðp2 þm2
ψ Þðf̂1Þ4:
ð6:33bÞ

These involve trigonometric functions and fractional
powers other than square roots, which are rather unusual
functions to appear in the context of modified dispersion
laws. The reason for their occurrence is that the modified
determinant condition is a polynomial of sixth degree in
p0.5 The first dispersion law is perturbed and the second is
spurious, which becomes evident from the following
expansions in the Lorentz-violating coefficient:

~Eðtemp;1Þ
ψ ;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

ψ

q �
1þ1

2
ðf̂1Þ2ðp2þm2

ψÞ2
�
þO½ðf̂1Þ4�;

ð6:34aÞ

~Eðtemp;1Þ
ψ ;2 ¼ 1ffiffiffiffiffi

f̂1

q −
1

4

ffiffiffiffiffi
f̂1

q
ðp2 þm2

ψÞ þO½ðf̂1Þ3=2�:
ð6:34bÞ

Considering the temporal sector with the three coefficients
fð6Þi00 for i ¼ 1…3 and all remaining ones set to zero the
positive-energy dispersion laws are

~Eðtemp;2Þ
ψ ;1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðf̂2Þ2ðp2 þm2

ψÞ
qr

ffiffiffi
2

p jf̂2j
; ð6:35aÞ

f̂2 ¼ fð6Þi00pi: ð6:35bÞ

Here the first is perturbed and the second spurious. The
double square root structure appears again since the
determinant condition is a polynomial of fourth degree
in p0. The spurious dispersion laws of Eqs. (6.33), (6.35)
can be removed at first-order Lorentz violation by the
replacement fð6Þμ00p2

0↦fð6Þμ00ðp2 þm2
ψÞ in the determi-

nant condition. This leads to

~Eðtemp;1Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

1 − ðp2 þm2
ψÞ2ðf̂1Þ2

s
; ð6:36aÞ

~Eðtemp;2Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

ψ Þ½1þ ðp2 þm2
ψÞðf̂2Þ2�

q
: ð6:36bÞ

For the mixed sector first of all, the coefficients are
considered with the first Lorentz index equal to zero.
The positive-energy dispersion laws read

~Eðmixed;1Þ
ψ ;1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ðf̂3Þ2ðp2 þm2

ψ Þ
qr

ffiffiffi
2

p jf̂3j
; ð6:37aÞ

f̂3 ¼ ðfð6Þ0i0 þ fð6Þ00iÞpi: ð6:37bÞ

Here the first is perturbed and the second is spurious.
Equations (6.35) and (6.37) can, in principle, be merged
into a single dispersion relation dependent on the combi-
nation of the two sets of coefficients. To remove the
spurious dispersion law in Eq. (6.37) the replacements

ffð6Þ0i0; fð6Þ00igp0↦ffð6Þ0i0; fð6Þ00ig
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

q
in the

determinant condition have to be performed, which leads to

~Eðmixed;1Þ
ψ 0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

1 − ðp2 þm2
ψÞðf̂3Þ2

s
: ð6:38Þ

Note the similarities between Eqs. (6.36a) and (6.38).
Second, only the coefficients where the first Lorentz

index has a spatial value are taken into account. For this
particular set one then obtains

~Eðmixed;2Þ
ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

ψ

1 − ðf̂4Þ2

s
; ð6:39aÞ

f̂4 ¼ ðfð6Þij0 þ fð6Þi0jÞpipj: ð6:39bÞ

Finally, for the spatial sector it follows that

~EðspatialÞ
ψ

¼
−f̂5f̂6 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p2 þm2

ψ þ ðf̂6Þ2�½1 − ðf̂5Þ2� þ ðf̂5f̂6Þ2
q

1 − ðf̂5Þ2
;

ð6:40aÞ

f̂5 ¼ fð6Þ0ijpipj; f̂6 ¼ fð6Þijkpipjpk: ð6:40bÞ

For at least some coefficients of the spatial and the
mixed sector there are only perturbed but no spurious
dispersion laws. The negative-energy solutions are related

to the positive-energy solutions by ~Eð>Þ
ψ ðp; fð6Þα1α2α3Þ ¼

− ~Eð<Þ
ψ ð−p;−fð6Þα1α2α3Þ. Note that contrary to the cases with

the m̂ and the ĉμ operators, the fð6Þα1α2α3 come with a minus
sign on the right-hand side of the latter relation. This
indicates their CPT-odd nature and the same behavior is
observed for the minimal, CPT-odd SME coefficients in

the fermion sector [26]. So if p0 ¼ ~Eð<Þ
ψ ðp; fð6Þα1α2α3Þ is

5Dispersion relations involving trigonometric functions and
fractional powers different from mere square roots also appear in
the mixed sector of the dimension-6 coefficients κμνtr− in the
nonminimal SME photon sector [24].

