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Within the framework of N ¼ 1 gauged supergravity, using a phenomenological model that can be
obtained locally as a Swiss-cheese Calabi-Yau string-theoretic compactification with a mobile D3-brane
localized on a nearly special Lagrangian three cycle in the Calabi-Yau and fluxed stacks of wrapped
D7-branes, and which provides a natural realization of μ-split supersymmetry (SUSY), we show that in
addition to getting a significant value of an [electron/neutron (e/n)] electron dipole moment (EDM) at two-
loop level, one can obtain a sizable contribution of (e/n) EDM even at one-loop level due to the presence of
heavy supersymmetric fermions nearly isospectral with heavy sfermions. Unlike traditional split SUSY
models in which the one-loop diagrams do not give significant contribution to the EDM of the electron/
neutron because of very heavy sfermions existing as propagators in the loop, we show that one obtains a
“healthy” value of the EDM in our model because of the presence of a heavy Higgsino, neutralino/
chargino, and gaugino as fermionic propagators in the loops. The independent CP-violating phases are
generated from nontrivial distinct phase factors associated with four Wilson line moduli [identified with
first-generation leptons and quarks and their SUð2ÞL-singlet cousins] as well as the D3-brane position
moduli (identified with two Higgses), and the same are sufficient to produce overall distinct phase factors
corresponding to all possible effective Yukawas as well as effective gauge couplings that we discuss in the
context of N ¼ 1 gauged supergravity action. However, the complex phases responsible to generate a
nonzero EDM at one-loop level mainly appear from an off-diagonal contribution of sfermion as well as
Higgs mass matrices at the electroweak scale (EW). In our analysis, we obtain a dominant contribution of
the electron/neutron EDM around de=e≡Oð10−29Þ cm from two-loop diagrams involving heavy
sfermions and a light Higgs, and de=e≡Oð10−32Þ cm from a one-loop diagram involving a heavy
chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of
the order dn=e≡Oð10−33Þ cm from the one-loop diagram involving SM-like quarks and Higgs. To justify
the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involvesW� and the
Higgs (responsible to generate the nontrivial CP-violating phase) in the two-loop diagrams as discussed by
Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our
D3=D7 μ-split SUSY model at the EW scale. By conjecturing that the CP-violating phase can appear from
the diagonalization of the Higgs mass matrix obtained in the context of μ-split SUSY, we also get an EDM
of the electron/neutron around Oð10−27Þ e cm in the case of the two-loop diagram involving W� bosons.
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I. INTRODUCTION

For the past few decades, string-theoretic models have
been considered to provide an excellent framework for
possible unification of gravity with all other fundamental
forces. To study the phenomenological implications of
these models, the same must invoke a particular super-
symmetry (SUSY) breaking mechanism (along with the
SUSY breaking scale). The phenomenological models
mainly rely on the OðTeVÞ SUSY breaking scale because
this helps solve serious gauge-hierarchy problems, which,
in fact, have been considered as a primary motivation to
introduce SUSY. However, low-scale SUSY models give

rise to many unwanted phenomenological problems, such
as flavor-changing neutral currents. Motivated by obtaining
an extremely small cosmological constant and the string
landscape scenario, an alternative to these assumptions was
proposed by Arkani-Hamed and Dimopoulos (dubbed as
“split SUSY”) in [1] according to which SUSY is broken at
an energy scale way beyond the collider search and could
be even near the scale of grand unification. The scenario is
emerging to be quite interesting from the point of view of
phenomenology because of the fact that heavy scalars
mostly appearing as virtual particles in most of the particle
decay studies help resolve many diverse issues of both
particle physics and cosmology. The μ-split SUSY model
was proposed in [2] to alleviate the famous μ problem by
further splitting the split SUSY by raising the μ paramter to
a large value. Though the exact signatures may not be
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foreseeable in the near future via precise measurements to
be carried out at the Large Hadron Collider (LHC), indirect
methods can be made available to test some of the
signatures of this scenario. In this context, the electron
dipole moment (EDM) of the electron/neutron serves
as another testing ground for the split SUSY scenario.
Recently, the ACME Collaboration has reported a
new experimental upper limit of jdej < 8.7 × 10−29 e cm
[3], which is an order-of-magnitude improvement in
sensitivity as compared to previous limits [4–7]. The
current experimental limit on the neutron EDM [8,9] is
jdn=ej < 0.29 × 10−25 cm.
In the Standard Model (SM), the CP-odd phases

generated through the Cabibo-Kobayashi-Masakawa
(CKM) matrix give a theoretical bound on the EDM
which is far below the experimental limits. However,
new CP-violating phases can appear in supersymmetric
theory models from complex soft SUSY breaking param-
eters. In addition to this, in string-inspired models, the
CP-violating phases are associated with complex Yukawa
couplings originating from string compactifications
[10–13]. These CP-violating phases associated with com-
plex soft SUSY breaking parameters as well as Yukawa
couplings appearing in different supersymmetric models
are typically large, i.e., Oð1Þ and, hence, do not satisfy the
current experimental bounds on the electron and on the
neutron EDM. One, hence, has to put stringent constraints
on the supersymmetric and, in particular, supergravity
(SUGRA) models. More specifically, the limits can be
satisfied if one considers (i) unnaturally small CP-violating
phases of Oð10−2–10−3Þ, (ii) multi-TeV superpartners in
the model, or (iii) internal cancellations between different
supersymmetric contributions to the EDM at loop levels.
The constraints on the CP-violating phases in the super-
symmetric models have been discussed in [14–16], and the
systematic analysis of the EDM up to two loops in the
context of the minimal supersymmetric Standard Model
(MSSM) is provided in [17–20]. In minimal supergravity
(mSUGRA) models discussed in the literature [21–26], the
EDM’s bounds have been reconciled with the experimental
limits by showing sufficient cancellations among different
supersymmetric contributions without taking into account
Oð>TeVÞ superpartners and any fine-tuning in phase
angles. The main difficulty in choosing multi-TeV scalars
as an appropriate mechanism to generate the EDM is
because the same abandons naturalness and also requires
severe fine-tuning while satisfying radiative electroweak
(EW) symmetry breaking. However, the nonobservation of
sparticles at the LHC may point toward some sort of fine-
tuned natural SUSY [27,28] or the high SUSY scale/split
SUSY models [29–31]. Therefore, it is interesting to probe
high-scale SUSY models, in particular, μ-split SUSY
models, to explain the EDM within the reach of exper-
imental limits because the same also helps satisfy the
radiative EW symmetry breaking condition by choosing a

natural value of μ, hence, alleviating the μ problem. The
region of parameter space satisfying the EDM value of the
order of experimental limits has been analyzed in [32] in
the presence of OðTeVÞ superpartners in the mSUGRA
model by considering moderate fine-tuning in tan β.
Our approach is quite different in that the SUGRA

models discussed in the literature, even in the framework of
string compactifications, do not rely on the high super-
symmetry breaking scale. On the other hand, the typical
split supersymmetry models used to study the EDM of the
electron/neutron include heavy sfermions but light gaugi-
nos and Higgsinos [33,34]. We analyze the EDM of the
electron and neutron in the supergravity limit of local large
volume D3=D7 type IIB compactifications, which pro-
vides, to our knowledge, the first realization of the μ-split
SUSY scenario (with large gaugino masses). In typical split
SUSY models, all possible one-loop contributions to the
EDM are highly suppressed by the superheavy scalar
masses in the loop, and leading contributions to the
EDM start at the two-loop level due to the presence of
SM particles and EW charginos and neutralinos in the loops
(for the analysis of two-loop Barr-Zee diagrams in different
models, see [33–36] and references therein). However, in
our model, the gaugino and neutralino/chargino are almost
as heavy as neutral scalars except one light Higgs. Based on
that, one cannot ignore the contribution of one-loop dia-
grams because of the partial compensation of the suppres-
sion factors appearing from heavy sfermion masses, by
heavy fermions’ (neutralino, chargino, and gaugino)masses.
Therefore, in this paper, we perform a quantitative

analysis of the neutron and electron EDMs for all possible
one-loop as well as two-loop diagrams in the context of
large volume D3=D7 μ-split supersymmetry. The nonzero
imaginary phases that appear through mixing between
L-hand (left-handed) and R-hand (right-handed) sfermions
(sfermions corresponding to the left- and right-handed
components of fermions) at the electroweak scale, play an
important role. In addition to discussing the one-loop
diagrams that exhibit nonzero phases through mixing
between sfermions, we also take into account the loop
diagrams in which a unique phase appears through mixing
between two Higgses at the electroweak scale. In the large
volume μ-split SUSY model of [37,38], we have already
calculated the eigenvalues of the Higgs mass matrix at the
electroweak scale, which, with some fine-tuning, eventually
leads to one light Higgs and one heavy Higgs. In this paper,
we append the details of the complex phase associated with
off-diagonal components of the Higgs mass matrix, too.
Because of the presence of a light and a heavy Higgs in our
model, one can expect to get a reasonable order ofmagnitude
of the EDM of the electron/neutron from one-loop diagrams
involving Higgs and other SM/supersymmetric particles.
The complete analysis has been carried out by including
other interesting one-loop diagrams which involve
sGoldstinos [identified locally with a “big” divisor (bulk)
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volume modulus in our setup] as scalar particles in the loop.
For two-loop diagrams, we mainly focus on the Barr-Zee
diagrams which involve a fermion, sfermions, and W� as
part of an internal loop and are mediated through hγ
exchange, except one R-parity violating diagram which
involves fermions in the internal loop and is mediated
through νLγ exchange. For the complete analysis, we also
calculate the contribution of rainbow-type two-loop dia-
grams involving R-parity violating as well as R-parity
conserving vertices. For all two-loop diagrams discussed
in this paper, the complex effective Yukawa couplings
[associated with the e

K
2ðDDWÞχ̄χ term in theN ¼ 1 gauged

supergravity action of [39]] are sufficient to produce non-
zero complex phases to generate a nonzero EDM.
The plan for the rest of the paper is as follows. In Sec. II,

we elaborate upon our large volume D3=D7 model dis-
cussed in [38]. We discuss the details of our phenomeno-
logical model in Sec. II A and show the same to be
realizable locally as the large volume limit of a type IIB
Swiss-cheese Calabi-Yau orientifold involving a mobile
space-time filling D3-brane localized at a nearly special
Lagrangian three cycle embedded in the big divisor (hence,
the local nature of the model’s realization) and multiple
fluxed stacks of space-time filling D7-branes wrapping the
same big divisor in Sec. II B. After providing the geomet-
rical framework of the model in Sec. II B, we briefly
mention the phenomenological results that describe the
possible identification of Wilson line moduli with first-
generation leptons and quarks as well as their SUð2ÞL-
singlet cousins, and D3-brane position moduli with two
Higgses. Thereafter, we briefly summarize the calculation
and results corresponding to the values of soft SUSY
breaking parameters as well as the supersymmetric fer-
mionic masses. In Sec. III, we explain the origin of nonzero
complex phases obtained in the context of the N ¼ 1
gauged supergravity limit of our local D3=D7 model. We
also argue that phases of effective Yukawa couplings do not
change under a renormalization group flow from string
scale down to the electroweak scale in our model. In
Sec. IV, we turn towards order-of-magnitude estimates of
the EDM of the electron/neutron for various possible one-
loop diagrams. The effective vertices are calculated by
considering the N ¼ 1 gauged supergravity action of
[39,40]. The complex phases, as already explained, can
be made to appear through the complex off-diagonal
components of an sfermion/Higgs mass matrix and com-
plex effective Yukawa couplings appearing in all one-loop
diagrams. We assume the phases of both off-diagonal
components of the scalar mass matrix as well as possible
effective Yukawa’s to lie in the range ð0; π

2
� in all the

calculations. The section has been divided into three
subsections. In Sec. IVA, we give a detailed discussion
of one-loop diagrams which involve sfermions as scalar
propagators and gauginos, neutralinos and SM-like fer-
mions as fermionic propagators, respectively. Higgs

doublets as scalar propagators and chargino and SM-like
fermions as fermionic propagators, respectively. Here, the
nonzero imaginary phases appear through mixing between
two Higgses at the electroweak scale in the Higgs mass
matrix. In Sec. IV C, we evaluate the contribution of a
heavy gravitino and sGoldstino multiplet to the EDM of the
electron/neutron. Though the loop diagrams involving the
same are divergent, we pick out the finite contributions for
the purpose of obtaining an estimate of the EDM of the
electron/neutron in the case of a heavy gravitino. In Sec. V,
we consider two-loop Barr-Zee diagrams. The section has
been divided into three subsections. In Secs. VA and V B,
we compute the two-loop diagrams which involve an
internal fermion loop and an internal sfermion loop.
These diagrams are mediated by γh and γνL exchange.
In Sec. V C, we carry out an analysis of two-loop diagrams
involving a W-boson loop in our μ-split SUSY model. In
Sec. V D, we discuss two-loop rainbow-type diagrams.
Section VI has the summary of our results and a discussion.
In the Appendix, we evaluate the chargino mass matrix
using the N ¼ 1 gauged supergravity action in the context
of the large volume D3=D7 μ-split SUSY setup.

II. THE SETUP

In [38], within the context of type IIB string theory
with a space-time filling D3-brane and fluxed stacks of
D7-branes wrapping a divisor along with ED3/ED1-
instanton-generated superpotential and world-sheet instan-
ton-corrected Kähler potential, we worked locally close to a
nearly special Lagrangian three cycle (6) within a Swiss-
cheese-type Calabi-Yau orientifold (various aspects of this
setup will be summarized in Sec. II B). But before we do the
same, we will first briefly describe in Sec. II A, a model
that could be locally realized as a large volume D3=D7
Swiss-cheese setup of [38]. In other words, Sec. II A
embeds the local model of [38] into a phenomenological
model, something which was not done in [38]. In other
words, the phonomenological supergravity model discussed
in Sec. II A can be locally geometrically engineered via the
construct of [38].

A. The model

For an N ¼ 1 compactification, we will take the
phenomenological Kähler potential of our model to be

Kpheno ¼ − ln½−iðτ − τ̄Þ� − ln

�
−i
Z
CY3

Ω ∧ Ω̄
�

− 2 ln

�
aBðσB þ σ̄B − γKgeomÞ32

−
�X

i

aS;iðσS;i þ σ̄S;i − γKgeomÞ
�3

2 þOð1ÞV
�
;

ð1Þ
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where the divisor volumes σα are expressible in terms of
“Kähler” coordinates Tα, MI ,

σα ∼ Tα − ½iKαbccbBc þ iC
MIM̄J̄
α ðVÞTrðMIM

†
J̄
Þ�; ð2Þ

α ¼ ðB; fS; igÞ and MI being SUð3cÞ × SUð2ÞL bifunda-
mental matter field aI¼2, SUð3cÞ ×Uð1ÞR bifundamental
matter field aI¼4, SUð2ÞL ×Uð1ÞL bifundamental matter
field aI¼1,Uð1ÞL × Uð1ÞR bifundamental matter field aI¼3

along with SUð2ÞL ×Uð1ÞL bifundamental ~z1;2 with the

intersection matrix CaIāJ̄
α ∼ δBαCIJ̄

α , C
aI ~̄zj̄
α ¼ 0, ρS;B, Ga ¼

ca − τba being complex axionic fields (α, a running over
the real dimensionality of a subspace of the internal
manifold’s cohomology complex), and the phenomeno-
logical superpotential is given as under

Wpheno ∼ ðz181 þ z182 Þnse−nsvolðΣSÞ−ðαSz21þβSz22þγSz1z2Þ; ð3Þ

where the bifundamental ~zi in K will be equivalent to the
z1;2 ∈ C in W. It is expected that MI , TS;B, Ga will
constitute the N ¼ 1 chiral coordinates. The intersection
matrix elements κS=Bab and the volume-dependent

C
MIM̄J̄
α ðVÞ are chosen in such a way that at a local

(metastable) minimum,

hσSi ∼ hðTS þ T̄SÞi − iC~zi ~̄zj̄ðVÞTrðh~ziih ~̄zj̄iÞ ∼Oð1Þ;
hσBi ∼ hðTB þ T̄BÞi − iC~zi ~̄zj̄ðVÞTrðh~ziih ~̄zj̄iÞ

− iCaIāJ̄ðVÞTrðhaIihāJ̄iÞ ∼ efhσSi; ð4Þ

where f is a fraction not too small as compared to 1, and
the stabilized values of Tα around the metastable local
minimum,

hℜeTSi; hℜeTBi ∼Oð1Þ: ð5Þ

α, a indices correspond to involutively even and odd sectors
of h1;1ðCY3Þ under a holomorphic, isometric involution. If
the volume V of the internal manifold is large in string
length units, one sees that one obtains a hierarchy between
the stabilized values hℜeτS;Bi but not hℜeTS;Bi.

B. Local realization of the model of Sec. II A

We review the local D3-D7-brane framework presented
in [38] which realizes the aforementioned phenomenologi-
cal supergravity model [(1)–(5)] locally in string theory. In
this, we consider type IIB compactified on the orientifold of
a Swiss-cheese Calabi-Yau in the large volume scenario
(LVS) limit that includes non-(perturbative) α0 corrections
and nonperturbative instanton corrections in superpotential
[41] in addition to a space-time filling D3-brane and

multiple fluxed stacks of D7-branes wrapping the big
divisor. We elaborate a little more than what was done
in [38] on some algebraic geometric aspects.
The “bottom-up” approach to phenomenological models

in the context of D-brane models to realize the SM
spectrum was initiated in [42] by considering D3-branes
on the top of orbifold singularities ofC3=Z3 with additional
intersecting D7-branes (with their world volumes trans-
verse to the respective complex planes). In this model,
quarks and one of the Higgs doublets are obtained from
strings stretching between different D3-branes, while the
other Higgs doublet, leptons, and right-handed quark (dR)
are obtained from strings stretching between D3- and D7-
branes; the adjoint gauge fields correspond to open strings
starting and ending on the same D7-brane. Motivated by
this approach, different models were constructed in the
context of compact Calabi-Yau compactifications by fol-
lowing configurations of intersecting D7-branes wrapping
different four cycles (see [43–48] and references therein).
With the progress of large volume moduli stabilization [49],
realistic constructions reproducing SM spectrum via
D-branes were obtained by wrapping D7-branes around
blown-up cycle(s) [50] (small divisor Σs in the geometry of
the Swiss-cheese Calabi-Yau orientifold), similar to the
techniques used in models of branes at singularities.
The configuration of D3-D7-branes as described in [38]

was also obtained locally in the context of large volume
scenarios. However, the setup of [38] is different from the
aforementioned large volume scenarios constructs because
(i) it considers four stacks of multiple (magnetized)
D7-branes in groups of three [corresponding to
Uð1Þ × SUð2Þc], two [corresponding to Uð1Þ × SUð2ÞL],
one [corresponding to a Uð1Þ], and one [corresponding to
another Uð1Þ] with the hypercharge corresponding to a
linear combination of the four Uð1Þ’s wrapping around the
big divisor in the rigid limit of the same (given that it was
possible to locally stabilize the moduli corresponding to the
fluctuations normal to the big divisor ΣB around which
D7-branes are wrapped, at null values) but with different
choices of two-form fluxes turned on the different two
cycles homologously nontrivial from the point of view of
this four cycle’s homology and not the ambient Swiss-
cheese Calabi-Yau. (ii) It takes into account the non-
perturbative corrections in the Kähler potential [41] in
type IIB Swiss-cheese Calabi-Yau orientifold compactifi-
cation, not considered in the “large volume scenario”
proposed in [49].
Further, similar in spirit to [51–53], by turning on

different but small two-form fluxes on the different two
cycles homologously nontrivial from the point of view of
the big divisor’s geometry as a result of which initially
adjoint-valued matter fields decompose into bifundamental
matter fields corresponding to the SM gauge groups, we
provided explicit matrix-valued representations in [38] for
SUð3Þc × SUð2ÞL bifundamental first-generation quarks,
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their right-handed EW-singlet cousins, SUð2ÞL × Uð1ÞL
bifundamental first-generation leptons and Higgs, as well
as the right-handed EW-singlet leptonic cousins in [38]. All
aforementioned matter fields arise from strings stretched
between D7-branes stacks with different two-form fluxes
turned on. The leptons and quarks get identified with
the sermonic superpartners of Wilson line moduli AI and
the Higgs with the D3-brane’s position moduli zi; τ is the
axion-dilaton modulus and Ga are NS-NS and Ramond-
Ramond (RR) two-form axions complexified by the axion-
dilaton modulus. In the orientifold limit of F theory, one
considers an orientifold of the Calabi-Yau involving a
holomorphic isometric involution. Though the contribution
to the Kähler potential from the matter fields “C37” coming
from open strings stretched between theD3- andD7-branes
wrapping ΣB for Calabi-Yau orientifolds is not known but
based on the results for orientifolds of ðT2Þ3 (see [54]), we
guess the following expression: jC37j2

TB
∼ V− 1

18jC37j2 [using
(9)]. Assuming C37 to be stabilized at V−c37 , c37 > 0, this
contribution would be subdominant relative to other con-
tributions to the Kähler potential. We will, henceforth,
ignore the D3-D7 matter fields.
We will assume that in the coordinate patch (but not

globally), jz1j ∼ V
1
36, jz2j ∼ V

1
36, jz3j ∼ V

1
6, the Calabi-Yau

looks like the Swiss-cheeseWCP4
1;1;1;6;9 [17]. The defining

hypersurface for the same is u181 þ u182 þ u183 þ u34 þ u25−
18ψ

Q
5
i¼1 ui − 3ϕðu1u2u3Þ6 ¼ 0. This can be thought of as

the following hypersurface in an ambient complex fourfold:
Pðx1;…; x5; ξÞ ¼ 0 after resolution of the Z3 singularity
[55] (the x4 and x5 have been switched relative to [56];
n ¼ 6 CP1 fibration over CP2 with projective coordinates
x1;2;3, x4, x5 of [56] is equivalent to n ¼ −6 with projective
coordinates x1;2;3,, x5, x4; see [57]) with the toric data for
the same given by

x1 x2 x3 x4 x5 ξ

Q1 1 1 1 6 0 9

Q2 0 0 0 1 1 2

:

In the coordinate patch x2 ≠ 0 [implying one is away from
the Z3 singular ð0; 0; 0; x4; x5Þ in WCP4

1;1;1;6;9 [17]], ξ ≠ 0,
one sees that the following are the gauge-invariant coor-

dinates: z1 ¼ x1
x2
, z2 ¼ x3

x2
, z3 ¼ x2

4

x3
2
ξ
, z4 ¼ x2

5
x9
2

ξ . We, henceforth,

assume the Calabi-Yau hypersurface to be written in this
coordinate patch as z181 þ z182 þ Pðz1;2;3;4;ψ ;ϕÞ ¼ 0. The
divisor fx5 ¼ 0g ∩ fPðx1;2;3;4;5; ξÞ ¼ 0g is rigid with
h0;0 ¼ 1 (see [55]) satisfyingWitten’s unit-arithmetic genus
condition and that the Calabi-Yau volume can be written as

volðCY3Þ ¼ τ3=2
4

18
−
ffiffi
2

p
τ3=2
5

9
, implying that the “small divisor”

Σs is fx5 ¼ 0g ∩ fz181 þ z182 þ Pðz1;2;3; z4 ¼ 0;ψ ;ϕÞ ¼ 0g

and the big divisor ΣB is fx4 ¼ 0g ∩ fz181 þ z182 þ
Pðz1;2;4; z3 ¼ 0;ψ ;ϕÞ ¼ 0g. Alternatively, using the toric
data of [58],

x1 x2 x3 x4 x5 ξ

Q1 1 1 1 0 0 −3
Q2 0 0 0 −2 −3 −1

;

one can verify that fξ ¼ 0g ∩ fP0ðx1;2;3;4;5; ξÞ ¼ 0g is the
rigid blow-up mode with h0;0 ¼ 1 (which can be easily
verified using COHOMCALG), and one can define gauge-
invariant coordinates in the x2 ≠ 0, x4 ≠ 0 coordinate patch:

z1 ¼ x1
x2
, z2 ¼ x3

x2
, z3 ¼ ðx5x1Þ2

x3
4

, z4 ¼ ðx6x31Þ2
x4

. Interestingly, we

found in [38] that the three cycle

C3∶jz1j≡ V
1
36; jz2j≡ V

1
36; jz3j≡ V

1
6 ð6Þ

[the Calabi-Yau can be thought of locally as a complex
threefold M3, which is a T3 swept out by arg z1, arg z2,
arg z3 fibration over a large base ðjz1j; jz2j; jz3jÞ]. Precisely
apt for application of mirror symmetry as three T dualities
à la Strominger, Yau, and Zaslow (SYZ), C3 is almost a
special Lagrangian submanifold because it satisfies the
requirement that

f�J ≈ 0; ℜeðf�eiθΩÞjθ¼π
2
≈ volðC3Þ;

ℑmðf�eiθΩÞjθ¼π
2
≈ 0;

where f∶C3 → CY3. As the defining hypersurface
of the Swiss-cheese Calabi-Yau in the x2 ≠ 0 coordinate
patch will be z181 þ z182 þ � � �, which, near C3 (implying
that the other two coordinates will scale like V

1
6, V

1
6 − V

1
4)

receives the most dominant contributions from the
monomials z181 and z182 it is sufficient to consider
PΣS

jD3jnearC3↪ΣB
, PΣB

jnearC3↪ΣB
∼ z181 þ z182 with the under-

standing jPðz1;2;3; z4 ¼ 0;ϕ;ψÞjC3
, jPðz1;2;4; z3;ϕ;ψÞjC3

<
jz181 þ z182 j.
The set of N ¼ 1 chiral coordinates (in particular, the

“divisor volume”) gets modified in the presence ofD3- and
D7-branes [40]. To evaluate the Wilson line moduli
contribution in one of the N ¼ 1 chiral coordinates TB,
due to inclusion of four Wilson line moduli on the world
volume of space-time fillingD7-branes wrapped around the
big divisor restricted to (nearly) a special Lagrangian
submanifold, we constructed distribution harmonic one-
forms localized along the mobile space-time filling D3-
brane (restricted to the three cycle). Here, we review the
construction of involutively odd harmonic distribution one-
forms in the large volume limit, as given in [38]. [The most
nontrivial example of involutionswhich aremeaningful only
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at large volumes is mirror symmetry implemented as three T
dualities in [59] to a Calabi-Yau which locally can be
thought of as a T3 fibration over a (large) base; all Calabi-
Yau’s with mirrors (in the conventional sense) are expected
to have such a local fibration.] Harmonic distribution
one-forms can be constructed by integrating dAI¼
ðPΣB

ðz1;2ÞÞIdz1∧dz2 with (I¼1, 2, 3, 4), near C3 ↪ ΣB;
AI is harmonic only within ΣB and not at any other generic
locus outside ΣB in the Calabi-Yau manifold. Four such
distribution one-forms on ΣB localized along C3 corre-
sponding to the location of the D3-brane can be written as
AI∼δðjz1j−V

1
36Þδðjz2j−V

1
36Þ½ωIðz1;z2Þdz1þ ~ωIðz1;z2Þdz2�.

