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In many models of gauged Q-balls, which were studied in the literature, there are upper limits for charge
Q (and size) of Q-balls due to repulsive Coulomb force. The only known model that allows largeQwithout
limitation is the V-shaped potential, V ∝ jϕj, which is singular at ϕ ¼ 0. To make it clear whether the
property of unlimitedQ is peculiar to the singular potential, we derive general conditions for potentials that
allow Q-balls with unbounded Q. We find that large gauged Q-balls exist even for regular potentials. One
of the simple models is V ¼ ðμ2=2Þϕ2½1þ K lnðϕ=MÞ2� with K < 0. We investigate equilibrium solutions
for this model systematically. As the electric charge Q increases, the field configuration of the scalar field
becomes shell-like; because the charge is concentrated on the surface, the Coulomb force does not destroy
the Q-ball configuration. These properties are analogous to those in the V-shaped model. We also find that
for each K there is another sequence of unstable solutions, which is separated from the other sequence
of the stable solutions. As jKj increases, the two sequences approach; eventually at some point in
−1.07 < K < −1.06, the “recombination” of the two sequences takes place.
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I. INTRODUCTION

Among nontopological solitons, Q-balls [1] have
attracted much attention because they can exist in all
supersymmetric extensions of the Standard Model [2].
Specifically, they can be produced efficiently in the
Affleck–Dine mechanism [3] and could be responsible
for baryon asymmetry [4] and dark matter [5]. Q-balls can
also influence the fate of neutron stars [6]. Based on these
motivations, stability of Q-balls has been intensively
studied [7–9]. These studies have also been extended to
general relativistic analysis [10,11] and to different-shaped
solitons [12,13].
Another natural extension is introducing U(1) gauge

coupling into a scalar field. If we consider an SO(2)
symmetric scalar field ϕ ¼ ðϕ1;ϕ2Þ, coupling to a gauged
field Aμ can be written as

S ¼
Z

d4x

�
1

4
FμνFμν −

1

2
ημνDμϕaDνϕa − VðϕÞ

�
; ð1Þ

where

ϕ ≔
ffiffiffiffiffiffiffiffiffiffiffi
ϕaϕa

p
; Fμν ≔ ∂μAν − ∂νAμ; ð2Þ

Dμϕa ≔ ∂μϕa þ Aμϵabϕbða; b ¼ 1; 2Þ: ð3Þ

Because such a field is equivalent to electromagnetic field,
the conserved charge Q becomes electric charge, and
therefore the Coulomb repulsion is expected to disturb
formation of large Q-balls. In fact, Lee et al. [14] began to
study gauged Q-balls with the potential,

V4ðϕÞ≔
m2

2
ϕ2 − λϕ4 þ ϕ6

M2
with m2; λ; M2 > 0;

ð4Þ

and claimed that there is a maximum charge and size. To
construct large Q-balls, Anagnostopoulos et al. [15] intro-
duced fermions with charge of the opposite sign. Li et al.
[16] assumed a different potential, a piecewise parabolic
function, and Deshaies–Jacques and MacKenzie [17]
supposed the Maxwell–Chern–Simons theory with the V4

potential (4) in the 2þ 1-dimensional spacetime; it was
shown that there is a maximum charge and size of Q-balls
in both models.
Arodź and Lis [18] considered gauged Q-balls with the

V-shaped potential,

VVðϕÞ ≔ λ
jϕjffiffiffi
2

p with λ > 0: ð5Þ

Because its three-dimensional plot has the form of a cone,
it would be more appropriate to call it the cone-shaped
potential. In addition to normal Q-balls, which have a
maximum charge, they found a new type of solutions,
Q-shells. Q-shell solutions are obtained in such a way that
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the scalar field and the gauge field are assumed to be
constant within a certain sphere r < r0 and the field
equations are solved numerically for r > r0. Because the
electric charge is concentrated on the shell, large Q-balls
with any amount of charge can exist without additional
fermions. Thus, this model overcomes the difficulty of the
V4 model. However, the V-shaped potential has another
drawback that it is singular at ϕ ¼ 0.
In this paper, we address the question of whether such

large gauged Q-balls can be formed without additional
fermions or a singular potential. Gulamov et al. [19]
pointed out that estimation of the maximum charge in
Ref. [14] was incorrect, although they cannot answer the
above question since they consider the case in which the
gauge field is small. Here, we consider general conditions
for regular potentials that allow Q-balls with unbounded
charge and investigate equilibrium solutions systematically
for one of the models.
This paper is organized as follows. In Sec. II, we show

the basic equations of gauged Q-balls. In Sec. III, we
discuss general properties of ordinary and gauged Q-balls
in the words of Newtonian mechanics. In Sec. IV, we
review previous results of V4 and VV models. In Sec. V, we
discuss the general conditions that regular potentials allow
Q-balls with unlimited Q. In Sec. VI, we investigate
equilibrium solutions systematically for one of the models.
Section VII is devoted to concluding remarks.