M. SCHRECK PHYSICAL REVIEW D 90, 085025 (2014)

085025-16



reinterpreted with the transformation pμ↦ − pμ, the anti-

particle energies will be p0 ¼ ~Eð>Þ
ψ ðp;−fð6Þα1α2α3Þ. The

latter differ from the corresponding particle energies
~Eð>Þ
ψ ðp; fð6Þα1α2α3Þ due to the minus sign associated with

the fð6Þα1α2α3 . This is expected for a theory violating CPT.
Furthermore, in contrast to the cases of the operators m̂

and ĉ the Lorentz-violating operator f̂ only appears at
quadratic and higher (even) orders in the dispersion
relations. In [15] it was stated that the corresponding
component coefficients can be removed from the physical
observables by a field redefinition at first order in Lorentz
violation, which reflects the results obtained here.
Nevertheless it is reasonable to investigate the properties
of this operator, because it comprises the simplest set of
higher-dimensional CPT-odd component coefficients. An
alternative would be the scalar operator ê in Table I of [15].
However its properties are expected to be similar to the
properties of m̂, which were already considered.

2. Possible connection to the operator ĉμ

In [39] it was shown that all Lorentz-violating modifi-
cations in observables depending on the minimal coeffi-
cients fð4Þα1 cannot be distinguished from those of the
minimal cð4Þμα1 coefficients. By a spinor transformation the
following exact correspondence was proven to be valid:

cð4Þα1μ ¼ fð4Þα1fð4Þμ

ðfð4ÞÞ2 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðfð4ÞÞ2

q
− 1Þ; ð6:41aÞ

with the leading-order result

cð4Þα1μ ¼ −
1

2
fð4Þα1fð4Þμ þ � � � : ð6:41bÞ

Whether or not such an analogous equation is valid for the
nonminimal ĉð6Þμ and f̂ð6Þ could be investigated by looking
at the fermion energies for corresponding sets of coef-
ficients of both operators. For example, the leading-order
expansions of Eqs. (6.3), (6.32) are

~Eψ ;ĉμ ¼ Eψ − cð6Þ0000E3
ψ ; ~Eψ ;f̂ ¼ Eψ þ 1

2
ðfð6Þ000Þ2E5

ψ ;

ð6:42Þ

where similar expansions of Eqs. (6.5), (6.35) result in

~Eψ ;ĉμ ¼ Eψ − cð6Þij00pipjEψ ;

~Eψ ;f̂ ¼ Eψ þ 1

2
ðfð6Þi00piÞðfð6Þj00pjÞE3

ψ : ð6:43Þ

Finally, the leading-order expansions of Eqs. (6.12), (6.40)
read as follows:

~Eψ ;ĉμ ¼ Eψ −
cð6Þijklpipjpkpl

Eψ
;

~Eψ ;f̂ ¼ Eψ þ ðfð6ÞijkpipjpkÞðfð6ÞlmnplpmpnÞ
2Eψ

: ð6:44Þ

However, by comparing ~Eψ ;ĉμ and ~Eψ ;f̂ it becomes evident
that the energies for each set of coefficients differ from each
other by their energy-momentum dependence. For exam-
ple, in Eq. (6.42) the Lorentz-violating modification in
~Eψ ;ĉμ depends on the third power of the fermion energy,

whereas in ~Eψ ;f̂ it depends on the fifth power. Hence a
relation analogous to Eqs. (6.41a), (6.41b) cannot hold for
the nonminimal operators ĉð6Þμ and f̂ð6Þ. There may be the
possibility of finding a connection between these operators
by a field redefinition according to the lines of [15], which
is not within the scope of the current article, though.
One consequence of such a correspondence (if it exists)