Writing AIðz1; z2Þ ¼ ωIðz1; z2Þdz1 þ ~ωIðz1; z2Þdz21 where
ωð−z1; z2Þ ¼ ωðz1; z2Þ, ~ωð−z1; z2Þ ¼ − ~ωðz1; z2Þ, and
∂1 ~ω ¼ −∂2ω, one obtains (see [38])

A1jC3
∼ −z181 z192 dz1 þ z191 z182 dz2;

A2jC3
∼ −z181 z2dz1 þ z182 z1dz2;

A3jC3
∼ −z181 z372 dz1 − z182 z371 dz1;

A4jC3
∼ −z361 z372 dz1 þ z362 z371 dz2: ð7Þ

1. Yang-Mills coupling constant

We now summarize the discussion on obtaining an
Oð1Þ gauge coupling constant. The Yang-Mills gauge
coupling constant squared for the ith gauge group
[i∶SUð3Þ; SUð2Þ; Uð1Þ] will be given as

1

g2j¼SUð3Þ or SUð2Þ
¼ ℜeðTS=BÞ þ lnðPðΣSÞjD3jΣB Þ

þ lnðP̄ðΣSÞjD3ΣB
Þ þOðF2

jÞτ; ð8Þ

where ReðTS=BÞ corresponds to the size of the divisor

volume around which D7-branes are wrapped, and F2
j ¼

Fα
jF

β
jκαβ þ ~Fα

j
~Fβ
jκαβ are the components of the two-form

fluxes for the jth stack expanded out in the basis of i�wα,
wα ∈ H1;1

− ðCY3Þ, and ~Fa
j are the components of two-form

fluxes for the jth stack expanded out in the basis
~wa ∈ cokerðHð1;2Þ

− ðCY3Þ → Hð1;1Þ
− ðσBÞÞ. In dilute flux

approximation gYM is mainly governed by the size of
the divisor volume around which D7-branes are wrapped.
Using the distribution one-forms of (7), the N ¼ 1 chiral
coordinates with the inclusion of mobile D3-brane position
moduli z1;2 (which we identify with the ΣB coordinates)
and mulitple matrix-valued D7-branes, Wilson line moduli

aI were guessed in [38]. The quadratic contribution
arising in TB (the big divisor) due to the Wilson line
moduli contribution is of the form iκ24μ7C

B
IJ̄a

IāJ̄ with

CB
IJ̄ ¼

R
ΣB

i�ω ∧ AI ∧ ĀJ̄, where ω ∈ Hð1;1Þ
þ ðΣBÞ. In [38],

we estimated the intersection matrices CB
IJ̄ by constructing

harmonic one-forms using Eq. (7). Also, the coefficient of

the quadratic term ðωαÞij̄ziðz̄j̄ − i
2
ðP ~aÞj̄l z̄ ~azlÞ arising in TB

due to inclusion of position moduli zi was shown in [38] to

be Oð1Þ by calculating ðωBÞij̄ ∼ ðωSÞij̄ ∼Oð1Þ near z1;2 ∼
V

1
36ffiffi
2

p (see [38]). Using the same, it was argued that, in the

dilute flux approximation, gauge couplings corresponding
to the gauge theories living on stacks of D7-branes
wrapping the big divisor ΣB in the large volume limit,
will be given by

g−2YM ∼ℜeðTBÞ ∼ volðΣBÞ þ CIJ̄aIāJ̄ þ H:c: ∼ V
1
18 ∼Oð1Þ

(justified by the partial cancellation between ΣB and
CIJ̄aIāJ̄ with some fine-tuning).

2. Stabilized potential of N ¼ 1 local large volume
D3-D7 setup

As we do not have a global picture, we are ourselves with
a local bulk and open-string moduli stabilization near (6).
We showed in [38] that near (6), the moduli can be
stabilized as under

volðΣSÞ∼ V
1
18; volðΣBÞ∼ V

2
3;

Ga ∼
π

Oð1Þkað∼Oð10ÞÞMP;

jz1;2j≡ V
1
36MP; jz3j≡ V

1
6MP;

ja1j≡ V−2
9MP; ja2j≡ V−1

3MP;

ja3j≡ V−13
18MP; ja4j≡ V−11

9MP;

ζA¼1;…;h0;2− ðΣBjC3 Þ ≡ 0 ðimplying rigidity of the nonrigidΣBÞ;
ð9Þ

such that ℜeTS ∼ℜeTB ∼ V
1
18 and implying the possibility

of obtaining a local metastable de Sitter–like minimum
corresponding to the positive minimum of the potential
eKGTST̄S jDTS

Wj2 near (9), and realizing (5) and thereby
the supergravity model of Sec. II A for V ∼ 105 in
ls ¼ 1 units.
The Kähler potential relevant to all the calculations

(using modified N ¼ 1 chiral coordinates) in this paper
[without being careful aboutOð1Þ constant factors] is given
as under [38],

1Intuitively, these distribution one-forms could be thought
of as the holomorphic square root of a Poincaré dual of a four
cycle.
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K ∼ −2 ln
�
aB

�
TB þ T̄B

MP
− μ3ð2πα0Þ2

fjz1j2 þ jz2j2 þ z1z̄2 þ z2z̄1g
M2

P
þ V

10
9
ja1j2
M2

P
þ V

11
18
ða1ā2 þ H:c:Þ

M2
P

þ V
1
9
ja2j2
M2

P
þ V

29
18
ða1ā3 þ H:c:Þ

M2
P

þ V
10
9
ða2ā3 þ H:c:Þ

M2
P

þ V
19
9
ja3j2
M2

P
þ V

19
9
ða1ā4 þ a4ā1Þ

M2
P

þ V
29
18
ða2ā4 þ a4ā2Þ

M2
P

þ V
47
18
ða3ā4 þ a4ā3Þ

M2
P

þ V
28
9
ja4j2Þ
M2

P

�
3=2

− aS

�
TS þ T̄S

MP
− μ3

�
2πα0Þ2 fjz1j

2 þ jz2j2 þ z1z̄2 þ z2z̄1g
M2

P

�
3=2

þ
X

n0βð…Þ
�
; ð10Þ

and the ED3/ED1-generated nonperturbative superpotential
used in [38] is given by

W ∼ ðPΣS
jD3jnearC3↪ΣB

∼ z181 þ z182 Þns
X
ma

eiτ
m2

2 ein
sGamaein

sTs ;

ð11Þ

which is like (3) assuming Ga, τ has been stabilized.
The genus-zero Gopakumar-Vafa invariants (which, for
projective varieties, are very large) prefix the h1;1− -valued
real axions ba, ca. In general, there are no known
globally defined involutions valid for all Calabi-Yau
volumes, for which h1;1− ðCY3Þ ≠ 0, h0;1− ðΣBÞ ≠ 0.
However, as mentioned earlier, in the spirit of the
involutive mirror symmetry implemented à la the SYZ
prescription in terms of a triple of T dualities along
a local T3 in the large volume limit, we argued in
[60], e.g., z1 → −z1 would, restricted to C3, generate
nonzero

h1;1−

0
B@

T3ðarg z1;2;3Þ → M3ðz1;2;3Þ
↓

M3ðjz1j; jz2j; jz3jÞ

1
CA:

An example of holomorphic involutions near C3 not
requiring a large Calabi-Yau volume has been discussed
in [38]. However, even if h1;1− ¼ 0, one can self-consistently
stabilize ca, ba to zero and σs, σb to V

1
18, V

2
3 such that

the Kähler potential continues to be stabilized at
−2 lnV.
The evaluation of “physical”/normalized Yukawa

couplings, soft SUSY breaking parameters, and various
three-point vertices needs the matrix generated from the
mixed double derivative of the Kähler potential to be a
diagonalized matrix. After diagonalization, the correspond-
ing eigenvectors of the same were found in [38] to be
given by

A4 ∼ a4 þ V−3
5a3 þ V−6

5a1 þ V−9
5a2 þ V−2ðz1 þ z2Þ;

A3 ∼ −a3 þ V−3
5a4 − V−3

5a1 − V−7
5a2 þ V−8

5ðz1 þ z2Þ;
A1 ∼ a1 − V−3

5a3 þ V−1a2 − V−6
5a4 þ V−6

5ðz1 þ z2Þ;
A2 ∼ −a2 − V−1a1 þ V−7

5a3 − V−3
5ðz1 þ z2Þ;

Z2 ∼ −
ðz1 þ z2Þffiffiffi

2
p − V−6

5a1 þ V−3
5a2 þ V−8

5a3 þ V−2a4;

Z1 ∼
ðz1 − z2Þffiffiffi

2
p − V−6

5a1 þ V−3
5a2 þ V−8

5a3 þ V−2a4:

For V ¼ 105, the numerical eigenvalues are estimated to be

KZ1Z1
∼ 10−5; KZ2Z2

∼ 10−3; KA1A1
∼ 104;

KA2A2
∼ 10−2; KA3A3

∼ 107; KA4A4
∼ 1012: ð12Þ

3. Mass scales of SM-like particles

The effective Yukawa couplings can be calculated using

Ŷeff
CiCjCk

≡ e
K
2Yeff

CiCjCkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KCiC̄i

KCjC̄j
KCkC̄k

p , Ci being an open-string modu-

lus, which for us is δZ1;2, δA1;2;3;4, where Yeff
ZiAIAJ

is
given by the OðZiÞ coefficient in the mass term
e
K
2DĀI

DĀJ
W̄χ̄AIχAJ in the N ¼ 1 SUGRA action of

[39]. By estimating in the large volume limit, all possible
Yukawa couplings corresponding to four Wilson line
moduli and showing that the renormalization group (RG)
flow of the effective physical Yukawa’s change almost by
Oð1Þ under a RG flow from the string scale down to the
EW scale [38], we see that for V ∼ 105, hZii ∼ 246 GeV:

OðZiÞterm in e
K
2DA1

DA3
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KZiZ̄i
KA1Ā1

KA3Ā3

p ≡ Ŷeff
ZiA1A3

∼ 10−3 × V−4
9;

giving hZiiŶZ1A1A3
∼MeV—about the mass of the

electron

OðZiÞterm in e
K
2DA2

DA4
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KZiZ̄i
KA2Ā2

KA4Ā4

p ≡ Ŷeff
ZiA2A4

∼ 10−
5
2 × V−4

9
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giving hziiŶZiA2A4
∼ 10 MeV—close to the mass of the up

quark. The above shows that fermionic superpartners ofA1

and A3 correspond, respectively, to the first generation of
left-handed SUð2Þ and right-handed Uð1Þ leptons, while
fermionic superpartners of A2 and A4 correspond, respec-
tively, to left-handed SUð2Þ and right-handed Uð1Þ quarks.
The diagonalized basis (12) was shown to also work out for
appropriately chosen matrix-valued aI and zi for multiple
fluxed D7-brane stacks.

4. Computation of soft terms

By using the appropriate N ¼ 1 coordinates as obtained
in [40] due to the presence of a singleD3-brane and a single
D7-brane wrapping, the four cycle (big divisor ΣB in a
Swiss-cheese Calabi-Yau) along with D7-brane fluxes, the
soft SUSY breaking parameters were calculated in [38].
The value of scalar masses identified with the masses of
squarks and leptons, so obtained, turns out to be quite high,
but at the same time, one gets one light Higgs, thus,
indicating the possibility of a “split SUSY-like scenario” in
a local large volume D3=D7 model.
We briefly review the evaluation of various soft super-

symmetric as well as supersymmetry breaking parameters
in the model involving four Wilson line moduli as
described in [38]. The various soft terms are calculated
by power series expansion of the superpotential as well as
the Kähler potential,

W ¼ ŴðΦÞþμðΦÞZIZJ þ
1

6
YIJKðΦÞMIMJMK þ�� � ;

K¼ K̂ðΦ; Φ̄ÞþKIJ̄ðΦ; Φ̄ÞMIMJ̄ þZðΦ; Φ̄ÞMIMJ̄ þ�� � ;
ð13Þ

where MI ¼ ðZI;AIÞ. The soft SUSY breaking parame-
ters are calculated by expanding the N ¼ 1 supergravity
potential, V ¼ eKðKIJ̄DIWDJ̄W̄ − 3jWj2Þ in the powers of
matter fields MI after expanding the superpotential and
Kähler potential according to Eq. (13). In gravity-mediated
supersymmetry breaking, SUSY gets spontaneously bro-
ken in the bulk sector by giving a vacuum expectation value
to auxiliary F terms. Hence, to begin with, one needs to
evaluate the bulk F terms, which, in turn, entails evaluating
the bulk metric. Writing the Kähler sector of the Kähler
potential in terms of the bulk moduli as

K∼−2 ln
�
ðσBþ σ̄B− γKgeomÞ32− ðσSþ σ̄S− γKrmgeomÞ32

þ
X

β∈H−
2
ðCY3Þ

n0β
X
ðn;mÞ

cosðink · ðG− ḠÞgsþmk · ðGþ ḠÞÞ
�
;

ð14Þ

disregarding Kgeom (introduced due to the presence of
a mobile space-time filling D3-brane) in the large

volume limit (see [61,62]) and working near
sin ðink · ðG − ḠÞgs þmk · ðGþ ḠÞÞ ¼ 0 corresponding
to a local minimum—using the stabilized vacuum
expectation value (VEV) of σS=B and GS;B as given above
Eq. (10)—generated the following components of the bulk
metric’s inverse in [38]:

Gmn̄ ∼

0
BBB@

V
37
36 V

13
18 0 0

V
13
18 V

4
3 0 0

0 0 Oð1Þ Oð1Þ
0 0 Oð1Þ Oð1Þ

1
CCCA: ð15Þ

Given that bulk F terms are defined as [51],
Fm ¼ e

K
2Gmn̄Dn̄W̄, one obtained in [38]:

FσS ∼V−ns
2
þ 1

36M2
P; FσB ∼V−ns

2
− 5
18M2

P; FGa ∼V−ns
2
−1M2

P:

ð16Þ

Hence, after spontaneous supersymmetry breaking in the
bulk, the gravitino mass is given by

m3=2 ¼ eKjWj2 ∼ V−ns
2
−1MP: ð17Þ

The gaugino mass is given as

m~g ¼
Fm∂mTB

ReTB
≲ V

2
3m3=2: ð18Þ

The analytic form of the scalar masses obtained via
spontaneous symmetry breaking is given as [51]
m2

I ¼ ðm2
3
2

þ V0Þ − Fm̄Fn∂m̄∂n logKIĪ . These were calcu-

lated in [38] to yield

mZi
∼ V

59
72m3=2; mA1

∼
ffiffiffiffi
V

p
m3=2; ð19Þ

implying a nonuniversality in the open-string moduli
masses. Further, in [38] we showed the universality in
the trilinear A couplings [51],

AIJK ¼ Fmð∂mK þ ∂m lnYIJK þ ∂m ln ðKIĪKJ J̄KKK̄ÞÞ
∼ V

37
36m3=2 ∼ μ̂Z1Z2

: ð20Þ

The physical Higgsino mass parameter μ̂Z1Z2
turned out to

be given by

μ̂Z1Z2
¼ e

K
2μZ1Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KZ1Z̄1
KZ2Z̄2

p ∼ V
19
18m3=2: ð21Þ

Further,
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ðμ̂BÞZ1Z2
¼ e−iargðWÞþK

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KZ1Z̄1

KZ2Z̄2

p Fmð∂mKμZ1Z2
þ ∂mμZ1Z2

−μZ1Z2
∂m lnðKZ1Z̄1

KZ2Z̄2
ÞÞ

∼ μ̂Z1Z2
ðFm∂mKþFσS −Fm∂m lnðKZ1Z̄1

KZ2Z̄2
ÞÞ

∼V
19
18
þ37

36m2
3=2∼ μ̂2Z1Z2

; ð22Þ

an observation which will be very useful in obtaining a light
Higgs of mass 125 GeV.

5. Realizing a light SM-like Higgs

We calculated in [38] the mass of a light Higgs formed
by the linear combination of two Higgs doublets (using
the prescription as given in [1] to realize split SUSY)
by first calculating the masses of the latter, which, after
soft supersymmetry breaking, are given by MHu;d

¼
ðm2

Z1;2
þ μ̂2Z1Z2

Þ1=2, and, thereafter, using the RG solution
to the Higgs mass discussed in [37], we obtained the
contribution of Higgs doublets as well as the Higgsino
mass parameter μ̂Z1Z2

at the EW scale. The Higgs mass
eigenstates are defined as

H1 ¼ Dh11Hu þDh12Hd; H2 ¼ Dh21Hu þDh22Hd;

ð23Þ
where

Dh ¼
 

cos θh
2

− sin θh
2
e−iϕh

sin θh
2
eiϕh cos θh

2

!
;

D†
hM

2
hDh ¼ diagðM2

H1
;M2

H2
Þ, and tan θh ¼

2jM2
h21

j
M2

h11
−M2

h22

for a

particular range of −π
2
≤ θh ≤ π

2
.

The RG solution to the Higgs mass formed after soft
supersymmetry breaking in the large-tan β (but less than
50) limit are given [37,38] [assuming that m2

Z2
ðMsÞ≡

m2
0 ≡ V

59
72m3

2
, implying δ2 ¼ 0 but δ1;3;4 ≠ 0, and nonun-

iversality with respect to both D3-brane position moduli
masses (mZ1;2

) given by δ1] as

μ̂2ðEWÞ≡−
�
−m2

0− ð0.01ÞðnsÞ2μ̂2Z1Z2
þð0.32ÞV4

3m2
3=2

−1=2M2
EWþð0.03ÞV2

3nsμ̂Z1Z2
m3=2þ

19π

2200
S0

�
;

m2
Hu
ðEWÞ≡m2

0ð1þδ1Þþ
1

2
M2

EWþm2
0

− ð0.03ÞV2
3nsμ̂Z1Z2

m3=2þð0.01ÞðnsÞ2μ̂2Z1Z2
;

m2
Hd
ðEWÞ≡2m2

0− ð0.06ÞV2
3nsμ̂Z1Z2

m3=2þ
1

2
M2

EW

−
19π

1100
S0;

where S0 is a hypercharge weighted sum of the squared soft
scalar mass having value around m2

0. Assuming
μ̂B≡ ξμ̂ZiZj

ðξ≡Oð1ÞÞ, the Higgs mass matrix is given as

�m2
Hu

μ̂B

μ̂B m2
Hd

�
∼
�m2

Hu
ξμ̂2

ξμ̂2 m2
Hd

�
;

and the eigenvalues are given by 1
2
ðm2

Hu
þm2

Hd
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
Hu

−m2
Hd
Þ2 þ 4ξ2μ̂4

q
Þ. Using Eq. (24), for δ1 ¼

Oð0.1Þ and Oð1Þ ns, we have

m2
Hu

þm2
Hd

∼m2
0 − 0.06S0 þ � � � ;

m2
Hu

−m2
Hd

∼m2
0 þ 0.06S0 þ � � � ;

μ̂2HuHd
∼m2

0 − 0.03S0 þ � � �

Utilizing the above, one sees that the eigenvalues are

m2
H1;2

¼ m2
0 − 0.06S0 þ � � �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

0 þ 0.06S0 þ � � �Þ2 þ 4ξ2ðm2
0 − 0.03S0Þ2

q
:

Considering S0 ∼ −4.2m2
0 and ξ2 ∼ 1

5
þ 1

16

m2
EW
m2

0

, we obtain

one light Higgs (corresponding to the negative sign of the
square root) of order 125 GeV and one heavy Higgs
(corresponding to the positive sign of the square root),
whereas the squared Higgsino mass parameter μ̂Z1Z2

then
turns out to be heavy with a value at the EW scale of
around Vm3=2.

6. Realization of a μ-split-like SUSY

We summarized above the different mass scales corre-
sponding to different supersymmetric particles as men-
tioned in the above paragraphs and actually calculated in
[38] by considering Calabi-Yau volume V ¼ 105 [the
justification behind constraining a value of Calabi-Yau V
to be Oð105Þ was based on the right identification of
Wilson line moduli and position moduli with a SM particle
spectrum]. The gravitino appears to be the lightest super-
symmetric particle with mass around 108 GeV. The sfer-
mion masses corresponding to the first generation of quarks
and leptons (identifiable as Wilson line moduli mass in our
framework as mentioned above) are very heavy, of the
order 1010 GeV at the string scale. Similarly, the gaugino
masses also turn out to be heavy, of the order 1011 GeV.
However, the Higgsino masses are heavier, of the order
1013 GeV. One of the Higgs doublets was shown to have
mass of the order 125 GeV, thus, showing the possibility of
realizing a μ-split-like SUSY scenario (though there is a
“split” between the mass of a Higgsino, and the gaugino
and sfermions at very high energy scale, the SM fermions
are light) in the context of our local LVS D3-D7.
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The fine-tuning involved in the hypercharge weighted sum
of soft scalar masses (S0) as well as the Oð1Þ proportion-
ality constant between the Higgsino mass parameter
squared μ2 and the soft SUSY parameter μB to obtain a
Higgs of the order 125 GeV seems acceptable at such high

energy scales. The results of mass scales of all SM as well
as superpartners are summarized in Table I also.

