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Within the framework of N = 1 gauged supergravity, using a phenomenological model that can be
obtained locally as a Swiss-cheese Calabi-Yau string-theoretic compactification with a mobile D3-brane
localized on a nearly special Lagrangian three cycle in the Calabi-Yau and fluxed stacks of wrapped
D7-branes, and which provides a natural realization of p-split supersymmetry (SUSY), we show that in
addition to getting a significant value of an [electron/neutron (e/n)] electron dipole moment (EDM) at two-
loop level, one can obtain a sizable contribution of (e/n) EDM even at one-loop level due to the presence of
heavy supersymmetric fermions nearly isospectral with heavy sfermions. Unlike traditional split SUSY
models in which the one-loop diagrams do not give significant contribution to the EDM of the electron/
neutron because of very heavy sfermions existing as propagators in the loop, we show that one obtains a
“healthy” value of the EDM in our model because of the presence of a heavy Higgsino, neutralino/
chargino, and gaugino as fermionic propagators in the loops. The independent CP-violating phases are
generated from nontrivial distinct phase factors associated with four Wilson line moduli [identified with
first-generation leptons and quarks and their SU(2), -singlet cousins] as well as the D3-brane position
moduli (identified with two Higgses), and the same are sufficient to produce overall distinct phase factors
corresponding to all possible effective Yukawas as well as effective gauge couplings that we discuss in the
context of V' = 1 gauged supergravity action. However, the complex phases responsible to generate a
nonzero EDM at one-loop level mainly appear from an off-diagonal contribution of sfermion as well as
Higgs mass matrices at the electroweak scale (EW). In our analysis, we obtain a dominant contribution of
the electron/neutron EDM around d,/e = O(107%) cm from two-loop diagrams involving heavy
sfermions and a light Higgs, and d,/e = O(1073?) cm from a one-loop diagram involving a heavy
chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of
the order d,,/e = O(107**) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify
the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W and the
Higgs (responsible to generate the nontrivial CP-violating phase) in the two-loop diagrams as discussed by
Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our
D3 /D7 pu-split SUSY model at the EW scale. By conjecturing that the CP-violating phase can appear from
the diagonalization of the Higgs mass matrix obtained in the context of y-split SUSY, we also get an EDM
of the electron/neutron around O(107?7) e cm in the case of the two-loop diagram involving W+ bosons.
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I. INTRODUCTION

For the past few decades, string-theoretic models have
been considered to provide an excellent framework for
possible unification of gravity with all other fundamental
forces. To study the phenomenological implications of
these models, the same must invoke a particular super-
symmetry (SUSY) breaking mechanism (along with the
SUSY breaking scale). The phenomenological models
mainly rely on the O(TeV) SUSY breaking scale because
this helps solve serious gauge-hierarchy problems, which,
in fact, have been considered as a primary motivation to
introduce SUSY. However, low-scale SUSY models give
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rise to many unwanted phenomenological problems, such
as flavor-changing neutral currents. Motivated by obtaining
an extremely small cosmological constant and the string
landscape scenario, an alternative to these assumptions was
proposed by Arkani-Hamed and Dimopoulos (dubbed as
“split SUSY”) in [1] according to which SUSY is broken at
an energy scale way beyond the collider search and could
be even near the scale of grand unification. The scenario is
emerging to be quite interesting from the point of view of
phenomenology because of the fact that heavy scalars
mostly appearing as virtual particles in most of the particle
decay studies help resolve many diverse issues of both
particle physics and cosmology. The u-split SUSY model
was proposed in [2] to alleviate the famous g problem by
further splitting the split SUSY by raising the y paramter to
a large value. Though the exact signatures may not be
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foreseeable in the near future via precise measurements to
be carried out at the Large Hadron Collider (LHC), indirect
methods can be made available to test some of the
signatures of this scenario. In this context, the electron
dipole moment (EDM) of the electron/neutron serves
as another testing ground for the split SUSY scenario.
Recently, the ACME Collaboration has reported a
new experimental upper limit of |d,| < 8.7 x 107% ecm
[3], which is an order-of-magnitude improvement in
sensitivity as compared to previous limits [4—7]. The
current experimental limit on the neutron EDM [8,9] is
|d,/e| <0.29 x 1075 cm.

In the Standard Model (SM), the CP-odd phases
generated through the Cabibo-Kobayashi-Masakawa
(CKM) matrix give a theoretical bound on the EDM
which is far below the experimental limits. However,
new CP-violating phases can appear in supersymmetric
theory models from complex soft SUSY breaking param-
eters. In addition to this, in string-inspired models, the
CP-violating phases are associated with complex Yukawa
couplings originating from string compactifications
[10-13]. These CP-violating phases associated with com-
plex soft SUSY breaking parameters as well as Yukawa
couplings appearing in different supersymmetric models
are typically large, i.e., O(1) and, hence, do not satisfy the
current experimental bounds on the electron and on the
neutron EDM. One, hence, has to put stringent constraints
on the supersymmetric and, in particular, supergravity
(SUGRA) models. More specifically, the limits can be
satisfied if one considers (i) unnaturally small CP-violating
phases of O(1072-107?), (ii) multi-TeV superpartners in
the model, or (iii) internal cancellations between different
supersymmetric contributions to the EDM at loop levels.
The constraints on the CP-violating phases in the super-
symmetric models have been discussed in [14—16], and the
systematic analysis of the EDM up to two loops in the
context of the minimal supersymmetric Standard Model
(MSSM) is provided in [17-20]. In minimal supergravity
(mSUGRA) models discussed in the literature [21-26], the
EDM’s bounds have been reconciled with the experimental
limits by showing sufficient cancellations among different
supersymmetric contributions without taking into account
O(>TeV) superpartners and any fine-tuning in phase
angles. The main difficulty in choosing multi-TeV scalars
as an appropriate mechanism to generate the EDM is
because the same abandons naturalness and also requires
severe fine-tuning while satisfying radiative electroweak
(EW) symmetry breaking. However, the nonobservation of
sparticles at the LHC may point toward some sort of fine-
tuned natural SUSY [27,28] or the high SUSY scale/split
SUSY models [29-31]. Therefore, it is interesting to probe
high-scale SUSY models, in particular, p-split SUSY
models, to explain the EDM within the reach of exper-
imental limits because the same also helps satisfy the
radiative EW symmetry breaking condition by choosing a
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natural value of y, hence, alleviating the x4 problem. The
region of parameter space satisfying the EDM value of the
order of experimental limits has been analyzed in [32] in
the presence of O(TeV) superpartners in the mSUGRA
model by considering moderate fine-tuning in tan j.

Our approach is quite different in that the SUGRA
models discussed in the literature, even in the framework of
string compactifications, do not rely on the high super-
symmetry breaking scale. On the other hand, the typical
split supersymmetry models used to study the EDM of the
electron/neutron include heavy sfermions but light gaugi-
nos and Higgsinos [33,34]. We analyze the EDM of the
electron and neutron in the supergravity limit of local large
volume D3/D7 type IIB compactifications, which pro-
vides, to our knowledge, the first realization of the p-split
SUSY scenario (with large gaugino masses). In typical split
SUSY models, all possible one-loop contributions to the
EDM are highly suppressed by the superheavy scalar
masses in the loop, and leading contributions to the
EDM start at the two-loop level due to the presence of
SM particles and EW charginos and neutralinos in the loops
(for the analysis of two-loop Barr-Zee diagrams in different
models, see [33-36] and references therein). However, in
our model, the gaugino and neutralino/chargino are almost
as heavy as neutral scalars except one light Higgs. Based on
that, one cannot ignore the contribution of one-loop dia-
grams because of the partial compensation of the suppres-
sion factors appearing from heavy sfermion masses, by
heavy fermions’ (neutralino, chargino, and gaugino) masses.

Therefore, in this paper, we perform a quantitative
analysis of the neutron and electron EDMs for all possible
one-loop as well as two-loop diagrams in the context of
large volume D3/D7 p-split supersymmetry. The nonzero
imaginary phases that appear through mixing between
L-hand (left-handed) and R-hand (right-handed) sfermions
(sfermions corresponding to the left- and right-handed
components of fermions) at the electroweak scale, play an
important role. In addition to discussing the one-loop
diagrams that exhibit nonzero phases through mixing
between sfermions, we also take into account the loop
diagrams in which a unique phase appears through mixing
between two Higgses at the electroweak scale. In the large
volume u-split SUSY model of [37,38], we have already
calculated the eigenvalues of the Higgs mass matrix at the
electroweak scale, which, with some fine-tuning, eventually
leads to one light Higgs and one heavy Higgs. In this paper,
we append the details of the complex phase associated with
off-diagonal components of the Higgs mass matrix, too.
Because of the presence of a light and a heavy Higgs in our
model, one can expect to get areasonable order of magnitude
of the EDM of the electron/neutron from one-loop diagrams
involving Higgs and other SM/supersymmetric particles.
The complete analysis has been carried out by including
other interesting one-loop diagrams which involve
sGoldstinos [identified locally with a “big” divisor (bulk)
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volume modulus in our setup] as scalar particles in the loop.
For two-loop diagrams, we mainly focus on the Barr-Zee
diagrams which involve a fermion, sfermions, and W+ as
part of an internal loop and are mediated through hy
exchange, except one R-parity violating diagram which
involves fermions in the internal loop and is mediated
through vy exchange. For the complete analysis, we also
calculate the contribution of rainbow-type two-loop dia-
grams involving R-parity violating as well as R-parity
conserving vertices. For all two-loop diagrams discussed
in this paper, the complex effective Yukawa couplings
[associated with the e2(DDW )7y term in the N = 1 gauged
supergravity action of [39]] are sufficient to produce non-
zero complex phases to generate a nonzero EDM.

The plan for the rest of the paper is as follows. In Sec. II,
we elaborate upon our large volume D3/D7 model dis-
cussed in [38]. We discuss the details of our phenomeno-
logical model in Sec. II A and show the same to be
realizable locally as the large volume limit of a type 1IB
Swiss-cheese Calabi-Yau orientifold involving a mobile
space-time filling D3-brane localized at a nearly special
Lagrangian three cycle embedded in the big divisor (hence,
the local nature of the model’s realization) and multiple
fluxed stacks of space-time filling D7-branes wrapping the
same big divisor in Sec. II B. After providing the geomet-
rical framework of the model in Sec. II B, we briefly
mention the phenomenological results that describe the
possible identification of Wilson line moduli with first-
generation leptons and quarks as well as their SU(2),-
singlet cousins, and D3-brane position moduli with two
Higgses. Thereafter, we briefly summarize the calculation
and results corresponding to the values of soft SUSY
breaking parameters as well as the supersymmetric fer-
mionic masses. In Sec. III, we explain the origin of nonzero
complex phases obtained in the context of the N =1
gauged supergravity limit of our local D3/D7 model. We
also argue that phases of effective Yukawa couplings do not
change under a renormalization group flow from string
scale down to the electroweak scale in our model. In
Sec. IV, we turn towards order-of-magnitude estimates of
the EDM of the electron/neutron for various possible one-
loop diagrams. The effective vertices are calculated by
considering the A =1 gauged supergravity action of
[39,40]. The complex phases, as already explained, can
be made to appear through the complex off-diagonal
components of an sfermion/Higgs mass matrix and com-
plex effective Yukawa couplings appearing in all one-loop
diagrams. We assume the phases of both off-diagonal
components of the scalar mass matrix as well as possible
effective Yukawa’s to lie in the range (0.3] in all the
calculations. The section has been divided into three
subsections. In Sec. IVA, we give a detailed discussion
of one-loop diagrams which involve sfermions as scalar
propagators and gauginos, neutralinos and SM-like fer-
mions as fermionic propagators, respectively. Higgs
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doublets as scalar propagators and chargino and SM-like
fermions as fermionic propagators, respectively. Here, the
nonzero imaginary phases appear through mixing between
two Higgses at the electroweak scale in the Higgs mass
matrix. In Sec. IV C, we evaluate the contribution of a
heavy gravitino and sGoldstino multiplet to the EDM of the
electron/neutron. Though the loop diagrams involving the
same are divergent, we pick out the finite contributions for
the purpose of obtaining an estimate of the EDM of the
electron/neutron in the case of a heavy gravitino. In Sec. V,
we consider two-loop Barr-Zee diagrams. The section has
been divided into three subsections. In Secs. VA and V B,
we compute the two-loop diagrams which involve an
internal fermion loop and an internal sfermion loop.
These diagrams are mediated by yh and yv; exchange.
In Sec. V C, we carry out an analysis of two-loop diagrams
involving a W-boson loop in our p-split SUSY model. In
Sec. VD, we discuss two-loop rainbow-type diagrams.
Section VI has the summary of our results and a discussion.
In the Appendix, we evaluate the chargino mass matrix
using the A = 1 gauged supergravity action in the context
of the large volume D3/D7 u-split SUSY setup.

II. THE SETUP

In [38], within the context of type IIB string theory
with a space-time filling D3-brane and fluxed stacks of
D7-branes wrapping a divisor along with ED3/EDI-
instanton-generated superpotential and world-sheet instan-
ton-corrected Kihler potential, we worked locally close to a
nearly special Lagrangian three cycle (6) within a Swiss-
cheese-type Calabi-Yau orientifold (various aspects of this
setup will be summarized in Sec. Il B). But before we do the
same, we will first briefly describe in Sec. I A, a model
that could be locally realized as a large volume D3/D7
Swiss-cheese setup of [38]. In other words, Sec. IT A
embeds the local model of [38] into a phenomenological
model, something which was not done in [38]. In other
words, the phonomenological supergravity model discussed
in Sec. II A can be locally geometrically engineered via the
construct of [38].

A. The model

For an N =1 compactification, we will take the
phenomenological Kihler potential of our model to be

Kpneno = —In[—i(z = 7)] — In (—i /C an g‘z)

—2In |:aB(UB +6p— ngeom)

1w

- (Zas,i(as_i + &g, — ngeom)>% + omv} ,
(1)
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where the divisor volumes o, are expressible in terms of
“Kihler” coordinates T,, M7,

6o~ T = [iKapec” B +iC ™ (W) Te(Mz M) (2)
a = (B,{S,i}) and M7 being SU(3.) x SU(2), bifunda-
mental matter field a;_,, SU(3.) x U(1), bifundamental
matter field az_4, SU(2), x U(1), bifundamental matter
field ar_;, U(1); x U(1) bifundamental matter field a7_s3
along with SU(2), x U(1), bifundamental z;, with the

intersection matrix Co'™ ~8BCY, €3/ =0, pgp, G° =
c¢* — 7b* being complex axionic fields (@, a running over
the real dimensionality of a subspace of the internal
manifold’s cohomology complex), and the phenomeno-
logical superpotential is given as under

W oneno ~ (Z{S n Z;g)nse_,1,\'\,01(25)_({181%+/}SZ§+7SZI22)’ (3)

where the bifundamental z; in K will be equivalent to the
212 €C in W. It is expected that Mz, Tgp, G* will
constitute the N' =1 chiral coordinates. The intersection
matrix elements and the volume-dependent

cy M (V) are chosen in such a way that at a local
(metastable) minimum,

Ks/Bab

— iC (V)Tr((a) (@) ~ e/, )

where f is a fraction not too small as compared to 1, and
the stabilized values of T, around the metastable local
minimum,

(ReTs), (ReTp) ~ O(1). (5)

a, a indices correspond to involutively even and odd sectors
of h!1(CY3) under a holomorphic, isometric involution. If
the volume V of the internal manifold is large in string
length units, one sees that one obtains a hierarchy between
the stabilized values (Nezg ) but not (ReTsp).

B. Local realization of the model of Sec. IT A

We review the local D3-D7-brane framework presented
in [38] which realizes the aforementioned phenomenologi-
cal supergravity model [(1)—(5)] locally in string theory. In
this, we consider type IIB compactified on the orientifold of
a Swiss-cheese Calabi-Yau in the large volume scenario
(LVS) limit that includes non-(perturbative) o' corrections
and nonperturbative instanton corrections in superpotential
[41] in addition to a space-time filling D3-brane and
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multiple fluxed stacks of D7-branes wrapping the big
divisor. We elaborate a little more than what was done
in [38] on some algebraic geometric aspects.

The “bottom-up”” approach to phenomenological models
in the context of D-brane models to realize the SM
spectrum was initiated in [42] by considering D3-branes
on the top of orbifold singularities of C*/Z; with additional
intersecting D7-branes (with their world volumes trans-
verse to the respective complex planes). In this model,
quarks and one of the Higgs doublets are obtained from
strings stretching between different D3-branes, while the
other Higgs doublet, leptons, and right-handed quark (dp)
are obtained from strings stretching between D3- and D7-
branes; the adjoint gauge fields correspond to open strings
starting and ending on the same D7-brane. Motivated by
this approach, different models were constructed in the
context of compact Calabi-Yau compactifications by fol-
lowing configurations of intersecting D7-branes wrapping
different four cycles (see [43—48] and references therein).
With the progress of large volume moduli stabilization [49],
realistic constructions reproducing SM spectrum via
D-branes were obtained by wrapping D7-branes around
blown-up cycle(s) [50] (small divisor Z; in the geometry of
the Swiss-cheese Calabi-Yau orientifold), similar to the
techniques used in models of branes at singularities.

The configuration of D3-D7-branes as described in [38]
was also obtained locally in the context of large volume
scenarios. However, the setup of [38] is different from the
aforementioned large volume scenarios constructs because
(i) it considers four stacks of multiple (magnetized)
D7-branes in groups of three [corresponding to
U(1) x SU(2),], two [corresponding to U(1) x SU(2),1,
one [corresponding to a U(1)], and one [corresponding to
another U(1)] with the hypercharge corresponding to a
linear combination of the four U(1)’s wrapping around the
big divisor in the rigid limit of the same (given that it was
possible to locally stabilize the moduli corresponding to the
fluctuations normal to the big divisor Xz around which
D7-branes are wrapped, at null values) but with different
choices of two-form fluxes turned on the different two
cycles homologously nontrivial from the point of view of
this four cycle’s homology and not the ambient Swiss-
cheese Calabi-Yau. (ii) It takes into account the non-
perturbative corrections in the Kihler potential [41] in
type IIB Swiss-cheese Calabi-Yau orientifold compactifi-
cation, not considered in the “large volume scenario”
proposed in [49].

Further, similar in spirit to [51-53], by turning on
different but small two-form fluxes on the different two
cycles homologously nontrivial from the point of view of
the big divisor’s geometry as a result of which initially
adjoint-valued matter fields decompose into bifundamental
matter fields corresponding to the SM gauge groups, we
provided explicit matrix-valued representations in [38] for
SU(3), x SU(2), bifundamental first-generation quarks,
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their right-handed EW-singlet cousins, SU(2), x U(1),
bifundamental first-generation leptons and Higgs, as well
as the right-handed EW-singlet leptonic cousins in [38]. All
aforementioned matter fields arise from strings stretched
between D7-branes stacks with different two-form fluxes
turned on. The leptons and quarks get identified with
the sermonic superpartners of Wilson line moduli A’ and
the Higgs with the D3-brane’s position moduli z;; 7 is the
axion-dilaton modulus and G* are NS-NS and Ramond-
Ramond (RR) two-form axions complexified by the axion-
dilaton modulus. In the orientifold limit of F theory, one
considers an orientifold of the Calabi-Yau involving a
holomorphic isometric involution. Though the contribution
to the Kéhler potential from the matter fields “C3;” coming
from open strings stretched between the D3- and D7-branes
wrapping 2 for Calabi-Yau orientifolds is not known but
based on the results for orientifolds of (72)3 (see [54]), we
guess the following expression: %~ Vi|Cy;|? [using
(9)]. Assuming Cs; to be stabilized at V™7, ¢37 > 0, this
contribution would be subdominant relative to other con-
tributions to the Kihler potential. We will, henceforth,
ignore the D3-D7 matter fields.