would be that the CPT-odd handedness of the operator f̂ is
fictitious. Instead, the latter operator would have to be CPT
even because otherwise it would not be possible to trans-
form it to the CPT-even operator ĉμ. This apparent contra-
diction would be resolved when taking into account that the
operator mediating the CPT transformation may be
changed in the presence of f̂ [cf. the remark in parentheses
above Eq. (23) in [39]].
There is a further interesting fact on the minimal

coefficients fð4Þα1 in the context of classical Lagrangians.
In [40] the Lagrangians of a classical pointlike particle
obeying the Lorentz-violating kinematics were obtained
for certain minimal coefficients. If all coefficients vanish
except of the fð4Þα1 , the Lagrangian of their Eq. (8) only
depends on a quadratic combination of these coefficients.
This is in accordance to the structure of the dispersion
relations obtained in the previous section where only
quadratic powers of the nonminimal coefficients
fð6Þα1α2α3 appear.

3. Modified spinors and sums over spinor matrices

For the particular case of the pseudoscalar operator f̂ the
Dirac equation cannot only be block-diagonalized with the
matrix Uð1Þ of Eq. (6.30) but it can be diagonalized
completely. Because of this the positive-energy spinors
at first-order Lorentz violation can be obtained with the
Hermitian conjugate of the matrix Uð1Þ. They are given by

uðαÞð ~Eð>Þ
ψ ;pÞ ¼ 1ffiffiffiffiffiffiffiffiffi

NðαÞ
u

q Uð1Þ†ðEð>Þ
ψ ; mψ ;pÞuðαÞðmψ ; 0Þ;

ð6:45aÞ
Q̂¼ Q̂ð ~Eð>Þ

ψ ;pÞ; ðpμÞ¼ ð ~Eð>Þ
ψ ;pÞT: ð6:45bÞ

The negative-energy spinors read
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vðαÞð ~Eð>Þ
ψ ;pÞ ¼ 1ffiffiffiffiffiffiffiffiffi

NðαÞ
v

q Uð1Þ†ðEð>Þ
ψ ; mψ ;−pÞvðαÞðmψ ; 0Þ;

ð6:46aÞ

Q̂ ¼ Q̂ð− ~Eð>Þ
ψ ;−pÞ ¼ −Q̂ð ~Eð>Þ

ψ ;pÞ;
ðpμÞ ¼ ð− ~Eð>Þ

ψ ;−pÞT: ð6:46bÞ

The spinor normalizations NðαÞ
u and NðαÞ

v are chosen
analogously to Eq. (6.24). The explicit expressions for
the spinors are obtained in Sec. A 3. In the latter section the
following sums over the positive- and negative-energy
spinor matrices are deduced as well:

X
α¼1;2

uðαÞðpÞūðαÞðpÞ ¼ pþmψ14 þ Q̂þOðf̂2Þ; ð6:47aÞ

X
α¼1;2

vðαÞðpÞv̄ðαÞðpÞ ¼ p −mψ14 − Q̂þOðf̂2Þ; ð6:47bÞ

where ðpμÞ ¼ ð ~Eð>Þ
ψ ;pÞT on the right-hand sides of the

latter relations. For the negative-energy spinors both mψ14
and Q̂ come with a minus sign, which is crucial for the
validity of the optical theorem. The propagator is derived as
usual by inverting the Dirac operator in momentum space,
S−1ðpÞ ¼ p −mψ14 þ Q̂, and expressing the result via the
Dirac matrices needed. For the case considered the Ansatz

SðpÞ ¼ a1γ0 þ a2γ1 þ a3γ2 þ a4γ3 þ a514 þ a6γ5

ð6:48Þ

is sufficient because these are the Dirac matrices that appear
in the Dirac operator. Solving the resulting linear system
of equations with respect to the variables ai leads to the
modified propagator:

SðpÞ ¼ i

p2 − ðm2
ψ þ f̂2Þ ðpþmψ14 þ Q̂Þ

¼ i
p2 −m2

ψ
ðpþmψ14 þ Q̂Þ þOðf̂2Þ: ð6:49Þ

With the latter result and the sums over the spinor matrices
of Eq. (6.47) the validity of the optical theorem at tree level
can be demonstrated for both electrons and positrons. The
proof works such as for the case of the operator m̂,
cf. Sec. V. Note that the proof can only be done at first-
order Lorentz violation with the expressions given. The
spurious fermion dispersion relations, which may spoil the
validity of the optical theorem for the temporal and mixed
sector of the coefficients considered, are removed at first
order in Lorentz violation according to Sec. VI B 1. For the
replacements of Eqs. (6.36a), (6.36b), and (6.38) the proof
works similarly.
The expansion of the propagator in f̂2 after the second

equality sign in Eq. (6.49) was performed to demonstrate
the validity of the optical theorem at leading order in the
component coefficients. However when computing ampli-
tudes of particle physics processes the full propagator
should be taken into account. The reason is that the
neglected contribution in the denominator is important
when the propagator is close to being on shell.

4. Analysis of unitarity

Finally reflection positivity and unitarity shall be inves-
tigated for the operator f̂. This will be done according to
the lines of Secs. VA and VI A 4. The considerations are
restricted to the single component coefficient fð6Þ000 where
the remaining Lorentz-violating coefficients are set to
zero. First of all the Wick-rotated scalar propagator part
is given by

(a) (b)

FIG. 3 (color online). Plots of the integrand of Eq. (6.51) as a function of p4 and p with the choicesmψ ¼ 1, x4 ¼ 1 for distinct values
of the Lorentz-violating component coefficient: (a) for fð6Þ000 ¼ 0 and (b) for fð6Þ000 ¼ 10−5.
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SEðp4;pÞ ¼ 1

ðp4Þ2½1 − ðp4Þ4ðfð6Þ000Þ2� þ p2 þm2
ψ

:

ð6:50Þ

Now what has to be computed is

SEðx4;xÞ ¼ 8π

Z
∞

0

dpp2

Z
∞

0

dp4

×
cosðp4x4Þ

ðp4Þ2½1 − ðp4Þ4ðfð6Þ000Þ2� þ p2 þm2
ψ

;

ð6:51Þ

just as in Eq. (6.29) where spherical coordinates with
p≡ jpj are used. Again the denominator of the Euclidean
propagator involves a polynomial of degree six in p4,
which makes it complicated to compute the integral
analytically. Besides there appears a new issue that did
not occur for the particular component coefficients of the
operators m̂ and ĉμ considered. The form of the denom-
inator reveals that it can vanish for certain p4, amongst
them a positive value. Therefore for fixed p the integrand
has a pole for p4 ∈ ½0;∞Þ. Such a pole appears for an
arbitrarily small fð6Þ000; it then resides at arbitrarily large
p4. Figures 3(a) and 3(b) serve the purpose of illustrating
this behavior. In Fig. 3(b) the poles are clearly visible as
regions where the integrand diverges.
The question of how to handle this pole remains an

interesting open issue for future research. Since a standard
Euclidean propagator does not have any poles, the infini-
tesimal imaginary part used for Feynman’s iϵ prescription
is usually omitted in the Euclidean propagator. Reinstating
this infinitesimal imaginary part might lead to the definition
of suitable integration contours with which the poles can be
avoided.
An alternative possibility for fixed kwould be to perform

an integration in light of Cauchy’s principal value.
According to this procedure a symmetric interval around
the pole is cut out and after that the integration is
performed. This method was applied numerically for
particular values of x4, mψ , fð6Þ000, and p. The numerical
results for the integration over p4 were always positive.
However since it is not clear whether this procedure is
justifiable in this case, the numbers will not be stated.
Furthermore the technique would have to be extended to
the full two-dimensional integration domain.
In [39] it was stated that unitarity breaks down for the

minimal coefficients, if fð4Þμfð4Þμ > 1. In case the pole of the
integrand in Eq. (6.51) cannot be avoided, the behavior of
the integrand may, indeed, be the nonminimal analogue of a
violation of unitarity for the operator f̂.