7. Modified N ¼ 1 gauged supergravity action in the
case of multiple D7-branes

We will be using the following terms (written out in
four-component notation or their two-component analogs
and utilizing/generalizing the results of [40]) in the
N ¼ 1 gauged supergravity action of Wess and Bagger
[39] with the understanding that mmoduli=modulini≪
mKKð∼Ms

V
1
6

jV∼105=6 ∼1014 GeVÞ, Ms¼MPffiffiffi
V

p jV∼105=6∼1015GeV
and that for multiple D7-branes, the non-Abelian gauged
isometry group2 corresponding to the Killing vector
6iκ24μ7ð2πα0ÞQB∂TB

, QB ¼ ð2πα0Þ RΣB
i�ωB ∧ P− ~f arising

due to the elimination of the two-form axions Dð2Þ
B in favor

of the zero-form axions ρB under the Kaluza-Klein (KK)
reduction of the ten-dimensional four-form axion [40]
[which results in a modification of the covariant derivative
of TB by an additive shift given by 6iκ24μ7ð2πα0ÞTrðQBAμÞ]
can be identified with the SM group (i.e., Aμ is the SM-like
adjoint-valued gauge field [39]):

L ¼ gYMgTBJ̄TrðXTB χ̄J̄L λ~g;RÞ þ igIJ̄Tr

�
χ̄ĪL

�
∂χIL þ Γi

Mj∂aMχJL þ 1

4
ð∂aMK∂aM − c:c:ÞχIL

��

þ e
K
2

2
ðDĪDJ W̄ÞTrðχILχJR Þ þ gTBT̄B

Tr½ð∂μTB − AμXTBÞð∂μTB − AμXTBÞ†�
þ gTBJTrðXTBAμχ̄

J
L γ

νγμψν;RÞ þ ψ̄L;μσ
ρλγμλ~g;LFρλ þ ψ̄L;μσ

ρλγμλ~g;LWþ
ρ W−

λ

þ Tr

�
λ̄~g;LA

�
6κ24μ7ð2πα0ÞQBK þ 12κ24μ7ð2πα0ÞQBvB

V

�
λ~g;L

�

þ eKGTBT̄B

κ24
6iκ24ð2πα0ÞTr½QBAμ∂μðκ24μ7ð2πα0Þ2CIJ̄aIāJ̄Þ� þ H:c:

−
fab
4

Fa
μνFbmuν þ 1

8
fabϵμνρλFa

μνFb
ρλ −

i
ffiffiffi
2

p

4
g∂i=IfabTr

�
12κ24μ7ð2πα0ÞQa

Bv
B

V
λ̄b~g;Lχ

i=I
R

�
þ H:c:

−
ffiffiffi
2

p

4
∂i=IfabTrðλ̄a~g;Rσμνχi=IL ÞFb

μν þ H:c: ð24Þ

III. CP-VIOLATING PHASES

In this section, we explain the possible origin of CP-
violating phases in the N ¼ 1 gauged supergravity limit of
the large volume D3=D7 μ-split SUSY model. The electric
dipole moment of a spin-1

2
particle is defined by the

effective CP-violating dimension-five operator given as
LI ¼ − i

2
dfψ̄σμνγ5ψFμν. Given that the effective operator

is nonrenormalizable, the same can be realized at the loop
level provided the theory contains a source of CP violation.
In the Standard Model, CP-violating phases, in general,

TABLE I. Mass scales of the first generation of the SM as well
as supersymmetric and soft SUSY breaking parameters.

Quark mass Mq ∼Oð10Þ MeV
Lepton mass Ml ∼Oð1Þ MeV
Gravitino mass m3

2
∼ V−ns

2
−1MP; ns ¼ 2

Gaugino mass M ~g ∼ V
2
3m3

2

(Lightest) neutralino/chargino mass Mχ0
3
=χ�

3
∼ V

2
3m3

2

D3-brane position moduli
(Higgs) mass

mZi
∼ V

59
72m3

2

Wilson line moduli m ~AI
∼ V

1
2m3

2

(sfermion mass) I ¼ 1, 2, 3, 4
A terms Apqr ∼ nsV

37
36m3

2

fp; q; rg ∈ f ~AI ;Zig
Physical μ terms (Higgsino mass) μ̂ZiZj

∼ V
37
36m3

2

Physical μ̂B terms ðμ̂BÞZ1Z2
∼ V

37
18m2

3
2

2As explained in [40], one of the two Pecci-Quinn shift
symmetries along the RR two-form axions ca and the four-form
axion ρB gets gauged due to the dualization of the Green-Schwarz
term

R
R1;3 dD

ð2Þ
B ∧ A coming from the KK reduction of the Chern-

Simons term on ΣB∪σðΣBÞ −Dð2Þ
B being an RR two-form axion.

In the presence of fluxes for multiple D7-brane fluxes, the
aforementioned Green-Schwarz is expected to be modified to
TrðQB

R
R1;3 dD

ð2Þ
B ∧ AÞ, which, in turn, after dualization modifies

the covariant derivative of TB and, hence, the Killing isometry.
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appear from the CKM phases in the quark mass matrix but
the same get a nonzero contribution only at three-loop level
in the Standard Model. However, in supersymmetric
theories, instead of the CKM phase generated in the
Standard Model, one can consider the new phases appear-
ing from complex parameters of soft SUSY breaking terms,
complex effective Yukawa couplings, as well as super-
symmetric mass terms.
We consider the existence of nonzero phases appearing

from complex effective Yukawa couplings present in the
N ¼ 1 gauged supergravity action. As discussed in [38],
the position as well as Wilson line moduli identification
with SM-like particles generate effective Yukawa couplings
including R-parity conserving as well as R-parity violating
ones in the context of the N ¼ 1 gauged supergravity
action [38], and the solution of RG evolution of effective
Yukawa couplings at one-loop level yields

ŶΛΣΔðtÞ ∼ ŶΛΣΔðMsÞ
Y3
ðaÞ¼1

ð1þ βðaÞtÞ
−2ðCðaÞðΛÞþCðaÞðΣÞþCðaÞðΔÞÞ

bðaÞ :

ð25Þ

Using the fact that quadratic Casimir invariants as well as
beta functions are real, we see that magnitudes of Yukawa
couplings ŶΛΣΔs change only by Oð1Þ while phases of all
Yukawas do not change at all as one RG flows down from
the string to the EW scale. Also, given that all four Wilson
line moduli AI as well as position moduli ZI are stabilized
at different values, we make an assumption that there will
be a distinct phase factor associated with all position as well
as Wilson line moduli superfields which produces an
overall distinct phase factor for each possible effective
Yukawa coupling corresponding to four Wilson line moduli
as well as position moduli.
The other important origin of the generation of nonzero

phases is given by complex soft SUSY breaking parameters
ðm2

i ;AIJK; μBÞ as well supersymmetric mass term μ. The
soft SUSY scalar mass terms can be made real by phase
redefinition. However, in addition to the diagonal entries of
sfermions corresponding to fermions with L-handed as well
as R-handed chirality in the sfermion mass matrix, one gets
an off-diagonal contribution because of mixing between
L-R sfermion masses after EW symmetry breaking. The
contribution of the same is governed by complex trilinear
couplings as well as supersymmetric mass parameter μ at
the EW scale. Therefore, the scalar (sfermion) fields ~fL and
~fR have been considered as linear combinations of the mass
eigenstates which are obtained by diagonalizing sfermion
ðmassÞ2 matrices [23], i.e.,

~fL ¼ Df11
~f1 þDf12

~f2; ~fR ¼ Df21
~f1 þDf22

~f2; ð26Þ

where f corresponds to first-generation leptons and quarks
and

Df ¼
�

cos θf
2

− sin θf
2
e−iϕf

sin θf
2
eiϕf cos θf

2

�
; ð27Þ

and the mass matrix is given as follows:

M2
~f
¼
 

M2
~fL

muðA�
f − μ cot βÞ

muðAf − μ� cot βÞ M2
~fR

!
EW

;

ð28Þ

where AIJK corresponds to the complex trilinear coupling
parameter. Diagonalizing the above matrix by performing
unitary transformation D†

fM
2
~f
df ¼ diagðM2

~f1
;M2

~f2
Þ, where

tan θf ¼ 2jM2
~f21

j
M2

~f11
−M2

~f22

. The eigenvalues M2
~f1

and M2
~f2

are as

follows:

M2
~fð1Þð2Þ ¼

1

2
ðM2

~f11
þM2

~f22
ÞðþÞð−Þ

×
1

2
½ðM2

~f11
−M2

~f22
Þ2 þ 4jM2

~f21
j2�12: ð29Þ

For f¼e, A�
e ¼ AZIA1A3

; for f ¼ ðu; dÞ, A�
u=d ¼ AZIA2A4

.
In our model as discussed in Sec. II, we have universality in
trilinear couplings with respect to position as well as
Wilson line moduli. Assuming the same to be true at the
EW scale, the values of the trilinear coupling parameters
are AZIA1A3

¼ AZIA2A4
¼ V

37
36m3

2
. As given in Sec. II, the

value of the supersymmetric mass parameter μ at the EW
scale is V

59
72m3

2
. Also, we have universality in slepton

(squark) masses of the first two generations. Therefore,
M2

~e11 ¼ M2
~e22 ¼ M2

~u11 ¼ M2
~u22 ∼ Vm2

3
2

, and

jM2
~e21j2 ¼ mejA�

e − μ cot βj≡ ðV37
36Þmem3

2
≪ M2

~e11;

jM2
~u21j2 ¼ mujA�

u − μ cot βj≡ ðV37
36Þmem3

2
≪ M2

~u11: ð30Þ

Using the above, one can show that the eigenvalues of
sfermion mass matrix M2

~fð1Þð2Þ ∼M ~f2L;R
¼ Vm2

3
2

. The afore-

mentioned mass eigenstates can be utilized to produce a
nonzero phase responsible to generate the finite EDM of
the electron as well as the neutron in the one-loop diagrams
involving sfermions as scalar propagators and gauginos and
neutralinos as fermionic propagators.

IV. ONE-LOOP CONTRIBUTION TO THE
ELECTRIC DIPOLE MOMENT

At one-loop level, for a theory of fermion ψf interacting
with other heavy fermions’ ψ i’s and heavy scalars’ ϕk’s
with massesmi,mk and chargesQi,Qk, the interaction that
contains CP violation, in general, is given by [23]
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−Lint ¼
X
i;k

ψ̄f

�
Kik

1 − γ5
2

þ Lik
1þ γ5

2

�
ψ iϕk þ H:c:

ð31Þ

Here, L violates CP invariance iff ImðKikL�
ikÞ ≠ 0. The

one-loop EDM of the fermion f in this case is given by

X
i;k

mi

ð4πÞ2m2
k

ImðKikL�
ikÞ
�
QiA

�
m2

i

m2
k

�
þQkB

�
m2

i

m2
k

��
;

ð32Þ
where AðrÞ and BðrÞ are defined by

AðrÞ ¼ 1

2ð1 − rÞ2
�
3 − rþ 2 ln r

1 − r

�
;

BðrÞ ¼ 1

2ðr − 1Þ2
�
1þ rþ 2r ln r

1 − r

�
; ð33Þ

where Qk ¼ Qf −Qi.
We use the above-mentioned results to get an order-of-

magnitude estimate of the EDM of the electron/quark in the
context ofN ¼ 1 gauged supergravity by including all SM
as well as supersymmetric particles in the loop diagram.
The EDMs of the neutron can be estimated by calculating
the contribution of u and d quarks by using relation
dn ¼ ð4dd − duÞ=3. Since in our model, we have identified
both up as well as down quarks with a single Wilson line
modulus, we will have the same contribution of the EDM
for both up and down quarks. Hence, the neutron EDM is
the same as the up-quark EDM. Therefore, in the calcu-
lations below, we will estimate the EDM of the electron and
up quark only.

A. One-Loop diagrams involving neutral
sfermions in the loop

1. Gaugino contribution

In this subsection, we estimate the contribution of the
electron/neutron EDM at one-loop level due to the presence
of a heavy gaugino nearly isospectral with heavy sfermions
(for the Calabi-Yau volume V ¼ 105 in string-length units).
In traditional split SUSY models discussed in the literature,
the masses of sfermions are very heavy, while the masses of
gauginos as well as Higginos are kept very light because of
the gauge coupling unification. Therefore, one-loop dia-
grams involving sfermion-gaugino exchange do not give
any significant contribution to the EDM of fermion.
However, in the large volume D3-D7 setup that we have
discussed, the gaugino as well as Higgsino also turn out to
be very heavy. As it is clear from Eq. (31), the order of
magnitude of the EDM at one-loop level is directly
proportional to the fermion mass and inversely proportional
to the sfermion masses circulating in the loop, whereas the

one-loop function can almost be of Oð0.1 − 1Þ provided
either the difference between the fermion and sfermion
mass is of Oð1Þ or the fermion mass is very light as
compared to the sfermion mass. Therefore, naively one
would expect an enhancement in the order of magnitude of
one-loop EDM due to the presence of heavy fermions
circulating in a loop. In view of this, we estimate the
contribution of the one-loop EDM of an electron as well as
a neutron in the N ¼ 1 gauged supergravity limit of large
volume D3=D7 μ-split SUSY model discussed in Sec. II.
However, the CP violation (imaginary phases) can be
induced in a loop diagram by considering diagonalized
eigenstates of sfermion mass matrix as propagators in the
loop. The loop diagram is given in Fig. 1. The effective
one-loop operator given in Eq. (31) can be recast in the
following form:

Lint ¼
X

i¼e;u;d

ψ̄fi

�
Ki

1 − γ5
2

þ Li
1þ γ5

2

�
ϕ ~fi

~λ0 þ H:c:

ð34Þ

For i ¼ 1, 2, the above equation can be expanded as

−Lint¼ ψ̄f

�
K1

1− γ5
2

þL1

1þ γ5
2

�
ϕ ~f1

~λ0

þ ψ̄f

�
K2

1− γ5
2

þL2

1þ γ5
2

�
ϕ ~f2

~λ0þH:c:; ð35Þ

and the one-loop EDM of the fermion f in this case will be
given as

m ~λ0i

ð4πÞ2
�

1

m ~f1
2

ImðK1L�
1Þ
�
Q0

~f1
B

�m2
~λ0

m ~f1
2

��

þ 1

m ~f2
2

ImðK2L�
2Þ
�
Q ~f2

B

�m2
~λ0

m ~f2
2

���
; ð36Þ

where m ~λ0
corresponds to the gaugino mass, m ~f1

and
m ~f2

correspond to the masses of the eigenstates of the
diagonalized sfermion mass matrix, andQ0

~fi
corresponds to

effective charge defined as Q0
~fi
∼Q ~fi

C ~fi ~fi γ
, where C ~fi ~fi γ

FIG. 1. One-loop diagram involving gauginos.
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will be the volume-suppression factor coming from the
sfermion-photon-sfermion vertex.
To determine the value of the one-loop EDM in this case,

we first calculate the contribution of the required vertices
involved in Fig. 1. In N ¼ 1 gauged supergravity, lepton
(quark)-slepton(squark)-gaugino interaction ia governed by
[39] the following term:

L
f− ~f− ~λ0

¼ gYMgJT̄B
X�Bχ̄J̄ ~λ0 þ ∂JTBDBχ̄J̄λ0;

where χ̄J̄ corresponds to a spin-1
2
fermion, X�B is the Killing

isometry vector, and ~λ0 corresponds to an SUð2Þ-singlet
component of the neutral gaugino. Though the gauge
coupling gYM is real, the nonzero phase factor is produced
from the moduli space metric component gJT̄B

and is
associated with the volume-suppression factor arising from
the same. Hence, the effective gauge coupling interaction
vertex generates a particular phase factor which we con-
sider to be of the order Oð1Þ.
We repeatedly mention that to get the numerical estimate

of the contribution of the aforementioned vertices, we use
the identification described in [38] according to which
fermionic superpartners of A1 and A3 can be identified,
respectively, with eL and eR, and the fermionic super-
partners of A2 and A4 can be identified, respectively, with
the first-generation quarks: uL=dL and uR=dR. In principle,
an incoming left-handed electron (quark) can couple with
scalar superpartners of both left-handed as well as right-
handed leptons (quarks). Therefore, for a left-handed
electron eL interacting with a slepton as well as gaugino,
the interaction vertex will be given as

L
eL−~e− ~Λ0 ¼ gYMgA1T̄B

X�Bχ̄Ā1 ~λ0 þ ∂a1TBDBχ̄ā1λ0: ð37Þ

To calculate the contribution of the eL − ~eL − ~λ0 vertex,
we expand gA1T̄B

in the fluctuations linear in A1 around
its stabilized VEV. In terms of an undiagonalized basis,
we have gTBā1 → −V−1

4ða1 − V−2
9Þ. Using TB ¼ volðσBÞ−

CIJ̄aIāJ̄ þ H:c:, where the values of intersection matrices
CIJ̄ are given in the Appendix of [38]. Utilizing those
values, we get ∂a1TB → V

10
9 ða1 − V−2

9Þ. Using the argument
that gYMgTBā1 ∼Oð1ÞgYMgTBĀ1

as shown in [38], incorpo-
rating the values of XB ¼ −6iκ24μ7QTB

, κ24μ7 ∼ 1
V,

DB ¼ 4πα0κ2
4
μ7QBvB

V , and QTB
∼ V

1
3ð2πα0Þ2 ~f, we get the

contribution of the physical gauginoð ~λ0Þ-leptonðeLÞ-
sleptonð ~eLÞ interaction vertex as follows:

jC
eL ~eL

~λ0
j≡ V−2

9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂A1Ā1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂A1Ā1

q ~A1χ̄
Ā1 ~λ0 ≡ ~fðV−1Þ; ð38Þ

where ~f is the dilute flux, and the upper limit of the same as
calculated in [37] is V−23

30 ∼Oð10−4Þ for Calabi-Yau vol-
ume V ∼ 105.

Similarly, the contribution of the physical gauginoð ~λ0Þ-
quarkðuLÞ-squarkð ~uLÞ interaction vertex will be given
by expanding gA2T̄B

in the fluctuations linear in A2 around
its stabilized VEV. Doing so, one will get gTBā2 →

−V−5
4ða2 − V−1

3Þ, ∂a2TB → V
1
9ða2 − V−1

3Þ, and

jC
uL ~uL

~λ0
j≡ V−11

9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂A2Ā2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂A2Ā2

q ~A2χ̄
Ā2 ~λ0 ≡ ~fðV−4

5Þ: ð39Þ

The gauginoð ~λ0Þ-fermionðfLÞ-sfermionð ~fRÞ vertex does
not possess SUð2Þ electroweak symmetry. However, the
terms in the supergravity Lagrangian preserve SUð2Þ EW
symmetry. Therefore, we first generate a term of the type

fL ~fR
~λ0 HL wherein HL is an SUð2ÞL Higgs doublet. After

spontaneous breaking of the EW symmetry when HL

acquires a nonzero VEV hH0i, this term generates

hH0ifL ~fR
~λ0. For fL;R ¼ eL;R, by expanding gA1T̄B

in the
fluctuations linear in Zi and then linear in A3 around their
stabilized value, we have gTBĀ1

→ V−13
36hZ1iðA3 − V−13

18Þ.
The contribution of physical gauginoð ~λ0Þ-leptonðeLÞ-
sleptonð ~eRÞ interaction vertex will be as follows:

jC
eL ~eR

~λ0
j≡ gYMgTBĀ1

XTB ∼ V−19
18 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂Z1Z̄1
K̂A1Ā1

K̂A3Ā3

q ~A3χ̄
Ā1 ~λ0 ≡ ~fðV−15

9 Þ:

ð40Þ

For fL;R ¼ uL;R, by expanding gA2T̄B
in the fluctuations

linear in Zi and then linear in A4 around their stabilized
value, we have gTBĀ2

→ V−13
36hZ1iðA4 − V−11

9 Þ and

jC
uL ~uR

~λ0
j≡ gYMgTBĀ2

XTB ∼ V−19
18 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂Z1Z̄1
K̂A2Ā2

K̂A4Ā4

q ~A4χ̄
Ā2 ~λ0 ≡ ~fðV−14

9 Þ:

ð41Þ

Similarly, the outgoing right-handed electron (quark)
can couple with both the left-handed as well as right-

handed sleptons (squarks) and include the gauginoð ~λ0Þ-
fermionðfRÞ-sfermionð ~fLÞ vertex in a loop diagram. The
same does not possess SUð2Þ EW symmetry. For
fL;R ¼ eL;R, by expanding gA3T̄B

first in the fluctuations
linear in Z1 and then linear in A1 around their stabilized
VEVs, we have gTBĀ3

→ −V−13
36hZ1iðA1 − V−2

9Þ. The

physical gauginoð ~λ0Þ-leptonðeRÞ-sleptonð ~eLÞ interaction
vertex will be given as
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jC
eR ~eL

~λ0
j≡ gYMgTBĀ3

XTB ∼ V−19
18 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂Z1Z̄1
K̂A1Ā1

K̂A3Ā3

q ~A1χ̄
Ā3 ~λ0 ≡ ~fðV−15

9 Þ:

ð42Þ

For fL;R ¼ uL;R, one gets gTBĀ4
→ −V−13

36hZ1iðA2 − V−1
3Þ

and

jC
uR ~uL

~λ0
j≡ gYMgTBĀ2

XTB ∼ V−19
18 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂Z1Z̄1
K̂A2Ā2

K̂A4Ā4

q ~A2χ̄
Ā4 ~λ0 ≡ ~fðV−14

9 Þ:

ð43Þ

To calculate the contribution of the eR − ~eR − ~λ0 vertex, we
expand gA3T̄B

in the fluctuations linear in A3 and obtain

gTBĀ3
→−V7

9ðA3−V
13
18Þ, ∂A3

TB → V
19
9 ðA3 − V−13

18Þ. Utilizing
this, the physical gauginoð ~λ0Þ-leptonðeRÞ-sleptonð ~eRÞ
interaction vertex will be given as

jC
eR ~eR

~λ0
j≡ V

7
9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A3Ā3
K̂A3Ā3

q ~A3χ̄
Ā3 ~λ0 ≡ ~fðV−3

5Þ: ð44Þ

Similarly, by expanding gA4T̄B
in the fluctuations linear

in A4, we will have gTBĀ4
→ −V16

9 ðA4 − V
11
9 Þ, ∂A4

TB →

V
28
9 ðA4 − V−11

9 Þ, and

jC
uR ~uR

~λ0
j≡ V

16
9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A4Ā4
K̂A4Ā4

q ~A4χ̄
Ā4 ~λ0 ≡ ~fðV−3

5Þ: ð45Þ

To determine the contribution of effective charge Q0
i,

we need to evaluate the contribution of sfermionð ~fiÞ-
photonðγÞ-sfermionð ~fiÞ vertices which are expressed in
terms of ~fL=R basis as below

C ~f1 ~f1 γ
∼Df11D

�
f11
C ~fL ~fL

�γ þ ðDf11D
�
f12

þDf12D
�
f12
ÞC ~fL ~fR

�γ

þDf12D
�
f12
C ~fR ~fR

�γ;

C ~f2 ~f2 γ
∼Df21D

�
f21
C ~fL ~fL

�γ þ ðDf21D
�
f22

þDf22D
�
f21
ÞC ~fL ~fR

�γ

þDf22D
�
f22
C ~fR ~fR

�γ: ð46Þ

The sfermion-sfermion-photon vertex can be evaluated
from the bulk kinetic term in the N ¼ 1 gauged super-
gravity action as given below

L ¼ 1

κ24V
2
GTBT̄B ~∇μTB

~∇μT̄B̄; ð47Þ

where

~∇μTB¼ ∂μTBþ6iκ24μ7lQTB
Aμ;

TB∼σBþ
�
iκBbccbBcþκBþ

i
ðτ− τ̄ÞκBbcG

bðGc− ḠcÞiδBBκ24μ7l2CIJ̄
B aIāJ̄þ

3i
4
δBBτQ ~fþ iμ3l2ðωBÞij̄zi

�
z̄j̄−

i
2
z̄ ~aðP̄ ~aÞj̄l zl

��
:

ð48Þ

The form of expression that eventually leads to give the
contribution of required sfermion-sfermion-photon vertex
is given below

CfL=Rf�L=Rγ
∼
6iκ24μ72πα

0QBGTBT̄B

κ24V
2

× Aμ∂μðκ24μ7ð2πα0Þ2Cij̄AiĀj̄Þ: ð49Þ

Using GTBT̄BðEWÞ ∼ V
7
3 [the large value is justified by

obtaining the Oð1Þ SM fermion-fermion-photon coupling
vertex in N ¼ 1 gauged supergravity action; see details
therein], QB ∼ V

1
3 ~f, κ24μ7 ∼ 1

V, the above expression

reduces to jCfL=Rf�L=Rγ
j≡ V

1
3Aμ∂μðκ24μ7ð2πα0Þ2Cij̄

~Ai
~Aj̄Þ.