We will assume that in the coordinate patch (but not
globally), |z;|~ Vs, |zo] ~ Vs, |z3] ~ Vs, the Calabi-Yau
looks like the Swiss-cheese WCP? | | ¢ 4 [17]. The defining
hypersurface for the same is ul® + ul® + ul® +uj + u?—
18w [ 2., u; — 3¢p(uyupu3)® = 0. This can be thought of as
the following hypersurface in an ambient complex fourfold:
P(xy,...,x5;&) = 0 after resolution of the Z5 singularity
[55] (the x4 and x5 have been switched relative to [56];
n = 6 CP! fibration over CP? with projective coordinates
X123, X4, X5 Of [56] is equivalent to n = —6 with projective
coordinates x 3, X5, X4; see [57]) with the toric data for
the same given by

| X; Xy X3 Xg x5 &
Ql 1 1 1 6 0 9.
o’lo 0o 0 1 1 2

In the coordinate patch x, # O [implying one is away from
the Zj singular (0,0, 0, x4, x5) in WCP{, | oo [17]], £ #0,
one sees that the following are the gauge-invariant coor-
dinates: z; = %, 7 = i—z, 3 = ;T‘z‘é, 74 = % We, henceforth,
assume the Calabi-Yau hypersurface to be written in this
coordinate patch as z{® + 238 + P(z,234; 9. ¢) = 0. The
divisor {x5 =0} N {P(x15345:¢) =0} is rigid with
h%0 = 1 (see [55]) satisfying Witten’s unit-arithmetic genus
condition and that the Calabi-Yau volume can be written as

3/2 13/2 . . ..
vol(CY3) = 714—8 - ﬁ95 , implying that the “small divisor”

T,is {x5 = 0} N {zl® + 28 + P(z123, 24 = Osyr, ) = 0}
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and the big divisor Xy is {x; =0} N {zI8 + zI%+
P(z124.23 = 03y, ¢p) = 0}. Alternatively, using the toric
data of [58],

o'/t 1 1 0o 0 -3,
o*lo0 0 0 -2 -3 -1

one can verify that {£ =0} N {P'(x;2345:&) =0} is the
rigid blow-up mode with h%® = 1 (which can be easily
verified using COHOMCALG), and one can define gauge-
invariant coordinates in the x, # 0, x4 # O coordinate patch:

X x Xxsx1)% (x6x3)?
Z1:§9Z2:ﬁaz3:<5x3])az4: x4l N

found in [38] that the three cycle

Interestingly, we

Cs:lz| = Vs, 2| = V5, l=Ve (6)

[the Calabi-Yau can be thought of locally as a complex
threefold M5, which is a 73 swept out by arg z;, arg z,,
arg z; fibration over a large base (|z;], |22/, |z3])]. Precisely
apt for application of mirror symmetry as three T dualities
a la Strominger, Yau, and Zaslow (SYZ), C5 is almost a
special Lagrangian submanifold because it satisfies the
requirement that

FI~0,  Ne(f eQ)|ys~ vol(Cs).

Sm(f*eQ)|y_z ~ 0,

—T
2

where f:C3 — CY5;. As the defining hypersurface
of the Swiss-cheese Calabi-Yau in the x, # 0 coordinate
patch will be zI8 + 218 + ..., which, near C; (implying
that the other two coordinates will scale like Vé, Ve — W)
receives the most dominant contributions from the
monomials z{® and z!® it is sufficient to consider
P25|D3\nearC3QZB9 PZB|nearC3f—>23 ~ Z{S + Zég with the under-

standing |P(z123, 24 = 0; . W) c,» [P(2124- 2350, W), <
|21° + 25%].

The set of N/ =1 chiral coordinates (in particular, the
“divisor volume”) gets modified in the presence of D3- and
D7-branes [40]. To evaluate the Wilson line moduli
contribution in one of the A/ = 1 chiral coordinates T,
due to inclusion of four Wilson line moduli on the world
volume of space-time filling D7-branes wrapped around the
big divisor restricted to (nearly) a special Lagrangian
submanifold, we constructed distribution harmonic one-
forms localized along the mobile space-time filling D3-
brane (restricted to the three cycle). Here, we review the
construction of involutively odd harmonic distribution one-
forms in the large volume limit, as given in [38]. [The most
nontrivial example of involutions which are meaningful only
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at large volumes is mirror symmetry implemented as three T
dualities in [59] to a Calabi-Yau which locally can be
thought of as a T fibration over a (large) base; all Calabi-
Yau’s with mirrors (in the conventional sense) are expected
to have such a local fibration.] Harmonic distribution
one-forms can be constructed by integrating dA;=
(Ps,(z12))'dzy Ndzy with (I=1, 2, 3, 4), near C; — Zp;
Aj is harmonic only within X3 and not at any other generic
locus outside X5 in the Calabi-Yau manifold. Four such
distribution one-forms on Xy localized along C; corre-
sponding to the location of the D3-brane can be written as
Ar~d(|21|=V9)3(|2| = V) [01(21,20)d21 + @ (21, 22) dza)-
Writing A;(zy,2,) = a)1<Zl,Z2)dZ1 + @;(z1,22)dz," Where

o(=z1,22) = 0(21,22),  @(=21,22) = —@(21,2), and
0,0 = —0,w, one obtains (see [38])

19 19,18
Ailc, ~ —z21820dz; + 7{% 288 dzs,
Asle, ~ —z182,dz; + 21821 dzs,

dz, — 283737 dz,,

7dZ] + Z%6 37dZ2 (7)

Asle, ~—z1°z

A4|C ~ —Z1

1. Yang-Mills coupling constant

We now summarize the discussion on obtaining an
O(1) gauge coupling constant. The Yang-Mills gauge
coupling constant squared for the ith gauge group
[i:SU(3),SU(2),U(1)] will be given as

1
5 = f}te(Ts/B) + hl(P(ZS)lD:HZB)
9j=su(3)orsu(2)

+In(P(Zs)lps,, ) + O(Ff)z.  (8)

where Re(Ts/g) corresponds to the size of the divisor
volume around which D7-branes are wrapped, and sz =

F}’ka,, s+ i«“}’fv’fkaﬂ are the components of the two-form
fluxes for the jth stack expanded out in the basis of i*w,,
w, € H-'(CY3), and FY are the components of two-form
fluxes for the jth stack expanded out in the basis
W, € coker(H!?)(CY5) - HU-V(65)). In dilute flux
approximation gyy; is mainly governed by the size of
the divisor volume around which D7-branes are wrapped.
Using the distribution one-forms of (7), the A/ = 1 chiral
coordinates with the inclusion of mobile D3-brane position
moduli z;, (which we identify with the X3 coordinates)
and mulitple matrix-valued D7-branes, Wilson line moduli

'Intuitively, these distribution one-forms could be thought
of as the holomorphic square root of a Poincaré dual of a four
cycle.
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a; were guessed in [38]. The quadratic contribution
arising in Ty (the big divisor) due to the Wilson line
moduli contribution is of the form ikju,C%a’ a’ with
ij = fZB i*w A A A A7, where o € HS:'I)(ZB). In [38],
we estimated the intersection matrices Cf] by constructing
harmonic one-forms using Eq. (7). Also, the coefficient of
the quadratic term (@,),;2 (Z —L(P; )lz z!) arising in T
due to inclusion of posmon moduli z; was shown in [38] to

be O(1) by calculating (wp);; ~ (ws);; ~ O(1) near z; 5 ~

Vs *5 (see [38]). Using the same, it was argued that, in the

d11ute flux approximation, gauge couplings corresponding
to the gauge theories living on stacks of D7-branes
wrapping the big divisor Xz in the large volume limit,
will be given by

933 ~ Ne(Tg) ~ vol(Zg) + Cpyasa; + Hee. ~ Vi ~ O(1)

(justified by the partial cancellation between Xp and
C7a;a; with some fine-tuning).

2. Stabilized potential of N' = 1 local large volume
D3-D7 setup

As we do not have a global picture, we are ourselves with
a local bulk and open-string moduli stabilization near (6).
We showed in [38] that near (6), the moduli can be
stabilized as under

vol(Zg) ~ Vi;
T

M
O(1)ki(~0(10)) "
10| =VEMp,  |z3] = ViMp;
VIMp, ViMp,
V_%MP’ V_l_glMP,

vol(Zg) ~ V¥,
Gt~

|a1| = |ap| =

|las| = las| =

gA=1 12 Esley) = 0 (implying rigidity of the nonrigid £p),
9)

such that WeT g ~ ReTp ~ Vi and implying the possibility
of obtaining a local metastable de Sitter—like minimum
corresponding to the positive minimum of the potential
eXG'sTs|Dy W|? near (9), and realizing (5) and thereby
the supergravity model of Sec. IIA for V~10° in
[, =1 units.

The Kihler potential relevant to all the calculations
(using modified AV = 1 chiral coordinates) in this paper
[without being careful about O(1) constant factors] is given
as under [38],
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V_ ((116_12 +HC)

Tg+T
K~-2In (aB {%—M(Zna’)
P

+ Vl |a2|2 29 (6116_13 + HC)

S Alz? 4 |22 4+ 212 + 2221} TRy |a|*

+ Vi
M3 M M

|90 (a2é3 + HC) 19 |a3|2 19 (6116_14 + 6146_11)

+ V3

e BNV
M M

f (a3ay + asas)
e

aray + 6146_l2)

+V?—3(

Ve
+9M

e

2 2
P Mp

7

(10)

7 2 2 = =1\ 3/2
ozl 12l + 212 + 2271 ) 0
Tp_m(zﬂa) +3 ().

M3

and the ED3/ED1-generated nonperturbative superpotential
used in [38] is given by

W ~ (PES

2
18 18\n* - ,in*Gm, ,in'T,
2 K
Dy, ~ 21+ 227D e e T,
ma

(11)

which is like (3) assuming G“, r has been stabilized.
The genus-zero Gopakumar-Vafa invariants (which, for
projective varieties, are very large) prefix the hL'-valued
real axions b“%, c¢“ In general, there are no known
globally defined involutions valid for all Calabi-Yau
volumes, for which ALY (CY3) #0, h2%1(ZR) #0.
However, as mentioned earlier, in the spirit of the
involutive mirror symmetry implemented a la the SYZ
prescription in terms of a triple of 7 dualities along
a local T3 in the large volume limit, we argued in
[60], e.g., zy = —z; would, restricted to C;, generate
nonzero

T*(argzi53) = M;(z123)
hL! I

M3(|Zl|, |Zz|7 |Z3D

An example of holomorphic involutions near C; not
requiring a large Calabi-Yau volume has been discussed
in [38]. However, even if 1! = 0, one can self-consistently

stabilize c¢“, b* to zero and oy, 0} to VII_S, V3 such that
the Kihler potential continues to be stabilized at
—2InV.

The evaluation of “physical”’/normalized Yukawa
couplings, soft SUSY breaking parameters, and various
three-point vertices needs the matrix generated from the
mixed double derivative of the Kéhler potential to be a
diagonalized matrix. After diagonalization, the correspond-
ing eigenvectors of the same were found in [38] to be
given by

Ay~ ag+V3ay+V3a; +V3a, +V2(z) + 22),
A; ~—az + V3a, — VSa, — VSa, + V'g(zl +25).
Ay ~ay = VSay 4+ V0ay = Via, + V32 + 22).
Ay ~—ay =V Va; + Vay = V32 + 20),

Zz ~ —7(Z1 + ZZ) - V_gal + V_%Clz + V_%(13 + V‘2a4,
V2
Zl ~ 7(21\;§Z2) - V_%(ll + V_%az + V‘§a3 + V‘2a4.
For V = 10°, the numerical eigenvalues are estimated to be
Kz z ~ 1073, Kz,z ~ 1073, K g4, ~ 104,
KA2A2 ~ 10_2, KA3A3 ~ 107, KA4A4 ~ 1012, (12)

3. Mass scales of SM-like particles

The effective Yukawa couplings can be calculated using
K yeft
{reff — eZYCiCjCk

Y = T
GiCiCr VEKcie;KejeKee,

. . eff .
lus, which for us is 62;,, 64,34, Where YG 44, 18

, C; being an open-string modu-

given by the O(Z;) coefficient in the mass term
2D 4,02, WzAiy4 in the N'=1 SUGRA action of
[39]. By estimating in the large volume limit, all possible
Yukawa couplings corresponding to four Wilson line
moduli and showing that the renormalization group (RG)
flow of the effective physical Yukawa’s change almost by
O(1) under a RG flow from the string scale down to the
EW scale [38], we see that for V ~ 10°, (Z;) ~ 246 GeV:

O(Z;)term ine>Dy, Dy W pett
VEKz2K43K42,

-3 —4
ZA A ~ 10 X %

giving (Zi>?zlAlA3~MeV—about the mass of the
electron

O(Z)term ine*D, D, W
(2) APAW _ gor 107t vs
VKz2K42,K a3, '
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giving <z,~>f/2i A4, ~ 10 MeV—close to the mass of the up
quark. The above shows that fermionic superpartners of A;
and A5 correspond, respectively, to the first generation of
left-handed SU(2) and right-handed U(1) leptons, while
fermionic superpartners of A, and A, correspond, respec-
tively, to left-handed SU(2) and right-handed U(1) quarks.
The diagonalized basis (12) was shown to also work out for
appropriately chosen matrix-valued a; and z; for multiple
fluxed D7-brane stacks.

4. Computation of soft terms

By using the appropriate A = 1 coordinates as obtained
in [40] due to the presence of a single D3-brane and a single
D7-brane wrapping, the four cycle (big divisor Xz in a
Swiss-cheese Calabi-Yau) along with D7-brane fluxes, the
soft SUSY breaking parameters were calculated in [38].
The value of scalar masses identified with the masses of
squarks and leptons, so obtained, turns out to be quite high,
but at the same time, one gets one light Higgs, thus,
indicating the possibility of a “split SUSY-like scenario” in
a local large volume D3/D7 model.

We briefly review the evaluation of various soft super-
symmetric as well as supersymmetry breaking parameters
in the model involving four Wilson line moduli as
described in [38]. The various soft terms are calculated
by power series expansion of the superpotential as well as
the Kihler potential,

A 1
W=W(®)+u(®)Z,Z, +6YUK(‘I))M’MJMK +ee,

K=K(®.8) + Kp(. &) MM +Z(®, )M M 4 -,

(13)

where M! = (Z!, A"). The soft SUSY breaking parame-
ters are calculated by expanding the N' = 1 supergravity
potential, V = X (K" D,WD;W — 3|W/|?) in the powers of
matter fields M/ after expanding the superpotential and
Kihler potential according to Eq. (13). In gravity-mediated
supersymmetry breaking, SUSY gets spontaneously bro-
ken in the bulk sector by giving a vacuum expectation value
to auxiliary F terms. Hence, to begin with, one needs to
evaluate the bulk F terms, which, in turn, entails evaluating
the bulk metric. Writing the Kihler sector of the Kihler
potential in terms of the bulk moduli as

ol

K~-2In |:(GB +op— 7ngom)% - (GS +o5— 7Krmgeom)

+ Y 9> cos(ink-(G=G)g,+mk-(G+G))|,
peH, (CY;3)  (n.m)

(14)

disregarding Kooy (introduced due to the presence of
a mobile space-time filling D3-brane) in the large
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volume limit (see [61,62]) and working near
sin (ink - (G — G)g, + mk - (G+ G)) =0 corresponding
to a local minimum—using the stabilized vacuum
expectation value (VEV) of o5, and G5 as given above
Eq. (10)—generated the following components of the bulk
metric’s inverse in [38]:

37

()

Vi Vis 0 0
13 4
_ 3 0 0
GmnN W V_ (15)
0 0 O(1) 001
0 0 O(1) 001
Given that bulk F terms are defined as [51],

F™ = ¢*G™"D,W, one obtained in [38]:

S s
Fos m V53, FO ~ VM,

(16)

_n'_ 5
Fos ~Y) 5 ISM%’

Hence, after spontaneous supersymmetry breaking in the
bulk, the gravitino mass is given by

msy = eK|W|? ~ VT M. (17)
The gaugino mass is given as

F"o,T

The analytic form of the scalar masses obtained via

spontaneous symmetry breaking is given as [51]

m? = (m3 + Vo) — F"F"0;,0, log K ;. These were calcu-
2

lated in [38] to yield

mA] N\/l_)m3/2, (19)

59
mzt_ ~ Vﬁm3/2,

implying a nonuniversality in the open-string moduli
masses. Further, in [38] we showed the universality in
the trilinear A couplings [51],

Azgx = F"(0,K + 0, In Y77 + 0, In (K77K 77K i)
~ Vg%m3/2 ~iz z,. (20)

The physical Higgsino mass parameter fi z z, turned out to
be given by

K
ez z,

bz z, = —F————
V KZIZI Kzzzz

~ V%m3/2. (21)

Further,
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e—iaIg(W)+§
(AB)z,z, = ———
. \/KZIZIKZZZZ
—#zlzzam In (KZIZIKZ222))
~fiz z,(F"0,K+F> —F"0,In(Kz 2 Kz z))

F"(0Kpz, z,+ Onpiz, z,

Y
~ Vit 3"’"3/2 ~ i A (22)

an observation which will be very useful in obtaining a light
Higgs of mass 125 GeV.

5. Realizing a light SM-like Higgs

We calculated in [38] the mass of a light Higgs formed
by the linear combination of two Higgs doublets (using
the prescription as given in [1] to realize split SUSY)
by first calculating the masses of the latter, which, after
soft supersymmetry breaking, are given by My =

(m22142 _|_ﬁ22122)1/2
to the Higgs mass discussed in [37], we obtained the
contribution of Higgs doublets as well as the Higgsino
mass parameter iz z, at the EW scale. The Higgs mass
eigenstates are defined as

, and, thereafter, using the RG solution

Hl - Dh“Hu +Dh12Hd7 H2 DhZIH +Dh”Hd’
(23)

where

cos% - sin% e~
D —
h — i 9 )
sm e'Pn cos =
’7
|

+ . ‘ h
D,M};D), = diag(M3; , M7, ), and tan 6, = m

for a

particular range of 5F < 0, <7.