VII. CONCLUSION AND OUTLOOK

To summarize, in the current article certain properties of
quantum field theories that are based on the nonminimal
spin-1/2 fermion sector of the Lorentz-violating Standard
Model extension were examined. For two CPT-even and
one CPT-odd operator (denoted as m̂, ĉμ, and f̂) the
modified fermion dispersion relations, the spinors,
the sums over the matrices formed from the spinors,
and the fermion propagator were obtained. For some
subsets of component coefficients spurious dispersion
laws emerge that are not a perturbation of the standard
dispersion relation. It was demonstrated that these can be
removed at first order in Lorentz violation. Furthermore
the validity of the optical theorem at tree level for both
fermions and antifermions was proven. For the CPT-even
operators the proof is exact in the Lorentz-violating
coefficients, whereas for the CPT-odd case it was per-
formed at first order in Lorentz violation.
For some particular component coefficients unitarity of

the modified quantum field theory was checked with the
property of reflection positivity. The result is that unitarity
can be granted for the CPT-even operator m̂ considered.
For special component coefficients of the operator ĉμ issues
with unitarity arise. For the CPT-odd operator f̂ it is not
even clear how to apply the method of checking reflection
positivity due to further problems. Substantiating these
results and working out a solution to the problems is
beyond the scope of the paper and it remains an important
task for future studies.
To conclude, in the framework of the analysis performed

no issues were found for the operator m̂. Hence the latter
seems to result in a well-behaved quantum field theory.
However this cannot be said about at least some of the
component coefficients of ĉμ and f̂. The spinors, sums of
the spinor matrices, and propagators determined for non-
zero m̂ can be used in upcoming particle physics calcu-
lations related to phenomenology. In contrast, the operators
ĉμ and f̂ should be considered with care due to the issues
arising in the context of unitarity. A further future goal is to
apply the methods demonstrated to investigate further
operators that were not considered in this paper. The
fermion sector of the nonminimal SME especially, is still
a terra incognita for both experiment [41] and theory.
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APPENDIX A: EXPLICIT SPINORS AND
SUMS OF SPINOR MATRICES

In the following sections the explicit expressions for the
modified Dirac spinors shall be obtained for the various
sectors considered. It is convenient to perform the calcu-
lations with the matrices and spinors in 2 × 2 block form
at first.

1. CPT-even scalar operator m̂

The explicit positive-energy spinors can be obtained
directly from Eq. (4.5) by using the Hermitian conjugate of
the transformation matrix U given in Eq. (4.3). The latter
reads

U† ¼
�

n · σþ n012 n · σ − n012
−n · σþ n012 n · σþ n012

�
; ðA1aÞ

where σ ¼ ðσ1; σ2; σ3Þ with the Pauli matrices σ1, σ2, and
σ3 of Eq. (4.2b). For convenience the four-vector ðnμÞ ¼
ðn0;nÞ is introduced with the following components:

n≡
0
B@

α

β

γ

1
CA ¼ −

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Eψð ~Eψ þ ~mψ Þ

q ;

n0 ≡ δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Eψð ~Eψ þ ~mψ Þ

q
2 ~Eψ

: ðA1bÞ

With these quantities the positive-energy spinors can be
cast in the form

uð1ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð1Þ

u

q U†ð ~Eð>Þ
ψ ; ~mψ ;pÞ

�
ϕð1Þ

0

�

¼ 1ffiffiffiffiffiffiffiffiffi
Nð1Þ

u

q
0
BBB@

γ þ δ

αþ iβ

−γ þ δ

−α − iβ

1
CCCA; ðA2aÞ

uð2ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð2Þ

u

q U†ð ~Eð>Þ
ψ ; ~mψ ;pÞ

�
ϕð2Þ

0

�

¼ 1ffiffiffiffiffiffiffiffiffi
Nð2Þ

u

q
0
BBB@

α − iβ

−γ þ δ

−αþ iβ

γ þ δ

1
CCCA; ðA2bÞ

Nð1Þ
u ¼ Nð2Þ

u ¼ 1

~mψ
n2: ðA2cÞ

Now the sum over the positive-energy spinor matrices
results in

X
α¼1;2

uðαÞðpÞūðαÞðpÞ ¼ ~mψ

n2

0
BBB@

M0 0 Mþ −M�

0 M0 −M M−

M− M� M0 0

M Mþ 0 M0

1
CCCA;

ðA3aÞ

M0 ¼ n2; ðA3bÞ

Mþ ¼ α2 þ β2 þ ðγ þ δÞ2; M− ¼ α2 þ β2 þ ðγ − δÞ2;
ðA3cÞ

M ¼ −2ðαþ iβÞδ; M� ¼ −2ðα − iβÞδ: ðA3dÞ

From the determinant condition it follows that
~E2
ψ − ~m2

ψ ¼ p2, which can be used to obtain the
positive-energy relation of Eq. (4.7).
The negative-energy spinors follow from Eq. (4.8) and