For i ¼ j ¼ 1, κ24μ7ð2πα0Þ2C11̄ ∼ V
10
9 as given in the

Appendix of [38]. Using the same,

jC ~eL ~eL�γj≡
V

16
9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A1Ā1
K̂A1Ā1

q ≡ ðV44
45 ~fÞ ~A1Aμ∂μ

~A1: ð50Þ

For i ¼ 1, j ¼ 3; κ24μ7ð2πα0Þ2C13̄ ∼ V
29
18, we have

jC ~eL ~eR�γj≡ V
41
18 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A1Ā1
K̂A3Ā3

q ≡ ðV53
45 ~fÞ ~A1Aμ∂μ

~A3: ð51Þ

For i ¼ j ¼ 3; κ24μ7ð2πα0Þ2C33̄ ∼ V
19
9 and

jC ~eR ~eR�γj≡
V

25
9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A3Ā3
K̂A3Ā3

q ≡ ð ~fV62
45Þ ~A3Aμ∂μ

~A3: ð52Þ

For i ¼ j ¼ 2, κ24μ7ð2πα0Þ2C22̄ ∼ V
1
9 and
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jC ~uL ~uL�γj≡
V

7
9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A2Ā2
K̂A2Ā2

q ≡ ð ~fV53
45Þ ~A2Aμ∂μ

~A2: ð53Þ

For i ¼ 2, j ¼ 4, κ24μ7ð2πα0Þ2C24̄ ∼ V
29
18 and

jC ~uL ~uR�γj≡ V
41
18 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A2Ā2
K̂A4Ā4

q ≡ ð ~fV23
18Þ ~A2Aμ∂μ

~A4: ð54Þ

For i ¼ j ¼ 4, κ24μ7ð2πα0Þ2C44̄ ∼ V
28
9 and

jC ~uR ~uR�γj≡
V

34
9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A4Ā4
K̂A4Ā4

q ≡ ð ~fV62
45Þ ~A4Aμ∂μ

~A4: ð55Þ

Substituting the results given in Eqs. (50)–(55) in Eq. (46),
the volume-suppression factors corresponding to scalar-
scalar-photon vertices are given as follows:

C ~e1 ~e1 γ ≡ ~fðV44
45cos2θe − V

53
45 cos θe sin θeðeiϕe þ e−iϕeÞeiϕge þ V

62
45sin2θeÞ;

C ~e2 ~e2 γ ≡ ~fðV44
45sin2θe þ V

53
45 cos θe sin θeðeiϕe þ e−iϕeÞÞe−iϕge þ V

62
45cos2θeÞ;

C ~u1 ~u1 γ ≡ ~fðV53
45cos2θu − V

23
18 cos θu sin θeðeiϕu þ e−iϕuÞÞeiϕgu þ V

62
45sin2θuÞ;

C ~u2 ~u2 γ ≡ ~fðV53
45sin2θu þ V

23
18 cos θu sin θuðeiϕu þ e−iϕuÞÞe−iϕgu þ V

62
45cos2θuÞ; ð56Þ

where ϕge and ϕgu are phase factors associated with C ~eL ~e�R γ
and C ~uL ~u�R γ

[we consider the same to be Oð1Þ]. Now, the
Lagrangian relevant to the couplings involved in the one-loop diagram shown in Fig. 1 is given as

L ¼ CfL ~f
�
L
~λ0i
fL ~fL

~λ0þCfL ~f
�
R
~λ0i
fL ~fR

~λ0þCf�R ~fL ~λ
0
i
fR ~fL

~λ0þCf�R ~fR ~λ
0
i
fR ~fR

~λ0; ð57Þ

where, from Eqs. (38)–(45), we have

jCeL ~e�L ~λ
0
i
j≡ ~fV−1; jCeR ~e�R ~λ

0
i
j≡ ~fV−3

5; jCe�R ~eL ~λ
0
i
j≡ jCe�L ~eR ~λ

0
i
j≡ ~fV−15

9 ;

jCuL ~u�L ~λ
0
i
j≡ ~fV−4

5; jCuR ~u�R ~λ
0
i
j≡ ~fV−3

5; jCu�R ~uL ~λ
0
i
j≡ jCu�L ~uR ~λ

0
i
j≡ ~fV−14

9 : ð58Þ

Writing ~fL as well as ~fR given in Eq. (57) in terms of diagonalized basis ~f1 and ~f2, the equation takes the form of Eq. (35):

Lint ¼ χ̄f

�
ðCλ0i fL

~fL
Df11 þ Cλ0i fL

~fR
Df21Þ

1þ γ5
2

þ ðCλ0i fR
~fL
Df11 þ Cλ0i fR

~fR
Df21Þ

1 − γ5
2

�
ϕf1

~λ0

þ χ̄f

�
ðCλ0i fL

~fL
Df12 þ Cχ0i fL

~fRDf22Þ
1þ γ5

2
þ ðCλ0i fR

~fL
Df12 þ Cλ0i fR

~fR
Df22Þ

1 − γ5
2

�
ϕf2

~λ0 þ H:c: ð59Þ

Using Eq. (36), the EDM expression will take the form

df
e

����
λ0i

¼
m~λ0i

ð4πÞ2
�

1

m2
~f1

ImðCλ0i fL
~fL
Cλ0i fR

~fR
Df11D

�
f21

þ Cλ0i fL
~fR
Cχ0i fR

~fL
Df21D

�
f11
ÞQ0

~f1
B

�m2
~λ0i

m ~f1
2

�

þ 1

m2
~f2

ImðCλ0i fL
~fL
Cχ0i fR

~fR
Df12D

�
f22

þ Cλ0i fL
~fR
Cλ0i fR

~fL
Df22D

�
f12
ÞQ0

~f2
B

�m2
~λ0i

m ~f2
2

��
: ð60Þ

Considering fL;R ¼ eL;R, incorporating the results of the interaction vertices as given in Eq. (58), and using the assumption
that the phase factors associated with effective gauge couplings areOð1Þ, the dominant contribution of the electron EDM is
given as

de
e

����
λ0i

≡m~λ0ð ~f2V−8
5 sin θe sinϕeÞ
ð4πÞ2

�
C ~e2 ~e2�γ

m2
~e2

B

�m2
~λ0

m~e22

�
−
C ~e1 ~e1�γ

m2
~e1

B

�m2
~λ0

m~e12

��
: ð61Þ

For fL;R ¼ uL;R, the quark EDM will be given as
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du
e

����
λ0i

≡m~λ0ð ~f2V−7
5 sin θu sinϕuÞ
ð4πÞ2

�
C ~u2 ~u2�γ

m2
~u2

B

�m2
~λ0

m ~u22

�
−
C ~u1 ~u1�γ

m2
~u1

B

�m2
~λ0

m ~u12

��
: ð62Þ

Putting the values3 of C ~ei ~ei�γ and C ~ui ~ui�γ as given in Eq. (56), we get

de
e

����
λ0
≡m~λ0ð ~f2V−8

5 sin θe sinϕeÞ
ð4πÞ2 V

62
45 ~f

�
cos2θe
m2

~e2

B

�m2
~λ0

m~e22

�
−
sin2θe
m2

~e1

B

�m2
~λ0

m~e12

��
;

du
e

����
λ0
≡m~λ0ð ~f2V−7

5 sin θu sinϕuÞ
ð4πÞ2 V

62
45 ~f

�
cos2θu
m2

~u2

B

�m2
~λ0

m ~u22

�
−
sin2θu
m2

~u1

B

�m2
~λ0

m ~u12

��
: ð63Þ

Here, sin θf ¼
2jM ~

f2
21

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

~fL
−M2

~fR
Þ2þ4M4

~f21

q . As discussed in Sec. II,

in our model, we have M2
~eL
¼ M2

~eR
¼ M2

~uL
¼ M2

~uR
∼ Vm2

3
2

.

Using the same, we get sin θe ¼ sin θu ¼ 1. Also, we
assume ϕe;u ¼ ð0; π

2
�. As explained in Sec. III,

m2
~f1
¼ m2

~f2
¼ m2

~fL= ~fR
¼ Vm2

3
2

. Utilizing the same and the

value of the gaugino mass m2
~λ0
¼ V

4
3m2

2
3

, we get

B

�m2
~λ0

m ~fi
2

�
¼ 1

2
�m2

~
λ0

m ~fi
2
− 1
	
2

0
B@1þ

m2
~λ0

m ~fi
2

þ
2

m2
~
λ0

m ~fi
2
ln
�m2

~
λ0

m ~fi
2

	
1 −

m2
~
λ0

m ~fi
2

1
CA

∼
m ~fi

2

m2
~λ0

∼ V−1
3; ð64Þ

where for i ¼ 1, 2, fi ¼ ðe1; e2Þ, ðu1; u2Þ. Incorporating
the value of masses in Eq. (63), using ~f ∼ V−23

30 as obtained
in [37], and Calabi-Yau volume V ∼ 105, the dominant
contribution of the EDM of the electron will be given as

de
e

����
λ0
≡ V

2
3m3

2
ð ~f2V−8

5Þ
ð4πÞ2 × ~fV

62
45

�
V−1

3

Vm2
3
2

�

≡ ~f3V
2
3
þ62

45
−8
5
−1
3
−1

ð4πÞ2m3
2

≡ 10−39 cm; ð65Þ

and the dominant contribution of the EDM of the neutron/
quark will be given as

dn
e

����
λ0
≡ V

2
3m3

2
ð ~f2V−7

5Þ
ð4πÞ2 × ~fV

62
45

�
V−1

3

Vm2
3
2

�

≡ ~f3V
2
3
þ62

45
−7
5
−1
3
−1

ð4πÞ2m3
2

≡ 10−38 cm: ð66Þ

2. Neutralino contribution

The physical eigenstates of the neutralino mass matrix in
the context of the N ¼ 1 gauged supergravity action are
given as [38]

~χ01 ∼
− ~H0

u þ ~H0
dffiffiffi

2
p ; mχ0

1
∼ V

59
72m3

2
;

~χ02 ∼
�

v
MP

~fV
5
6

�
λ0 þ

~H0
u þ ~H0

dffiffiffi
2

p ; mχ0
2
∼ V

59
72m3

2
;

~χ03 ∼ −λ0 þ
�

v
MP

~fV
5
6

�
ð ~H0

u þ ~H0
dÞ; mχ0

3
∼ V

2
3m3

2
; ð67Þ

where v is value of the Higgs VEVat the electroweak scale.
~H0
u and ~H0

d correspond to an SUð2Þ-doublet Higgsino. ~χ01 is
purely a Higgsino, and ~χ02 (~χ03) are formed by a linear
combination of a gaugino (Higgsino) with a very small
admixture of Higgsino (gaugino). Since neutralinos are also
very heavy, we evaluate the contribution of the same to the
one-loop electron/neutron EDM involving heavy sfer-
mions. Though the neutralino (χ01;2)-fermion-sfermion cou-
plings are complex in this case, the phase disappears due to
presence of both the complex coupling as well as its
conjugate in the EDM expression. Therefore, the nonzero
EDM arises due to CP-violating phases appearing from the
mass eignstates of the sfermion mass matrix only. The one-
loop diagram is given in Fig. 2.
We have already calculated the contribution of gaugino-

lepton(quark)-slepton(quark) vertices in Sec. IVA. Now we
estimate coefficients of the vertices corresponding to
Higgsino-lepton(quark)-slepton(squark) interactionvertices.

3We only incorporate the volume suppression coming from
C ~ei ~ei�γ and C ~ui ~ui�γ . The momentum dependence of both vertices
has already been included in the one-loop functions AðrÞ and
BðrÞ.
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InN ¼ 1 gauged supergravity, Higgsino-fermion-sfermion
interaction is governed by [39]

L
f− ~f− ~H0

i
¼ e

K
2

2
ðDiDJ̄WÞχiLχjcL

þ igiJ̄ χ̄
J̄

�
σ̄ · ∂χi þ Γi

Lkσ̄ · ∂aLχk

þ 1

4
ð∂aLKσ̄ · aL − c:c:Þχi

�
: ð68Þ

Using this, we evaluate the coefficients of Higgsino-
lepton(quark)-slepton(squark) interaction vertices. For an
incoming electron (e−L) interactingwith a slepton as well as a
neutralino, the contribution of the Higgsino-leptonðe−LÞ-
sleptonð~eLÞ vertex in the gauged supergravity action of

Wess and Bagger [39] is given by e
K
2

2
ðDZ1

DĀ1
WÞχAiχc

ZIþ
igĪA1

χ̄Zi½σ̄·∂χA1þΓA1

A1Ā1
σ̄·∂A1χ

A1þ1
4
ð∂A3

Kσ̄ ·A1−c:c:ÞχA1�.
χZ and χc

Z1 correspond to an SUð2ÞL Higgsino and its
charge conjugate, χA1 corresponds to an SUð2ÞL electron,
and ~A1 corresponds to the left-handed slepton. In the
diagonalized set of basis, gIĀ1

¼ 0. Since SUð2Þ EW
symmetry is not conserved for the Higgsino-lepton-slepton
vertex, to calculate the contribution of the same, we generate
a term of the type eL ~eL ~Hc

LHL wherein eL and HL are,
respectively, the SUð2ÞL electron and Higgs doublets,
~lL is also an SUð2ÞL doublet, and ~Hc

L is an SUð2ÞL
Higgsino doublet. After giving a VEV to one of the
Higgs doublets HL, one gets the required vertex. By
considering a1 → a1 þ V−2

9MP and further picking up
the component of DiDā1W linear in zi as well as linear

in fluctuation (a1 − V−2
9MP), we see that e

K
2DiDā1W∼

V−31
18ziða1 − V−2

9MPÞ. As was shown in [38], e
K
2DIDĀ1

W∼
Oð1ÞeK

2DiDā1W. Utilizing the same, the magnitude of the

physical Higgsinoð ~Hc
LÞ-leptonðeLÞ-sleptonð ~eLÞ vertex after

giving a VEV to ZI will be given as

jC ~Hc
LeL ~eL

j≡ V−31
18hZIiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂2
Z1Z̄1

K̂A1Ā1
K̂A1Ā1

q ~A1χ
cZI χA1 ≡ V−3

2: ð69Þ

The coefficient of the Higgsinoð ~Hc
LÞ-leptonðuLÞ-

sleptonð ~uLÞ vertex can be determined by expanding
DIDĀ2

W linear in ZI as well as linear in fluctuation

(A2 − V−1
3MP). The magnitude of the same has already

been calculated in [38] and given as

jC ~Hc
LuL ~uL

j≡ V−20
9 hZiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂2
Z1Z̄1

K̂A2Ā2
K̂A2Ā2

q ~A2χ
cZI χA2≡V−4

5: ð70Þ

To determine the contribution of the Higgsino-leptonðe−LÞ-
sleptonð~eRÞ vertex, one needs to expand e

K
2

2
ðDZI

DĀ1
WÞ in

the fluctuations linear in A3 about its stabilized value.
Considering a3 → a3 þ V−13

18MP and picking up the
component of DIDā1W linear in a3, we have

e
K
2DiDA1

W ≡ e
K
2DIDā1W ∼ V−43

36ða3 − V−13
18MPÞ. The con-

tribution of the physical Higgsinoð ~Hc
LÞ-leptonðeLÞ-

sleptonð ~eRÞ vertex will be given as

jC ~Hc
LeL ~eR

j≡ V−43
36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂Z1Z̄1
K̂A1Ā1

K̂A3Ā3

q ~A3χ
Ziχc

A1 ≡ V−9
5: ð71Þ

Similarly, one can calculate the Higgsinoð ~Hc
LÞ-leptonðuLÞ-

sleptonð ~uRÞ vertex by expanding e
K
2

2
ðDZI

DĀ2
WÞ in the

fluctuations linear in A4 about its stabilized value.
Considering a4 → a4 þ V−11

9MP and picking up the
component of DiDā1W linear in a4, we have
e
K
2

2
ðDZI

DĀ2
WÞ≡ e

K
2DiDā1W ∼ V−43

36ða4 − V−11
9MPÞ. The

coefficient of the Higgsinoð ~Hc
LÞ-leptonðuLÞ-sleptonð ~uRÞ

vertex will be given as

jC ~Hc
LuL ~uR

j≡ V−43
36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂Z1Z̄1
K̂A2Ā2

K̂A4Ā4

q ~A4χ
Ziχc

A2 ≡ V−5
3: ð72Þ

For an outgoing electron e−R interacting with a slepton
as well as a neutralino, the contribution of the
Higgsino-leptonðe−RÞ-sleptonð~eLÞ vertex is given by

expanding e
K
2

2
ðDZ1

DA3
WÞ linear in A1. Considering

a1 → a1 þ V−2
9MP and picking up the component of

DiDa3W linear in a1, we have e
K
2DIDA3

W≡
e
K
2DiDa3W ∼ V−43

36ða1 − V−2
9MPÞ. The contribution of the

physical Higgsinoð ~Hc
LÞ-leptonðeRÞ-sleptonð ~eLÞ vertex will

be given as

jC ~Hc
LeR ~eL

j≡ V−37
72ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂Z1Z̄1
K̂A1Ā1

K̂A3Ā3

q ~A1χ
Ziχc

A3 ≡ V−9
5: ð73Þ

FIG. 2. One-loop diagram involving neutralinos.
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Similarly, considering a4 → a4 þ V−11
9MP and picking up

the component of above term linear in a1, we have
e
K
2DIDA4

W ≡ e
K
2DiDa4W ∼ V−43

36ða2 − V−1
3MPÞ. The con-

tribution of physical Higgsinoð ~HLÞ-quarkðuRÞ-squarkð ~uLÞ
vertex is given as

jC ~HLuR ~uL
j≡ V−43

36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂Z1Z̄1

K̂A2Ā2
K̂A4Ā4

q ~A2χ
Ziχc

A4 ≡ V−5
3: ð74Þ

The Higgsino-leptonðe−RÞ-sleptonð~eRÞ vertex also does
not possess SUð2Þ EW symmetry. Therefore, to calculate
the contribution of the same, we generate a term of the
type eR ~eR ~HLHL, where HL is one of the SUð2ÞL Higgs

doublets. Thereafter, we expand e
K
2

2
ðDZ1

DĀ3
WÞχZiχA3

linear in Z1 and then linear in A3 about their stabilized
VEVs. Considering a3 → a3 þ V−13

18MP and further
picking up the component linear in zi as well as linear
in fluctuation (a3 − V−2

9MP), we get e
K
2DiDA3

W≡

e
K
2DiDā3W ∼ V−13

18hziiða3 − V−13
18MPÞ. The magnitude of

the physical Higgsinoð ~HLÞ-leptonðeRÞ-sleptonð ~eRÞ vertex
after giving a VEV to ZI is given as

jC ~HLeR ~eR
j≡ V−13

18hZiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̂2

Z1Z̄1
K̂A3Ā3

K̂A3Ā3

q ~A3χ
ZIχA3 ≡ V−10

9 : ð75Þ

The contribution of the Higgsino-quarkðuRÞ-squarkð ~uRÞ
vertex has already been evaluated in [38] by expanding
e
K
2

2
ðDZI

DA4
WÞχZIχA4 in the fluctuations linear inZI as well

as A4 about their stabilized VEVs. The magnitude of the
same is given as

jC ~HLuR ~uR
j≡ V

5
18hZiiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂2
Z1Z̄1

K̂A4Ā4
K̂A4Ā4

q ~A4χ
ZIχA4 ≡ V−10

9 : ð76Þ

The results of the coefficients of both slepton(squark)-lepton
(quark)-Higgsino as given in Eqs. (69)–(76) are as follows:

jC ~Hc
LeL ~eL

j≡ V−3
2; jC ~Hc

LeL ~eR
j≡ jC ~HLeR ~eL

j≡ V−9
5; jC ~HLeR ~eR

j≡ V−10
9 ;

jC ~Hc
LuL ~uL

j≡ V−4
5; jC ~Hc

LuL ~uR
j≡ jC ~HLuR ~uL

j≡ V−5
3; jC ~HLuRj ~uR j≡ V−10

9 : ð77Þ

Utilizing the aforementioned results and the results of various gaugino-fermion-sfermion vertices as given in Eq. (58), and
by adding the contribution of the same according to Eq. (67), the volume-suppression factors coming from the neutralino-
lepton-slepton vertices are given as

jCχ0
1
eL ~eL j ¼ jCχ0

2
eL ~eL j≡ V−3

2; jCχ0
3
eL ~eL j≡ ~fV−1; jCχ0

1
eL ~eR j ¼ jCχ0

2
eL ~eR j≡ V−9

5;

jCχ0
3
eL ~eR j≡ ~fV−15

9 ; jCχ0
1
eR ~eL j ¼ jCχ0

2
eR ~eL j≡ V−9

5; jCχ0
3
eR ~eL j≡ ~fV−15

9 ;

jCχ0
1
eR ~eR j ¼ jCχ0

2
eR ~eR j≡ V−10

9 ; jCχ0
3
eR ~eR j≡ ~fV−3

5: ð78Þ

The volume-suppression factors coming from the neutralino-quark-squark vertices are given as

jCχ0
1
uL ~uL j ¼ jCχ0

2
uL ~uL j≡ V−4

5; jCχ0
3
uL ~uL j≡ ~fV−4

5; jCχ0
1
uL ~uR j ¼ jCχ0

2
uL ~uR j≡ V−5

3;

jCχ0
3
uL ~uR j≡ ~fV−14

9 jCχ0
1
uR ~uL j ¼ jCχ0

2
uR ~uL j≡ V−5

3; jCχ0
3
uR ~uL j≡ ~fV−14

9 ;

jCχ0
1
uR ~uR j ¼ jCχ0

2
uR ~uR j≡ V−10

9 ; jCχ0
3
uR ~uR j≡ ~fV−3

5: ð79Þ

The interaction Lagrangian governing the neutralino-slepton(squark)-lepton(quark) interaction can be written as

L ¼
X
i¼1;3

Cχ0i fL
~fL
fL ~fLχ0i þ Cχ0i fL

~fR
fL ~fRχ0i þ Cχ0i fR

~fL
fR ~fLχ0i þ Cχ0i fR

~fR
fR ~fRχ0i ; ð80Þ

where f ¼ ðe; uÞ. Rewriting fL as well as fR in term of the diagonalized basis states f1 and f2, the equation takes the form
of Eq. (35):

Lint ¼ χ̄f

�
ðCχ0i fL

~fL
Df11 þ Cχ0i fL

~fR
Df21Þ

1þ γ5
2

þ ðCχ0i fR
~fL
Df11 þ Cχ0i fR

~fR
Df21Þ

1 − γ5
2

�
ϕf1χ

0
i

þ χ̄f

�
ðCχ0i fL

~fL
Df12 þ Cχ0i fL

~fR
Df22Þ

1þ γ5
2

þ ðCχ0i fR
~fL
Df12 þ Cχ0i fR

~fR
Df22Þ

1 − γ5
2

�
ϕf2χ

0
i : ð81Þ
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Using Eq. (36), the dipole moment contribution will follow:

df
e

����
χi

¼
X
i¼1;3

m~χ0i

ð4πÞ2
�

1

m2
~f1

ImðCχ0i fL
~fL
Cχ0i fR

~fR
Df11D

�
f21

þ Cχ0i fL
~fR
Cχ0i fR

~fL
Df21D

�
f11
ÞQ0

~f1
B

�m2
~χ0i

m ~f1
2

�

þ 1

m2
~f2

ImðCχ0i fL
~fL
Cχ0i fR

~fR
Df12D

�
f22

þ Cχ0i fL
~fR
Cχ0i fR

~fL
Df22D

�
f12
ÞQ0

~f2
B

�m2
~χ0i

m ~f2
2

��
: ð82Þ

Using the values of the first-generation scalar/slepton mass m ~f1
¼ V

1
2m3

2
and m~χ0

1
¼ m~χ0

2
¼ V

59
72m3

2
, m~χ0

3
¼ V

2
3m3

2
, one gets

B

�m2
~χ0
2

m ~fi
2

�
¼ B

�m2
~χ0
1

m ~fi
2

�
¼ 1

2ð
m2

~χ0
1

m ~fi
2
− 1Þ2

�
1þ

m2
~χ0
1

m ~fi
2

þ
m2

~χ0
1

m ~fi
2

ln

�m2
~χ0
1

m ~fi
2

���
1 −

m2
~χ0
1

m ~fi
2

�
∼

1

V
23
36

; ð83Þ

B

�m2
~χ0
3

m ~fi
2

�
¼ 1

2
�m2

~χ0
3

m ~fi
2
− 1
	
2

�
1þ

m2
~χ0
3

m ~fi
2

þ
m2

~χ0
3

m ~fi
2

ln

�m2
~χ0
3

m ~fi
2

���
1 −

m2
~χ0
3

m ~fi
2

�
∼
m ~fi

2

m2
~χ0
3

¼ V−1
3: ð84Þ

Utilizing above and the results of Cχ0i eL=R ~eL=R as given in
Eq. (78) and further simplifying, the dominant contribution
of the EDM of the electron will be given as4

de
e

����
χi

≡ V
59
72m3

2
ðV−8

3 sin θe sinϕeÞ
ð4πÞ2V23

36

�
C ~e2 ~e2�γ

m2
~e2

−
C ~e1 ~e1�γ

m2
~e1

�
: ð85Þ

Similarly, using the results of Cχ0i uL=R ~uL=R as given in
Eq. (79), the dominant contribution of the EDM of the
quark will be given as

du
e

����
χi

≡ V
59
72m3

2
ðV−17

9 sin θe sinϕeÞ
ð4πÞ2V23

36

�
C ~u2 ~u2�γ

m2
~u2

−
C ~u1 ~u1�γ

m2
~u1

�
: ð86Þ

Incorporating the value of C ~ei ~ei γ from Eq. (56), one gets

de
e

����
χi

≡ V
59
72m3

2
ðV−8

3 sin θe sinϕeÞ
ð4πÞ2V23

36

V
62
45 ~f

�
cos2θe
m2

~e2

−
sin2θe
m2

~e1

�
;

du
e

����
χi

≡ V
59
72m3

2
ðV−17

9 sin θu sinϕuÞ
ð4πÞ2V23

36

V
62
45 ~f

�
cos2θu
m2

~u2

−
sin2θu
m2

~u1

�
:

ð87Þ

Incorporating the value of sin θe ¼ sin θu ¼ 1, sinϕe ¼
sinϕu ¼ ð0; 1�, ~f ∼ V−23

30, and value of scalar masses
m~ei ¼ m ~ui ¼ V

1
2m3

2
, the numerical value of the EDM of

the electron for this case will be

de
e

����
χi

≡ V
59
72m3

2

ð4πÞ2V23
36

�
~fV

62
45

�
× V−8

3

�
1

Vm2
3
2

�

≡ ~fV
59
72
þ62

45
−8
3
−23
36
−1

ð4πÞ2m3
2

≡ 10−37 cm; ð88Þ

and the numerical value of the EDM of the neutron/quark
will be

dn
e

����
χi

≡ V
59
72m3

2

ð4πÞ2V23
36

�
~fV

62
45

�
× V−17

9

�
1

Vm2
3
2

�

∼
~fV

59
72
þ62

45
−17

9
−23
36
−1

ð4πÞ2m3
2

≡ 10−34 cm: ð89Þ

3. R-parity violating vertices contribution

We have explicitly taken into account the contribution of
R-parity violating couplings in the context of the N ¼ 1
gauged supergravity limit of μ-split SUSY setup discussed
in [38]. Although one would certainly expect a very
suppressed value of the EDM because of the presence of
heavy sfermions as well as vanishing contribution of
R-parity violating vertices, we discuss the effect of the
same on the EDM of the electron/neutron just to compare
the order of magnitude of the EDM with respect to the
R-parity conserving loop diagrams. Though the R-parity
violating interaction vertices are complex but due to the
presence of both a R-parity violating vertex as well as its

4We use the assumption that the complex phases appearing in
the effective Yukawa couplings are of Oð1Þ.
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conjugate in the one-loop diagrams as given in Fig. 3, the
complex phase disappears and, therefore, contribution of
the same to the EDM will vanish. However, similar to the
neutralino and gaugino one-loop diagrams, the nonzero
phase corresponding to the CP-violating effect can appear
only by considering the chirality flip between the slepton
(squark) fields appearing as propagators in the one-loop
diagram. Because of chirality flip, the matrix amplitude
depends on the off-diagonal component of the slepton
(squark) mass matrix, the contribution of which further
depends on complex trilinear coupling AIJK as well as
supersymmetric mass parameter μ.
The one-loop Feynman diagrams for the electron EDM

mediated by R-parity violating interaction vertices are
given in Fig. 3. Using the analytical results as given in
[63] to get the numerical estimate of the EDM of the
electron, we have

de
e

����
RPV

¼−jCeL ~ucRdL
j2C ~ucR ~u

c�
R γ

2e
3
jAuj j

mdk

m3
~u

sinθu sinϕAu
BðrdkÞ

− jCeL ~dLucR
j2C ~dL

� ~dLγ
e
3
jAdj j

muk

m3
~d

sinθd sinϕAd
BðrukÞ

− jCeL ~ucRdL
j2CucRu

c�
R γ
2e
3
jAdj j

muj

m3
~d

sinθd sinϕAd
AðrukÞ

− jCeL ~dLucR
j2Cd�LdLγ

e
3
jAuj j

mdj

m3
~u

sinθu sinϕAu
AðrdkÞ;

ð90Þ

where rðuk=dkÞ ¼ m2
ðuk=dkÞ=m

2
~f
and the form of one-loop

functions AðrÞ and BðrÞ is defined in (33).

One can draw the similar R-parity violating one-loop
diagram to calculate the quark EDM (u) by replacing
ðeL; eRÞ ↔ ðuL; uRÞ and ~uc ↔ ~ec. The analytical expres-
sion in the case of the quark EDM will be of the following
form:

du
e
jRPV ¼−jCuL ~ecRdL

j2C~ecR ~e
c�
R γ e jAej j

mdk

m3
~e

sinθe sinϕAe
BðrdkÞ

− jCuL ~dLecR
j2C ~d�L ~dLγ

e
3
jAdj j

mek

m3
~d

sinθd sinϕAd
BðrekÞ

− jCuL ~ecRdL
j2CecRe

c�
R γ

e
3
jAdj j

mej

m3
~d

sinθd sinϕAd
AðrekÞ

− jCuL ~dLecR
j2Cd�LdLγ e jAej j

mdj

m3
~e

sinθe sinϕAu
AðrdkÞ:

ð91Þ

The magnitude of the coefficient of interaction vertices
CeL ~ucd, CeL ~duc

, CuL ~ecRdL
, and CuL ~dLecR

have already been

obtained in [38] and given as

CeL ~ucRdL
¼ CeL ~ducR

¼ CuL ~ecRdL
¼ CuL ~dLecR

≡ V
5
3eiϕyα ; ð92Þ

where ϕyα is the phase factor associated with complex
R-parity violating interaction vertices.
The volume-suppression factors coming from the

C ~ucR ~u
c�
R γ, C~ecR ~e

c�
R γ , and C ~dL ~dL

�γ vertices have already been
obtained in the case of gaugino one-loop diagrams and
given as

FIG. 3. One-loop diagrams involving R-parity violating couplings.

MANSI DHURIA AND AALOK MISRA PHYSICAL REVIEW D 90, 085023 (2014)

085023-20



C ~ucR ~u
c�
R γ ¼ C~ecR ~e

c�
R γ ≡ V

62
45 ~f; C ~dL ~dL

�γ ≡ V
53
45 ~f: ð93Þ

We set Cff�γjEW to be the charge of the quark dL. The
reason for the same is as follows. Consider the following
kinetic-term-like term contributing to the quark-quark-
photon vertex in the N ¼ 1 gauged supergravity action

of Wess and Bagger: gYMga2ā2
χ̄
ā2
L Γa2

TBa2
XBAχa2

ð ffiffiffiffiffiffiffiffiffi
Ka2 ā2

p Þ2 ∈ ga2 ā2 χ̄
ā2Dχa2

ð ffiffiffiffiffiffiffiffiffi
Ka2 ā2

p Þ2 .

For the purpose of demonstrating the possibility of
obtaining a SM-like quark-quark-photon coupling at the
EW scale, let us assume that all moduli save TB, a2 have
been stabilized at values indicated earlier and ðn0βÞmax

∼ V
and, consequently, we take the Kähler potential to be

K ∼ −2 ln
��

TB þ T̄B − a2fC22̄ā2 þ C21̄hā1i þ C23̄hā3i þ C24̄hā4ig þ c:c:þ V
2
3

�3
2 þ V

�

≡ −2 ln
��

TB þ T̄B − C22̄ja2j2 − a2Σ̄2 þ H:c:þ V
2
3

�3
2 þ V

�
: ð94Þ

Consider having frozen all moduli save TB and a2. Then
from �

gTBT̄B
gTBā2

ga2T̄B
ga2ā2

�−1
¼ 1

gTBT̄B
ga2ā2 − jgTBā2 j2

×

�
ga2ā2 −gTBā2

−ga2T̄B
gTBT̄B

�
;

if gTBā2 jEW is small such that

jgTBā2 j2EW > gTBT̄B
ga2ā2 jEW; ð95Þ

then

gTBT̄B jEW ∼
ga2ā2

jgTBā2 j2
; ga2ā2 jEW ∼

gTBT̄B

jgTBā2 j2
jEW;

gTBā2 jEW ∼
1

gTBā2

jEW ≡ large: ð96Þ

Using (94), we evaluate ∂̄ ā2∂a2K, ∂̄ T̄B
∂TB

K, ∂̄T̄B
∂a2K∂TB

∂̄
and ∂ T̄B

∂a2K. If ∂̄ T̄B
∂a2KjEW ∼ δ ≪ 1 such that (95) is

satisfied, then

3hðTB þ T̄B − C22̄ja2j2 − a2Σ̄2 þ H:c:þ V
2
3Þi32EW

∼ h½ðTB þ T̄B − C22̄ja2j2 − a2Σ̄2 þ H:c:þ V
2
3Þ32 þ V�iEW:

ð97Þ
Using (97), one sees that

∂TB
ga2T̄B

jEWnear ð97Þ

∼
9ðC22̄ā2 þ Σ̄2Þ

½ðTB þ T̄B − C22̄ja2j2 − a2Σ̄2 þ H:c:þ V
2
3Þ32 þ V�2

∼ V−29
18; ð98Þ

assuming ha1;2;3;4ijEW ∼Oð1Þha1;2;3;4ijMs
. If ga2ā2 jMs

∼
ga2ā2 jEW ∼ 10−2, then from (95), one sees

gTBT̄B
jEW ∼ δ0 < 102δ2: ð99Þ

Noting that

Γa2
Tba2

¼ ga2T̄B

2
ð∂TB

ga2T̄B
þ ∂a2gTBT̄B

Þ

þ ga2ā2

2
ð∂TB

ga2ā2 þ ∂a2gTBā2Þ; ð100Þ

we see that one can get a large contribution to (100) from
ga2T̄B∂TB

ga2T̄B
jEW given by

ga2T̄B∂TB
ga2T̄B

jEW;V∼104 ∼
10−6.5

δ
: ð101Þ

Let us look at the implementation of (99) and its conse-
quences. From the above calculations, one notes that (99) is
identically satisfied if (97) is satisfied. Consider working
with τS;B; zi; aI;… instead of TS;B; zi; aI;… having frozen
Ga and other open-string moduli. Noting then that

Kαβ̄ ¼ 1

KτS τ̄SKτB τ̄B − jKτS τ̄B j2
�

KτB τ̄B −KτB τ̄S

−KτS τ̄B KτS τ̄S

�
; ð102Þ

and assuming KτB τ̄B jEW∼δ0≪1, KτS τ̄S jMs
∼KτS τ̄S jEW∼V−1,

KτS τ̄B jMs
∼ KτS τ̄B jEW ∼ V−5

3 implying jKτS τ̄B j2 > KτS τ̄SKτB τ̄B ,
one obtains

KτS τ̄S jEW∼
KτB τ̄B jEW
jKτS τ̄B j2EW

∼ δ0V10
3 ; KτB τ̄B jEW∼

KτS τ̄S jEW
jKτS τ̄B j2EW

∼V
7
3;

KτS τ̄B jEW∼
1

KτS τ̄B jEW
∼V

5
3: ð103Þ

Equation (103) implies
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F̄τS jMs
∼ KτS τ̄SDτSW ∼ F̄τS jEW
¼ e

K
2ðKτS τ̄SDτSW þ KτB τ̄SDτBWÞ

∼ ðδ0V10
3 þ VÞm3=2 ∼

1

V
: ð104Þ

So, the FτS term (potential ∥FτS∥2) is one-loop RG
invariant. Further, the complete F-term potential

VjMs
∼ eKKτS τ̄S jDτSWj2 ∼ Vm2

3=2

∼ eKðKτS τ̄S jDτSWj2 þ KτB τ̄B jDτBWj2
þ KτS τ̄BDτSDτ̄BW̄ þ H:c:ÞEW

∼ ðδ0V10
3 þ VÞm2

3=2 ∼ Vm2
3=2 ð105Þ

is also one-loop RG invariant. So, the quark-quark-photon
vertex can be made to be ofOð1Þ for δ ∼ 10−13; i.e., one can
hope that the coupling Cff�γ ∼Oð1Þ for fðfermionÞ≡ e, u.
For rðuk=dk=ekÞ ¼ m2

ðuk=dk=ekÞ=m
2
~fi
, Aðruk=dk=ekÞ¼

Bðruk=dk=ekÞ¼1. As mentioned in Eq. (30), jA0
ej ¼

jA�
e − μ cot βj≡ Vm3

2
, jA0

uj¼jA�
u−μcotβj≡Vm3

2
. Using

these results and the results of the coefficient of
interaction vertices as given above, considering sinϕu ¼
sinϕd ¼ ð0; 1�, sin θe ¼ sin θu ¼ 1, the magnitude of the
dominant contribution of the EDM of the electron will be
given as

de
e

����
RPV

∼
2

3

V−10
3
þ1þ62

45

V
3
2m2

3
2

muk ≡ 10−31 GeV−1 ≡ 10−45 cm;

ð106Þ

and the magnitude of dominant contribution of the EDM of
the neutron/quark will be given as follows:

dn
e

����
RPV

∼
V−10

3
þ1þ62

45

V
3
2m2

3
2

mek ≡ 10−31 GeV−1 ≡ 10−45 cm:

ð107Þ

B. One-loop diagrams involving neutral
scalar (Higgs) in the loop

In this subsection, we estimate the contribution of one-
loop diagrams involving fermions and Higgs as propaga-
tors to the EDM of a fermion. The fine-tuning argument
given by Arkani-Hamed and Dimopoulos in [1] is not just
able to provide a light Higgs by diagonalizing the Higgs
mass matrix; it is important to give a reasonable order of
magnitude of the EDM by considering diagonalized
Higgs mass eigenstates (light Higgs as one of the eigen-
states of the Higgs mass matrix) as scalar propagators in the
one-loop diagram. In the discussion so far, we have argued
that CP-violating phases in the one-loop diagram’s

contribution to the EDM of an electron/neutron are accom-
plished by considering the off-diagonal contribution of the
sfermion mass matrix at the electroweak scale. In this
subsection, we will discuss the one-loop diagrams in which
nonzero CP-violating phases appear through mixing
between the Higgs doublet in the Higgs mass matrix.
Using the same approach, we have already calculated the
mass of one of the Higgs formed by the linear combination
of two Higgs doublets Hu;d to be light (identified with
position moduli Z1;2 in our setup; see [37,38]). Now, we
implement this approach to calculate the nonzero EDM of
the electron/neutron by considering the eigenstates of the
Higgs mass matrix as propagators in the one-loop diagram.

1. SM-like Yukawa coupling contribution

The one-loop diagram mediated by a SM-like Yukawa
coupling is given in Fig. 4. The effective one-loop operator
given in Eq. (31) can be recasted in the following form:

Lint ¼
X
i

χ̄f

�
Cf�LfRHi

1 − γ5
2

þ Cf�LfRHi

1þ γ5
2

�
ϕHi

χf

þ H:c: ð108Þ

For i ¼ 1, 2, the above equation can be expanded as

Lint ¼ χ̄f

�
Cf�LfRH1

1− γ5
2

þCf�LfRH1

1þ γ5
2

�
ϕH1

χf

þ χ̄e

�
Cf�LfRH2

1− γ5
2

þCf�LfRH2

1þ γ5
2

�
ϕH2

χf þH:c:;

where ϕH1
and ϕH2

correspond to the eigenstates of the
mass matrix of the Higgs doublet and χf corresponds to a
fermion. Using Eq. (23), the aforementioned vertices can
be expressed in terms of an undiagonalized ðHu;HdÞ basis
as follows:

Cf�LfRH1
¼ Dh11Cf�LfRHu

þDh12Cf�LfRHd
;

Cf�LfRH2
¼ Dh21Cf�LfRHu

þDh22Cf�LfRHd
: ð109Þ

In N ¼ 1 gauged supergravity, the interaction vertices
Ce�LeRHu=Hd

and Cu�LuRHu=Hd
will be given by expanding

e
K
2DA1

DA3
W and e

K
2DA2

DA4
W, respectively, in the

FIG. 4. One-loop diagram involving scalar (Higgs) and SM-like
formions.
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fluctuations linear in Zi about its stabilized VEV. The
values of the same have already been obtained in [38] and
given as

for f ¼ e; Ce�LeRHu=Hd
¼ Ŷeff

ZIA1A3

¼ OðZI − V
1
36Þ term in e

K
2DA1

DA3
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KZiZ̄i
KA1Ā1

KA3Ā3

p
≡ V−47

45eiϕYe ;

for f ¼ u; Cu�LuRHu=Hd
¼ Ŷeff

ZIA2A4

¼ OðZI − V
1
36Þ term in e

K
2DA2

DA4
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KZ1Z̄1
KA1Ā1

KA3Ā3

p
≡ V−19

18eiϕYu ; ð110Þ

where eiϕYe and eiϕYe are the phase factors associated with
complex effective Yukawa couplings.
Going back to Eq. (109),

Ce�LeRH1
≡ V−47

45eiϕYe ðDh11 þDh21Þ;
Ce�LeRH2

≡ V−47
45eiϕYe ðDh12 þDh22Þ;

Cu�LuRH1
≡ V−19

18eiϕYu ðDh11 þDh21Þ;
Cu�LuRH2

≡ V−19
18eiϕYu ðDh12 þDh22Þ: ð111Þ

Now, the one-loop EDM of the electron (quark) in this case
will be given as [64]

d
e

����
H1;2

¼ mfQf

ð4πÞ2
�

1

m2
H1

ImðCf�LfRH1
C�
f�LfRH1

ÞA
�
m2

f

m2
H1

�

þ 1

m2
H2

ImðCf�LfRH2
C�
f�LfRH2

ÞA
�
m2

f

m2
H2

��
; ð112Þ

where mf corresponds to the fermion mass, and mH1;2

corresponds to the eigenstates of the Higgs mass matrix.
Since we are considering only first-generation fermions in
our D3=D7 μ-split SUSY setup, the physical mass eigen-
state of the fermion is the same as the usual Dirac mass
term corresponding to the first-generation lepton/quark
only. Using the fact that the phase factors associated with
the Wilson line modulus A1=2 (identified with a first-
generation L-hand lepton/quark), Wilson line modulus
A3=4 (identified with a first-generation R-hand lepton/
quark), and position modulus (identified with a Higgs
doublet) are distinct, and the effective Yukawa couplings
also produce a nonzero phase factor, the masses of SM
fermions can be complex. Therefore, we assume that the
overall phase formed by adding all phase factors associated
with the fields and the coefficients of the Yukawa coupling
add up in such a way that the overall phase vanishes and the
fermion mass is real.

Using (111),

ImðCe�LeRH2
C�
e�LeRH2

Þ ¼ −ImðCe�LeRH1
C�
e�LeRH1

Þ

≡ 1

2
V−94

45 sin θh sinϕh;

ImðCu�LuRH2
C�
u�LuRH2

Þ ¼ −ImðCu�LuRH1
C�
u�LuRH1

Þ

≡ 1

2
V−19

18 sin θh sinϕh:

Given that sin θh ¼ 2jμ̂Bjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

Hu
−M2

Hd
Þ2þ4ðμ̂BÞ2

p , using the values

given above, sin θh ∈ ½0; 1�. We also make an assumption
that ϕh ∃ ð0; π

2
�. Using Eq. (33) and the value of

me ¼ 0.5 MeV, mH1
≡ 125 GeV, and mH2

≡ V
59
72m3

2
,

Að m2
e

m2
H1

Þ ¼ Að m2
e

m2
H2

Þ≡ 1. Using (33), the dominant contribu-

tion of the electron EDM in this case will be given as

de
e

����
H1;2

¼ 10−3

4ð4πÞ2 V
−94
45

�
1

m2
H1

−
1

m2
H2

�

≡ 10−20 GeV−1

≡Oð10−34Þ cm: ð113Þ

The numerical estimate of the neutron/quark EDM will be
given as

dn
e

����
H1;2

¼ 10−3

2ð4πÞ2 V
−19

9

�
1

m2
H1

−
1

m2
H2

�

≡ 10−29 GeV−1

≡Oð10−33Þ cm: ð114Þ

2. Chargino contribution

The one-loop diagram corresponding to the electron
EDM mediated via Higgs and chargino exchange is given
in Fig. 5. Because of the presence of heavy fermions and
light as well as heavy scalars (eigenvalues of the Higgs
mass matrix) existing as propagators in the loop, using an
analytical expression of the one-loop EDM as given in
Eq. (36), one can expect an enhancement in the order of
magnitude of the EDM. We explicitly analyze the con-
tribution of this loop diagram to the EDM at one loop in the

FIG. 5. One-loop diagram involving Higgs and charginos.
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context of N ¼ 1 gauged supergravity action. One cannot
have a similar diagram for the quark because of the
violation of charge conservation. So we use the loop
diagram given in Fig. 5 to get the analysis of the EDM
of the electron only. The effective one-loop operator will be
of the following form:

Lint ¼
X
i;j

χ̄f

�
Cf�Lχ

þ
j H

0
i

1 − γ5
2

�
ϕH0

i
~χþj

þ χ̄f

�
Cq�Rχ

−
j H

0
i

1þ γ5
2

�
ϕH0

i
~χ−j þ H:c:…

i; j ¼ 1; 2: ð115Þ

Using Eq. (23), one can represent the coefficient of
interaction vertices in terms of the undiagonalized basis
of the Higgs mass matrix as follows:

Ce�Lχ
þ
j H

0
1
¼ Dh11Ce�Lχ

þ
j H

0
u
þDh12Ce�Lχ

þ
j H

0
d
;

Ce�Lχ
þ
j H

0
2
¼ Dh21Ce�Lχ

þ
j H

0
u
þDh22Ce�Lχ

þ
j H

0
u
;

Ce�Rχ
−
j H

0
1
¼ Dh11Ce�Rχ

−
j H

0
u
þDh12Ce�Rχ

−
j H

0
d
;

Ce�Rχ
−
j H

0
2
¼ Dh21Ce�Rχ

−
j H

0
u
þDh22Ce�Rχ

−
j H

0
u
: ð116Þ

As given in the Appendix,

~χþ1 ¼ − ~Hþ
u þ

�
v
MP

~fV
5
6

�
~λþi ;

~χ−1 ¼ − ~H−
d þ

�
v
MP

~fV
5
6

�
~λ−i ; and m~χ�

1
≡ V

59
72m3

2
;

~χþ2 ¼ ~λþi þ
�

v
MP

~fV
5
6

�
~Hþ
u ;

~χ−2 ¼ ~λ−i þ
�

v
MP

~fV
5
6

�
~H−
d ; and m~χ�

2
≡ V

2
3m3

2
:

Using the above,

Ce�Lχ
þ
1
H0

u=H0
d
¼−Ce�L ~Hþ

u H0
u=H0

d
þ
�

v
MP

~fV
5
6

�
Ce�L ~λ

þ
i H

0
u=H0

d
;

Ce�Lχ
þ
2
H0

u=H0
d
¼Ce�L ~λ

þ
i H

0
u=H0

d
þ
�

v
MP

~fV
5
6

�
Ce�L ~Hþ

u H0
u=H0

d
;

Ce�Rχ
−
1
H0

u=H0
d
¼−Ce�R ~H−

dH
0
u=H0

d
þ
�

v
MP

~fV
5
6

�
Ce�R ~λ

þ
i H

0
u=H0

d
;