The RG solution to the Higgs mass formed after soft
supersymmetry breaking in the large-tan £ (but less than
50) limit are given [37,38] [assuming that mZZ7 (M)=
m3 = V%m%, implying &, = 0 but &, 34 # 0, and nonun-
iversality with respect to both D3-brane position moduli
masses (myz ) given by &] as

P2(EW) == |-m3 = (0.01)(n*)?4%, 2, +(0.32)Vim?
197
—1/2MZ%y, + (0. 03)Vn fz Z7m3/2+220030 ’
1
my;, (EW) = mg(1 +51)+§M%w+m3
- (0~03)V§nSﬂzlzzm3/2 +(0.01)(n*)*p% 2.
. 1
gy, (EW) =2m5 = (0.06)Vin*fiz, z,ms o +5 My
B 197
11007
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where S is a hypercharge weighted sum of the squared soft

scalar mass having value around m3. Assuming

AB = Efiz 7 (§ = O(1)), the Higgs mass matrix is given as

G )~ (5 )

pB - my, &gr my )

and the -eigenvalues 5(mfy +my +
\/(m%, —m3, )2 +484%). Using Eq. (24), for & =
0(0.1) and O(1) n*, we have

are given by

2
my, +mH ~m0

0.068 + - -,
my —my ~mg+0.068, + -,

B3, 3, ~ mi —0.038, + -

Utilizing the above, one sees that the eigenvalues are

2

my, = m3 —0.06S, + - -

/(3 4006, + )2 + 4 (mF — 0.035,)2.

Considering Sy ~ —4.2mj and & ~ 1+ M, we obtain

one light Higgs (corresponding to the negatlve sign of the
square root) of order 125 GeV and one heavy Higgs
(corresponding to the positive sign of the square root),
whereas the squared Higgsino mass parameter fiz z, then
turns out to be heavy with a value at the EW scale of
around Vmy ;.

6. Realization of a p-split-like SUSY

We summarized above the different mass scales corre-
sponding to different supersymmetric particles as men-
tioned in the above paragraphs and actually calculated in
[38] by considering Calabi-Yau volume V = 10° [the
justification behind constraining a value of Calabi-Yau V
to be O(10%) was based on the right identification of
Wilson line moduli and position moduli with a SM particle
spectrum]. The gravitino appears to be the lightest super-
symmetric particle with mass around 10% GeV. The sfer-
mion masses corresponding to the first generation of quarks
and leptons (identifiable as Wilson line moduli mass in our
framework as mentioned above) are very heavy, of the
order 10'° GeV at the string scale. Similarly, the gaugino
masses also turn out to be heavy, of the order 101 GeV.
However, the Higgsino masses are heavier, of the order
10'3 GeV. One of the Higgs doublets was shown to have
mass of the order 125 GeV, thus, showing the possibility of
realizing a p-split-like SUSY scenario (though there is a
“split” between the mass of a Higgsino, and the gaugino
and sfermions at very high energy scale, the SM fermions
are light) in the context of our local LVS D3-D7.
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TABLE I. Mass scales of the first generation of the SM as well
as supersymmetric and soft SUSY breaking parameters.

Quark mass M, ~ 0(10) MeV
Lepton mass M, ~O(1) MeV
Gravitino mass ms ~VE Mp; ny =2
Gaugino mass M‘g ~Vims
2
(Lightest) neutralino/chargino mass My, s~ Vims
3/4A3 2

D3-brane position moduli

mz, ~ Vim;
(Higgs) mass :

Wilson line moduli my ~ Vima
1 2
(sfermion mass) 1=1,23,4
37
A terms Apgr ~ 1’ V%m%

{p7q’r} € {.;l],Zi}

A 37
Hzz, ~ V%m%

N 37 o
(“B)ZIZZ ~ Vﬁm%

Physical p terms (Higgsino mass)
Physical iB terms

The fine-tuning involved in the hypercharge weighted sum
of soft scalar masses (Sy) as well as the O(1) proportion-
ality constant between the Higgsino mass parameter
squared x> and the soft SUSY parameter uB to obtain a
Higgs of the order 125 GeV seems acceptable at such high
|
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energy scales. The results of mass scales of all SM as well
as superpartners are summarized in Table I also.

7. Modified N = 1 gauged supergravity action in the
case of multiple D7-branes

We will be using the following terms (written out in
four-component notation or their two-component analogs
and utilizing/generalizing the results of [40]) in the
N =1 gauged supergravity action of Wess and Bagger
[39] with the understanding that myoquli/modulini <<

mKK(~% lyoro6 ~ 1014 GeV), M :%|V~105/6 ~10GeV
and that for multiple D7-branes, the non-Abelian gauged
isometry group2 corresponding to the Killing vector
6iK%ﬂ7(2ﬂa’)Q3378, QB = (2ﬂ'a/) fZB i*a)B A P_f arising

due to the elimination of the two-form axions Dg) in favor

of the zero-form axions pp under the Kaluza-Klein (KK)
reduction of the ten-dimensional four-form axion [40]
[which results in a modification of the covariant derivative
of T by an additive shift given by 6ix3u;(27a’)Tr(QpA,)]
can be identified with the SM group (i.e., A, is the SM-like
adjoint-valued gauge field [39]):

_ : _ : 1
L = gymgr, 5 Te(XTs7] 4 p) + igr7Tr ()(f {8)& + T4, 0a"y + 1 (O, KDay — C-CJ}(%D

K
e . :
+= (DeDgW)Te(riry) + 91,7, Trl(0,Tp = AXT2) (T — A*XT4)']

+ 91, g Tr(XT5A, 7 T woR) + V1,07 25 1L F py + W1 0" 7 2 Wy Wi

T 7566 20 ) 0K + 217

eKGTBTB

1237 (2ma’) QBUB> 2 ]
a.L

+ ———6iK; (27a' ) Tr[QpA* 0, (kK27 (22! )2 CY ;7)) + H.c.
K

4
iv2
4

fab
4
V2

1 8i/lfabTr(zg,RGﬂy)(2/1)Fﬁy +H.c.

1
Fzthmup + gfab6,;41//)/1[,*}LL/FZ/1 _

As explained in [40], one of the two Pecci-Quinn shift
symmetries along the RR two-form axions ¢ and the four-form
axion pp gets gauged due to the dualization of the Green-Schwarz
term [g1s dDg) A A coming from the KK reduction of the Chern-

Simons term on XzUc(Xp) — Dﬁ? being an RR two-form axion.
In the presence of fluxes for multiple D7-brane fluxes, the
aforementioned Green-Schwarz is expected to be modified to
Tr(Qp le.g dDg) A A), which, in turn, after dualization modifies
the covariant derivative of Tz and, hence, the Killing isometry.

gai/[fahTr<

126547 (27 ) Q% v
1%

B .
1’5,&(351) + H.c.

(24)

III. CP-VIOLATING PHASES

In this section, we explain the possible origin of CP-
violating phases in the N" = 1 gauged supergravity limit of
the large volume D3/D7 u-split SUSY model. The electric
dipole moment of a spin—% particle is defined by the
effective CP-violating dimension-five operator given as
L; = —%dfl/"/awysl//F””. Given that the effective operator
is nonrenormalizable, the same can be realized at the loop
level provided the theory contains a source of CP violation.
In the Standard Model, CP-violating phases, in general,
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appear from the CKM phases in the quark mass matrix but
the same get a nonzero contribution only at three-loop level
in the Standard Model. However, in supersymmetric
theories, instead of the CKM phase generated in the
Standard Model, one can consider the new phases appear-
ing from complex parameters of soft SUSY breaking terms,
complex effective Yukawa couplings, as well as super-
symmetric mass terms.

We consider the existence of nonzero phases appearing
from complex effective Yukawa couplings present in the
N =1 gauged supergravity action. As discussed in [38],
the position as well as Wilson line moduli identification
with SM-like particles generate effective Yukawa couplings
including R-parity conserving as well as R-parity violating
ones in the context of the N =1 gauged supergravity
action [38], and the solution of RG evolution of effective
Yukawa couplings at one-loop level yields

2(C () (M) +C () (B)+C (4 (A))

3 —
M) T (1 + ) "o

(a)=1

YAZA(I) ~ YAZA(

(25)

Using the fact that quadratic Casimir invariants as well as
beta functions are real, we see that magnitudes of Yukawa
couplings ¥ 558 change only by O(1) while phases of all
Yukawas do not change at all as one RG flows down from
the string to the EW scale. Also, given that all four Wilson
line moduli .4; as well as position moduli Z; are stabilized
at different values, we make an assumption that there will
be a distinct phase factor associated with all position as well
as Wilson line moduli superfields which produces an
overall distinct phase factor for each possible effective
Yukawa coupling corresponding to four Wilson line moduli
as well as position moduli.

The other important origin of the generation of nonzero
phases is given by complex soft SUSY breaking parameters
(m?, Ak, uB) as well supersymmetric mass term p. The
soft SUSY scalar mass terms can be made real by phase
redefinition. However, in addition to the diagonal entries of
sfermions corresponding to fermions with L-handed as well
as R-handed chirality in the sfermion mass matrix, one gets
an off-diagonal contribution because of mixing between
L-R sfermion masses after EW symmetry breaking. The
contribution of the same is governed by complex trilinear
couplings as well as supersymmetric mass parameter y at

the EW scale. Therefore, the scalar (sfermion) fields f; and
fr have been considered as linear combinations of the mass
eigenstates which are obtained by diagonalizing sfermion
(mass)? matrices [23], i.e.,
fr =Dy f1+Dy,f2. fr =Dy, f1+ Dy, fr, (26)
where f corresponds to first-generation leptons and quarks
and

PHYSICAL REVIEW D 90, 085023 (2014)

cos4 - sin%f e i
D, = i 0 , (27)
sm ! COS 5
and the mass matrix is given as follows:
. M> my, (A5 — pcotf)
M2 = ,
! m,(Ay — p* cot ) M;.-R Ew
(28)

where A;;x corresponds to the complex trilinear coupling
parameter. Diagonalizing the above matrix by performing

unitary transformation DTMzdf diag(M ,M%z), where

2m2 |

tan 0 = ;>—-—. The eigenvalues M;,l and M§'2 are as
i 2
follows:
we, =]
FH©) E( Tt f22)(+)(_)
1 271
xS (M2, = M2+ aM2, PR (29)

For f=e, A; = Az, 4,4, for f = (u.d), A’;/d = Az, 4,4,
In our model as discussed in Sec. II, we have universality in
trilinear couplings with respect to position as well as
Wilson line moduli. Assuming the same to be true at the
EW scale, the values of the trilinear coupling parameters
are Az a4, = Az 4,4, = V%m%. As given in Sec. II, the
value of the supersymmetric mass parameter y at the EW
. 59 . . .
scale is Vﬁm%. Also, we have universality in slepton
(squark) masses of the first two generations. Therefore,
2 _ A2 a2 a2 2
M3y, = My = M3, = Mgy, ~ Vm%, and

—pcotf| = (V%)memz < M?

ell”

|M§21 |2 = me|A:

37

M2, > = m,| A} — pcotp| = (Vo)mem; < M2, (30)
Using the above, one can show that the eigenvalues of

i 1 2 ~ -~ = 2 -
sfermion mass matrix M 00 M 7 Vm%. The afore

mentioned mass eigenstates can be utilized to produce a
nonzero phase responsible to generate the finite EDM of
the electron as well as the neutron in the one-loop diagrams
involving sfermions as scalar propagators and gauginos and
neutralinos as fermionic propagators.

IV. ONE-LOOP CONTRIBUTION TO THE
ELECTRIC DIPOLE MOMENT

At one-loop level, for a theory of fermion v, interacting
with other heavy fermions’ wy;’s and heavy scalars’ ¢;’s
with masses m;, m;, and charges Q;, Oy, the interaction that
contains CP violation, in general, is given by [23]
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1
Lin = Zl//f < — Ly —;ys>vji¢k +H.c.
(31)
Here, £ violates CP invariance iff Im(K; L) # 0. The

one-loop EDM of the fermion f in this case is given by

S atamtcatio (04 () + 0 ()
(32)
where A(r) and B(r) are defined by
st
B(r) = z(r1_1)2 <1 b4 2{1“:) , (33)

where O, = Qf — Q.

We use the above-mentioned results to get an order-of-
magnitude estimate of the EDM of the electron/quark in the
context of AV = 1 gauged supergravity by including all SM
as well as supersymmetric particles in the loop diagram.
The EDMs of the neutron can be estimated by calculating
the contribution of u and d quarks by using relation
d, = (4d; — d,)/3. Since in our model, we have identified
both up as well as down quarks with a single Wilson line
modulus, we will have the same contribution of the EDM
for both up and down quarks. Hence, the neutron EDM is
the same as the up-quark EDM. Therefore, in the calcu-
lations below, we will estimate the EDM of the electron and
up quark only.

A. One-Loop diagrams involving neutral
sfermions in the loop

1. Gaugino contribution

In this subsection, we estimate the contribution of the
electron/neutron EDM at one-loop level due to the presence
of a heavy gaugino nearly isospectral with heavy sfermions
(for the Calabi-Yau volume V = 10° in string-length units).
In traditional split SUSY models discussed in the literature,
the masses of sfermions are very heavy, while the masses of
gauginos as well as Higginos are kept very light because of
the gauge coupling unification. Therefore, one-loop dia-
grams involving sfermion-gaugino exchange do not give
any significant contribution to the EDM of fermion.
However, in the large volume D3-D7 setup that we have
discussed, the gaugino as well as Higgsino also turn out to
be very heavy. As it is clear from Eq. (31), the order of
magnitude of the EDM at one-loop level is directly
proportional to the fermion mass and inversely proportional
to the sfermion masses circulating in the loop, whereas the

PHYSICAL REVIEW D 90, 085023 (2014)

one-loop function can almost be of O(0.1 — 1) provided
either the difference between the fermion and sfermion
mass is of O(1) or the fermion mass is very light as
compared to the sfermion mass. Therefore, naively one
would expect an enhancement in the order of magnitude of
one-loop EDM due to the presence of heavy fermions
circulating in a loop. In view of this, we estimate the
contribution of the one-loop EDM of an electron as well as
a neutron in the N = 1 gauged supergravity limit of large
volume D3/D7 u-split SUSY model discussed in Sec. IL
However, the CP violation (imaginary phases) can be
induced in a loop diagram by considering diagonalized
eigenstates of sfermion mass matrix as propagators in the
loop. The loop diagram is given in Fig. 1. The effective
one-loop operator given in Eq. (31) can be recast in the
following form:

1+ -
Lin= > Wy, ( 5y, 2“)4;;,10 +Hec.

i=e,u,d

(34)

For i = 1, 2, the above equation can be expanded as

_ l-y I+y
_Eint:Wf<K1 2+ L 5>¢f1/10

2

L—ys
2

1+75
2

i (K2 +L, >¢f~.210 +He., (35

and the one-loop EDM of the fermion f in this case will be
given as
m 2

A ke (o B2
ot g (285

2
+ —Im(K2

ket (@:8() )] 09

where mj corresponds to the gaugino mass, mj and

mj correspond to the masses of the eigenstates of the
diagonalized sfermion mass matrix, and Q’~ corresponds to

effective charge defined as Q~v ~Q;:C 7 Cr 7y where C

L ' - o Ir

FIG. 1. One-loop diagram involving gauginos.
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will be the volume-suppression factor coming from the
sfermion-photon-sfermion vertex.

To determine the value of the one-loop EDM in this case,
we first calculate the contribution of the required vertices
involved in Fig. 1. In AV = 1 gauged supergravity, lepton
(quark)-slepton(squark)-gaugino interaction ia governed by
[39] the following term:

Eyogoi

= gym 9,7, X020+ 0,TpDPy' 20,

where 7/ corresponds to a spin—% fermion, X* is the Killing
isometry vector, and A° corresponds to an SU(2)-singlet
component of the neutral gaugino. Though the gauge
coupling gy,, is real, the nonzero phase factor is produced
from the moduli space metric component g,7, and is
associated with the volume-suppression factor arising from
the same. Hence, the effective gauge coupling interaction
vertex generates a particular phase factor which we con-
sider to be of the order O(1).

We repeatedly mention that to get the numerical estimate
of the contribution of the aforementioned vertices, we use
the identification described in [38] according to which
fermionic superpartners of A; and .A; can be identified,
respectively, with e; and ep, and the fermionic super-
partners of 4, and A, can be identified, respectively, with
the first-generation quarks: u; /d; and ugp/dg. In principle,
an incoming left-handed electron (quark) can couple with
scalar superpartners of both left-handed as well as right-
handed leptons (quarks). Therefore, for a left-handed
electron e; interacting with a slepton as well as gaugino,
the interaction vertex will be given as

= gym9a, 7, X B 20 + 0, TpDB 7" 20. (37)

e, —e—A°

To calculate the contribution of the e¢; —¢; — A vertex,
we expand g4 7, in the fluctuations linear in \A; around
its stabilized VEV. In terms of an undiagonalized basis,
we have g7,z — —V7i(a, — V). Using Ty = vol(op)—
Cj7a;a7 + H.c., where the values of intersection matrices
C,7 are given in the Appendix of [38]. Utilizing those
values, we get 9, T — ﬁ(a | = V3). Using the argument
that gyygr,a, ~ O(1)gym9r,, as shown in [38], incorpo-

rating the values of X? = —6ikﬁy7QTB, K37 ~ ll},
4 /.2 \B ~
DB =IO and Oy, ~ V%(Zﬂa’)zfl we get the

contribution of the physical gaugino(A°)-lepton(e; )-
slepton(ey ) interaction vertex as follows:

|CeLe~L /I~U| =

PHYSICAL REVIEW D 90, 085023 (2014)

where f is the dilute flux, and the upper limit of the same as
calculated in [37] is V5 ~ O(107*) for Calabi-Yau vol-
ume V ~ 10°.