they are given by

vð1ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð1Þ

v

q U†ð ~Eð>Þ
ψ ; ~mψ ;−pÞ

�
0

χð1Þ

�

¼ −
1ffiffiffiffiffiffiffiffiffi
Nð1Þ

v

q
0
BBB@

γ þ δ

αþ iβ

γ − δ

αþ iβ

1
CCCA; ðA4aÞ

vð2ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð2Þ

v

q U†ð ~Eð>Þ
ψ ; ~mψ ;−pÞ

�
0

χð2Þ

�

¼ −
1ffiffiffiffiffiffiffiffiffi
Nð2Þ

v

q
0
BBB@

α − iβ

−γ þ δ

α − iβ

−ðγ þ δÞ

1
CCCA; ðA4bÞ

Nð1Þ
v ¼ Nð2Þ

v ¼ 1

~mψ
n2: ðA4cÞ

The sum over the negative-energy spinor matrices is then

X
α¼1;2

vðαÞðpÞv̄ðαÞðpÞ ¼ ~mψ

n2

0
BBB@

M0 0 Mþ −M�

0 M0 −M M−

M− M� M0 0

M Mþ 0 M0

1
CCCA;

ðA5aÞ

M0 ¼ −n2; ðA5bÞ

whereMþ,M−,M, andM� are given by Eqs. (A3c), (A3d).
With Eq. (A1b) this leads to the result of Eq. (4.10).
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2. CPT-even vector operator ĉμ

For this operator the computations of the previous
section can be performed completely analogously with
the replacements ~mψ↦mψ plus pμ↦pμ þ ĉμ for both
the positive-energy and the negative-energy spinors
(but the momentum components in ĉμ itself remain
untouched, of course). With this knowledge the relations
of Eq. (6.25) can be computed. Here it is convenient to use
ð ~Eψ þ ĉ0Þ2 −m2

ψ ¼ ðpþ ĉÞ2, which is obtained from
Eq. (6.2).

3. CPT-odd pseudoscalar operator f̂

In this case the diagonalization matrix U is computed at
first order in Lorentz violation. It results from Eq. (6.30)
and its Hermitian conjugate is explicitly given by

Uð1Þ† ¼
�

n · σþ n012 n · σ − n012
−n� · σþ ðn0Þ�12 n� · σþ ðn0Þ�12

�
ðA6aÞ

n≡
0
B@

α

β

γ

1
CA ¼ −

pC

8E5=2
ψ ðEψ þmψÞ3=2

;

n0 ≡ δ ¼ C�

8E2
ψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EψðEψ þmψÞ

p ; ðA6bÞ

C¼4E3
ψ þ2if̂ð6ÞEψmψ þ if̂ð6Þðp2þm2

ψÞþE2
ψ ð4mψ þ if̂ð6ÞÞ;

ðA6cÞ

f̂ð6Þ ¼ fð6Þα1α2α3pα1pα2pα3 : ðA6dÞ

Note that the latter formulas involve the standard fermion
energy Eψ instead of the modification ~Eψ . The positive-
energy spinors then read as

uð1ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð1Þ

u

q Uð1Þ†ðEð>Þ
ψ ; mψ ;pÞ

�
ϕð1Þ

0

�

¼ 1ffiffiffiffiffiffiffiffiffi
Nð1Þ

u

q
0
BBB@

γ þ δ

αþ iβ

−γ� þ δ�

−α� − iβ�

1
CCCA; ðA7aÞ

uð2ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð2Þ

u

q Uð1Þ†ðEð>Þ
ψ ; mψ ;pÞ

�
ϕð2Þ

0

�

¼ 1ffiffiffiffiffiffiffiffiffi
Nð2Þ

u

q
0
BBB@

α − iβ

−γ þ δ

−α� þ iβ�

γ� þ δ�

1
CCCA; ðA7bÞ

Nð1Þ
u ¼Nð2Þ

u ¼ 1

mψ
½ðRen0Þ2−ðImn0Þ2−ðRenÞ2þðImnÞ2�;