Ce�Rχ
−
2
H0

u=H0
d
¼Ce�R ~λ

þ
i H

0
u=H0

d
þ
�

v
MP

~fV
5
6

�
Ce�R ~H−

dH
0
u=H0

d
: ð117Þ

The interaction vertices Ce�L ~Hþ
u H0

u=H0
d
and Ce�R ~H−

dH
0
u=H0

d
cor-

responding to Fig. 5 will be given by expanding the
e
K
2DZ1

DA1
W and e

K
2DZ1

DA3
W in the fluctuations linear

in Zi about its stabilized VEV. The contributions of

e
K
2Dz1Da1W as well as e

K
2Dz1Da3W have been given in

terms of the undiagonalized ðzi; aiÞ basis in [38]. We
assume that e

K
2DiDĀ1

W ∼Oð1ÞeK
2DiDā1W. Since the

EW symmetry gets broken for the Higgsinoð ~Hþ
u Þ-

leptonðeLÞ-HiggsðH0
u=H0

dÞ vertex, we evaluate the contri-
bution of the same by expanding e

K
2Dz1Da1W in the

fluctuations linear in z1 as well as (zi − V
1
36) and then

giving a VEV to zi. Doing so, the magnitude of the
coefficient of this vertex will be given as

jCe�L ~Hþ
u H0

u=H0
d
j ∼ hZiiOðZi − V

1
36Þ term in e

K
2DZ1

DA1
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKZ1Z̄1
Þ3KA1Ā1

q
≡ V− 1

10; for V ¼ 105: ð118Þ

Similarly, the contribution of the physical Higgsinoð ~H−
d Þ-

leptonðeRÞ-HiggsðH0
u=H0

dÞ vertex will be given as

jCe�R ~H−
dH

0
u=H0

d
j ∼OðZi − V

1
36Þ term in e

K
2DZ1

DA3
Wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KZ1Z̄1
KZ1Z̄1

KA3Ā3

p
≡ V

1
10; for V ¼ 105: ð119Þ

The coefficient of the interaction vertex e−L −H0
u − ~λþi

corresponding to Fig. 5 will be given by Le−L−H
0
u−~λþi

¼
gYMgA1T̄B

X�Bχ̄Ā1 ~λþi þ ∂A1
TBDBχ̄Ā1 ~λþi . Since ∂A1

TB does
not give any term which is linear in Zi, the second term
contributes zero to the given vertex. By expanding gA1T̄B

in
the fluctuation linear in Z1 around its stabilized VEV,
in terms of the undiagonalized basis, we have gTBā1 →

−V−13
12ðz1 − V− 1

36Þ and gYM ∼ V− 1
36. Considering gYMgTBā1 ∼

Oð1ÞgYMgTBĀ1
as shown in [38], incorporating the values

of XB ¼ −6iκ24μ7QTB
, κ24μ7 ∼ 1

V, andQTB
∼ V

1
3ð2πα0Þ2 ~f, we

get the contribution of physical gauginoð~λþi Þ-leptonðeLÞ-
HiggsðH0

uÞ interaction vertex given as follows:

jCeL ~λ
þ
i H

0
u=H0

d
j≡ gYMgTBĀ1

XTB ∼ V−47
36 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A1Ā1
K̂Z1Z̄1

q Z1χ̄
Ā1 ~λ0 ≡ ~fðV−3

2Þ:

ð120Þ

To calculate the coefficient of interaction vertex
e�R −H0

u − ~λ−i , we need to expand gA3T̄B
in the fluctuation

quadratic in Z1 to first conserve SUð2ÞL symmetry and
after giving a VEV to one of the Zi’s, we get the required
contribution
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jCe�R ~λ
þ
i H

0
u=H0

d
j≡ gYMgTBĀ3

XTB ∼ V−16
9 hZi ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K̂A3Ā3
K̂2

Z1Z̄1

q Z1χ̄
Ā3 ~λ0

≡ ~f

�
V−15

9
hZii
MP

�
: ð121Þ

Incorporating the results given in Eqs. (118)–(121) in
Eq. (117), we have

jCe�Lχ
þ
1
H0

u=H0
d
j≡V− 1

10; jCe�Lχ
þ
2
H0

u=H0
d
j≡V

1
10;

jCe�Rχ
−
1
H0

u=H0
d
j≡ ~fV−3

2; jCe�Rχ
−
2
H0

u=H0
d
j≡ ~fV−15

9
hZii
MP

: ð122Þ

Now, the one-loop EDM of the electron in this case will be
given as [64]

d
e

����
χ�i

¼
X
i

mχ�j
Q0

eðiÞ
ð4πÞ2

×

�
1

m2
H0

i

Im

�
ðCe�Lχ

þ
i H

0
i
C�
e�Rχ

−
j H

0
i
ÞA
�m2

χ�i

m2
H0

i

���
; ð123Þ

where mχ�j
and m2

H0
i
correspond to the mass eigenstates of

the chargino and Higgs mass matrix. The effective charge
for this loop diagram will be Q0

eðiÞ ¼ QeCχþi χ
−
i γ

where

Cχþ
1
χ−
1
γ ¼ C ~Hþ

i
~H−
i γ
, Cχþ

2
χ−
2
γ ¼ C~λþi ~λ

−
i γ
. The contributions of

both the Higgsino-Higgsino-gauge boson vertex and
gaugino-gaugino-gauge boson have already been obtained
in the context ofN ¼ 1 gauged supergravity in [38]. Using
the same,

Cχþ
1
χ−
1
γ ≡ ~fV− 5

18; Cχþ
2
χ−
2
γ ≡ ~fV−11

18: ð124Þ

Utilizing the results of the Ce�L=Rχ
�
i H

0
i
vertices given in (122)

and the assumption that the value of the phase factor
associated with these couplings are of Oð1Þ, mχ�

1
¼ mH2

¼
V

59
72m3

2
, mχ�

2
¼ V

2
3m3

2
, and mH1

∼ 125 GeV as given in

Sec. II, sin θh ¼ ð0; 1�, ϕe ¼ ð0; π
2
�, and Að

m2

χ�
i

m2

H0
i

Þ≡
m2

H0
i

m2

χ�
i

by

using (33), we have

d
e

����
χ�i

≡ 1ffiffiffi
2

p ð4πÞ2 ðV
− 1
10
þ 1

10Þ ×
~fV− 5

18

V
59
72m3

2

≡Oð10−32Þ cm; for V ¼ Oð1Þ × 104: ð125Þ

C. One-loop diagrams involving a gravitino
and sGoldstino in the loop

1. Gravitino contribution

In this section, we estimate the EDM of the electron
(quark) by considering the gravitino as a propagator in one-
loop diagrams despite the fact that these are logarithmically
divergent. The loop diagrams are given in Fig. 6. To get the
numerical estimate of the EDM corresponding to these
diagrams, we first need to determine the contribution of
the relevant vertices in N ¼ 1 gauged supergravity. The
same are evaluated as follows: In N ¼ 1 gauged super-
gravity, the gravitino-fermion-sfermion vertex will be given
as L ~G−f− ~f ¼ − 1

2

ffiffiffi
2

p
egij∂μϕ

iχjγμγνψμ. The physical ψμ-
lepton(quark)-slepton(squark) vertex will be given as

jC ~GeL ~eL
j≡ gA1Ā1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KA1Ā1
KA1Ā1

q ∂μA1χ
A1γμγνψμ

≡ ∂μA1χ
A1γμγνψμ;

jC ~GuL ~uL
j≡ gA2Ā2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KA2Ā2
KA2Ā2

q ∂μA2χ
A2γμγνψμ

≡ ∂μA2χ
A2γμγνψμ: ð126Þ

The contribution of the physical sfermion-sfermion-photon
vertices have already been obtained in Sec. III A, and the
values of the same are given as jC~eL ~eLγj≡ V

44
45 ~A1∂μ

~A1Aμ,

jC ~uL ~uLψμ
j≡V

53
45 ~A2∂μ

~A2Aμ. The contribution of the
fermion-sfermion-photino(γ) vertex in the context of
N ¼ 1 gauged supergravity action will given by

FIG. 6. One-loop diagrams involving a gravitino.
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Lf ~f ~γ ¼ gYMgAI T̄B
X�Bχ̄ĀI ~γ þ ∂A1

TBDBχ̄ĀI ~γ. For f ¼ e, by
expanding ga1T̄B

in the fluctuations linear in a1 around its

stabilized VEV, we have gā1TB
¼ V−2

9ða1 − V−2
9Þ and

∂A1
TB→V

10
9 ðA1−V−2

9Þ. Assuming that gĀ1TB
¼Oð1Þgā1TB

and using X�B¼κ24μ7QB, DB¼4πα0κ2
4
μ7QBvB

V where QB ∼ V
1
3 ~f

and κ24μ7 ∼ 1
V, we get jCeL ~eL ~γj ∼ V−2

9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KA1Ā1

KA1Ā1

p ~A1χ̄
Ā1 ~γ ≡

~fV−1 ~A1χ̄
Ā1 ~γ. For f ¼ u, using gĀ2TB

∼Oð1Þgā2TB
¼

V−5
4ða2 − V−1

3Þ and ∂A2
TB → V

1
9ðA2 − V−1

3Þ, we have

jCuL ~uL ~γj ∼
V−11

9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KA2Ā2

KA2Ā2

q ~A2χ̄
Ā2 ~γ ≡ ~fV−4

5 ~A2χ̄
Ā2 ~γ: ð127Þ

The contribution of the gravitino-fermion-sfermion-photon
vertex in the context of N ¼ 1 gauged supergravity action
will be given as L ¼ − 1

2

ffiffiffi
2

p
egAIT�

B
XBAμχ̄

AIγμγνψμ. Using
the above-mentioned value of gA1T�

B
, gA2T�

B
, and XB, the

coefficient of the physical gravitino-lepton(quark)-slepton
(squark)-photon vertex will be given as

jC ~GeL ~eLγ
j ∼ V−8

9 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KA1Ā1

KA1Ā1

q Aμχ̄
A1γμγνψμ

≡ ~fV−5
3Aμχ̄

A1γμγνψμ;

jC ~GuL ~uLγ
j ∼ V−35

18 ~fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KA2Ā2

KA2Ā2

q Aμχ̄
A2γμγνψμ

≡ ~fV−5
3Aμχ̄

A2γμγνψμ: ð128Þ

The contribution of the photonðγÞ-photinoð~γÞ-gravitinoðγÞ
vertex will be given L ¼ i

4
eγ̄μλ½∂;A�ψμ. We notice that

there is no moduli space-dependent factor coming from this
vertex.
The above Feynman diagrams involving a gravitino in a

loop have been explicitly worked out in [65] to calculate the
magnetic moment of the muon in the context of sponta-
neously broken minimal N ¼ 1 gauged supergravity. We
explicitly utilize their results in a modified form to get the
estimate of the EDM of the electron/quark in the N ¼ 1
gauged supergravity. The modified results of the magnetic
moment of the electron after multiplying with volume-
suppression factors coming from relevant vertices as
calculated in Eqs. (126)–(128) are as follows.
For Fig. 6(a):

adivf j6ðaÞ≡ ~fVaðGNm2
f=πÞ

X
j¼1;2

�
Γðϵ−1Þ

�
−
1

90
μ2þ 1

18
μ2j

�

þΓðϵÞ
�
2

45
μ2þ2

9

�
þð−1Þj sinθΓðϵ−1Þ½−μ2j=3μ�

�
;

ð129Þ

where Va is the Calabi-Yau volume-suppression factor.
Here, μ ¼ mf=m3

2
and μj ¼ m ~fj

=m3=2, j ¼ 1, 2, m is the

lepton mass, and m3
2
is the gravitino mass. m ~f1

and m ~f2
are

the eigenvalues of the diagonalized slepton (squark) mass
matrix. In our setup, sin θ ¼ 1. Using m ~f1

¼ m ~f2
¼ V

1
2m3

2
,

m3
2
¼ V−2MP, and me ¼ Oð1Þ MeV, we have μ1 ¼ μ2 ¼ 1

V

and μ ¼ 10−11 for V ¼ 105.
For f ¼ e, incorporating these values, the dominant

contribution will be of the form

adive j6ðaÞ≡ ~fV
44
45ðGNm2

e=πÞ
�

1

18V2
Γðϵ−1Þþ2

9
ΓðϵÞ

�

≡ ~fV
44
45ðGNm2

e=πÞ
�

1

18V2
Γðϵ−1Þþ 1

18V2
ΓðϵÞþa0

�
;

ð130Þ

where a0 ¼ ð2
9
− 1

18V2ÞΓðϵÞ is the divergent piece. Using
−Γðϵ − 1Þ ¼ ΓðϵÞð1þ ϵÞ, the finite contribution will be
given as afinitee j6ðaÞ ≡ 1

18
~fV−46

45ðGNm2
e=πÞ. Similarly, using

the volume-suppression factor coming from quark-quark-
photon vertex, we get afiniteu j6ðaÞ ≡ 1

18
~fV−37

45ðGNm2
u=πÞ. Now

we use the relation between the anomalous magnetic
moment and the electric dipole moment to get the numeri-
cal estimate of the EDM of the electron in this case.

As given in [66], af ¼ 2jmf j
eQf

jdfj cosϕ, where mf and Qf

correspond to the mass and charge of the fermion; df is the
electric dipole moment of the fermion, and ϕ is defined as
ϕ≡ argðdfm�

fÞ. We consider that in the loop diagrams
involving sfermions as propagators, the nontrivial phase
responsible to generate the EDM appears from eigenstates
of the sfermion mass matrix (off-diagonal component of the
slepton mass matrix), and we assume the value of the same
as ϕdf ∃ ð0; π

2
�. The first-generation electron/quark mass has

been calculated from the complex effective Yukawa cou-
pling (Yeff

ZIA1=3A2=4
) inN ¼ 1 gauged supergravity, and there

is a distinct phase factor ϕye=yu associated with the same.
Using the fact that ϕdf ≠ ϕye=yu , the relative phase between
the two will be in the interval ϕ ∃ ð0; π

2
Þ ∼Oð1Þ. Hence,

de
e

����
6ðaÞ

¼ 2jmejafinitee j6ðaÞ≡ 1

18
~fV−46

45ðGNme=πÞ≡10−67 cm;

du
e

����
6ðaÞ

¼ 2jmujafiniteu j6ðaÞ≡ 1

18
~fV−37

45ðGNmu=πÞ≡10−67 cm:

ð131Þ

For Fig. 6(b):
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adivf j6ðbÞ ≡ ~fV−aðGNm2
f=πÞ

X
j¼1;2

�
Γðϵ − 1Þ

�
1

20
μ2 −

1

6
μ2j

�

þ ΓðϵÞ
�
−

7

60
μ2
�
þ ð−1Þj sin 2αΓðϵ − 1Þ½μ2j=μ�

�
;

where f ¼ e; u:

For f ¼ e, incorporating the values of the masses and
simplifying, now we will have

adive j6ðbÞ≡ ~fV−1ðGNm2
e=πÞ

�
−

1

6V2
Γðϵ−1Þ− 7

60
μ2ΓðϵÞ

�

≡ ~fV−1ðGNm2
f=πÞ

�
−

7

60
μ2Γðϵ−1Þ− 7

60
μ2ΓðϵÞþa0

�
;

ð132Þ

where a0 ¼ ð− 1
6V2 þ 7

60
μ2ÞΓðϵ − 1Þ is the divergent piece.

Picking up the finite contribution, we get afinitee j6ðbÞ≡
7
60
~fV−1ðGNm2

f=πÞμ2, and, therefore,
de
e

����
6ðbÞ

≡ 2jmej afinitee j6ðbÞ ≡ 10−65 GeV−1 ≡ 10−79 cm:

ð133Þ
Similarly, using the volume-suppression factor coming
from the quark-quark-photon vertex,

du
e

����
6ðbÞ

≡ 10−64 GeV−1 ≡ 10−78 cm: ð134Þ

For Fig. 6(c):

adivf j6ðcÞ ≡ ~fV−5
3ðGNm2

f=πÞ
X
j¼1;2

�
Γðϵ − 1Þ

�
−

1

90
μ2 þ 1

9
μ2j

�

þ ΓðϵÞ
�
1

10
μ2 −

2

9

�

þ ð−1Þj sin 2αΓðϵ − 1Þ½−2μ2j=3μ�
�
:

As similar to the above, incorporating the value of the
masses and further simplifying, the dominant contribution
is given by

adivf j6ðcÞ ≡ ~fV−5
3ðGNm2

f=πÞ
�

1

9V2
Γðϵ− 1Þ− 2

9
ΓðϵÞ

�

≡ ~fV−5
3ðGNm2

f=πÞ
�

1

9V2
Γðϵ− 1Þþ 1

9V2
ΓðϵÞþ a0

�
;

ð135Þ

where a0¼ð−2
9
− 1

9V2ÞΓðϵÞ is the divergent piece. Consider-

ing the finite piece, afiniteq j6ðcÞ¼1
9
~fV−11

3 ðGNm2
f=πÞ. Again

using df
e j6ðcÞ ¼ 2jmfjafinitee j6ðcÞ, we get

de
e

����
6ðcÞ

¼ du
e

����
6ðcÞ

≡ 10−66 GeV−1 ≡ 10−80 cm: ð136Þ

Hence, the overall contribution of the EDM of the electron
as well as the neutron/quark in the case of one-loop
Feynman diagrams involving a gravitino is

de
e

����
~G
¼ dn

e

����
~G
¼ de=u

e

����
6ðaÞ

þ de=u
e

����
6ðbÞ

þ de=u
e

����
6ðcÞ

≡ 10−67 cm:

ð137Þ

2. sGoldstino contribution

In supersymmetric models, the sGoldstino is the bosonic
component of the superfield corresponding to which there
is an F-term (D-term) supersymmetry breaking. In our
setup, supersymmetry is broken in the bulk sector, and the
scale of the same is governed by the F term (assuming that
in the dilute flux approximation VD ≪ VF) corresponding
to bulk fields ðFτS ; FτB ;GaÞ where τS and τB correspond to
small and big divisor volume moduli, and Ga corresponds
to complexified NS-NS and RR axions. It was shown
in [38], at Ms, jFτS j > jFGa j, jFτB j. From Sec. IVA, the
requirement of the quark-quark-photon coupling to be the
SM at the EW scale, we see that jFτB j is the most dominant
F term at the EW scale. To obtain an estimate of the off-
shell Goldstino multiplet, we consider the same to be
ðτB; χB; FBÞ, where τB is a complex scalar field. Here, we
identify σB with the scalar (sGoldstino) field and ρB with
the pseudoscalar (sGoldstino) field.

3. Mass of the sGoldstino

The dominant contribution to the F-term potential at
the string scale Ms is given by V¼∥FτS∥2, where Fτ̄S ¼
eK=2∂̄ τ̄S∂βKDβW.5 At the EW scale, the F-term potential
receives the dominant contribution from the ∥DτBW∥2
term and is estimated to be Vðns¼2ÞjEW ∼
eKKτS τ̄BDτSWDτ̄BW̄þeKKτB τ̄B jDτBWj2, near hσSi ∼ lnV

ðOð1ÞÞ4σS
,

hσBi≡ V
2
3

ðOð1ÞσB Þ4
yields

∂2V
∂σ2B

����
EW

≡ V−1
3m2

3=2ðOð1ÞσBÞ2
�
ðOð1ÞσSÞ2 þ

ðOð1ÞσSÞ6
lnV

�
:

For the aforementioned Oð1ÞσB ¼ Oð1ÞσS
2

≡ 3.5 for V ∼ 104,

ð∂2V∂σ2BÞEW ≡ V
4
3, and the canonically normalized coefficient

5We note that eKðτS;B;Ga;zi;aI ;…Þ∂̄ Ī∂JKðτS;B;Ga;zi;aI;…Þ×
DJWDĪW̄ðI≡Ts;b;Ga;zi;aI;…Þ¼eKðτz;b;Ga;zi;aI ;…Þ∂̄ ᾱ∂βKðτS;B;
Ga;zi;aI;…ÞDβWDᾱW̄ðβ¼ τS;B;Ga;zi;aIÞ; however, GIJ̄ ¼
∂I ∂̄J̄KðTS;B;Ga; zi; aI;…Þ; Gαβ̄ ≠ ∂α∂̄ β̄KðτS;B;Ga; zi; aI;…Þ as
τS;B is not an N ¼ 1 chiral coordinate.
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quadratic in the fluctuations yields the sGoldstino mass
estimate:

mτB ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂2V∂σ2BÞEW
κ24μ7K

τB τ̄B
EW

vuut ∼Oð1Þm3=2:

It will be interesting to get the contribution of the same to
the electron/neutron EDM.
To get the analysis of one-loop diagrams involving

the sGoldstino, we consider only the scalar sGoldstino
field (σs) and first calculate the contribution of the
vertices involving the sGoldstino in the context of N ¼
1 gauged supergravity. The coefficient of the leptonðeLÞ-
scalar½sGoldstinoðσBÞ�-leptonðeRÞ vertex has been calcu-

lated by expanding e
K
2

2
ðDA1

DA3
WÞχ̄A1χA3 in the fluctuations

linear in σB in N ¼ 1 gauged supergravity. By expanding
the above in the fluctuations linear in σB→σBþV

2
3MP, on

simplifying, we have e
K
2

2
DA1

DA3
WχA1 χ̄A3∼V−13

3 δσBχ
A1 χ̄A3 .

The physical leptonðeLÞ-sGoldstinoðσBÞ-leptonðeRÞ vertex
will be given as

jCδσBeLecR
j≡ V−13

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k24μ7G

τB τ̄BK̂A1Ā1
K̂A3Ā3

q
≡ V−92

15; for V ∼ 105: ð138Þ

Similarly, the coefficient of the quarkðuLÞ-
scalar½sGoldstinoðσBÞ�-leptonðuRÞ vertex can be calculated

by expanding e
K
2

2
ðDA2

DA4
WÞχ̄A2χA4 in the fluctuations

linear in σB in N ¼ 1 gauged supergravity. Using

the similar procedure, we get e
K
2

2
DA2

DA4
WχA2 χ̄A4 ∼

V−4δσBχ
A2 χ̄A4 . Therefore, the physical quarkðuLÞ-

sGoldstinoðσBÞ-quarkðuRÞ vertex will be given as

jCδσBuLucR
j ∼ V−5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k24μ7G
τB τ̄BK̂A2Ā2

K̂A4Ā4

q
≡ V−33

5 ; for V ∼ 105: ð139Þ

In N ¼ 1 supergravity, the contribution of the photon-
sGoldstino(scalar)-photon will be accommodated by
the gauge kinetic term L ¼ ReðTBÞF ∧ �4F, where
ReðTBÞ ¼ σB − Cij̄aiaj̄. Considering σB → hσBi þ δσB,
the coefficient of the physical vertex will be given as

jCγγδσB j≡ 1=Mpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
4
μ7GτB ¯τB

p ∼ V−2
3

Mp
. The possibility of getting the

fermion-fermion-photon vertex Cff�γ ≡Oð1Þ has been
shown in Sec. III A.
Now we use the values of the coefficients of the relevant

vertices to evaluate the estimate of the EDM for the loop
diagrams given in Figs. 7(a) and 7(b). The diagrams have

been evaluated in [67] to determine the estimate of the
magnetic moment of the muon in N ¼ 1 global super-
symmetry. Utilizing their results in a modified form in
the context of N ¼ 1 gauged SUGRA and the relation
between the magnetic moment and EDM as given above,
for Fig. 7(a), the magnitude of the electric dipole moment
will be

����dfe
����
7ðaÞ

¼ mf

16π2
cosϕ

�
ðCδσBfLfcR

Þ2
Z

1

0

dx
x2ð2−xÞ

m2
σBð1−xÞþm2

fx
2

�
:

ð140Þ

Putting the value of jCδσBeLecR
j≡ V−92

15, jCδσBuLucR
j≡ V−33

6 ,
and the value of masses mσB ¼ m3

2
, me ¼ 0.5 MeV, we get

���� dee
����
7ðaÞ

≡ 10−95 cm and

���� dne
����
7ðaÞ

≡ 10−89 cm: ð141Þ

For Fig. 7(b):

���� dfe
����
7ðbÞ

¼ CδσBfLfcR
CγγδσB

8π2

�
ΔUV −

1

2

−
Z

1

0

dx
Z

1−x

0

dy log

�
m2

σByþm2
fx

2

μ2

��
; ð142Þ

where ΔUV ¼ log½Δ2
UV
μ2
� − 1. Incorporating the values of the

relevant inputs and considering the finite piece,���� dee
����
7ðbÞ

≡ 10−72 cm;

���� dne
����
7ðbÞ

≡ 10−68 cm: ð143Þ

Hence, the overall contribution of the sGoldstino to the
EDM of the electron/neutron is���� dee

����
sGoldstino

¼
���� dee
����
7ðaÞ

þ
���� dee
����
7ðbÞ

≡ 10−72 cm; ð144Þ

���� dne
����
sGoldstino

¼
���� dne
����
7ðaÞ

þ
���� dne
����
7ðbÞ

≡ 10−68 cm: ð145Þ

FIG. 7. One-loop diagrams involving an sGoldstino.
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The results of all possible one-loop diagrams contributing
to the EDM of the electron/neutron are summarized in
Table II.