Similarly, the contribution of the physical gaugino(1°)-
quark(u; )-squark(u; ) interaction vertex will be given
by expanding g 4,7, in the fluctuations linear in .4, around
its stabilized VEV. Doing so, one will get g7, —

—Vi(ay = V1), 9,75 = Vi(ay = V73), and

= gm0 =700. (39)

\/ KAZAZ \/ KAZJ\Z

The gaugino(}:(’)—fermion( f1)-sfermion(fg) vertex does
not possess SU(2) electroweak symmetry. However, the
terms in the supergravity Lagrangian preserve SU(2) EW
symmetry. Therefore, we first generate a term of the type
fLfrA° H, wherein H; is an SU(2), Higgs doublet. After
spontaneous breaking of the EW symmetry when Hj
acquires a nonzero VEV (H"), this term generates
(HO)f, fr 0. For f, p = e, g, by expanding ga1, in the
fluctuations linear in Z; and then linear in .43 around their

1

stabilized value, we have 9r,a, = V‘%(Z (Az = V‘%),

‘ Uy ﬂ°|

The contribution of physical gaugino(/{o)-lepton(e )-
slepton(éy) interaction vertex will be as follows:

- XTs Nv—%~ . _
AT T qoph = ),
\/KZIZIKAIAIKA3A3

| eLe'Rﬂ-U| =
(40)

For fi r = up g, by expanding g4,7, in the fluctuations
linear in Z; and then linear in A4 around their stabilized

11

value, we have g; 3 — V_%(ZQ(A“ —V79) and

_ XTB NV—H~ . _ o~ ~
9ymIr, 4, sf .A4)?A2 10 = f(V_%)-
\/KZIZIKAZ.Z‘QKAA;‘A

‘ MLM~R/{°| =
(41)

Similarly, the outgoing right-handed electron (quark)
can couple with both the left-handed as well as right-
handed sleptons (squarks) and include the gaugino(4°)-
fermion(fg)-sfermion(f, ) vertex in a loop diagram. The
same does not possess SU(2) EW symmetry. For
SfiL.r = €L g, by expanding g 4,7, first in the fluctuations
linear in Z; and then linear in .4, around their stabilized
VEVs, we have gy 3 — —V5(Z)(A - V7). The
physical gaugino(4°)-lepton(eg)-slepton(é; ) interaction
vertex will be given as
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_ XTB NV_%~ - _ o~ ~
gYMAgTBAgA : fA])_{A3/10 Ef(])_l?s)
\/KZ]ZI KAIAI KA3~/_43

| erer 20 | =
(42)

1

For fLi = rp, one gets 97,3, ~ ~VH(Z)) (4, = V)
and

~, 14

- XTs ~ V—%~ .
2B L dog i = ¥,

\/Kzlzl Kpo2,K 4,2,

| ugliy /10| -

(43)

To calculate the contribution of the ez — ¢ — A° vertex, we
expand g 4,7, in the fluctuations linear in A3 and obtain

Gr, 1, = =V A= Vi), 84 Ty — V5(A; — VR). Utilizing

this, the physical gaugino(/{o)—lepton(e r)-slepton(éy)
interaction vertex will be given as

PHYSICAL REVIEW D 90, 085023 (2014)

Similarly, by expanding g4,7, in the fluctuations linear
in A, we will have g, 3 — —V¥(Ay = V9), 04T —
V3 (Ay — V), and

16

Vif
|CuRu~Rﬂ~0| = A A
VEua Kz

To determine the contribution of effective charge Qf,
we need to evaluate the contribution of sfermion(f;)-
photon(y)-sfermion(f;) vertices which are expressed in

Agh0 =F(V3). (45

terms of f; /r basis as below

Cflfl?’ NDfllD;anlfl*}’ + (DfllD}lz + DflzD;u)C];LfR*}'

+ DleD.?lz Cf-'R.fR*Y’
szfz? ~ Df21 ;'21Cf~Lf~L*}’ + (DfZID;n + Df22D;'21 )Cflf;e*}’
+ DfZZD}zz CfTRf‘R*Y‘ (46)

The sfermion-sfermion-photon vertex can be evaluated
from the bulk kinetic term in the N' =1 gauged super-

5 F .o~ ravity action as given below
S E—— W AU P Y B :
K, 1K, 7 1 . ~
AT A L= GV, T,V T, (47)
4
where
vuTB = 3”TB +6iK42‘/.l7lQTBA”;
[ S - 5 _ 3 . A N
Tp~op+ <iKBbCCbBC +Kp +m’<3bcgb(gc - gc)légkiﬂﬂchzjaﬂj +Z5g7Q} +ipsl? (@9);’}11 <Zj —Eza (Pa)‘zlzl> ) :
(48)
|
The form of expression that eventually leads to give the V%G]? ~— ~
contribution of required sfermion-sfermion-photon vertex |Ce1e1*y Era——= (Vsf)A, A auAl' (50)
is given below Kp1,K 4.4,

6ix3ur2ma QG757
%

x A*D, (Kiur 21! )2C AiA7). (49)

fL/sz/R}’ ~

Using G7#T5(EW) ~ Vi [the large value is justified by
obtaining the O(1) SM fermion-fermion-photon coupling
vertex in A/ = 1 gauged supergravity action; see details

therein], Qg ~Vif, Ky~ 3 the above expression
reduces to |CfL/Rf*L/R7| EV%A”aﬂ(lcﬁm(2ﬂa’)2Ci;~A,~A;).
For i=j=1, u;(2na’)*C,;~V? as given in the
Appendix of [38]. Using the same,

For i = 1, j = 3; ku7(27a/)2Cy5 ~ Vi, we have

= W _Epaaed. (1)

Ksz‘] KA3A3

|IC

iy 3
eLery

For i = j = 3; kqp7 (27! )>Cy5 ~ V9 and

W -~ 62\ ~, ~
Co] = (el (52)

N

K, 2,K 4,2,

For i = j = 2, K37 (27 )2Cys ~ V5 and
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77 28
Y~ ~ For i = j =4, k5u7(2na')>Cy3 ~ d
TSR PR . — )y W7 NN B A U
K, 1K -
A A A Ay _ V%f N
) Canies| == (VE A A0, A, (55)
For i =2, j = 4, K3u7(27/)*Cy3 ~ Vi and \/ Kaa, K a2,
Cp o] = Vief =( fV%) A4D. A (54) Substituting the results given in Egs. (50)—(55) in Eq. (46),
kK k. - 25 P the volume-suppression factors corresponding to scalar-
A Ay A scalar-photon vertices are given as follows:
Ci e, = f(VBc0s?0, — Vi cos b, sin 0, (e + e~ )ebo + Visin®6,),
Ce,é,y = F(VBsin?6, + Vi cos 6, sin 6, (e + e%<))e e + Viicos®d,),
Ciiiy= f(Vicos?0, — Vi cos 0, sin 0, (e + e~iu))eifu + Vissin?d),),
Ciiyy = = f(V#sin26, + Vi cos 0, sin 0, (e 4 e=9u))e%u + ViEcos26,), (56)
where ¢, and ¢, are phase factors associated with C -5 and Cu iy [we consider the same to be O(1)]. Now, the

Lagrangian relevant to the couplings involved in the one- loop dlagram shown in Fig. 1 is given as
L=Cpyanfifi P +C; g ffe P +Cpz o fnfL A +C o frfr A, (57)
where, from Egs. (38)—(45), we have
~ p— 7 —1 ~ p— -3 ~ p— ~ p— gy
Copeizol =V, |Coperiol =SV, Coreiol = 1Coizpl = V77,
|CuLf¢;i§’| =V, |Cuku;i?| =V, |Cu;§f4LZ?| = |Cuzaki§’| =V, (58)
Writing f1 aswellas fr given in Eq. (57) in terms of diagonalized basis £ and f5, the equation takes the form of Eq. (35):

l+7ys 1 —ys 0
2 + (CxlofRfLDfll + ClUjR]‘Rszl) 7 ¢f1j’

1 +7ys
2

Lin :)_(f<(C/10foLDf11 + ClOfoRDJZI)
+7.((C D +C)(OfoRD ) +(Cp,; 7 Dp 4+ Cyp, s D )ﬁ b A +H (59)
Xf Off 2 e AffL A rfr S 2 s ©

Using Eq. (36), the EDM expression will take the form

| _ ™y [ 1 gk
o = @y [z ™ Cars CanasiPri P + g O P i) 05, B s
i 1 J1
! g2
+ o Im(Cy 1 CoriePra L + Civg, 7 Cogif, PP, 95, B mea) | (60)
f2 2

Considering f; = e, g, incorporating the results of the interaction vertices as given in Eq. (58), and using the assumption
that the phase factors associated with effective gauge couplings are O(1), the dominant contribution of the electron EDM is
given as

- . . 2 2
& = mj.o (sz_% s 06 S ¢€> C€~2€~2*7 B mﬂjo _ CE[ €1 ¥ B mﬂjo (61)
e (47)? m5~2 m; me~l mz2) |

For f; p = uy g, the quark EDM will be given as
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N . 2 2
ﬂ :mzo(fzv ;Sll’leu smgl)u) |:C,;2,;2*yB(m/{o> _C,;l,gl*},B< /fo):| (62)
e (47)? me m;» m mg 2
Putting the values® of Cse+, and Cy -, as given in Eq. (56), we get
(VL : 2 m> ) m2
d,| _ mp(fVssing, s1n¢e)v%} cos HeB f sin“0, f
elp (47)? mg} mg,2 m%, mz2 ’
P2yl . 2 . 2
dy _mp (fv- s1n29u sin¢,,) V7 cosi@u B o\ sm220u B ms . (63)
e|p (4r) m mg,» m; mg >
|
2IM ;5 | 2 72491 1
Here, sin Gf = S . As discussed in Sec. II, ﬂ = %m%(f ;} ’) % V% (V_32>
O, - P, ¢lp (4m) Vi
in our model, we have M} = M7 = M} = M} ~ Vm%Z. f B3Rl
Using the same, we get sinf, =sind, = 1. Also, we (47)%m
assume qﬁe «=(0,3. As explained in Sec. III, s
mE: =m: =m% . = Vm;2 Utilizing the same and the =107" cm (66)
S f2 fu/fr
value of the gaugino mass m?2 sz, we get
# 2. Neutralino contribution
The physical eigenstates of the neutralino mass matrix in
5 X (_) the context of the N/ =1 gauged supergravity action are
" m
B< ,lo> _ 2 | + e given as [38]
mi2 2 mi2
fi 2( 20 _1) fi 1__1 ~ ~
mj:.’_z f12 )?0 —Hg + HB{ “m Vg_gm
~ - = 0~ xms,
N m};z _%’ (64) 1 \/E X 2
m= 70 770
20 =0 L~ S\ 10 HL¢+Hd ~ 12
)(2 (MPfV6>ﬂ + \/E 7 m){g nm%s

where for i =1, 2, f; = (e}, €,), (ul, u). Incorporating
the value of masses in Eq. (63), using f ~ V7 as obtained

in [37], and Calabi-Yau volume V ~ 10°, the dominant
contribution of the EDM of the electron will be given as

ViV .
i @8;2 )Xf‘r(w]jmﬁ

f 3 51 2

(@

1073 (65)

and the dominant contribution of the EDM of the neutron/
quark will be given as

*We only incorporate the volume suppression coming from
C;é+, and Cy -, The momentum dependence of both vertices
has already been included in the one-loop functions A(r) and
B(r).

A~ =10 (Mifvfs> (HS + HS); myp ~Vimy,  (67)
. :

where v is value of the Higgs VEV at the electroweak scale.
HY and HY correspond to an SU(2)-doublet Higgsino. 79 is
purely a Higgsino, and 79 (79) are formed by a linear
combination of a gaugino (Higgsino) with a very small
admixture of Higgsino (gaugino). Since neutralinos are also
very heavy, we evaluate the contribution of the same to the
one-loop electron/neutron EDM involving heavy sfer-
mions. Though the neutralino (x?’z)—fennion—sfermion cou-
plings are complex in this case, the phase disappears due to
presence of both the complex coupling as well as its
conjugate in the EDM expression. Therefore, the nonzero
EDM arises due to CP-violating phases appearing from the
mass eignstates of the sfermion mass matrix only. The one-
loop diagram is given in Fig. 2.

We have already calculated the contribution of gaugino-
lepton(quark)-slepton(quark) vertices in Sec. IV A. Now we
estimate coefficients of the vertices corresponding to
Higgsino-lepton(quark)-slepton(squark) interaction vertices.
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FIG. 2. One-loop diagram involving neutralinos.

In A = 1 gauged supergravity, Higgsino-fermion-sfermion
interaction is governed by [39]

L (D,-D]W);(Z)(ji

0| D

f~F-H?

+igap’ {5 Oyt + T 5 - Daly*
1 B .
+ ) (0, K5 -ay, - C.C.))(’] . (68)

Using this, we evaluate the coefficients of Higgsino-
lepton(quark)-slepton(squark) interaction vertices. For an
incoming electron (e} ) interacting with a slepton as well as a
neutralino, the contribution of the Higgsino-lepton(ej)-
slepton(e; ) vertex in the gauged supergravity action of
K

Wess and Bagger [39] is given by 5(Dz Dy, Wiy +
L g A - _

lng])(Zf[o-a)(A' +FA1A]0"9‘A1)(A] +%(8A3K0-A1 —c.c. ).
2% and x¢*' correspond to an SU(2), Higgsino and its
charge conjugate, ! corresponds to an SU(2), electron,

and A; corresponds to the left-handed slepton. In the
diagonalized set of basis, g;z = 0. Since SU(2) EW

symmetry is not conserved for the Higgsino-lepton-slepton
vertex, to calculate the contribution of the same, we generate

a term of the type eLéLI:IEH . wherein e; and H, are,
respectively, the SU(2), electron and Higgs doublets,

I, is also an SU(2), doublet, and H{ is an SU(2),
Higgsino doublet. After giving a VEV to one of the
Higgs doublets H;, one gets the required vertex. By

considering a; — a; + VM p and further picking up
the component of D;D; W linear in z; as well as linear
in fluctuation (a; — VM p), we see that egiDl-Dél W~
Viz;(a, — VSMp). As was shown in [38], egD,DAI W~
0(1)e*D,D,  W. Utilizing the same, the magnitude of the
physical Higgsino(H¢ )-lepton(e; )-slepton(é; ) vertex after
giving a VEV to Z; will be given as

V_%<Zl>

———
\/KZ,ZIKAIAIKAIAI

Ciie, s | = Aygyh =V (69)

o~
Hijepey
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The coefficient of the Higgsino(H¢)-lepton(u; )-
slepton(u;) vertex can be determined by expanding
D,;D LW linear in Z; as well as linear in fluctuation

(A, — ViMp). The magnitude of the same has already
been calculated in [38] and given as

V(Z)
CLMLI[L‘ ~

£ 7 ’212)(631)( A=, (70)
\/KZ 2 KAz Ay KAz Ay

ICy

To determine the contribution of the Higgsino-lepton(e; )-
slepton(ey) vertex, one needs to expand % (Dz,D3, W) in
the fluctuations linear in .A; about its stabilized value.
Considering a3 — a3 + ViEM p and picking up the
component of D;D;W linear in a3, we have
egD,-DAl W= €§D1Da'1 W ~V7%(a; — VEMp). The con-
tribution of the physical Higgsino(H$ )-lepton(e; )-
slepton(éy) vertex will be given as

Ca ()

e €y |

Similarly, one can calculate the Higgsino(H )-lepton(u; )-
K

slepton(iig) vertex by expanding & (Dz,Dz W) in the

fluctuations linear in A, about its stabilized value.

Considering ay — as+ VM, and picking up the

component of D;D;W linear in a4, we have

K
& (Dz, D3, W) =e*D;Dg W ~V(ay — V'Mp). The

coefficient of the Higgsino(Hj )-lepton(u; )-slepton(iiy)
vertex will be given as

Vi

\/Kzlzl K 4,2,K 4,2,

Ca; APyt =V (12)

Uy Uy |

For an outgoing electron ey interacting with a slepton
as well as a neutralino, the contribution of the
Higgsino-lepton(ey)-slepton(e; ) vertex is given by
expanding é(DZ]D A4,W) linear in A;. Considering
a; — a + VM p and picking up the component of
D;D,,W linear in a;, we have egDID/hWE
egDiDa3W~ Vi(a; — VSMp). The contribution of the
physical Higgsino(H¢ )-lepton(eg)-slepton(éy,) vertex will
be given as

|CH;

erey |

= 8 - - AyZipe™ =V, (13)
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Similarly, considering a, — a4 + VoM p and picking up
the component of above term linear in a;, we have
eg’D,D&W = egD,»DHAW ~V5(ay — ViMp). The con-
tribution of physical Higgsino(H )-quark (ug)-squark (i)
vertex is given as

V%
-

1Cit, i, | ——
\/Kzlz, K 4, 2,K 4,2,

Hpuguy,

APy = V3. (74)

The Higgsino-lepton(ey)-slepton(ez) vertex also does
not possess SU(2) EW symmetry. Therefore, to calculate
the contribution of the same, we generate a term of the
type egérH, H,, where H; is one of the SU(2), Higgs
doublets. Thereafter, we expand %(DZID Iy W)y Ziys
linear in Z; and then linear in 45 about their stabilized
VEVs. Considering a3 — az + VM, and further
picking up the component linear in z; as well as linear
in fluctuation (a3 — VM p), we get e’f(D,»D A W=
|

=|C

|CflieLe"R|

_4 —3
|CI~{2uLu~L| =V % |CI~12uLu~R| = |CI~1LuRziL| =V %

Hperey

PHYSICAL REVIEW D 90, 085023 (2014)

egD,-DL—hW ~ V(7)) (a3 — VEMp). The magnitude of
the physical Higgsino(H )-lepton(eg)-slepton(éy) vertex
after giving a VEV to Z; is given as

Voi(Z))

———
\/KZIZ,KA3A3KA3A3

AsyZiys = V5. (75)

|CHLeRe~R |

The contribution of the Higgsino-quark(ug)-squark(itg)
vertex has already been evaluated in [38] by expanding
K

& (Dz,D .4, W)y x* in the fluctuations linear in Z; as well
as A, about their stabilized VEVs. The magnitude of the
same is given as

5

Vis(Z))
——————
\/Kzlz,KA4A4KA4A4

The results of the coefficients of both slepton(squark)-lepton
(quark)-Higgsino as given in Egs. (69)—(76) are as follows:

1Cit, i, Agyhiye = V5. (76)

LURUR

| = V‘g,
|CI:ILuR\u~R| =V, (77)

Utilizing the aforementioned results and the results of various gaugino-fermion-sfermion vertices as given in Eq. (58), and
by adding the contribution of the same according to Eq. (67), the volume-suppression factors coming from the neutralino-

lepton-slepton vertices are given as

—3 T\ — —2
|C)(?eLe~L| = |CX(2)€L6~L| =V7, |C)(geLe~L| Efv l’ |C)(?€L€~R| = |C;(geLe'R| =V,
=15 —2 =15
|C)(geLe~R| = fv %, |C)(?eRe~L| = |C)((2JeRe~L| =V, |C;((3)eRe~L| = fv K
_10 T =3
|C)(?€Rék| = |C)((2)6R6~R| =V ?, |C;(§eke'k| = fv 3. (78)

The volume-suppression factors coming from the neutralino-quark-squark vertices are given as

5

_4 Ty =4 —3
|CX(1)L!LM~L| = |C;((2)uLu~L| =V 2, |C)((3)MLL5L| = fV >, |C)(?ML1[R| = |C;((2)uLu~R| =V 3,
T 14 3 T 914
|Clg“L”~R| = fV ’ |CX?“R“~L| = |C)(8MRM~L| =V, |C)((3JMRL[L| = fV %,
10 ~n 3
|C)((]JMRM~R| = |C)(guRu'R| =V, |C;((3)MRL[R| Efv 3. (79)

The interaction Lagrangian governing the neutralino-slepton(squark)-lepton(quark) interaction can be written as

L= ;C)(?foLfoLX? + C)(E-)J"L.I"NRfoR)(EJ + C)(?fRfoRfLZ? + C)(?fRf?RfRfRX?’ (80)

where f = (e, u). Rewriting f; as well as f in term of the diagonalized basis states f; and f>, the equation takes the form
of Eq. (35):

_ I+ys 1 —ys 0
Ling _)(f<(c;(?foLDf11 + C)(?foRDfﬂ)T_'— (CX?fRfLDfn + C)(?fRfRDfZI)T ¢f1)(i
1+J/5