II. BASIC EQUATIONS

Let us consider the action (1). To find spherically
symmetric and equilibrium solutions with vanishing mag-
netic fields, we assume

ϕ¼ϕðrÞðcosωt;sinωtÞ; A0¼A0ðrÞ; Ai¼ 0; ð6Þ

where the subscript i denotes spatial components and
runs 1 to 3. Introducing a variable,

ΩðrÞ ≔ ωþ qA0ðrÞ; ð7Þ

we obtain field equations,

d2ϕ
dr2

þ 2

r
dϕ
dr

þΩ2ϕ ¼ dV
dϕ

; ð8Þ

d2Ω
dr2

þ 2

r
dΩ
dr

¼ ΩðqϕÞ2: ð9Þ

The boundary condition we assume is

dϕ
dr

ðr ¼ 0Þ ¼ 0;
dΩ
dr

ðr ¼ 0Þ ¼ 0; ð10Þ

ϕðr → ∞Þ ¼ 0; Ωðr → ∞Þ ¼ ωþ C
r
; ð11Þ

where C is a constant. In numerical calculation, we must
choose Ω and ϕ at ~r ¼ 0 to satisfy the asymptotic
conditions (11). Concretely, we seek for the appropriate
ϕð0Þ for a fixed Ωð0Þ.
We define the energy and the charge, respectively, as

E ¼
Z

d3xT00

¼ 2π

Z
∞

0

r2dr

�
Ω2ϕ2 þ

�
dϕ
dr

�
2

þ
�
dΩ
dr

�
2

þ 2V

�
;

Q ¼
Z

d3xðϕ1D0ϕ2 − ϕ2D0ϕ1Þ

¼ 4π

Z
∞

0

r2Ωϕ2dr; ð12Þ

where T00 is the time-time component of the energy-
momentum tensor, which is defined by

Tμν ¼ DμϕaDνϕa − ημν

�
1

2
ðDλϕaÞ2 þ V

�

þ FμλFλ
ν −

1

4
ημνðFλσÞ2: ð13Þ

Equations (8), (9), and (12) indicate that the sign trans-
formation Ω → −Ω changes nothing but Q → −Q with
keeping E and ϕðrÞ unchanged. Thus, we choose Ω > 0 in
this paper.

III. GENERAL PROPERTIES OF ORDINARY
AND GAUGED Q-BALL SOLUTIONS

To begin with, to understand the effect of gauge fields on
Q-balls, we review properties of ordinary Q-ball solutions.
The field equations are obtained by putting Ω ¼ ω ¼
constant in Eq. (8),

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ dVω

dϕ
; Vω ≔ V −

1

2
ω2ϕ2: ð14Þ

If one regards the radius r as time and the scalar amplitude
ϕðrÞ as the position of a particle, one can understand
solutions in the words of Newtonian mechanics, as shown
in Fig. 1. Equation (14) describes a one-dimensional
motion of a particle under the nonconserved force due
to the effective potential −VωðϕÞ and the time-dependent
friction −ð2=rÞdϕ=dr. If one chooses the initial position
ϕð0Þ appropriately, the static particle begins to roll down
the potential slope, climbs up, and approaches the origin
over infinite time.
From the above picture, one can derive the existing

conditions of equilibrium solutions of ordinary Q-balls as
follows. The first condition is that the initial altitude of
the particle −Vωðϕð0ÞÞ is larger than the final altitude
−Vωðϕð∞ÞÞ ¼ 0, which leads to
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max½−VωðϕÞ� > 0; i:e:; min

�
2V
ϕ2

�
< ω2: ð15Þ

The second condition is that the particle climbs up at
r → ∞, which leads to

lim
ϕ→þ0

1

ϕ

�
−
dVω

dϕ

�
¼ lim

ϕ→þ0

1

ϕ

�
ω2ϕ −

dV
dϕ

�
< 0: ð16Þ

If the lowest-order term of V is quadratic, i.e.,
V ¼ 1

2
m2ϕ2 þOðϕ3Þ, the second condition (16) reduces to

ω2 < m2 ¼ d2V
dϕ2

; ð17Þ

which gives the upper limit of ω2. The conditions (15) and
(17) were originally obtained by Coleman [1].
However, we cannot apply the second condition (17) to

the cone-shape potential VV in (5) because their lowest-
order term is not quadratic. Instead, we should go back
to the condition (16). In the case of VV, if we take λ > 0,
the condition (16) is satisfied regardless of ω. In Sec. V,
we discuss general conditions for V that satisfy (16).
Now, let us move on to gauged Q-balls. Without

specifying a potential V, we can show that Ω2 is a
monotonically increasing function of r [18]. Using a
variable f ≔ r2 dΩ

dr , we can rewrite Eq. (9) as

df
dr

¼ ΩðqrϕÞ2; dΩ
dr

¼ f
r2
: ð18Þ

The Taylor expansion of Ω and f up to the first order is
expressed as

fðrþ ΔrÞ ¼ fðr0Þ þ ðqr0ϕðrÞÞ2ΩðrÞΔrþOðΔr2Þ;