V. TWO-LOOP-LEVEL BARR-ZEE-TYPE
CONTRIBUTION TO THE ELECTRIC

DIPOLE MOMENT

In the two-loop diagrams discussed in this section, the
CP-violating effects are mainly demonstrated by complex
effective Yukawa couplings which include R-parity violat-
ing couplings, SM-like Yukawa couplings, as well as
couplings involving a Higgsino, and complex scalar tri-
linear couplings in the context of N ¼ 1 gauged super-
gravity. In the subsection given below, we present the

contribution of individual Barr-Zee-type diagrams formed
by including an internal fermion loop generated by
R-parity violating interactions, SM-like Yukawa inter-
actions, and gaugino(gaugino)-Higgsino(Higgsino)-Higgs
couplings. The two-loop diagrams are shown in Fig. 8.

A. Two-loop-level Barr-Zee Feynman diagrams
involving an internal Fermion loop

1. Higgs contribution

For the two-loop diagram given in Fig. 8(a), the
interaction Lagrangian is governed by Yukawa couplings
given as

L ⊃ ŶH0
i uLu

c
R
H0

i ukLu
c
kR þ Ŷ�

H0
i eLe

c
R
H0

i ejLe
c
jR þ H:c: ð146Þ

We have already given the estimate of effective Yukawa
couplings for the first generation of leptons and quarks in
[38] in the context of N ¼ 1 gauged supergravity. Using
those results, we have

ŶH0
i eLe

c
R
∼ Ŷeff

ZiA1A3
≡ V−47

45eiϕye ;

ŶH0
i uLu

c
R
∼ Ŷeff

ZiA2A4
≡ V−17

18eiϕyu for V ¼ 105; ð147Þ

where eiϕye and eiϕyu are nonzero phases of the aforemen-
tioned Yukawa couplings.
For a two-loop Barr-Zee diagram involving an internal

fermion loop and taking into account the chirality flip
between the internal loop and external line, the analytical
expression has been derived in [68,69]. Using the same, the

TABLE II. Results of the EDM of the electron/neutron for all
possible one-loop diagrams.

One-loop particle
exchange

Origin of complex
phase deðe cmÞ dnðe cmÞ

λ0 ~f Diagonalized sfermion
mass eigenstates

10−39 10−38

χ0i ~f ” 10−37 10−34

f ~f ” 10−45 10−45

fh0i Digonalized Higgs
mass eigenstates

10−34 10−33

χ�h0i ” 10−32 …
Gravitinoð ~GÞ ~f Diagonalized sfermion

mass eigenstates
10−67 10−67

sGoldstino ~f ” 10−72 10−68

FIG. 8. Two-loop diagrams involving fermions in the internal loop.
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electric dipole moment of the electron for the loop diagram
given in Fig. 8(a) will be6

d
e

����
H
¼
X
i¼1;2

ImðŶH0
i eLe

c
R
ŶH0

i uLu
c
R
Þ αemQ

2
uQe

16π3mej
ðfðz1Þ − gðz1ÞÞ;

ð148Þ

and the EDM of the neutron will be given as

d
n

����
H
¼
X
i¼1;2

ImðŶH0
i eLe

c
R
ŶH0

i uLu
c
R
Þ αemQ

2
eQu

16π3mej
ðfðz2Þ − gðz2ÞÞ;

ð149Þ

where z1 ¼ m2
e

m2

H0
i

, z2 ¼ m2
u

m2

H0
i

, and

fðzÞ ¼ z
2

Z
1

0

dx
1 − 2xð1 − xÞ
xð1 − xÞ − z

ln

�
xð1 − xÞ

z

�
;

gðzÞ ¼ z
2

Z
1

0

dx
1

xð1 − xÞ − z
ln
�
xð1 − xÞ

z

�
: ð150Þ

Using the value of masses mH0
1
¼ 125 GeV, mH0

2
¼ V

59
72m3

2
,

and me¼0.5GeV, fðm2
e=m2

u
m2

H0
1

Þ¼gðm2
e=m2

u
m2

H0
1

Þ¼10−10, fðm2
e=m2

u
m2

H0
2

Þ¼

gðm2
e=m2

u
m2

H0
2

Þ¼10−23. Utilizing the same and assuming

eiðϕye−ϕyu Þ ¼ ð0; 1�, Eqs. (148) and (149) reduce to give
the EDM result as follows:

d
e

����
H
¼ d

n

����
H
∼ V−2 × 10−2 × 10−10

¼ 10−22 GeV−1 ≡ 10−36 cm: ð151Þ

2. Chargino contribution

In the loop diagram [Fig. 8(b)], the general Lagrangian
governing the interaction of the charginos will be

L ⊃ CikkH0
i χ

þ
kLχ

−
kR þ Ŷ�

H0
i eLe

c
R
H0

i ejLe
c
jR

þ Ŷ�
H0

i uLu
c
R
H0

i ujLu
c
jR þ H:c: ð152Þ

We evaluate the contribution of the chargino(χ�i )-
Higgs-chargino(χ�1 ) vertex in N ¼ 1 gauged supergravity.
As described in the Appendix, χ�1 and χ�2 correspond
to a Higgsino ( ~H�

i ) with a very small admixture of gaugino
(λ�i ) and vice versa. So, Cχþi χ

−
1
H0

i
≡C ~Hþ

i
~H−
i H

0
i
and Cχþ

2
χ−
2
H0

i
≡

C~λþi λ
−
i H

0
i
.

Higgsino(χ−kL)-Higgs-Higgsino(χ
þ
kR) vertex.—Given that

the Higgsino is a majorana particle, χþkR ¼ ðχ−kLÞc. In our
model, the Higgsino has been identified with position
moduli Zi; the contribution of this vertex inN ¼ 1 gauged
sypergravity will be given by expanding e

K
2DZi

DZ̄i
W in the

fluctuations linear in Zi about its stabilized VEV. Since
SUð2ÞL symmetry is not conserved for this vertex, we will
expand the above in the fluctuations quadratic in Zi, giving
a VEV to one of the Zi. Considering zi → V

1
18 þ δzi, we

have DziDz̄iW ¼ V−16
9 zihzii. Using DZi

DZ̄i
W ∼Dz̄1DziW,

the physical vertex will be given as Cχþi χ
−
1
H0

i
≡

C ~Hþ
i
~H−
i H

0
i
¼ V−7

4

ð
ffiffiffiffiffiffiffiffiffiffi
K̂Z1Z̄1

p
Þ4
¼ V

1
4eiϕχ1 , where ϕχ1 corresponds

to the nonzero phase associated with the aforementioned
coupling.
Gaugino(λþkR)-Higgs-gaugino(λ

þ
kL) vertex.—The coeffi-

cient of this vertex will be given from the kinetic term of the
gaugino. The interaction term corresponding to this cou-
pling will be given by considering term L ¼ iλ̄Lγm

1
4

ðKZi
∂mZi − c:c:ÞλL þ ð∂Zi

TBÞλ̄Lγm1
4
ðKZi

∂mZi − c:c:ÞλL,
where λL corresponds to the gaugino. Given that charged
(gauginos) are either SUð2ÞL singlets or triplets, the
aforementioned vertex does not preserve SUð2ÞL
symmetry—one has to obtain the term bilinear in Zi such
that we give a VEV to one of the Zi’s. Since ð∂Zi

TBÞ
does not contain terms bilinear in Zi, which are needed
to ensure SUð2ÞL symmetry, the second term contributes
zero to the given vertex. In terms of the undiagonalized
basis, ∂ziK ∼ V−2

3hzii, and using ∂Zi
K ∼Oð1Þ∂ziK, we

have ∂Zi
K ∼ V−2

3hZii. Incorporating the same, we get

L ¼
V−2

3hZiiλ̄L ∂Zi
MP

λLffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK̂Z1Z̄1

q
Þ2

∼ V
13
36hλ̄L

ph

MP
λL

∼ V
13
36hλ̄L

γ · ðpeL þ peRÞ
MP

λL: ð153Þ

Therefore, Cχþ
2
χ−
2
H0

i
≡ CH0

i λ
−
Rλ

þ
L
∼ V

13
36

me
MP

e
iϕ~λ0

1 where ϕ~λ01
cor-

responds to the nonzero phase associated with the afore-
mentioned coupling.
The contribution of the gaugino-gaugino-gauge boson as

well as the Higgsino-Higgsino-gauge boson have been
already evaluated in the context of N ¼ 1 gauged super-
gravity. The volume-suppression factors corresponding to
these vertices are as follows:

jCχþ
1
χ−
1
γj≡ jC ~Hþ

u
~H−
d γ
j≡ ~fV− 5

18;

jCχþ
2
χ−
2
γj≡ jC~λþi ~λ

−
i γ
j≡ ~fV−11

18: ð154Þ

Now, the EDM of the electron for the loop diagram given
in Fig. 8(b) will be given as

6We consider Q0
e ¼ Cee�γQe ∼Qe because Cee�γ ∼Oð1Þ as

shown in Sec. IV C. Similarly, Q0
u ∼Qu.
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de
e

����
χ�k

¼
X
i¼1;2

X
k¼1;2

ImðŶH0
i eLe

c
R
Cχþk χ

−
k h
ÞðCχþk χ

−
k γ
Þ2

×
αemQ2

χiQe

16π3mχ�k

ðfðzÞ − gðzÞÞ;

and the EDM of the neutron for the loop diagram given in
Fig. 8(b) will be given as

du=n
e

����
χ�k

¼
X
i¼1;2

X
k¼1;2

ImðŶH0
i eLe

c
R
Cχþk χ

−
k h
ÞðCχþk χ

−
k γ
Þ2

×
αemQ2

χiQu

16π3mχ�k

ðfðzÞ − gðzÞÞ;

where z¼
m2

χ�
k

m2

H0
i

; fð
m2

χ�
1

m2

H0
1

Þ − gð
m2

χ�
1

m2

H0
1

Þ ¼ 10; fð
m2

χ�
1

m2

H0
2

Þ − gð
m2

χ�
1

m2

H0
2

Þ ¼ 1,

fð
m2

χ�
2

m2

H0
1

Þ − gð
m2

χ�
2

m2

H0
1

Þ ¼ 10; fð
m2

χ�
2

m2

H0
2

Þ − gð
m2

χ�
2

m2

H0
2

Þ ¼ 0.1. Considering

ðϕχi−ϕyeÞ¼ðϕχi−ϕ~λ01
Þ∼ð0;π

2
�, formχ�

1
¼V

59
72m3

2
,mχ�

2
¼V

2
3m3

2
,

ŶH0
i eLe

c
R
¼ V−47

45, ŶH0
i eLe

c
R
¼ V−17

18, and the value of the EDM
of the electron and neutron will be given as

de
e

����
χi

¼ dn
e

����
χi

∼
~f2V−8

3

m3
2

× 10−5 × 101

≡ 10−33 GeV−1 ≡ 10−47 cm: ð155Þ

3. R-parity violating contribution

For the loop diagram given in Fig. 8(c), the Lagrangian
governing the interaction of the neutrino will correspond to
R-parity violating interactions given as

L ⊃ ~λ~νLuLucRνiLukLu
c
kR þ ~λ~νLeLecRνiLejLe

c
jR þ H:c: ð156Þ

The contribution of the R-parity violating interaction terms
λ̂ikk and λ̂�ijj are given by expanding DA1

DA3
W and

DA2
DA4

W in the fluctuations linear in A1 around its
stabilized VEV. The values of the same have already been
calculated in the context of N ¼ 1 gauged supergravity
action and given as follows:

~λ~νLeLecR ≡ V−5
3eiϕλe ; ~λ~νLuLucR ≡ V−5

3eiϕλu ; ð157Þ

where eiϕλe and eiϕλu are nonzero phases corresponding to
the above-mentioned complex R-parity violating cou-
plings. The EDM of the electron in this case will be

d
e

����
RPV

¼ Imð~λ~νLeLecR ~λ~νLuLucRÞ
αemQ2

uQe

16π3mej
ðfðz1Þ − gðz1ÞÞ;

ð158Þ
and the EDM of the neutron will be given as

d
u=n

����
RPV

¼ Imð~λ~νLeLecR ~λ~νLuLucRÞ
αemQ2

eQu

16π3mej
ðfðz2Þ − gðz2ÞÞ;

ð159Þ
where z1 ¼ m2

e
m2

νiL
; z2 ¼ m2

u
m2

νiL
. Using the value of masses

mνiL¼V
1
2m3

2
, me¼0.5GeV, and mu¼Oð1Þ, fðm2

e=m2
u

m2
νiL

Þ ¼
gðm2

e=m2
u

m2
νiL

Þ ¼ 10−27, and assuming ðϕλe − ϕλuÞ ¼ ð0; π
2
�,

Eqs. (158) and (159) reduce to give the EDM result as
follows:

d
e

����
RPV

¼ d
n

����
RPV

∼ V−10
3 × 10−2 × 10−27

≡ 10−55 GeV−1 ≡ 10−70 cm: ð160Þ

B. Two-loop-level Barr-Zee Feynman diagrams
involving an internal sfermion loop

In this subsection, we evaluate the contribution of a
heavy sfermion loop generated by trilinear scalar inter-
actions including Higgs. The loop diagrams are mediated
by γh exchange. Unlike one-loop diagrams, here we do not
have to consider the mixing of sleptons (squarks) because
of the fact that the nonzero phase associated with the
complex scalar trilinear interaction is sufficient to generate
the nonzero EDM of the elctron/neutron. We first evaluate
the contribution of the relevant vertices in the context of
N ¼ 1 gauged supergravity for the two-loop diagrams
shown in Fig. 9.

FIG. 9. Two-loop diagrams involving sfermions in the internal loop.
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Slepton(~ejR)-slepton(~ejR)-Higgs vertex.—By expand-
ing effective supergravity potential VjEW ∼
eKKτS τ̄BDτSWDτ̄BW̄ þ eKKτB τ̄B jDτBWj2 in the fluctuations

linear in Zi → Zi þ V
1
36MP, A3 → A3 þ V−13

18MP, the con-
tribution of the term quadratic in A3 as well as Zi is of the
order V−59

36hZii, which after giving a VEV to one of the Zi’s
will be given as

C~eR ~e�RH
0
i
≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK̂ZiZ̄i
Þ2ðK̂A3Ā3

Þ2
q ½V−59

36hZii�

≡ ðV−2MPÞeiϕ~eR ; ð161Þ

where ϕ~eR is the nonzero phase corresponding to the
aforementioned complex scalar three-point interaction
vertex. Using the similar procedure, the coefficient of
the slepton(~ejL)-slepton(~ejL)-Higgs vertex will be given as

C~eL ~e�LH
0
i
≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK̂ZiZ̄i
Þ2ðK̂A1Ā1

Þ2
q ½V−95

36hZii�

≡ ðV−12
5MPÞeiϕ~eL : ð162Þ

ϕ~eL is the nonzero phase corresponding to this particular
complex scalar three-point interaction vertex.
Squark( ~ujR)-squark( ~ujR)-Higgs vertex.—By expanding

VjEW in the fluctuations around Zi → Zi þ V
1
36MP,

A4 → A4 þ V−11
9MP, the contribution of the term quadratic

in A4 as well as Zi is of the order V−23
36hZii, which after

giving the VEV to one of the Zi, will be given as

C ~uR ~u�RH
0
i
≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK̂ZiZ̄i
Þ2ðK̂A4Ā4

Þ2
q ½V−23

36hZii�

≡ ðV−2MPÞeiϕ ~uR ; ð163Þ

where ϕ ~uR is the nonzero phase corresponding to the
aforementioned complex scalar three-point interaction
vertex.
Squark( ~ujL)-squark( ~ujL)-Higgs vertex.—By expanding

VjEW in the fluctuations around Zi → Zi þ V
1
36MP,

A2 → A2 þ V−1
3MP, the contribution of the term quadratic

in A2 as well as Zi is of the order V−131
36 hZii, which after

giving the VEV to one of the Zi’s will be given as

C ~uL ~u�LH
0
i
≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðK̂ZiZ̄i
Þ2ðK̂A2Ā2

Þ2
q ½V−131

36 hZii�

≡ ðV−20
9MPÞeiϕ ~uL ; ð164Þ

where ϕ ~uL is the nonzero phase corresponding to the
aforementioned complex scalar three-point interaction
vertex.

The contribution of the slepton(~ejR)-slepton(~ejR)-photon
(γ)-photon(γ) vertex will be given by ∂̄Ā3

∂A3
GTBT̄B

×

XTBXT̄BAμAν. On solving ∂̄Ā3
∂A3

GTBT̄B
∼ V

1
9A�

1A1, incor-
porating the values of XB as mentioned earlier, the real
physical slepton(~ejR)-slepton(~ejR)-photon(γ)-photon(γ) ver-
tex is proportional to

C~eR ~e�Rγγ ≡
V

1
9 ~f2V−4

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKA3A3

Þ2
q ≡ ~f2V−13

5 : ð165Þ

The coefficient of the real physical ~ejL − ~ejLγ − γ vertex
has been obtained in [38]. The value of the same is given
by C~eL ~e�Lγγ

≡ ~f2V−3. Similarly, the coefficient of the real
physical ~ujR − ~ujR − γ − γ vertex will be given by

∂̄Ā4
∂A4

GTBT̄B
XTBXT̄BAμAν. On solving, the volume-

suppression factor corresponding to this vertex will be
given as

C ~uR ~u�Rγγ
∼
coefficient of∂̄Ā4

∂A4
GTBT̄Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKA4A4
Þ2

q ≡ ~f2V−118
45 : ð166Þ

The coefficient of the real physical ( ~ujL − ~ujL − γ − γ)

vertex will be given by ∂̄Ā2
∂A2

GTBT̄B
XTBXT̄BAμAν. On

solving, the volume-suppression factor corresponding to
this vertex will be given as

C ~uL ~u�Lγγ
∼
coefficient of∂̄Ā2

∂A2
GTBT̄Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKA2A2
Þ2

q ≡ ~f2V−127
45 : ð167Þ

The contribution of the real scalar-scalar-photon vertices
have already been obtained in Sec. II and given as

C~eL ~e�Lγ
≡ ð ~fV44

45Þ ~A1Aμ∂μ
~A1; C~eR ~e�Rγ

≡ ð ~fV53
45ÞA3Aμ∂μĀ3;

C ~uL ~u�Lγ
≡ ð ~fV53

45Þ ~A2Aμ∂μ
~A2; C ~uR ~u�Rγ

≡ ð ~fV62
45Þ ~A4Aμ∂μ

~A4:

ð168Þ

The analytical expression for the EDM involving the
sfermion/scalar in an internal loop has been provided in
[70]. Using the same, for Fig. 9(a), the EDM of the electron
will be given as

de
e

����sfermion

4.9ðaÞ
¼
X
i¼1;2

X
j¼ ~uL; ~uR

ImðŶH0
i eLe

c
R
CH0

i jj
� ÞðCjj�γÞ2

×
αemηcQejq

2
j

32π3m2
H0

i

Fð~zÞ; ð169Þ

and the EDM of the neutron/quark will be given as
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dn
e

����sfermion

4.9ðaÞ
¼
X
i¼1;2

X
j¼~eL;~eR

ImðŶH0
i uLu

c
R
CH0

i jj
� ÞðCjj�γÞ2

×
αemηcQujq

2
j

32π3m2
H0

i

Fð~zÞ; ð170Þ

where z¼ m2
j

m2

H0
i

; FðzÞ¼−
R
1
0 dx

xð1−xÞ
xð1−xÞ−zlnðxð1−xÞz Þ. Considering

ðϕ ~uL=R − ΦyeÞ ¼ ðϕ~eL=R − ΦyuÞ ¼ ð0; π
2
�; jŶH0

i eLe
c
R
j≡ V−47

45,

jŶH0
i uLu

c
R
j≡ V−19

18 and using the value of masses

m~eL ¼ m~eR ¼ m ~uL ¼ m ~uR ¼ V
1
2m3

2
, mH0

1
¼ 125 GeV, and

mH0
2
¼ V

59
72m3

2
, we have Fð m2

j

m2

H0
1

Þ ¼ 10−17, Fð m2
j

m2

H0
2

Þ ¼ 1.

Incorporating the value of the interaction vertices,
Eqs. (169) and (170) reduce to give the EDM results as
follows:

de
e

����sfermion

9ðaÞ
¼ 10−8 × V− 4

15 ~f2 ≡ 10−15 GeV−1

≡ 10−29 cm for V ¼ 104;

dn
e

����sfermion

9ðaÞ
¼ 10−8 × V− 3

10 ~f2 ≡ 10−15 GeV−1

≡ 10−29 cm for V ¼ 104: ð171Þ

For the loop diagram given in Fig. 9(b), the EDM of the
electron will be given as

de
e

����sfermion

9ðbÞ
¼
X
i¼1;2

X
j¼ ~uL; ~uR

ImðŶH0
i eLe

c
R
CH0

i jj
�ÞðCjj�γγÞ

×
αemQejq

2
j

32π3m2
H0

i

Fð~zÞ; ð172Þ

and the EDM of the neutron will be given as

dn=u
e

����sfermion

9ðbÞ
¼
X
i¼1;2

X
j¼~eL;~eR

ImðŶH0
i uLu

c
R
CH0

i jj
� ÞðCjj�γγÞ

×
αemQujq

2
j

32π3m2
H0

i

Fð~zÞ; ð173Þ

where Fð m2
j

m2

H0
1

Þ ¼ 10−17, Fð m2
j

m2

H0
1

Þ ¼ 1. Incorporating the value

of themasses and the estimate of the relevant couplingveretx,
the EDM of the electron will be

de
e

����sfermion

9ðbÞ
¼ 10−9 × V−17

3 ~f2 ≡ 10−43 GeV−1 ≡ 10−57 cm:

ð174Þ

The EDM of the neutron in this case will be given as

dn
e

����sfermion

9ðbÞ
¼ 10−9 × V−91

18 ~f2 ≡ 10−40 GeV−1 ≡ 10−54 cm:

ð175Þ

The overall contribution of the EDM of the electron as well
as the neutron corresponding to the two-loop diagram
involving sfermions is

de=n
e

����sfermion
¼ de=n

e

����sfermion

9ðaÞ
þ de=n

e

����sfermion

9ðbÞ
≡ 10−29 cm:

ð176Þ

C. Two-loop-level Barr-Zee Feynman diagram
involving a W� boson in the internal loop

In this subsection, we discuss the important contribution
of the Barr-Zee diagram involving aW boson as an internal
loop. In the one-loop as well as two-loop diagrams
discussed so far, we have discussed the contribution
mediated by Higgs exchange. The nonzero phases in the
one-loop diagram are affected by considering a mixing
between the Higgs doublet in a μ-split SUSY model, while
in the two-loop diagrams, the phases are affected through a
complex effective Yukawa coupling. It has been found in
[71] that two-loop graphs involving a W-boson loop can
induce an electric dipole moment of de of the order of the
experimental bound (10−27 cm) in the multi-Higgs models
provided there is an exchange of Higgs in the Higgs
propagator and the CP violation in the neutral Higgs sector
is fairly maximal. The approach was given by Weinberg in
[72,73]. In these papers, he pointed out that dimension-six
purely gluonic operator gives a large value for the EDM of
the neutron, which is just below the present experimental
bound if one considers CP violation through the exchange
of Higgs particles, whose interactions involve one or more
complex phases. The approach was extended by Barr and
Zee who have found that Higgs exchange can also give an
electric dipole moment to the electron of the order of the
experimental limits by considering an EDM operator
involving a top quark also. In this spirit, we present an
analysis of the EDM of the electron/neutron involving
a W-boson loop in the context of a μ-split SUSY model,
which, as already discussed. involves a light Higgs and a
heavy Higgs doublet.
In the notations of Weinberg, the CP-violating phase can

appear from the neutral Higgs-boson exchange through
imaginary terms in the amplitude, and Higgs propagators
are represented as Aðq2Þ ¼ ffiffiffi

2
p

Gf
P

n
Zn

q2þm2
Hn

, where Zn is a

nonzero phase appearing due to the exchange between the
Higgs doublet in the propagator. We address this argument
of the generation of the nonzero phase in theN ¼ 1 gauged
supergravity action. We first provide the analysis of the
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required SM-like coupling involved in Fig. 10 in the
context of the N ¼ 1 gauged supergravity action. The
contribution of the Wþ-photon-W− vertex is evaluated
by the CP-even interaction term given as [74] L¼
−ReðfÞAμW−

μνWþνþReðfÞWþμW−νFμν, where W−
μν¼

∂μW−
ν −∂νW−

μ and Fμν ¼ ∂μAν − ∂νAμ, and ReðfÞ is a
gauge kinetic function, which in our setup is given by the
big divisor volume modulus ReðTBÞ ∼ V

1
18 ≡Oð1Þ for

Calabi-Yau V ¼ 105. Therefore, the volume-suppression
corresponding to this interaction vertex is CWþW−γ ≡
V