_ 1—7s 0
+xr <(Cx?.foL Di,+Cpp i Prn) ==+ (Cppi P + Cpp i Pn) —5— )cbfzx,-- (81)
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Using Eq. (36), the dipole moment contribution will follow:

2
d mso 1 m~0
fl Zi | b ~ ~ * ~ ~ / i
? . - i;} (471-)2 {mi] Im(c)(?foLC){?fRfRDfllDfZI + C)(?foRC)(?fRfLDfZI fll)Q (m];]z)
1 mgo
~ ~ * - ~ * / Xi
+ mTIm(C)(?foL C){?fRfRDleszz + CZ?foR C){?fRfLDfZZDfIZ)Q < ms » >:| : (82)
f2
Using the values of the first-generation scalar/slepton mass mj; = V%m% and mgp = my = V%m% My = V%m%, one gets
2 2 2 2 2 2
ms, ms, 1 mZ,  m: ms, m, 1
N I O . ) R
myz My 2 2(_‘2(1)_ 1)2 Myz My2 myz myz Vo
My
2 2 2 2
P p— IR U (o | TP D AV (84)
mj 2 2(”’;2_ 1)2 mg2  Mg2 ms2 ms2 m}%(g
™2
Utilizing above and the results of Cx"eL/ReL/R as given in d, Vﬁm3 . 1
Eq. (78) and further simplifying, the dominant contribution o =T N2 JVs | x V= Vm?2
- X 4 P (471') V_ msy
of the EDM of the electron will be given as : 2
f]ﬁ+3%—%—%—l
d, 2ms(V 3 sin 6, sing,) Csiry Cocry (47)?ms
Zel = 2 = 222 _ 121 . (85) 3
¢ Xi (471') Vio méz m~1 = 10_37 cm, (88)
« . . 0y ur . N
lsimni%li{ ESlfzig the results .Ef o L/tf L};R Ei) I\g/[“’e;l ﬁn and the numerical value of the EDM of the neutron/quark
q- , the dominant contribution of the of the il be
quark will be given as
; . . d sz 1
d, V%m%(V‘% sinf, singp,) [Cpp iy Ciiiiy = — <flﬁ> X V‘]9_7< 2)
- = } PRy S——5—|. (86) €l (4”) Vi Vg
€l (47)*Vae My, Mg, ’
2% et
Incorporating the value of C; ;,, from Eq. (56), one gets (47)*m
— 10-34
d, V%m%(V‘§ sind, sing,) - [coszﬁe sinzee] = 107" cm. (89)
— = 45 — s
e Xi (477:)21}% méz mé} . . . . . .
e (V‘% sinf, sind,) ) - 3. R-parity violating vertices contribution
d_ = 2 23“ " 2§}~c [COS Ou _sm 9'4} ) We have explicitly taken into account the contribution of
e, (47)? Vs mlzgz mf;l R-parity violating couplings in the context of the N = 1
(87) gauged supergravity limit of p-split SUSY setup discussed

Incorporating the value of sinf, =sinf, =1, sin¢, =
sing, = (0,1], f~V™®, and value of scalar masses
mg, = m;, = V%m%, the numerical value of the EDM of
the electron for this case will be

*We use the assumption that the complex phases appearing in
the effective Yukawa couplings are of O(1).

in [38]. Although one would certainly expect a very
suppressed value of the EDM because of the presence of
heavy sfermions as well as vanishing contribution of
R-parity violating vertices, we discuss the effect of the
same on the EDM of the electron/neutron just to compare
the order of magnitude of the EDM with respect to the
R-parity conserving loop diagrams. Though the R-parity
violating interaction vertices are complex but due to the
presence of both a R-parity violating vertex as well as its
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conjugate in the one-loop diagrams as given in Fig. 3, the
complex phase disappears and, therefore, contribution of
the same to the EDM will vanish. However, similar to the
neutralino and gaugino one-loop diagrams, the nonzero
phase corresponding to the CP-violating effect can appear
only by considering the chirality flip between the slepton
(squark) fields appearing as propagators in the one-loop
diagram. Because of chirality flip, the matrix amplitude
depends on the off-diagonal component of the slepton
(squark) mass matrix, the contribution of which further
depends on complex trilinear coupling A;;x as well as
supersymmetric mass parameter .

The one-loop Feynman diagrams for the electron EDM
mediated by R-parity violating interaction vertices are
given in Fig. 3. Using the analytical results as given in
[63] to get the numerical estimate of the EDM of the
electron, we have

d
Ce |CeLuRdL| Ciciicry 3 |Au | smH (Singy B(ry )
€ |rRpv

_|CeL¢~1Lu‘1}|2CdL dLy3|Ad |_Sln6d51n¢Ad ( uk>

ms
~Coyisa, I*Cususry 3 |~Ad| 51n9d51n¢A A(ry,)
5 e mg; . .
_|CeLdLu | CdZdLy§|Auj|WSIHeuSll’ld)AuA(rdk),

i

(90)

where r(, 4, = w /d /m and the form of one-loop

functions A(r) and B( r) is deﬁned in (33).

er d €R

—_——_x._————
e d €R

(©

One-loop diagrams involving R-parity violating couplings.

FIG. 3.

PHYSICAL REVIEW D 90, 085023 (2014)

One can draw the similar R-parity violating one-loop
diagram to calculate the quark EDM (u) by replacing
(er,egr) <> (up,ugp) and u® <> e°. The analytical expres-
sion in the case of the quark EDM will be of the following
form:

d, mg, . .
_|RPV - |Cu, eqdy | Ce egr |~Aej|—§k Slnee SIH¢AEB(de)
- updy e, ’C deL}/ 3 |~Ad |— sindy Sin¢AdB(rek)
- |CuLEfedL |2C€R€R Y 3 |~Ad | Slned Sin¢AdA(rek)
-|C updyes, >Cy cdyy € e| A, | sm9 singy A(ry,).

6

o1

The magnitude of the coefficient of interaction vertices
Ce,icas CEL;M, CuLé;dL, and CW}L% have already been
obtained in [38] and given as

C =C = C“Lé;gdL =C - . Evi ll/)xa (92)

epiipdy, e dus, updy e,
where ¢, is the phase factor associated with complex
R-parity violating interaction vertices.

The volume-suppression factors coming from the
Cacicryr Caozeryr and C 5 . vertices have already been
obtained in the case of gaugino one-loop diagrams and
given as

€L ut €R
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62, 537,
C'};‘e'};‘e*y = Cg;g?}, = V45f, C;IL;'L*J/ = Wf (93)

We set Cypy|pw to be the charge of the quark d;. The
reason for the same is as follows. Consider the following
kinetic-term-like term contributing to the quark-quark-
photon vertex in the N/ =1 gauged supergravity action

|

PHYSICAL REVIEW D 90, 085023 (2014)

—ap ~ap B a .
U XA gaya 02 Py
of Wess and Bagger: gyuy9,,a, 3122 — “2"2K —.
(\/ (1202) (\/ (12612)

For the purpose of demonstrating the possibility of
obtaining a SM-like quark-quark-photon coupling at the
EW scale, let us assume that all moduli save T'g, a, have

been stabilized at values indicated earlier and (n?,) ~V
max

and, consequently, we take the Kihler potential to be

3
K~=2 1n[<TB + Tg — ay{Cya, + Cyi{a;) + Cyz(as) + Cyzlas)} +c.c. + V§>2 + V]

3
= —2 111 |:<TB + TB - C2§|a2|2 - aziz + H.C. + V%>2 + V:| . (94)

Consider having frozen all moduli save Ty and a,. Then

from
3 ) 1
(gTBTB gTBa2> B 1
_ - 2
94,75 Yara, 91,75 9ara, — |9T3212|
Yara Y
X < 202 BY2 ,
—Ya,Tg 91Ty
if gr,4,lgw is small such that
2 B
|gTBEz2|EW > gTBTBga2&2|EW, (95)
then
T.T gazizz a-a gTBTB
9" gy ~ 3 9% gw ~ 5 e
| Tya, |9T3a2|
Tpa _
9" g ~ lpw = large. (96)
Tga,

Using (94), we evaluate (_95128@[(, 878(9TBK’ CF)TBB[IZK@TB@
and 07,0, K. If 97,0, K|gw ~ 35 <1 such that (95) is
satisfied, then

— — 3
3((Tp 4+ T — Cyslas|* — arZy + Hee. + V%)>f5w
~([(Tp 4+ Ty — Cy3las|* — arZ, + Hee. + V%)% + V) Ew-
(97)

Using (97), one sees that

8TBga2TB |Ew near (97)

9(Cpay + %)
(Tg + T — Coslaa]? — @y + Hee. + VE) + V]2
~ V7R, (98)

assuming <al.2,3.4>|EW ~ 0(1><al,2,3,4>|M .

5

Ja,a, lew ~ 1072, then from (95), one sees

If ga2&2|MSN

Noting that

pe 97"
Ty, = 5 (01,94,7, + 0, 97,7,)
gazaz
+ ) (01,92, + 0u,97,a,) (100)

we see that one can get a large contribution to (100) from
gazT”aTBQaZTB lw given by

10—6.5

(101)

aT _
g* BaTBgazTB|EW.V~]O4 ~

Let us look at the implementation of (99) and its conse-
quences. From the above calculations, one notes that (99) is
identically satisfied if (97) is satisfied. Consider working
with 75 5, 2', ay, ... instead of T, 7', ay, ... having frozen
G“ and other open-string moduli. Noting then that

2 1 K‘r T _KT Tg
K — 5 BTB BTsS
KfS?SKTB%B - |K75‘?B| _KTS%B K

), (102)

T5Ts

: / —1

and assuming K, ; |pw~0 <1, K,SfS|MX~KTS%S|Ew~V ,
—3 . . 2

KTS‘T'B|MS ~ Krs%B|EW ~ V75 implying K, 7, |* > K.z K

one obtains

T57p sTs' 1pTp?

. K. ; . K, -
K|y oY gy ey Keslew g

|K15f3|]25W |KTS‘?B|]23W
_ 1
KTSTR|EWNWNV§. (103)
57 IEW

Equation (103) implies
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Fs|y ~ K55D W~ Fo5|gy
= ¢*(K™sD, W + KD, W)

10 1
~ <5IVT+V)WL3/2N1—} (104)

So, the F*s term (potential |F*s||?) is one-loop RG
invariant. Further, the complete F-term potential

Viy, ~ e“K55ID, W* ~Vm3
~ eK(K™%|D, W|* + K| D, W|?
+ Ks%5D, D: W+ H.c.)Ly
~ (§VF + V)mg/2

is also one-loop RG invariant. So, the quark-quark-photon
vertex can be made to be of O(1) for § ~ 10713; i.e., one can
hope that the coupling C-, ~ O(1) for f(fermion) = e, u.
A(ruk/d,(/ek) =
|Ael =
Using

For Pug/defer) =
B(ry /4, e,)=1. As mentioned in Eq. (30),
|AZ —pcotfl = Vms, | A,|=| Ay —pcotf|=Vms.
these results and the results of the coefficient of
interaction vertices as given above, considering sin ¢, =
sing, = (0, 1], sinf, = sinf, = 1, the magnitude of the
dominant contribution of the EDM of the electron will be
given as

2 2
m(uk/dk/ek)/mf,-’

d.
e

2 Vanngbet

5 =103 GeVl=10% ¢
RPV 73 Vim m;

my,

(106)

and the magnitude of dominant contribution of the EDM of
the neutron/quark will be given as follows:

dy

e

P-4
~————m, = 107" GeV™! =107% cm

RPV Vim;

[T SY

(107)

B. One-loop diagrams involving neutral
scalar (Higgs) in the loop

In this subsection, we estimate the contribution of one-
loop diagrams involving fermions and Higgs as propaga-
tors to the EDM of a fermion. The fine-tuning argument
given by Arkani-Hamed and Dimopoulos in [1] is not just
able to provide a light Higgs by diagonalizing the Higgs
mass matrix; it is important to give a reasonable order of
magnitude of the EDM by considering diagonalized
Higgs mass eigenstates (light Higgs as one of the eigen-
states of the Higgs mass matrix) as scalar propagators in the
one-loop diagram. In the discussion so far, we have argued
that CP-violating phases in the one-loop diagram’s

PHYSICAL REVIEW D 90, 085023 (2014)

contribution to the EDM of an electron/neutron are accom-
plished by considering the off-diagonal contribution of the
sfermion mass matrix at the electroweak scale. In this
subsection, we will discuss the one-loop diagrams in which
nonzero CP-violating phases appear through mixing
between the Higgs doublet in the Higgs mass matrix.
Using the same approach, we have already calculated the
mass of one of the Higgs formed by the linear combination
of two Higgs doublets H, ; to be light (identified with
position moduli Z, , in our setup; see [37,38]). Now, we
implement this approach to calculate the nonzero EDM of
the electron/neutron by considering the eigenstates of the
Higgs mass matrix as propagators in the one-loop diagram.

1. SM-like Yukawa coupling contribution

The one-loop diagram mediated by a SM-like Yukawa
coupling is given in Fig. 4. The effective one-loop operator
given in Eq. (31) can be recasted in the following form:

Lin = Df <CfoR

+ H.c.

1+y
—=+Cpipn, 5>¢Hﬂff
(108)

For i = 1, 2, the above equation can be expanded as

_ 1- 1
Line=2Xs <szfRH. > >+ Chpon, >¢H X

_ 1—ys
e (szfRHz >

where ¢y and ¢y, correspond to the eigenstates of the
mass matrix of the Higgs doublet and y; corresponds to a
fermion. Using Eq. (23), the aforementioned vertices can
be expressed in terms of an undiagonalized (H,,, H ;) basis
as follows:

1+y
+Cri pon, >¢Hsz +H.ec.,

Crretty = D Cri o, + D, Crs oy

Cri potty = Dy Cri pont, + Dy, s o, (109)

In N =1 gauged supergravity, the interaction vertices
Ce: ey, and Cye o, m, Will be given by expanding

D 4, D4,W and D 4,D4,W, respectively, in the

- .-

Ti V\,\,L I
FIG.4. One-loop diagram involving scalar (Higgs) and SM-like
formions.
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fluctuations linear in Z; about its stabilized VEV. The
values of the same have already been obtained in [38] and
given as

Seff
for f=e. Co;epti,in, = YZ,4,4,
O(Z; — V) term in egDAl D W
\/KziziKszll K-A3-;13

47 -
=V Helty.

fOI' f =u, C“z“RHu/Hd = i/eszAzA4
O(Z, - V) term in e§DA2DA4W
\/KZ| Z KAI-;ll KA3,213

19 -
= _ﬁe"/’yu s

(110)

where e/?ve and e'?v. are the phase factors associated with
complex effective Yukawa couplings.
Going back to Eq. (109),

Coseqty, = VHe®: (D + D).
Coopt, = Vieit. (Dy,, + Dy,,).
Cug gty = Ve (Dyy +Dy)),
Cu gty = VRe3 (D, + Dy,.). (111)

Now, the one-loop EDM of the electron (quark) in this case
will be given as [64]

2

mef 1 mf
= ——Im(Cp C3. Al ——
e S

1

d

e

Hi,

1 . m7
+m—%_121m(cf2fRH2CfoRHz)A m—%{z R (112)

where m, corresponds to the fermion mass, and my, ,
corresponds to the eigenstates of the Higgs mass matrix.
Since we are considering only first-generation fermions in
our D3/D7 u-split SUSY setup, the physical mass eigen-
state of the fermion is the same as the usual Dirac mass
term corresponding to the first-generation lepton/quark
only. Using the fact that the phase factors associated with
the Wilson line modulus A/, (identified with a first-
generation L-hand lepton/quark), Wilson line modulus
Ay (identified with a first-generation R-hand lepton/
quark), and position modulus (identified with a Higgs
doublet) are distinct, and the effective Yukawa couplings
also produce a nonzero phase factor, the masses of SM
fermions can be complex. Therefore, we assume that the
overall phase formed by adding all phase factors associated
with the fields and the coefficients of the Yukawa coupling
add up in such a way that the overall phase vanishes and the
fermion mass is real.

PHYSICAL REVIEW D 90, 085023 (2014)
Using (111),
Im(cezeRHzczzeRHz) = _Im(ce*LeRHl C:zeRHl)
1
=5 V75 sin 6, sin ¢,
Im(CMzMRHz CZZ”RHZ)

= —Im(cuzuRHl CZZ“RH] )

19 . .
V7 sin ), sin ¢,

1
2
2|aB|

\/ (Miy, =M, P+4(B)
given above, sin @), € [0, 1]. We also make an assumption
that ¢, 3(0,5]. Using Eq. (33) and the value of
m, =0.5MeV, my =125 GeV, and my, = V%m%,

2

A() = A(n';g ) = 1. Using (33), the dominant contribu-
Hy H

Given that sin8,, = using the values

tion of the electron EDM in this case will be given as

d, 103 /1 1
— Faaa Vo
ely, 4(4r) my  my,

= 10720 GeV~!

= O(1073*) cm. (113)
The numerical estimate of the neutron/quark EDM will be
given as

d, 103 W/ 1 1
T =5V
€y, 2(4r) my  my,

=102 GeV~!

= O(1073) cm. (114)

2. Chargino contribution

The one-loop diagram corresponding to the electron
EDM mediated via Higgs and chargino exchange is given
in Fig. 5. Because of the presence of heavy fermions and
light as well as heavy scalars (eigenvalues of the Higgs
mass matrix) existing as propagators in the loop, using an
analytical expression of the one-loop EDM as given in
Eq. (36), one can expect an enhancement in the order of
magnitude of the EDM. We explicitly analyze the con-
tribution of this loop diagram to the EDM at one loop in the

- -
- -
-

-
HO - ~
i ~
; JHO
s Al
L A}

! !
I 1

ef, | o | eR
xt "‘\,k/Lxr

FIG. 5.

One-loop diagram involving Higgs and charginos.
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context of N' = 1 gauged supergravity action. One cannot
have a similar diagram for the quark because of the
violation of charge conservation. So we use the loop
diagram given in Fig. 5 to get the analysis of the EDM
of the electron only. The effective one-loop operator will be
of the following form:

mt = E )Cf (CfZ)(JrHO

. L+y
+)(f(cq;)(jH° 5>¢H0)(j +H.c....

ij=1,2.