ðA7cÞ

and the sum over the positive-energy spinor matrices is
given by

X
α¼1;2

uðαÞðpÞūðαÞðpÞ ¼ 1

Nð1Þ
u

0
BBB@

M0 0 Mþ −M�

0 M0 −M M−

M− M� M�
0 0

M Mþ 0 M�
0

1
CCCA;

ðA8aÞ

M0 ¼ n2; M�
0 ¼ ðn�Þ2; ðA8bÞ

Mþ ¼ jαj2 þ jβj2 − 2Imðαβ�Þ þ jγj2 þ jδj2 þ 2Reðγδ�Þ;
ðA8cÞ

M− ¼ jαj2 þ jβj2 þ 2Imðαβ�Þ þ jγj2 þ jδj2 − 2Reðγδ�Þ;
ðA8dÞ

M ¼ ðα� þ iβ�Þðγ − δÞ − ðαþ iβÞðγ� þ δ�Þ; ðA8eÞ

M� ¼ ðα − iβÞðγ� − δ�Þ − ðα� − iβ�Þðγ þ δÞ: ðA8fÞ

With the composite operator of Eq. (A6b) one can
show that

X
α¼1;2

uðαÞðpÞūðαÞðpÞ ¼

0
BBBBB@

mψ − if̂ð6Þ 0 Eψ − p3 −ðp1 − ip2Þ
0 mψ − if̂ð6Þ −ðp1 þ ip2Þ Eψ þ p3

Eψ þ p3 p1 − ip2 mψ þ if̂ð6Þ 0

p1 þ ip2 Eψ − p3 0 mψ þ if̂ð6Þ

1
CCCCCAþO½ðf̂ð6ÞÞ2�

¼ pþmψ14 þ if̂ð6Þγ5 þO½ðf̂ð6ÞÞ2� ¼ pþmψ14 þ Q̂þO½ðf̂ð6ÞÞ2�: ðA9Þ
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Now the negative-energy spinors are

vð1ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð1Þ

v

q Uð1Þ†ðEð>Þ
ψ ; mψ ;−pÞ

�
0

χð1Þ

�
¼ −

1ffiffiffiffiffiffiffiffiffi
Nð1Þ

v

q
0
BBB@

γ þ δ

αþ iβ

γ� − δ�

α� þ iβ�

1
CCCA; ðA10aÞ

vð2ÞðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Nð2Þ

v

q Uð1Þ†ðEð>Þ
ψ ; mψ ;−pÞ

�
0
χð2Þ

�
¼ −

1ffiffiffiffiffiffiffiffiffi
Nð2Þ

v

q
0
BBB@

α − iβ
−γ þ δ
α� − iβ�

−ðγ� þ δ�Þ

1
CCCA; ðA10bÞ

Nð1Þ
v ¼ Nð2Þ

v ¼ 1

mψ
½ðRen0Þ2 − ðImn0Þ2 − ðRenÞ2 þ ðImnÞ2�; ðA10cÞ

and with the matrix elements of Eq. (A8b) and the results of Eq. (A6b) one obtains

X
α¼1;2

vðαÞðpÞv̄ðαÞðpÞ ¼ 1

Nð1Þ
v

0
BBB@

−M0 0 Mþ −M�

0 −M0 −M M−

M− M� −M�
0 0

M Mþ 0 −M�
0

1
CCCA

¼

0
BBBBB@

−mψ þ if̂ð6Þ 0 Eψ − p3 −ðp1 − ip2Þ
0 −mψ þ if̂ð6Þ −ðp1 þ ip2Þ Eψ þ p3

Eψ þ p3 p1 − ip2 −mψ − if̂ð6Þ 0

p1 þ ip2 Eψ − p3 0 −mψ − if̂ð6Þ

1
CCCCCAþO½ðf̂ð6ÞÞ2�

¼ p −mψ14 − if̂ð6Þγ5 þO½ðf̂ð6ÞÞ2� ¼ p −mψ14 − Q̂þO½ðf̂ð6ÞÞ2�: ðA11aÞ

This completes the derivation of the results given by Eq. (6.47).
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