1
18 ≡Oð1Þ.
The effective Wþ-Higgs-W− vertex can be evaluated in

the effective supergravity action as follows. Consider the
gauge kinetic term ReðTÞF2 and then choose the term
C13̄a1a3̄ in ReðTBÞ with the understanding that one
first gives the VEV to the predominantly SUð2ÞL-
doublet valued a1, and then one picks out the Z-
dependent contribution in a3 and also uses the value of
the intersection component C13̄. One will, therefore, con-
sider C13̄ha1iV−7

5Z p1·p2ffiffiffiffiffiffiffiffiffiffi
KA1Ā1

p ffiffiffiffiffiffiffi
KZZ̄

p
ð
ffiffiffiffiffiffiffiffiffi
ReðTÞ

p
Þ2; KZZ̄jMs

∼ 10−5,

KA1Ā1
jMs

∼ 104, which at the EW scale we will assume

to be 10−5

ðOð1ÞÞ2 and 104

ðOð1ÞÞ2. For nonrelativistic gauge

bosons, p1 ·p2∼M2
W=Z, ReðTÞjEW ∼Oð1ÞMP ∼ vV3 GeV,

C13̄ ∼ V
29
18, ha1ijEW∼Oð1ÞV−2

9MP [related to the require-
ment of obtaining Oð102Þ GeV W=Z-boson mass at the
EW scale; see [38]]. We, thus, obtain the following: V

29
18×

ðOð1ÞÞ2×Oð1Þ×V−2
9×V−7

5M2
W=Z×

ffiffiffiffi
10

p
ðOð1Þ×v×V3Þ∼ ðOð1ÞÞ2×ffiffiffiffiffi

10
p

V−3M
2
W=ZinGeV

vðGeVÞ . Now, in the superspace notation, the

kinetic terms for the gauge field are generically written asR
d2θfabðΦÞWaWb whereWa is the gauge-invariant super-

field strength andW ¼ WaTa for a non-Abelian group—as
fab is an a priori arbitrary holomorphic function of Φ.
Consider, hence,Φ¼T;f∼eT and look at

R
d2θðTÞ2mþ1

θ;θ̄¼0
W2,

which will consist of ðOð1Þ2 × C13̄ha1ā3iÞ2m ×
ffiffiffiffiffi
10

p
×

V−3 M2
W=Z in GeV

GeV , which, e.g., for m ¼ 2 yields ðOð1ÞÞ2 ×ffiffiffiffiffi
10

p
× V

8
3
−3 ×

M2
W=Z in GeV

vðGeVÞ or for V ∼ 104, one obtains

Oð1ÞM
2
W=Zðin GeVÞ
vðin GeVÞ . Utilizing this, at the EW scale,

CWþH0
i W

− ≡ M2
W
v eiϕW . The value of the complex Yukawa

coupling to be used to evaluate the EDM corresponding to
Fig. 10 has already been obtained in [38] and given as
ŶH0

i eLe
c
R
∼ V−47

45eiϕye and of ŶH0
i uLu

c
R
∼ V−19

18eiϕyu . The matrix
amplitude as well as the analytical expression for the W
boson related the loop diagrams has been worked out in
[71]. We utilize the same in a modified form to get the
numerical estimate of the EDM corresponding to the loop
diagram given in Fig. 10,

d
e

����
W
¼ α

ð4πÞ3M2
W
CWþW−γ

X
i

ImðŶH0
i eLe

c
R
CWþH0

i W
−Þ

×

�
5gðzWi Þþ3fðzWi Þþ

3

4
ðgðzWi ÞþhðzWi ÞÞ

�
; ð177Þ

where fðzÞ and gðzÞ are already defined in Sec. IVA
and

hðzÞ ¼ z
2

Z
1

0

dx
1

xð1 − xÞ − z

×

�
z

xð1 − xÞ − z
ln

�
xð1 − xÞ − z

x

�
− 1

�
; ð178Þ

where zWi ¼
m2

H0
i

m2
W
. Considering ðϕW − ϕyeÞ ¼ ð0; π

2
�, and

using the values mH0
1
¼ 125 GeV and mH0

2
¼ V

59
72m3

2
, we

get fð
m2

H0
i

m2
W
Þ ¼ gð

m2

H0
i

m2
W
Þ ¼ hð

m2

H0
i

m2
W
Þ ¼ Oð1Þ, and the EDM result

for the electron will be given as

de
e

����
W
∼

α

ð4πÞ3
1

v
× V−47

45 ≡ 1013 GeV−1 ≡ 10−27 cm:

ð179Þ

Similarly, by considering ðϕW − ϕyuÞ ¼ ð0; π
2
�, the EDM of

the neutron will be given as

dn
e

����
W
∼

α

ð4πÞ3
1

v
× V−19

18 ≡ 1013 GeV−1 ≡ 10−27 cm: ð180Þ

D. Two-loop-level rainbow-type contribution to
the electric dipole moment

The two-loop-level analysis of the supersymmetric
effects to the fermion electric dipole moment has been
extended by considering rainbow diagrams in addition to
famous Barr-Zee diagrams with the expectation that they
might give a significant contribution to fermionic EDM.

FIG. 10. Two-loop diagram involving a W boson in the
internal loop.
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The importance of these diagrams is discussed in detail in
[68]. In this subsection, we estimate the contribution of
two-loop rainbow-type of diagrams involving R-parity
conserving supersymmetric interaction vertices and R-
parity violating vertices. The CP-violating phases appear
from the diagonalized eigenstates in the inner loop as well
as from complex effective Yukawa couplings in the
Higgsino sector. The Feynman diagrams have been clas-
sified based on different types of inner one-loop insertions.
One corresponds to the one-loop effective Higgsino-
gaugino-gauge boson vertex, and the other corresponds
to the one-loop effective Higgsino-gaugino transition. The
matrix amplitudes as well as the analytic expressions to
estimate the EDM for the above rainbow diagrams are
calculated in [75] to the first order in the external
momentum carried by the gauge boson. We utilize their
expressions to get the order of magnitude of the EDM of the
electron as well as the neutron in our case.

1. R-parity conserving rainbow-type contributions

For the loop diagrams given in Figs. 11 and 12, the result
of the EDM will be given by the following formulas,
respectively,

d1f ≈
X ncðQf þQ0

fÞC ~h0fL ~f
�
R
C ~h0fif�i

64π3
X
n¼1;2

jmλ0n
j sinðδf − θnÞ

×
eðg0ðnÞ~fL

− g0ðnÞ~fR
Þ

4π
sin θf cos θf

×
X

~f¼ ~fL; ~fR

sg0ðnÞ~f
½F0ðjmλn j2; jμj2; m2

~fL=R
; m2

~f2
Þ

− F0ðjmλ0n
j2; jμj2; m2

~fL=R
; m2

~f1
Þ�; ð181Þ

d2f ¼
X
f

ncQ0
fR
C ~h0fL ~f

�
R
C ~h0fif�i

64π3
X
n¼1;2

jmλ0n
j sinðδf − θnÞ

×
eðg0ðnÞ~fL

þ g0ðnÞ~fR
Þ

4π
sin θf cos θf

×
X

~f¼ ~fL; ~fR

g0ðnÞ~f
m2

~F
½F00ðjmλn j2; jμj2; m2

~fL=R
; ; m2

~f1
Þ

− F00ðjmλn j2; jμj2; m2
~fL=R

; ; m2
~f2
Þ�; ð182Þ

where nc ¼ 3 for the inner quark-squark loop and nc ¼ 1

for the inner lepton-slepton loop. The fields ~f1 and ~f2
correspond to the mass eigenstates of the sfermion ~f. The
value of constant s is þ1 for the left-handed sfermion
~fL and −1 for the right-handed sfermion ~fR. The effective
electric charges are given by Q0

f ¼ Cfif�i γ
Qf and

Q0
fR

¼ CfRf�Rγ
. The interaction vertices C ~h0fLf�R

and

C ~h0ff� correspond to effective Yukawa couplings. g0ðnÞ~fL

and g0ðnÞ~fR
denote the effective gauge couplings correspond-

ing to supersymmetric sfermions, and the functions F0 and
F″ are defined in [75]. The effective Yukawa’s as well as the
gauge interaction vertices are already calculated in Sec. IV.
The magnitude of the values of the same are

jC ~h0eL ~e�R j≡ V−9
5; jC ~h0ei ~ei� j≡ V−10

9 ; jC~ei ~eiγj≡ ~fV
53
45;

jC ~h0uL ~u�R j≡ V−5
3; jC ~h0ui ~ui� j≡ V−10

9 ;

jC ~ui ~eiγj≡ ~fV
53
45; g0ðnÞ~eR

≡ jCeR ~e�Rλ
0
i j≡ ~fV−3

5;

g0ðnÞ~e ≡ jCei ~e�i λ
0
i j≡ ~fV−3

5; g0ðnÞ~eR
≡ jCuR ~u�Rλ

0
i j≡ ~fV−3

5;

g0ðnÞ~u ≡ jCui ~u�i λ
0
i j≡ ~fV−3

5; i ¼ 1; 2: ð183Þ

Using the value of mλ0
1
¼mλ0

2
¼V

2
3m3

2
, m2

~e1
¼m2

~u1
¼Vm2

3
2

þ
m2

~e12
, m2

~e2
¼ m2

~u2
¼ Vm2

3
2

−m2
~e12
, m ~h0 ≡ V

59
72m3

2
, we get

F0ðjmλn j2; jμj2; m2
~fL=R

; m2
~f2
Þ − F0ðjmλn j2; jμj2; m2

~fL=R
; m2

~f1
Þ

≡ 10−24;

F0ðjmλn j2; jμj2; m2
~fL=R

; m2
~f2
Þ − F0ðjmλn j2; jμj2; m2

~fL=R
; m2

~f1
Þ

≡ 10−43: ð184Þ

FIG. 11. Two-loop-level rainbow-type diagrams involving the
Higgsino-gaugino-gauge boson vertex.

FIG. 12. Two-loop-level rainbow-type diagrams involving
Higgsino-gaugino transition.
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Incorporating the above results in the analytical expression
as given in (181) and (182) [with the assumption that
the value of the phase factor associated with all effective
R-parity conserving Yukawa couplings are of Oð1Þ],

d1e=e≡ ~f3V−18
5 × V

2
3m3

2
× ð10−24Þ GeV−2 ≡ 10−57 cm;

d2e=e≡ ~f3V−18
5 × V

5
3m3

3
2

× ð10−43Þ GeV−4 ≡ 10−55 cm;

ð185Þ
and similarly,

d1u=e≡ ~f3V−10
3 × V

2
3m3

2
× ð10−24Þ GeV−2 ≡ 10−56 cm;

d2u=e≡ ~f3V−10
3 × V

5
3m3

3
2

× ð10−43Þ GeV−4 ≡ 10−54 cm:

ð186Þ

So, the final EDM of the electron as well as the quark or
neutron in the case of R-parity conserving supersymmetric
Feynman diagrams are given as

de=e ¼ d1e=eþ d2e=e≡ 10−55 cm;

du=e ¼ d1u=eþ d2u=e≡ 10−54 cm: ð187Þ

2. R-parity violating rainbow-type contribution

The similar kind of Feynman diagrams can be drawn by
replacing the neutral Higgsino component with the Dirac
massless neutrino in Figs. 11 and 12. The formulas of the
EDM of the fermion f for two types of Feynman diagrams
as defined in [76] are given below

d1f ¼
X
n¼1;2

ImðC ~h0fLf�R
C ~h0fif�i

eiðθn−δfj ÞÞ ðQf þQ0
fÞnc

64π3
jmλ0n

j

×
eðgðnÞ~fL

− gðnÞ~fR
Þ

4π
sin θfj cos θfj

×
X

~f¼ ~fL; ~fR

sgðnÞ~f
½f0ðjmλ0n

j2; 0; m2
~fL=R

; m2
~f1j
Þ

− f0ðjmλn j2; 0; m2
~fL=R

; m2
~f2j
Þ�; ð188Þ

d2f ¼ −
X
n¼1;2

ImðC ~h0fLf�R
C ~h0fif�i

eiðθn−δfj ÞÞQ
0
fR
nc

64π3
jmλ0n

j

×
eðgðnÞ~fL

þ gðnÞ~fR
Þ

4π
sin θfj cos θfj

×
X

~f¼ ~fL; ~fR

gðnÞ~f
m2

~fk
½f″ðjmλ0n

j2; 0; m2
~fL=R

; m2
~f1
Þ

− f″ðjmλn j2; 0; m2
~fL=R

; m2
~f2
Þ�: ð189Þ

The interaction vertices Cν0fL ~f
�
R
and Cν0fif�i

correspond to

effective R-parity violating couplings. g0ðnÞ~fL
and g0ðnÞ~fR

denote

effective gauge couplings corresponding to supersymmetric
sfermions. The functions F0 and F″ are defined in [76].
Using the value of mλ0

1
¼mλ0

2
¼V

2
3m3

2
, m2

~e1
¼m2

~u1
¼Vm2

3
2

þ
m2

~e12
, m2

~e2
¼ m2

~u2
¼ Vm2

3
2

−m2
~e12
, we get

F0ðjmλ0n
j2; 0; m2

~fL=R
; m2

~f2
Þ − F0ðjmλ0n

j2; jμj2; m2
~fL=R

; m2
~f1
Þ

≡ 10−22;

F0ðjmλ0n
j2; 0; m2

~fL=R
; m2

~f2
Þ − F0ðjmλ0n

j2; jμj2; m2
~fL=R

; m2
~f1
Þ

≡ 10−42: ð190Þ

The contribution of R-parity violating vertices are already
calculated in [38] in the context of N ¼ 1 gauged super-
gravity action. The values of the same are as follows:

jCν0eL ~e�R j≡ jCν0ei ~e�i j≡ V−5
3;

jCν0uL ~u�R j≡ jCν0ui ~u�i j≡ V−5
3; i ¼ 1; 2: ð191Þ

Incorporating the values of the above-mentioned R-parity
violating interaction vertices and the values of the effective
gauge couplings in the analytic expressions given in
Eqs. (188) and (189) [with the assumption that the value
of the phase factor associated with all effective R-parity
violating Yukawa couplings is of Oð1Þ],

TABLE III. Results of the EDM of the electron/neutron for all possible two-loop diagrams.

Two-loop particle exchange Origin of complex phase deðe cmÞ dnðe cmÞ
h0i γf Complex effective Yukawa couplings 10−36 10−36

h0i γχ
�
i ” 10−47 10−47

~ffγ ” 10−70 10−70

~f0i h0i γ ” 10−29 10−29

γW�h0i Higgs exchange 10−27 10−27

~h0 ~fλ0i (rainbow type) Diagonalized sfermion mass eigenstates and effective Yukawas 10−55 10−54

ν0 ~fλ0i (rainbow type) ” 10−52 10−52
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d1e=e¼d1u=e≡ ~f3V−10
3 ×V

2
3m3

2
×ð10−22ÞGeV−2≡10−53 cm;

d1e=e¼d2u=e≡ ~f3V−10
3 ×V

5
3m3

3
2

×ð10−42ÞGeV−4≡10−52 cm:

ð192Þ

So, the final EDM of the electron as well as the quark or
neutron in the case of R-parity violating Feynman diagrams
is given as

dn=e ¼ de=e≡ 10−52 cm: ð193Þ

The results of all two-loop diagrams contributing to the
EDM of the electron/neutron are summarized in Table III.

VI. SUMMARY AND CONCLUSIONS

To summarize, we have performed a quantitative order-
of-magnitude analysis of the EDM of the electron and
neutron in a phenomenological model which provides a
local realization of large volume D3=D7 μ-split supersym-
metry that could possibly locally be obtained in the
framework of four Wilson line moduli living on the world
volume of fluxed stacks of space-time filling D7-branes
wrapped around the big divisor and two position moduli of
a mobile space-time fillingD3-brane restricted to (nearly) a
special Lagrangian three cycle of a Swiss-cheese Calabi-
Yau. The proposed phenomenological model is governed
by a superheavy gaugino and Higgsino mass parameter in
addition to heavy sfermion masses except one light Higgs
(obtained by considering a linear combination of the
eigenstates of the Higgs doublets at the EW scale).
Because of the presence of a heavy gaugino/Higgsino mass
parameter, one cannot ignore one-loop diagrams mediated
by gaugino/Higgsinos and sfermions as compared to two-
loop diagrams as traditional split SUSYmodels do. Keeping
this in mind, we have taken into account the complete set of
one-loop graphs and the dominantHiggs-mediatedBarr-Zee
diagrams. The nonzero CP-violating phase corresponding
to the dimension-five nonrenormalizable EDM operator can
be made to appear at the one-loop and two-loop levels from
the off-diagonal component of a scalar mass matrix and
complex effective Yukawa couplings, respectively, in the
context of N ¼ 1 gauged supergravity action. We have
considered the order of phases to exist in (0,π

2
]. We have also

shown that for a given choice of VEVs of a Wilson line as
well as position moduli, the phases corresponding to
effective Yukawa couplings do not change in the renorm-
alization group flow from string scale down to the electro-
weak scale. The relevant interaction vertices have been
calculated in the context of N ¼ 1 effective gauged super-
gravity action. Having described the aforementionedmodel,
we estimate all possible one-loop as well as two-loop
diagrams. In the one-loop graphs involving sfermions, the
neutralino-mediated loop diagrams give the dominant con-
tributions to the electron (neutron) EDMvalues as compared

to gaugino-mediated one-loop diagrams and the diagrams
involving R-parity violating vertices, because in N ¼ 1
gauged supergravity, gaugino interaction vertices are de-
pendent on suppressed dilute non-Abelian fluxes, and the
contribution of R-parity violating vertices are generally
suppressed. However, all of the three-loop diagrams give a
very suppressed contribution to the electron and neutron
EDM. Next, we considered one-loop diagrams involving
Higgs and other supersymmetric/SM particles. By consid-
ering Standard-Model-like fermions with Higgs in a loop,
we get the electron EDM estimate (de=e≡ 10−34 cm) and
neutron EDM estimate (dn=e≡ 10−33 cm) considerably
higher than the value predicted by the Standard Model.
Interestingly, by considering one-loop diagrams involving a
chargino and Higgs, the electron EDM value turns out to be
(de=e≡ 10−32 cm); i.e., one gets a healthy EDM of the
electron even in the presence of a superheavy chargino in the
loop. All of the above one-loop diagrams involve MSSM-
like superfields, and CP-violating phases appear from
visible sector fields only. For a full-fledged analysis, we
have taken into account a Goldstino supermultiplet also as
the physical degrees of freedom in the one-loop diagrams.
As the sGoldstino corresponds to the bosonic component of
the superfield corresponding to which there is a supersym-
metry breaking and the same occurs maximally in our large
volume D3=D7 model via the complex big divisor volume
modulus (τB), we have identified the sGoldstino field
with a complex τB field. Since, the fermionic component
Goldstino gets absorbed into the gravitino and becomes a
longitudinal component of the massive gravitino, we basi-
cally consider one-loop diagrams involving a gravitino and
an sGoldstino in the loop. In such kind of loop diagrams,
CP-violating phases appear from hidden sector fields.
However, by evaluating the matrix amplitudes of these loop
diagrams, we get a very suppressed contribution of the
electron and neutron EDM. The results of all one-loop
diagrams are summarized in Table II. In the case of two-
loop diagrams, we have evaluated the contribution of Barr-
Zee diagrams involving sfermions/fermions in an internal
loop andmediated via γh exchange and anR-parity violating
diagram involving fermions but mediated via ~fh exchange.
Here, the two-loop Barr-Zee diagrams involving heavy
sfermions and a light Higgs give a most dominant contri-
bution of the EDM (dðe=nÞ=e≡ 10−29 cm) as compared to
two-loop diagrams involving only SM-like particles. With
substantial fine-tuning in Calabi-Yau volume, one can hope
to produce EDM results the same as experimental limits.
Next, inspired by the approach given in [71–73,77] to obtain
a large EDM value (almost the same as an experimental
bound) from Barr-Zee diagrams involving top quarks and
aW-bosons loop in multi-Higgs models, we have provided
an estimate of the same using two Higgs doublets given in
the context of μ-split SUSY. By showing the possibility of
obtaining the numerical estimate of all SM-like vertices
relevant for these diagrams to be same as their standard
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values in the context of the N ¼ 1 gauged supergravity
model, we have also produced the EDM (dðe;nÞ=e≡
10−27 cm) in the case of a Barr-Zee diagram involving a
W boson. As evaluated explicitly, we have shown that two-
loop rainbow diagrams give a very suppressed contribution
as compared to Barr-Zee diagrams. The results of all two-
loop diagrams are summarized in Table III. Thus, we
conclude that in our large volume D3=D7 μ-split SUSY
model, despite the presence of very heavy supersymmetric
scalars/fermions in the loops, we are able to produce a
contribution to the electric dipole moment of both the
electron as well as the neutron close to the experimental
bound at the two-loop level and a sizable contribution even
at the one-loop level.
All of the above results have been obtained in the context

of the model which can be constructed locally near a
particular nearly special Lagrangian three cycle of a Swiss-
cheese Calabi-Yau threefold. It would be interesting to
determine the global embedding of our model. Further, in
the D3=D7 setup described above, we have shown the
possibility of identification of Wilson line moduli only with
first- or second-generation quarks and leptons. By extend-
ing the setup to include Wilson line moduli identifiable
with second- and third-generation quarks, one hopes to
obtain via the one-loop and two-loop Barr-Zee diagrams
involving fermions, the value of the electron/neutron EDM
very close to the experimental bound for a given choice of
the internal complex threefold volume.
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APPENDIX: CHARGINO MASS MATRIX

The chargino mass matrix is formed by mixing (charged)
winos and a Higgsino after electroweak symmetry break-
ing. In N ¼ 1 gauged supergravity, the interaction vertex
corresponding to the Higgs-gaugino-Higgsino term is given
by L ¼ gYMgTBZiXB ~Hiλi þ ∂Zi

TBDB ~Hiλi where λi corre-
sponds to a gaugino (such as the bino/wino). Expanding the
same in the fluctuations linear in Zi, we have

gYMgTBZiXB ¼ ~fV−2 Zi

MP
; ð∂Zi

TBÞDB ≡ ~fV−4
3
Zi

MP
:

ðA1Þ
After giving the VEV to Zi, the interaction vertex corre-
sponding to mixing between the gaugino and Higgsino will
be given as

C~λ−− ~H−
d =C~λþ− ~Hþ

u ¼
~fV−4

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KZiZi

KZiZi

p ≡ ~fV−1
3
v
MP

;

where v ¼ 246 GeV: ðA2Þ

For Higgsino doublets ~Hu ¼ ð ~H0
u; ~H

þ
u Þ, ~Hd ¼ ð ~H−

d ; ~H
0
dÞ,

the chargino mass matrix is given as

M ~χ− ¼
0
@ M2

~H−
d

C~λ−− ~H−
d

C~λ−− ~H−
d M2

~λ−

1
A;

M ~χþ ¼
0
@ M2

~Hþ
u

C~λþ− ~Hþ
u

C~λþ− ~Hþ
u M2

~λþ

1
A: ðA3Þ

Incorporating the values of M ~λþ ¼ M ~λ− ¼ V
2
3m3

2
,

M ~H−
d
¼ M ~Hþ

u
¼ V

59
72m3

2
, and m3

2
¼ V−2MP at the electro-

weak scale, we have

M ~χ� ¼
 

V−4
3

v
MP

~fV−1
3

v
MP

~fV−1
3 V−85

72

!
ðA4Þ

giving eigenvalues


M2
PV

4=3 þM2
PV

85=72 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

PV
8=3 − 2M4

PV
181=72 þM4

PV
85=36 þ 4~f2M2

Pv
2V109=36

q
2M2

PV
157=72 ;

M2
PV

4=3 þM2
PV

85=72 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

PV
8=3 − 2M4

PV
181=72 þM4

PV
85=36 þ 4~f2M2

Pv
2V109=36

q
2M2

PV
157=72

�
MP; ðA5Þ

and normalized eigenvectors
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~χþ1 ¼ − ~Hþ
u þ

�
v
MP

~fV
5
6

�
~λþi ; ~χ−1 ¼ − ~H−

d þ
�

v
MP

~fV
5
6

�
~λ−i ; and m~χ�

1
≡ V

59
72m3

2
;

~χþ2 ¼ ~λþi þ
�

v
MP

~fV
5
6

�
~Hþ
u ; ~χ−2 ¼ ~λ−i þ

�
v
MP

~fV
5
6

�
~H−
d ; and m~χ�

2
≡ V

2
3m3

2
: ðA6Þ
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