)¢Ho;?j

(115)

Using Eq. (23), one can represent the coefficient of
interaction vertices in terms of the undiagonalized basis
of the Higgs mass matrix as follows:

C, TH) = Dh“C T HY —i—DhlzC ZTHY»
C L}{+HO - DhHC +H0 + Dh22C +HU
Ce*)(fHO = Dh” Ce*)(fHB + DhQCe;)(]THg’
Ce}%- =D, C,. aH) t thzce;;(;H‘;- (116)
As given in the Appendix,
7 =-H L}V% A
1 MP i
X1 =-H; + (L~ 2);1{, and My = V%m%,
P
~ UV ~. .5\~
Xy =4+ (M_Pf “) ‘s
77 =i + (——FVi)Hy, and =V
Xo =4 M_Pf d» and. mge = Vsm;.
Using the above
V ~.5
C +H0/H0 _CeLH;rHO/HO‘i_ MPfVG C A+HO/H0’
UV~
Copyymg = Copirmymg T Mpf © ) Cop iz mme
72
Corrrt/ng ==Copitznt/ms + (MPf V) exdi HO/HY
CE;XEHS/HSZC A+H0 H0+< > HB/H?’ (117)

The interaction vertices Co iy Ho and Covirzm /0, COT-
responding to Fig. 5 will be given by expanding the
egDZ]D A, W and eli(DZlD A, W in the fluctuations linear
in Z; about its stabilized VEV. The contributions of

PHYSICAL REVIEW D 90, 085023 (2014)

egDlealW as well as elT(DZIDaSW have been given in
terms of the undiagonalized (z;,a;) basis in [38]. We
assume that egD,-DAIWNO(l)egD,-DaIW. Since the
EW symmetry gets broken for the Higgsino(H, )-
lepton(e; )-Higgs(HY/HY) vertex, we evaluate the contri-
bution of the same by expanding egDZ]DaIW in the

fluctuations linear in z; as well as (z; —V%) and then
giving a VEV to z;. Doing so, the magnitude of the
coefficient of this vertex will be given as

(Z)O(Z; = V%) term in englDAl w
(Kz,2,) Kz,

for V = 10°.

|Ce H*HO/H0| ~

=V, (118)

Similarly, the contribution of the physical Higgsino(Hy )-
lepton(eg)-Higgs(HY/HY) vertex will be given as

O(Z;— V%) term ine:Dz D4 W
\/KzllezlleA.%-;l.%
for V = 10°.

|Ce;H;H2 /H3| ~

=V, (119)

The coefficient of the interaction vertex ej — HY —;1;’
corresponding to Fig. 5 will be given by Eez—HB—Z? =
gYMgA]TBX*B;?AUl} + 0y, TBDB)"(“_“'A}. Since 04, T does
not give any term which is linear in Z;, the second term
contributes zero to the given vertex. By expanding g 4,7, in
the fluctuation linear in Z; around its stabilized VEV,
in terms of the undiagonalized basis, we have g ; —
—V(z; — V%) and gy ~ V%. Considering Gym9rya, ~
O(1)9ym9r,a, as shown in [38] incorporating the values
of X8 = —6ix3u;Qr,. Kiu7 ~ 5 and O, ~ Vi(2md )2 f, we

get the contribution of physwal gaugino(4;)-lepton(e; )-
Higgs(HY) interaction vertex given as follows:

_ yT —477
grm9r,a X* ~Vf Z M0 = F(V ).
\/ KAlvzllKZlZl

|CeLI1jH2/H3| =

(120)

To calculate the coefficient of interaction vertex

- HY - /fi‘, we need to expand g 4,7, in the fluctuation
quadratic in Z; to first conserve SU(2), symmetry and
after giving a VEV to one of the Z;’s, we get the required
contribution
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- T ~ — F ~
Gym9r,a,X"* AZV 9<Z>f21;‘(;‘3/10

kAzijZlZl
_ oy, (Z)
- f(V )

Incorporating the results given in Egs. (118)—-(121) in
Eq. (117), we have

|Ce A+HO/HO| -

(121)

L ol
|Ce;;(1+H3/Hg| =V, |Ce;;(;H3/Hg| =),

- (Zi)
|Ce;;(2‘H8/H2| =fVv M.

|Ce;,;(]‘H8/H2| E}V_%? (122)

P

Now, the one-loop EDM of the electron in this case will be
given as [64]

/
-y My Qe
- (41)?
2

1 s
X [mqum<(c +HoCRX HO) (m?{()))} (123)

where m,+ and mzo correspond to the mass eigenstates of
; :

d
e

Ve

the chargino and }figgs mass matrix. The effective charge
for this loop diagram will be Q’ 0 = Qer,-‘x;y where
Cx,*x,’ = CH*H 7 Cx*;ﬂ - CF/T
both the Higgsino-Higgsino-gauge boson vertex and
gaugino-gaugino-gauge boson have already been obtained
in the context of N' = 1 gauged supergravity in [38]. Using
the same,

The contributions of

T — 7 _ﬂ
C Ty = fV7s, Xz)(zV = fV7B. (124)

Utilizing the results of the C e}t EH vertices given in (122)

and the assumption that the value of the phase factor
associated with these couplings are of O(1), m

59 2
Vﬁm%, m,+ — V?m%,

X2

i:msz

X
and mpy ~ 125 GeV as given in
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2 2

mzi Moo
Sec. II, sin@), = (0,1], ¢, = (0.5], and A(->~) = =" by
”lH(,) l"l)(}t

using (33), we have

d 1 L Fy
- =——— (V1w
el ﬂ(47z)2( ) Vma
= 0(107%) ecm, for V=0(1)x 10*  (125)

C. One-loop diagrams involving a gravitino
and sGoldstino in the loop

1. Gravitino contribution

In this section, we estimate the EDM of the electron
(quark) by considering the gravitino as a propagator in one-
loop diagrams despite the fact that these are logarithmically
divergent. The loop diagrams are given in Fig. 6. To get the
numerical estimate of the EDM corresponding to these
diagrams, we first need to determine the contribution of
the relevant vertices in A/ = 1 gauged supergravity. The
same are evaluated as follows: In A" =1 gauged super-
gravity, the gravitino-fermion-sfermion vertex will be given
as Lg ;7= —1V2eg,;0,¢'%'v"r"w,. The physical -
lepton(quark)-slepton(squark) vertex will be given as

A4
\/ ’CA,A, ’CAIAI
= 0, A"y,

9,4, Ay
—%’CAMJCAZAZ 0, A1 w,

= 0, A"y .

0, Ay,

|CGeLEL|

|CGuL1]L|

(126)

The contribution of the physical sfermion-sfermion-photon
vertices have already been obtained in Sec. III A, and the

values of the same are given as |C; ; ,| = V%.;llal,.;llA”,
|C”L“L'// |—V_./428 AzA/l The
fermion-sfermion-photino(y) vertex in the context of
N =1 gauged supergravity action will given by

contribution of the

FIG. 6. One-loop diagrams involving a gravitino.
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ﬁff;? = gYMgA,TBX A’V + 04, TzDBy A’y For f = e, by

expanding g, 7, in the fluctuations linear in @, around its

stabilized VEV, we have g;r, = Vi(a; —V3) and

0 4, Ty —V5 (A —V73). Assuming that 94,7,=O0)gar,

od 2 )B ~

and using X*BIKiMQBa DB=M+QB1 where Qp ~ V%f
2~ ~ -

and K3u; ~ ~— YO A Ay =

~4ﬂ7, VK42, K43, ey

fV'A 7Ny, For f=u, using 9ir, ~OMgar, =

V‘%(az - V_%) and 8A2TB — V%(Az — V‘%), we have

3 we get |C

eLeLy|

Aty = fV3 Aty (127)

The contribution of the gravitino-fermion-sfermion-photon
vertex in the context of ' = 1 gauged supergravity action

will be given as £ = —%\/EegAIT;XBA#;?AIy”y”y/W Using
the above-mentioned value of ¢ ATy GAT> and X2, the

coefficient of the physical gravitino-lepton(quark)-slepton
(squark)-photon vertex will be given as

Vof ]
C0,2,,| ~ ————=A0""1r"W,
/a2, K a4,
= fVI3ATN Y,
ViRf
|CC~;"‘L ﬁL}’|

N = A Aoyt 7V

V&K,
= VAT, (128)
The contribution of the photon(y)-photino(y)-gravitino(y)
vertex will be given £ = £e7#A[d, Aly,. We notice that
there is no moduli space-dependent factor coming from this
vertex.

The above Feynman diagrams involving a gravitino in a
loop have been explicitly worked out in [65] to calculate the
magnetic moment of the muon in the context of sponta-
neously broken minimal A = 1 gauged supergravity. We
explicitly utilize their results in a modified form to get the
estimate of the EDM of the electron/quark in the N =1
gauged supergravity. The modified results of the magnetic
moment of the electron after multiplying with volume-
suppression factors coming from relevant vertices as
calculated in Egs. (126)—(128) are as follows.

For Fig. 6(a):

7 1 1
ol =PV G )3 e g+
2

+T(e) {45

U +;] +(—1)jsin9F(€—1)[—ﬂ]/3/,t]]

(129)
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where V* is the Calabi-Yau volume-suppression factor.
Here, = my/m; and p; = m}./m3/2, j=1,2, mis the

2 J
lepton mass, and ms is the gravitino mass. m; and my are
the eigenvalues of the diagonalized slepton (squark) mass
matrix. In our setup, sinf = 1. Using m; = me
my = V2Mp,and m, = O(1) MeV, we have ,ul =y =
and u = 107" for V = 10°.

For f = e, incorporating these values, the dominant
contribution will be of the form

—m

agiv |6(a

PG )| s e=1) 43T

T(e—1)+ F(€)+a'],

(130)

~ 1
fVE(Gym? /) [18122 1872

where @’ = (3 ——1;)T'(e) is the divergent piece. Using

2
—T(e—1)= I I'(e )]f(ﬂlj + e) the finite contribution will be
given as al™|q ) = {5 L fV=8(Gym?2/x). Similarly, using
the volume- suppressmn factor coming from quark-quark-
photon vertex, we get @™, = & fVB(Gym}/x). Now
we use the relation between the anomalous magnetic
moment and the electric dipole moment to get the numeri-
cal estimate of the EDM of the electron in this case.

As given in [66], af = l fl |df|cos¢ where m; and Qy
correspond to the mass and charge of the fermion; d; is the
electric dipole moment of the fermion, and ¢ is defined as
= arg(dfm}). We consider that in the loop diagrams
involving sfermions as propagators, the nontrivial phase
responsible to generate the EDM appears from eigenstates
of the sfermion mass matrix (off-diagonal component of the
slepton mass matrix), and we assume the value of the same
as ¢df 3 (0,]. The first-generation electron/quark mass has
been calculated from the complex effective Yukawa cou-
pling (< A, yye) D N = 1 gauged supergravity, and there
is a distinct phase factor ¢, ,, associated with the same.
Using the fact that ¢, # ¢, y,, the relative phase between
the two will be in the interval ¢ 3 (0,5) ~ O(1). Hence,

d I~

= =2|m,]al™"|g, =—fV‘i_§(GNme/7r)510‘67 cm,
d 1~ 3

Gl a5 =L PV (G, /) = 10T em
e 6(a) 18

(131)

For Fig. 6(b):
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1 1

ag™ Gym? I'(e-1 ——u3

o) = FV Nmf/zz)}j[ (e )[20u 6@

=12

60

where [ = e, u.

+1(0) |~ ] + (<1 sin2ar (e = 1)

For f = e, incorporating the values of the masses and
simplifying, now we will have

. ~ 1 7
oy =TV (Gud /) |~ T e 1) ger(e)|

=/ V_I(Gwm?/ﬂ)[ 67*0#2F (6—1)—67()ﬂ2F(€)+a’},

(132)

where @' = (= gz + &#*)l(e — 1) is the divergent piece.
Picking up the finite contribution, we get alm® 6(b)=
@fV (GNmf/iz)u , and, therefore,

de

=2[m,| af™|g =107 GeV™' =107 cm
6(b)

(133)

Similarly, using the volume-suppression factor coming
from the quark-quark-photon vertex,

d
-4 =10"% GeV!' =107 cm

(134)
€ l6(b)

For Fig. 6(c):

. ~ 1 1
atVeey = fV3 GNmf/zr Z[ I(e—1) {——u +- }

= 90 9%
1 2
+T(e) [10” - §]

+ (=1)/sin2al(e — 1)[- 2#,/-””]}

As similar to the above, incorporating the value of the
masses and further simplifying, the dominant contribution
is given by

fv -%<GNmf/n>[

a(c)

1 2
yae= 131

Fle—1)+

fV3(Gym?/x) [ I(e) + a’} :

(135)

92 92
where @' =(=§—g1z)['(€) is the divergent piece. Consider-
:g fV3(Gym?/x). Again

, we get

ing the finite piece, ag™*|,

finite | 6(c

using %|6< = 2|my|a,

PHYSICAL REVIEW D 90, 085023 (2014)
d,

e

dy

6(c) €

=10"% GeV~!' = 1078 ¢m
6(c)

(136)

Hence, the overall contribution of the EDM of the electron
as well as the neutron/quark in the case of one-loop
Feynman diagrams involving a gravitino is

d,

e

d,

_ e Sefu Zefu

G e

d
+ =10"% cm
6(c)

+
6(b) €

G € l6(a) €

(137)

2. sGoldstino contribution

In supersymmetric models, the sGoldstino is the bosonic
component of the superfield corresponding to which there
is an F-term (D-term) supersymmetry breaking. In our
setup, supersymmetry is broken in the bulk sector, and the
scale of the same is governed by the F term (assuming that
in the dilute flux approximation V, <« V) corresponding
to bulk fields (F, F™,G%) where 75 and 75 correspond to
small and big divisor volume moduli, and G* corresponds
to complexified NS-NS and RR axions. It was shown
in [38], at My, |F®|> |FY"|, |F*|. From Sec. IVA, the
requirement of the quark-quark-photon coupling to be the
SM at the EW scale, we see that | F7#| is the most dominant
F term at the EW scale. To obtain an estimate of the off-
shell Goldstino multiplet, we consider the same to be
(75, x5, F?), where 75 is a complex scalar field. Here, we
identify o with the scalar (sGoldstino) field and pp with
the pseudoscalar (sGoldstino) field.

3. Mass of the sGoldstino

The dominant contribution to the F-term potential at
the string scale M, is given by V=||F*s|%, where F%s =
K2t P K D/,W.5 At the EW scale, the F-term potential
receives the dominant contribution from the ||DTBW||2
term and is estimated to be V(n,=2)|gw ~
eKK*st D, WD; W+eXK™% D, W|?, near (c5) ~ W

— V; 3
<GB> = m ylelds

82‘/ L 9 2 2 ((9(1)65)6

Gor = Vim0, 2 (), + S ).
. o) 4

For the aforementioned O(1), = — ~ 107,

(ﬂz’) = V% and the canonically normalized coefficient
Joy/ gw y

SWe note that eK(fs-B*G"@i*“’W‘)('_?jajK(Ts_.B,G"_,zi,a,,...)x
D;WD;W(I=T,,,G" 7 a;,...)=eXErG" 2 a) 50 OPK (14 .
G“,_zi,a,,...)DﬁWD,—XW([f:TS,B,G“,zi,a,); however, G;; =
0707K(T5p.G*, 7, ay, ), Gyp # 0,05K (15 5, G, 7, ay,...) as
75 is not an NV = 1 chiral coordinate.
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quadratic in the fluctuations yields the sGoldstino mass
estimate:

It will be interesting to get the contribution of the same to
the electron/neutron EDM.

To get the analysis of one-loop diagrams involving
the sGoldstino, we consider only the scalar sGoldstino
field (o,) and first calculate the contribution of the
vertices involving the sGoldstino in the context of N =
1 gauged supergravity. The coefficient of the lepton(e; )-
scalar[sGoldstino(o)|-lepton(eg) vertex has been calcu-

K

lated by expanding % (D, D4, W)z in the fluctuations
linear in 65 in N’ = 1 gauged supergravity. By expanding
the above in the fluctuations linear in oy —>0'B—|—V%M p, ON
simplifying, we have éD 4, D 4, Wy g NV‘%&rB Yy
The physical lepton(e; )-sGoldstino(o)-lepton(eg) vertex
will be given as

V3
| 5636L6;| = 2 S ~
\/k4/47G YK 42, K 442,
=V, for Ve~ 107 (138)
Similarly, the coefficient of the quark(u;)-

scalar[sGoldstino(oy)]-lepton(ug) vertex can be calculated
K
by expanding & (D4 D4, W)y"2x* in the fluctuations
linear in o3 in N =1 gauged supergravity. Using
K
the similar procedure, we get $Dy D A4W;(A2;'(A4 ~

V™ 4665y" 27,  Therefore, the physical quark(u; )-
sGoldstino(o)-quark(ug) vertex will be given as

V- 5
|C(50'BuLuR :
\/ IGur G K 4 3 K 4,2,
=V-%, for V~10°. (139)

In N =1 supergravity, the contribution of the photon-
sGoldstino(scalar)-photon will be accommodated by
the gauge kinetic term L = Re(T3)F A #4F, where
Re(Ty) = o — Cj5a,a;. Considering o5 — (o) + dog,
the coefficient of the physical vertex will be given as
[Crrtos| = s

Yrdop \/W
fermion-fermion-photon vertex Cjs, = O(1) has been
shown in Sec. III A.

Now we use the values of the coefficients of the relevant
vertices to evaluate the estimate of the EDM for the loop
diagrams given in Figs. 7(a) and 7(b). The diagrams have

-2
~K4—;. The possibility of getting the

PHYSICAL REVIEW D 90, 085023 (2014)

(b)

FIG. 7. One-loop diagrams involving an sGoldstino.

been evaluated in [67] to determine the estimate of the
magnetic moment of the muon in A =1 global super-
symmetry. Utilizing their results in a modified form in
the context of A/ =1 gauged SUGRA and the relation
between the magnetic moment and EDM as given above,
for Fig. 7(a), the magnitude of the electric dipole moment
will be

dy

e

2
mys 2/1 x*(2—x)

= C c d

7(a) 16ﬂ_2005¢ |:( &;BfoR) 0 xm%B(l —X) -I—m%xz

(140)

Putting the value of |Css,e,ec| = VR, |Coopupu, | = Ve,

and the value of masses Mg, = M3, My = 0.5 MeV, we get

d
< =10%cm and || =10%cm. (141)
€ 17(a) € 17(a)
For Fig. 7(b):
del  CooprirsCryoo, [ A 1
e LU LT N
e 7( 871' 2

m,,Berm Zx?
|

- x
)
2
where Ayy = log[%] — 1. Incorporating the values of the
relevant inputs and considering the finite piece,
=107% cm

=10""? cm (143)

Hence, the overall contribution of the sGoldstino to the
EDM of the electron/neutron is

d d d
- =|-4 +|=| =10"%cm, (144)
€ |sGoldstino € 7(a) e 7(b)
d d d

. =+ =10%cm.  (145)
€ |sGoldstino € 7(a) € 7(b)
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TABLE II. Results of the EDM of the electron/neutron for all
possible one-loop diagrams.

One-loop particle  Origin of complex

exchange phase d,(e cm) d,(e cm)

2f Diagonalized sfermion 107 10738
_ mass eigenstates

Z?f » 10—37 10—34

ff ? 1074 10745

fh Digonalized Higgs 10734 10733
mass eigenstates

2Eh? o ? 1073

Gravitino(G) f  Diagonalized sfermion 1077 10767
_ mass eigenstates

sGoldstino f ” 1072 10768

The results of all possible one-loop diagrams contributing
to the EDM of the electron/neutron are summarized in
Table II.

V. TWO-LOOP-LEVEL BARR-ZEE-TYPE
CONTRIBUTION TO THE ELECTRIC
DIPOLE MOMENT

In the two-loop diagrams discussed in this section, the
CP-violating effects are mainly demonstrated by complex
effective Yukawa couplings which include R-parity violat-
ing couplings, SM-like Yukawa couplings, as well as
couplings involving a Higgsino, and complex scalar tri-
linear couplings in the context of N' =1 gauged super-
gravity. In the subsection given below, we present the

PHYSICAL REVIEW D 90, 085023 (2014)

contribution of individual Barr-Zee-type diagrams formed
by including an internal fermion loop generated by
R-parity violating interactions, SM-like Yukawa inter-
actions, and gaugino(gaugino)-Higgsino(Higgsino)-Higgs
couplings. The two-loop diagrams are shown in Fig. 8.

A. Two-loop-level Barr-Zee Feynman diagrams
involving an internal Fermion loop

1. Higgs contribution
For the two-loop diagram given in Fig. 8(a), the
interaction Lagrangian is governed by Yukawa couplings
given as

. 0 e o
L2 Yy, u Hiwg uip + ¥

H?eLe;%H?ejLe;R + H.c. (146)
We have already given the estimate of effective Yukawa
couplings for the first generation of leptons and quarks in
[38] in the context of N' = 1 gauged supergravity. Using
those results, we have

?HO c ~ ?erIfAIA’S = V_j_.zei¢.“e7

reLeq

et = VY Teitw

Vi G AAL for V=105, (147)

?uLuf? ~
where e/?w and e are nonzero phases of the aforemen-
tioned Yukawa couplings.

For a two-loop Barr-Zee diagram involving an internal
fermion loop and taking into account the chirality flip
between the internal loop and external line, the analytical
expression has been derived in [68,69]. Using the same, the

.,D

ep(ug)

eug)

(b)

(©

Two-loop diagrams involving fermions in the internal loop.

.f)
u(e)
0. ul
er(vg) ‘ er(vg)
(a)
u(e)
e
eulug)
FIG. 8.

er(ug)
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electric dipole moment of the electron for the loop diagram
given in Fig. 8(a) will be®

d emQuQe
Zlm YHOe e YHouLu ) (f(Zl) ( ))’
ey 5% 167°m
(148)
and the EDM of the neutron will be given as
Q20
Z:Zlm YHOE eRYH?uLu;) W’"@j (f(z2) - g<Z2))’
(149)
where z; = 2, 7, = 2
"o "o
z [ 1=2x(1-x), (x(1-=x)
=—[ d 1
1@ ZA Tx(1-x) -z n( z ’
z [1 1 x(1—x)
=— [ dx In . 150
92) 2% x(1-x)-z < z > (150)
Using the value of masses m HO = 125 GeV, Mo = V%m%,
and m,=0.5GeV, f (M) — g(Melmi) — 1010, f(Mefmi) —
mHU mHO mHO

1 1 2
g(™ me) m“) 1072, Utilizing the same and assuming
e’(‘/’>’c_¢m> = (0,1], Egs. (148) and (149) reduce to give
the EDM result as follows:

I V2 x 1072 x 10710
H NMu

=10722 GeV~' = 107%¢ cm

e

(151)

2. Chargino contribution

In the loop diagram [Fig. 8(b)], the general Lagrangian
governing the interaction of the charginos will be

LD CouHxixin + YH% ¢ H] i €jLeR

+ YHUM e Huj uSe +He. (152)
We evaluate the contribution of the chargino(yi)-
Higgs-chargino(y7) vertex in A = 1 gauged supergravity.
As described in the Appendix, y{ and yi correspond
to a Higgsino (H ) with a very small admixture of gaugino
(/ll-i) and vice versa. So, C;(Tx,‘H? = CH,*H;H? and C){*}(Z =

Cls i mo-

®We consider 0, =C,,0,~ 0, because C,,-,
shown in Sec. IV C. Slmllarly, 0., ~Q,.

~O(1) as

PHYSICAL REVIEW D 90, 085023 (2014)

Higgsino(yy, )-Higgs-Higgsino(y ;) vertex—Given that
the Higgsino is a majorana particle, y{r = (y7,)¢. In our
model, the Higgsino has been identified with position
moduli Z;; the contribution of this vertex in " = 1 gauged
sypergravity will be given by expanding eg’Dzl_D z W in the
fluctuations linear in Z; about its stabilized VEV. Since
SU(2), symmetry is not conserved for this vertex, we will
expand the above in the fluctuations quadratic in Z;, giving
a VEV to one of the Z;. Considering z; — Vi + 0z;, we
have D, D, W = V=57:(z;). Using Dz Dz W~D;D_W,
the physwal vertex will be given as C, - HO=

. X H
= Vi Vit

e = Ve
to the nonzero phase associated with the aforementioned
coupling.

Gaugino(A{,)-Higgs-gaugino(i}, ) vertex—The coeffi-
cient of this vertex will be given from the kinetic term of the
gaugino. The interaction term corresponding to this cou-
pling will be given by considering term L = M_L}/’"}1
(Kz,0,Z; —c.c)iy + (0z,Tp) Ay (Kz,0,Z; —c.c.)iy,
where 1; corresponds to the gaugino. Given that charged
(gauginos) are either SU(2), singlets or triplets, the
aforementioned vertex does mnot preserve SU(2),
symmetry—one has to obtain the term bilinear in Z; such
that we give a VEV to one of the Z;’s. Since (0zTp)
does not contain terms bilinear in Z;, which are needed
to ensure SU(2), symmetry, the second term contributes
zero to the given vertex. In terms of the undiagonalized
basis, 9. K ~V7(z;), and using 9z K ~O(1)d. K, we
have 0z K ~ VizZ

Cﬁ? e where ¢, ~corresponds

;). Incorporating the same, we get

V3(Z)AL 524
EZMNV—ML&&

&z z)? Mp

~ Ving, TP T Pew) (”}; Per) ), (153)
P

13 . iP5
- = — g+~ )36 € 1 5 -
Therefore, C,+ -0 = Cpojye ~ Vi gz e 1 where ¢ 70 cor

responds to the nonzero phase associated with the afore-
mentioned coupling.

The contribution of the gaugino-gaugino-gauge boson as
well as the Higgsino-Higgsino-gauge boson have been
already evaluated in the context of A/ = 1 gauged super-
gravity. The volume-suppression factors corresponding to
these vertices are as follows:

(Cetrirl = |Carz iy | = FV7:

beve
%y -l

1Coirl = 1Coegry | = fVT. (154)

Now, the EDM of the electron for the loop diagram given

in Fig. 8(b) will be given as
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Z Z Im YHOeLL’RC)(Jr)(/: )(C)(:)(;}')
i=12k=1,2

3
16z My

z) = 9(2)),

and the EDM of the neutron for the loop diagram given in
Fig. 8(b) will be given as

d/
. Z Z Im( YHOeL@‘ Cotain )<CXU;7>2
2 i=12k=12
aemQ iQu
X == (f(z) = 9(2)),
167 m)(ki
m2 i Wli + m; + Wl; + m; 4
where 2= f(75h) — g(oh) = 105 f(725) — g(2h) = 1,
HO HY 1'-1l HY HY

2 2 2

7y g )—10f(’2)— g

H HO

2 2
(@ =y.)= (‘f’){, 45/10) (0.3], form, i:Vﬂm? m i:sz,
YHQ,E o =V i, YHo o« =V 1§, and the value of the EDM
of the electron and neutron will be given as

v

ms
2

) = 0.1. Considering

dn
e

x 1073 x 10!

Xi
=107 GeV' = 107¥ cm (155)
3. R-parity violating contribution

For the loop diagram given in Fig. 8(c), the Lagrangian
governing the interaction of the neutrino will correspond to
R-parity violating interactions given as

E D ﬂf/LuLu;eyiLukLuiR + ADLeLe,QViLejLE;R + H.c. (156)

The contribution of the R-parity violating interaction terms
A and /1,“ are given by expanding Dy D,W and
D4, Dy,W in the fluctuations linear in A; around its
stabilized VEV. The values of the same have already been
calculated in the context of N' =1 gauged supergravity
action and given as follows:

g m J‘ erlupe)

(@)

PHYSICAL REVIEW D 90, 085023 (2014)
jDLeLe;; = Ve, jﬂww; = Ve,  (157)
where e’? and e’ are nonzero phases corresponding to

the above-mentioned complex R-parity violating cou-
plings. The EDM of the electron in this case will be

d 7 b aemQZQe
- - Im()“yLeLeg/{vLuLuR) (f(zl) - g(zl>>’
€|rpv 167°m,;
(158)
and the EDM of the neutron will be given as
d 5 3 aengQu
— :I /1‘ 0/1‘ c)——— — s
u/n RPV m( vpepey VL“LMR> 167[3mej (f(Zz) g(ZZ))
(159)
where 7, :WTT%; zy = . Using the value of masses
YiL viL
m,, =Vimy, m,=05GeV, and m,=O(1), f(4") =
YiL
g<mriémi) =10"%, and assuming (¢, —¢; )= (0.7,

Eqgs. (158) and (159) reduce to give the EDM result as
follows:

d

e

d

10
= ~V3 x 1072 x 107
RPV  T[rpv

=10 GeV! =107 ¢cm

(160)

B. Two-loop-level Barr-Zee Feynman diagrams
involving an internal sfermion loop

In this subsection, we evaluate the contribution of a
heavy sfermion loop generated by trilinear scalar inter-
actions including Higgs. The loop diagrams are mediated
by yh exchange. Unlike one-loop diagrams, here we do not
have to consider the mixing of sleptons (squarks) because
of the fact that the nonzero phase associated with the
complex scalar trilinear interaction is sufficient to generate
the nonzero EDM of the elctron/neutron. We first evaluate
the contribution of the relevant vertices in the context of
N =1 gauged supergravity for the two-loop diagrams
shown in Fig. 9.

eraltga) L]

(b)

FIG. 9. Two-loop diagrams involving sfermions in the internal loop.
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Slepton(e jg)-slepton(e ;g )-Higgs vertex—By expand-
ing effective supergravity potential Vigw ~
eXK*sT D, WD; W + eXK™™|D,_ W|* in the fluctuations
linear in Z; — Z; + V¥Mp, Ay - A; + V Mp, the con-
tribution of the term quadratic in 45 as well as Z; is of the

order V% (Z,), which after giving a VEV to one of the Z,’s
will be given as

1 59
Corer o = = — > [V7%(Z))]
V&zz) (R a,)

= (V_sz)ei‘ﬁ?R y

(161)

where ¢; 1is the nonzero phase corresponding to the
aforementioned complex scalar three-point interaction
vertex. Using the similar procedure, the coefficient of
the slepton(e;; )-slepton(e ; )-Higgs vertex will be given as

_____[v¥(z)
V&zz )2 (K3

= (V" SMp)eu.

CeLe HO =

(162)

¢;, 1s the nonzero phase corresponding to this particular
complex scalar three-point interaction vertex.
Squark(ug)-squark(u g )-Higgs vertex—By expanding
Vlgw in the fluctuations around Z; — Z; + VEMp,
A, = Ay + V™9Mp, the contribution of the term quadratic
in A, as well as Z; is of the order V"%(Z,), which after
giving the VEV to one of the Z;, will be given as

1 23

CuRuRH0 = N N [V_%<Zl>]
V&zz)2 (K 2
= (V2Mp)e i, (163)
where ¢;, is the nonzero phase corresponding to the

aforementioned complex scalar three-point interaction
vertex.

Squark(uj, )-squark(u;; )-Higgs vertex—By expanding
V|gw in the fluctuations around Z; — Z; + ViM,p,
A, = Ay + V73Mp, the contribution of the term quadratic
in A, as well as Z; is of the order V=% (Z;), which after
giving the VEV to one of the Z;’s will be given as

1 131
Co im0 = —= = V5(2,)]
V&zz)2(K 2,
= (VIMp)e'tu, (164)
where ¢; is the nonzero phase corresponding to the

aforementioned complex scalar three-point interaction
vertex.
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The contribution of the slepton(e ;z)-slepton(e ;z)-photon
(y)-photon(y) vertex will be given by 0 A, O04,Gr,7,%
XTeXTe A#A,. On solving (_92138A3GTBTB ~ VéATAl, incor-
porating the values of X® as mentioned earlier, the real
physical slepton(e jz)-slepton(e jz)-photon(y)-photon(y) ver-
tex is proportional to

(165)

The coefficient of the real physical e;; —e; y —y vertex
has been obtained in [38]. The value of the same is given
by Czz1pp = = Y3, Similarly, the coefficient of the real
physical ;g —u;zr —y—y vertex will be given by
02,04,Gr,7,X"*XTsA"A,. On solving,
suppression factor corresponding to this vertex will be
given as

the volume-

coefficient of0 1,94,Gr,7, s

f )=
(K a,a,)?

(166)

s~
ugltpyy

The coefficient of the real physical (u;, — i, —y—7y)
vertex will be given by 0 1,0 AZGTBTEXTBXTBA”A,, On
solving, the volume-suppression factor corresponding to
this vertex will be given as

coefficient of O 1,04,Gr,7, -

= f Vs,
(K 4,4,)

(167)

s~
upit;yy

The contribution of the real scalar-scalar-photon vertices
have already been obtained in Sec. II and given as
Coory = (FVR)A, 449 ;(1,

Ciiy = (FVR)A,A*0,4,,  C,

Cayiy = (FV5) A3A10, As,

= (fV%)4,440 A4
(168)

upiyy = Ugitpy =

The analytical expression for the EDM involving the
sfermion/scalar in an internal loop has been provided in
[70]. Using the same, for Fig. 9(a), the EDM of the electron
will be given as

sferrruon

_ Z Z Im(YHoe & CHOJJ*)(CJ/ )

i=12j=uy iy

emee,q, FE).
3273m

(169)

and the EDM of the neutron/quark will be given as
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d sfermion ~
— - Z Z Im(YH?uLuﬁéCH?./'J'*)(C/‘J'*V)Z
€ 14.9(a) i=12j=¢,,2p
Aot Qu, 45—
ZemTe 2wl B 3), 170
32723m?, ® o)

m?
where z=—; F(z)=
HO

— dxx{f[;;‘jzln(“ '=1)). Considering

i

¢ 41

(¢ML/R - ) = ((rbEL/R - q)yu) = (O’%]’ |YH?eLe‘['€ = 9,

¥ HOuyus,| = V& and using the value of masses

mg, = mz, = m; = m;, = Vlms myo = 125 GeV, and
m?

myo = Vims, we have F( ) 1077, F(#+) = 1.
2 o0 HY

1 2
Incorporating the value of the interaction vertices,
Eqgs. (169) and (170) reduce to give the EDM results as
follows:
=108 x V52 = 10715 GeV~!

sfermion
de
e

9(a)
=102 cm for V = 10%,

=108 x Vi f2 = 10715 GeV~!

sfermion
Ay
e

9(a)

=10 cm for V = 10 (171)

For the loop diagram given in Fig. 9(b), the EDM of the
electron will be given as

s’rerrmon

- Z Z Im( YHOe e CHOJJ*>(CJJ*77)

i=1,2j=u; ,up

eer qj F( ) (172)
3271' mH0

and the EDM of the neutron will be given as

sfermion

= Z Z Im YHOM ue CHOJJ*)(ij*V}’)

9(b) i=12j=¢;,ep

X emQu QJ F
3273 m

d_/

(2), (173)

m? m?
—10-17 _ :
where F (ﬁ) =10"",F (mTH]o) = 1. Incorporating the value
1 1
of the masses and the estimate of the relevant coupling veretx,

the EDM of the electron will be

d sfermion -
= =102 xV3f2=10" GevV-! = 1075 cm
€ lo(p)

(174)
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The EDM of the neutron in this case will be given as

sfermion -
dn =100 x VB2 =10"% GeV-! = 10-3* cm
€ lo(p)

(175)

The overall contribution of the EDM of the electron as well
as the neutron corresponding to the two-loop diagram
involving sfermions is

sfermion

dejn
e

sfermion de /n sfermion de /n
= — —I— _

=10"% cm

€ 19(a) € low)

(176)

C. Two-loop-level Barr-Zee Feynman diagram
involving a W+ boson in the internal loop

In this subsection, we discuss the important contribution
of the Barr-Zee diagram involving a W boson as an internal
loop. In the one-loop as well as two-loop diagrams
discussed so far, we have discussed the contribution
mediated by Higgs exchange. The nonzero phases in the
one-loop diagram are affected by considering a mixing
between the Higgs doublet in a p-split SUSY model, while
in the two-loop diagrams, the phases are affected through a
complex effective Yukawa coupling. It has been found in
[71] that two-loop graphs involving a W-boson loop can
induce an electric dipole moment of d, of the order of the
experimental bound (10727 ¢cm) in the multi-Higgs models
provided there is an exchange of Higgs in the Higgs
propagator and the CP violation in the neutral Higgs sector
is fairly maximal. The approach was given by Weinberg in
[72,73]. In these papers, he pointed out that dimension-six
purely gluonic operator gives a large value for the EDM of
the neutron, which is just below the present experimental
bound if one considers CP violation through the exchange
of Higgs particles, whose interactions involve one or more
complex phases. The approach was extended by Barr and
Zee who have found that Higgs exchange can also give an
electric dipole moment to the electron of the order of the
experimental limits by considering an EDM operator
involving a top quark also. In this spirit, we present an
analysis of the EDM of the electron/neutron involving
a W-boson loop in the context of a u-split SUSY model,
which, as already discussed. involves a light Higgs and a
heavy Higgs doublet.

In the notations of Weinberg, the CP-violating phase can
appear from the neutral Higgs-boson exchange through
imaginary terms in the amplitude, and Higgs propagators
are represented as A(q%) = V2G>, qu—;gn, where Z,, is a

nonzero phase appearing due to the exchange between the
Higgs doublet in the propagator. We address this argument
of the generation of the nonzero phase in the NV = 1 gauged
supergravity action. We first provide the analysis of the
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€Lk €ok

FIG. 10. Two-loop diagram involving a W boson in the
internal loop.

required SM-like coupling involved in Fig. 10 in the
context of the N =1 gauged supergravity action. The
contribution of the WT-photon-W~ vertex is evaluated
by the CP-even interaction term given as [74] L=
—Re(f)A*W, W +Re(f)WH*W™F,,, where W, =
W, -0,W, and F,, =09,A,—0,A, and Re(f) is a
gauge kinetic function, which in our setup is given by the
big divisor volume modulus Re(Tp) ~ Vi = O(1) for
Calabi-Yau V = 10°. Therefore, the volume-suppression
corresponding to this interaction vertex is Cyy-, =
Vis = O(1).

The effective W-Higgs-W~ vertex can be evaluated in
the effective supergravity action as follows. Consider the
gauge kinetic term Re(T)F? and then choose the term
Cizaja; in Re(Tg) with the understanding that one
first gives the VEV to the predominantly SU(2),-
doublet valued a;, and then one picks out the Z-
dependent contribution in a3 and also uses the value of
the intersection component C,3. One will, therefore, con-

sider Cy3(a;)V7s PLPy ~ 1073,

sZ
K1,/ Kz (v/Re(T

K 2,lm, ~ 10*, which at the EW scale we will assume

to be % and (018%2. For nonrelativistic gauge
bosons, ppa~Myy ;. Re(T)|gw ~ O(1)Mp ~ vV GeV,
C5 ~ VR, <a1>|EW~C)(1)V‘§MP [related to the require-
ment of obtaining O(10%) GeV W/Z-boson mass at the
EW scale; see [38]]. We, thus, obtain the following: Vi x

(0(1))2xo(1) =5 x VEM2 VIO (O(1))2x

W/2 > 0T x )
\/— 10V~ -3 Wg:\?eV.
kinetic terms for the gauge field are generically written as
[ d*0f ., (P)WIW?P where W is the gauge-invariant super-
field strength and W = W“T“ for a non-Abelian group—as
fap 18 an a priori arbitrary holomorphic function of ®.

Consider, hence, =T, f ~e” and look at J d*9(T) émf(l) w2,

which will consist of (O(1)? x C3(a;az))*" x /10 x

y-3 iz which, e, for m=2 yields (O(1))® x

— W/ZmGeV
V10 x Vi3 X GV

Now, in the superspace notation, the

VY ~10% one obtains

or for
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W/Z in GeV)
)(in GeV)

O(1) —asxn- Utlizing  this, at the EW scale,

Cypow- = —e"”W The value of the complex Yukawa

coupling to be used to evaluate the EDM corresponding to
F1g 10 has already been obtained in [38] and given as
Vioe,e0 ~ V™ Setve and of o
amphtude as well as the analytlcal expression for the W
boson related the loop diagrams has been worked out in
[71]. We utilize the same in a modified form to get the
numerical estimate of the EDM corresponding to the loop
diagram given in Fig. 10,

wie ~ V7 fei?v.. The matrix

d

e

B a
W_(4”)3M%V

[ satel )+ 3161) 45 atel) (P

Cw+ W‘yZIm(?H?eL e Cyr mow- )
i

(177)

where f(z) and g¢(z) are already defined in Sec. IVA
and

Considering (¢w — ¢,.) = (0,5], and

HY
where z}V = —. 2
w

using the values myy = 125 GeV and My = V%m%, we
mi[o mi]o mi]o

get f(—") = g(—") = h(-") = O(1), and the EDM result
w w w

for the electron will be given as

de

e

a

B >< V-# =10 GeV~' = 10727 cm
w (4”)

(179)

Similarly, by considering (¢w — ¢, ) = (0,5], the EDM of
the neutron will be given as

1
—x V=10 GeV~' =107 cm. (180)
v

w (4”)3

D. Two-loop-level rainbow-type contribution to
the electric dipole moment

The two-loop-level analysis of the supersymmetric
effects to the fermion electric dipole moment has been
extended by considering rainbow diagrams in addition to
famous Barr-Zee diagrams with the expectation that they
might give a significant contribution to fermionic EDM.
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The importance of these diagrams is discussed in detail in
[68]. In this subsection, we estimate the contribution of
two-loop rainbow-type of diagrams involving R-parity
conserving supersymmetric interaction vertices and R-
parity violating vertices. The CP-violating phases appear
from the diagonalized eigenstates in the inner loop as well
as from complex effective Yukawa couplings in the
Higgsino sector. The Feynman diagrams have been clas-
sified based on different types of inner one-loop insertions.
One corresponds to the one-loop effective Higgsino-
gaugino-gauge boson vertex, and the other corresponds
to the one-loop effective Higgsino-gaugino transition. The
matrix amplitudes as well as the analytic expressions to
estimate the EDM for the above rainbow diagrams are
calculated in [75] to the first order in the external
momentum carried by the gauge boson. We utilize their
expressions to get the order of magnitude of the EDM of the
electron as well as the neutron in our case.

1. R-parity conserving rainbow-type contributions

For the loop diagrams given in Figs. 11 and 12, the result
of the EDM will be given by the following formulas,
respectively,

ﬁ’" j.gi‘,’

2 .ﬁg“f

I 'y Ir Ju Tn
‘.,.“ :" “i.f '\..\‘! !‘ ’F
- e
fn fa
(a) (b)

y
f '.En 5 t '

i '.‘ \:_/ :' Ir ‘ o In
"\_‘,‘ _‘_.JJ ‘\‘ .FI ‘AJ
Iy fa
() (d)

FIG. 11. Two-loop-level rainbow-type diagrams involving the
Higgsino-gaugino-gauge boson vertex.

‘lh“ lﬁ il‘) “li.lfi [:\?I
T Vo Ia Ii Vo Ir
\\‘hz "l “‘-_‘_ !{ -‘1
E% ’fu77é

g ¥

FIG. 12. Two-loop-level rainbow-type diagrams involving
Higgsino-gaugino transition.
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(Qf+Qf)Ch0foR Wf Z|mﬁo|sm

UEDD

64 n=1,2
e(g/;") _g/;")) '
X 'L4 ~—sinf;cos O,
p . :
/ 2
x Z~ ng F(| Al ’ 'L/R’mb)
f=Fi.fx
= F'(lmpgl, [u?m3 m3 )], (181)
" fL/R fi
I’l»Q,- Ciop 7 Ci0p
CXfrNfLfr TR fif; .
di :Z - 64;3R Z|m/12|sm(5f—9n)
f n=1,2
(g g
X ) f—sin@; cos Oy
p : :
7(n) " 2 2 2
X~Z~ f [F (lm IH ’m}'L/R”mfN'l)
f=rofr
= F"(|my, 2. uPom2 o om2 ), (182)
JL/R J2

where n, = 3 for the inner quark-squark loop and n, = 1
for the inner lepton-slepton loop. The fields f; and f,

correspond to the mass eigenstates of the sfermion j‘ The
value of constant s is +1 for the left-handed sfermion

£, and —1 for the right-handed sfermion fx. The effective

electric charges are given by Q}- =Cyy,Qr and

;o . . ! i
QfR = Cy, fore The interaction vertices Cjo ot and
Cjosp correspond to effective Yukawa couplings. g’}")
L

/(n )

and g denote the effective gauge couplings correspond-

ing to supersymmetrlc sfermions, and the functions F’" and
F" are defined in [75]. The effective Yukawa’s as well as the
gauge interaction vertices are already calculated in Sec. I'V.
The magnitude of the values of the same are

il =V, =V |ctE = U,
W=vE | =y
e = VR, gl = |cadidl| = fy,
L = |cotid) = ot gl = jom| = v,
g = |cuER| = FuE i=1,2, (183)

. 2
Using the value of my=my=Vims, m3 =m; =Vm: +
2

m%lz mg = mﬁ2 = Vm — m%p, mjp = V%m%, we get
/ 2 2N Fy 2 2
Fr( m o ™Mi) — I " e ™M)
=107,
o, ol 2 ) — Fr 2 2
F(|mﬂn| ’|M| ’me/R’mfz) F( fL/R,mfl)
= 1074, (184)
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Incorporating the above results in the analytical expression
as given in (181) and (182) [with the assumption that
the value of the phase factor associated with all effective
R-parity conserving Yukawa couplings are of O(1)],

dlje= V5 x Vim
d%,/e = }‘SV_% X V%mg X (10—43) GeV‘4 = 10_55 cm,
2
(185)

x (1072*) GeV~2 =107 cm,

(STt

and similarly,

10

dije= V5 x ng% x (10724) GeV~2 = 10756 cm,
/e = V5 x Vimd x (1008) GeV™ = 105 cm.
(186)

So, the final EDM of the electron as well as the quark or
neutron in the case of R-parity conserving supersymmetric
Feynman diagrams are given as

d,Je =d!/e+d>/e =107 cm,

d,/)e =d./e+d%/e=10"* cm. (187)

2. R-parity violating rainbow-type contribution

The similar kind of Feynman diagrams can be drawn by
replacing the neutral Higgsino component with the Dirac
massless neutrino in Figs. 11 and 12. The formulas of the
EDM of the fermion f for two types of Feynman diagrams
as defined in [76] are given below

PHYSICAL REVIEW D 90, 085023 (2014)

/
_ i(6,~5;.) Qf ne
d% = - ;zlm(cilofd.;c}‘lofiﬁe 1 )64—’;3|m/{3|
o)
X — ir smej cos 6’fj
(n) 2 ren 2 2 2
* - Z~ gJ} m}k[f (|m22| 0 mJ:'L/R’ mjzl)
f=rofr
= f(m, [7,0,m>  m? ). (189)

fur fa

The interaction vertices C o, 3 and C,o, » correspond to
vVfifr Vi
effective R-parity violating couplings. g/J(.c") and g/;”)
L R
effective gauge couplings corresponding to supersymmetric
sfermions. The functions F/ and F” are defined in [76].

denote

. 2

Using the value of m =m; =Vsmz, m> =m2 =Vm? +
1 2 2 €l uy 5

2 2 2

— — V2
m; ,mi =m; = Vm% —mZ , we get
/ 2 2 2y Fy 2 0,12 2 2
Fr(lmyg ’O’me/Rvmfz) Fi([my |, [p ,me/R,mf])
= 10722,
Fi(lmyg . 0.m2  m2 ) = Fi(|myg . w2 m? )
n fL/R fz n fL/R f]
=107 (190)

The contribution of R-parity violating vertices are already
calculated in [38] in the context of N' = 1 gauged super-
gravity action. The values of the same are as follows:

/ =i P 5

L= - - i(0,=57)) (Qf * Qf)nL cVedy| = |V | = V3,

di = 3 1(Coy, 1, Cinyre ™) =g Ima | i - s
n=l2 [Crte| = |CV s | =V i= 1,2, (191)

e(g) - gt
x . sin 0 ; €08 Oy j Incorporating the values of the above-mentioned R-parity
(n) 2 2 2 violating interaction vertices and the values of the effective
x } Z; 595 L I(|m/13 0, s %’ " ,) gauge couplings in the analytic expressions given in
I=I1tw Egs. (188) and (189) [with the assumption that the value
— f1(lmy, |*,0. mi mi )l (188)  of the phase factor associated with all effective R-parity
B violating Yukawa couplings is of O(1)],
TABLE III. Results of the EDM of the electron/neutron for all possible two-loop diagrams.

Two-loop particle exchange Origin of complex phase d,(e cm) d,(e cm)
Wy f Complex effective Yukawa couplings 10736 10736
Wiy 10747 10747
frr 10-70 10-70
Fn0y 107 107
yWERY Higgs exchange 10727 1077
R F20 (rainbow type) Diagonalized sfermion mass eigenstates and effective Yukawas 1075 107
L f29 (rainbow type) 10-%2 10752
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dfe=dl/e=fFVFx Vimyx (1072) GeV-2=10"% cm,
dje=d2)e= V5 xVim

[SIYICRS!

x (107%) GeV™*=107>% cm.
(192)

So, the final EDM of the electron as well as the quark or
neutron in the case of R-parity violating Feynman diagrams
is given as

d,/e =d,/e=107?% cm. (193)

The results of all two-loop diagrams contributing to the

EDM of the electron/neutron are summarized in Table I1I.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have performed a quantitative order-
of-magnitude analysis of the EDM of the electron and
neutron in a phenomenological model which provides a
local realization of large volume D3/D7 p-split supersym-
metry that could possibly locally be obtained in the
framework of four Wilson line moduli living on the world
volume of fluxed stacks of space-time filling D7-branes
wrapped around the big divisor and two position moduli of
a mobile space-time filling D3-brane restricted to (nearly) a
special Lagrangian three cycle of a Swiss-cheese Calabi-
Yau. The proposed phenomenological model is governed
by a superheavy gaugino and Higgsino mass parameter in
addition to heavy sfermion masses except one light Higgs
(obtained by considering a linear combination of the
eigenstates of the Higgs doublets at the EW scale).
Because of the presence of a heavy gaugino/Higgsino mass
parameter, one cannot ignore one-loop diagrams mediated
by gaugino/Higgsinos and sfermions as compared to two-
loop diagrams as traditional split SUSY models do. Keeping
this in mind, we have taken into account the complete set of
one-loop graphs and the dominant Higgs-mediated Barr-Zee
diagrams. The nonzero CP-violating phase corresponding
to the dimension-five nonrenormalizable EDM operator can
be made to appear at the one-loop and two-loop levels from
the off-diagonal component of a scalar mass matrix and
complex effective Yukawa couplings, respectively, in the
context of N' =1 gauged supergravity action. We have
considered the order of phases to exist in (0,%]. We have also
shown that for a given choice of VEVs of a Wilson line as
well as position moduli, the phases corresponding to
effective Yukawa couplings do not change in the renorm-
alization group flow from string scale down to the electro-
weak scale. The relevant interaction vertices have been
calculated in the context of NV = 1 effective gauged super-
gravity action. Having described the aforementioned model,
we estimate all possible one-loop as well as two-loop
diagrams. In the one-loop graphs involving sfermions, the
neutralino-mediated loop diagrams give the dominant con-
tributions to the electron (neutron) EDM values as compared
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to gaugino-mediated one-loop diagrams and the diagrams
involving R-parity violating vertices, because in N =1
gauged supergravity, gaugino interaction vertices are de-
pendent on suppressed dilute non-Abelian fluxes, and the
contribution of R-parity violating vertices are generally
suppressed. However, all of the three-loop diagrams give a
very suppressed contribution to the electron and neutron
EDM. Next, we considered one-loop diagrams involving
Higgs and other supersymmetric/SM particles. By consid-
ering Standard-Model-like fermions with Higgs in a loop,
we get the electron EDM estimate (d,/e = 1073 c¢m) and
neutron EDM estimate (d,/e = 1073 ¢cm) considerably
higher than the value predicted by the Standard Model.
Interestingly, by considering one-loop diagrams involving a
chargino and Higgs, the electron EDM value turns out to be
(d,/e =107% cm); i.e., one gets a healthy EDM of the
electron even in the presence of a superheavy chargino in the
loop. All of the above one-loop diagrams involve MSSM-
like superfields, and CP-violating phases appear from
visible sector fields only. For a full-fledged analysis, we
have taken into account a Goldstino supermultiplet also as
the physical degrees of freedom in the one-loop diagrams.
As the sGoldstino corresponds to the bosonic component of
the superfield corresponding to which there is a supersym-
metry breaking and the same occurs maximally in our large
volume D3/D7 model via the complex big divisor volume
modulus (zz), we have identified the sGoldstino field
with a complex 7 field. Since, the fermionic component
Goldstino gets absorbed into the gravitino and becomes a
longitudinal component of the massive gravitino, we basi-
cally consider one-loop diagrams involving a gravitino and
an sGoldstino in the loop. In such kind of loop diagrams,
CP-violating phases appear from hidden sector fields.
However, by evaluating the matrix amplitudes of these loop
diagrams, we get a very suppressed contribution of the
electron and neutron EDM. The results of all one-loop
diagrams are summarized in Table II. In the case of two-
loop diagrams, we have evaluated the contribution of Barr-
Zee diagrams involving sfermions/fermions in an internal
loop and mediated via yh exchange and an R-parity violating
diagram involving fermions but mediated via f/ exchange.
Here, the two-loop Barr-Zee diagrams involving heavy
sfermions and a light Higgs give a most dominant contri-
bution of the EDM (d(,/,)/e = 107%° cm) as compared to
two-loop diagrams involving only SM-like particles. With
substantial fine-tuning in Calabi-Yau volume, one can hope
to produce EDM results the same as experimental limits.
Next, inspired by the approach given in [71-73,77] to obtain
a large EDM value (almost the same as an experimental
bound) from Barr-Zee diagrams involving top quarks and
a W-bosons loop in multi-Higgs models, we have provided
an estimate of the same using two Higgs doublets given in
the context of y-split SUSY. By showing the possibility of
obtaining the numerical estimate of all SM-like vertices
relevant for these diagrams to be same as their standard
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values in the context of the AV = 1 gauged supergravity
model, we have also produced the EDM (d, /e =
1077 c¢m) in the case of a Barr-Zee diagram involving a
W boson. As evaluated explicitly, we have shown that two-
loop rainbow diagrams give a very suppressed contribution
as compared to Barr-Zee diagrams. The results of all two-
loop diagrams are summarized in Table IIl. Thus, we
conclude that in our large volume D3/D7 u-split SUSY
model, despite the presence of very heavy supersymmetric
scalars/fermions in the loops, we are able to produce a
contribution to the electric dipole moment of both the
electron as well as the neutron close to the experimental
bound at the two-loop level and a sizable contribution even
at the one-loop level.

All of the above results have been obtained in the context
of the model which can be constructed locally near a
particular nearly special Lagrangian three cycle of a Swiss-
cheese Calabi-Yau threefold. It would be interesting to
determine the global embedding of our model. Further, in
the D3/D7 setup described above, we have shown the
possibility of identification of Wilson line moduli only with
first- or second-generation quarks and leptons. By extend-
ing the setup to include Wilson line moduli identifiable
with second- and third-generation quarks, one hopes to
obtain via the one-loop and two-loop Barr-Zee diagrams
involving fermions, the value of the electron/neutron EDM
very close to the experimental bound for a given choice of
the internal complex threefold volume.
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APPENDIX: CHARGINO MASS MATRIX

The chargino mass matrix is formed by mixing (charged)
winos and a Higgsino after electroweak symmetry break-
ing. In ' = 1 gauged supergravity, the interaction vertex
corresponding to the Higgs-gaugino-Higgsino term is given
by L = gymgrszXPH' ' + 0 TpDPH'A! where A’ corre-
sponds to a gaugino (such as the bino/wino). Expanding the
same in the fluctuations linear in Z;, we have

- Z. ~ 4 Z;
XB = fy?2—L (0;Tp)DB =fVs—_.
9ym9rEz S M, ( Z B) VAZE M,

(A1)

After giving the VEV to Z,, the interaction vertex corre-
sponding to mixing between the gaugino and Higgsino will
be given as

wi—

Y3 -
fi fV— v ,

where v = 246 GeV.

Cﬁf—fl;/cﬁ* —1:1;r —
(A2)

For Higgsino doublets H, = (HY, HY), H, = (H7,HY),
the chargino mass matrix is given as

M: P
M- = ‘ :
o\ o
M, CF
M)?Jr - ! (A3)

At—HF 2
C M/~1+

Incorporating the values of M; =M; = V%m%,
M;- =M;z;. = Vims, and m; = V2Mp at the electro-
Hd Hu 2 2
weak scale, we have

sented some preliminary results of this paper in a seminar at w3 MLP]‘V_%
Johns Hopkins. We acknowledge participation of S. Serrao My = b Tyl s (A4)
in the earlier stages of the project. We also thank P. Shukla M_pf v "
giving eigenvalues
{M%V‘W + MRS/ - \/M4PV8/3 —2MAVIBYT2 L ppAYss/3e 4}2M120v2v109/36
MRS/ ’
M2V 4 MRVSSIT2 \/Mj‘ng —2MAVIST2 o ppaYss/e 4 4}'2M1231}2vl09/36} a5
P

2M3 VI57/72

and normalized eigenvectors
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6) 1,7, and My = V%m%,
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