Ωðrþ ΔrÞ ¼ ΩðrÞ þ fðrÞ
r2

ΔrþOðΔr2Þ: ð19Þ

By definition, fð0Þ ¼ 0. If Ωð0Þ > 0, then fðΔrÞ > 0.
Equation (19) indicates that at every step r → rþ Δr both
f and Ω increases. Similarly, if Ωð0Þ < 0, then f and Ω
decreases at every step. Thus, we can conclude that Ω2 is a
monotonically increasing function of r.
We can interpret their equilibrium solutions in the words

of Newtonian mechanics in the same fashion, except that
the potential of a particle is time dependent,

VΩ ¼ V −
1

2
Ω2ϕ2: ð20Þ

Because the potential energy of the particle −VΩ increases
as the time r increases, the initial altitude −VΩð0Þ is not
necessarily larger than the final altitude −VΩð∞Þ ¼ 0; that
is, there is no condition that corresponds to (15). However,
the condition that the particle climbs up at r → ∞ should
hold, and we find an existing condition, which corresponds
to (16),

lim
ϕ→þ0

1

ϕ

�
−
dVΩ

dϕ

�
¼ lim

ϕ→þ0

1

ϕ

�
Ω2ϕ −

dV
dϕ

�
< 0: ð21Þ

Figure 2 illustrates the time-dependent potential of a
fictitious particle −VΩ. As r increases, Ω2 also increases;
then, −VΩ goes up as shown in the figure. There are two
types of solutions. One is monotonic solutions as shown
in (a): ϕ decreases monotonically as r increases. The other
is nonmonotonic solutions as shown in (b): ϕ increases
initially, but after the sign of dVΩ=dϕ changes, ϕ starts to
decrease. The latter type exposes a characteristic of gauged
Q-balls, which appears in the VV and other models we shall
discuss in Secs. V and VI.

IV. REVIEW OF PREVIOUS RESULTS

In this section, we review gauged Q-ball solutions in the
V4 model [14] and in the VV model [18].

A. V4 model

For the V4 model (4), the necessary condition of existing
equilibrium solutions (21) is expressed as

lim
r→∞

Ω2 < m2: ð22Þ

Because Ω2 is an increasing function of r, the condition
(22) would give a rather strong constraint on the parameter
range of existing equilibrium solutions.
We confirm this expectation by numerical calculation as

follows. We rescale the quantities as

φ

-Vω(φ)

R=0

(a)

FIG. 1. Interpretation of ordinary Q-balls by analogy with a
particle motion in Newtonian mechanics.
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~ϕ ≔
qϕffiffiffi
λ

p
M

; ~Ω ≔
Ωffiffiffi
λ

p
M

;

~r ≔
ffiffiffi
λ

p
Mr; ~m ≔

mffiffiffi
λ

p
M

;

~Q ≔ q2Q; ~E ≔
q2Effiffiffi
λ

p
M

: ð23Þ

In Fig. 3, as an example, we show the solution with
λ ¼ q ¼ 1, ~m2 ¼ 0.2, and ~Q ¼ 9. The dashed and solid
lines correspond to the ordinary and gauged Q-balls,
respectively. In this solution, the distributions of the
scalar field ~ϕð~rÞ almost coincide; however, because ~Ω
increases as a function of ~r, the condition (22) is
narrowly satisfied. Actually, Fig. 2(a) shows the effec-
tive potential of this case. Equation (9) tells us that, in
order for ~Ω to be small in the asymptotic region, ~r ~ϕ

must also be small there; this indicates that ~Q has an
upper limit.

B. VV model

Because the VV model (5) has a linear term, the
condition (21) is satisfied if λ > 0. Contrary to the case
of the V4 model, this condition does not put any restriction
on Ω. Therefore, large gauged Q-balls are expected in
this model.
Using the normalized coupling κ ≔ qλ=

ffiffiffi
2

p
, we rescale

the quantities as

~ϕ ≔
qϕffiffiffi
κ

p ; ~Ω ≔
Ωffiffiffi
κ

p ; ~r ≔
ffiffiffi
κ

p
r;

~Q ≔ q2Q; ~E ≔
q2Effiffiffi
κ

p : ð24Þ

In Fig. 4, we show the field configurations of ~ϕ and ~Ω with
~Q ¼ 120. The dashed and solid lines correspond to the
ordinary and gauged Q-balls, respectively. In the case of
gauged Q-balls, ~ϕ initially increases as a function of ~r and
takes a maximum value at ~r ¼ ~rmax ≠ 0; then, it decreases
due to the increase of ~Ω. This behavior can be understood
by the effective potential shown in Fig. 2(b). Here, we have
defined ~rmax as the value of ~r where ~ϕ takes a maximum
value. In the case of ordinary Q-balls, by contrast, ~rmax is
always zero.
We show the ~Ωð0Þ- ~ϕð0Þ and ~Q- ~E relations in Figs. 5(a)

and 5(b), respectively. The dashed line corresponds
to the ordinary Q-balls. The dotted and black solid
lines correspond to the gauged case with ~rmax ¼ 0 and

FIG. 3. The field configurations of ~ϕ and ~Ω for the V4 model
with ~m2 ¼ 0.2 and ~Q ¼ 9. The dashed and solid lines correspond
to the ordinary and gauged Q-balls, respectively.

(a)

(b)

FIG. 2. Interpretation of gauged Q-balls by analogy with a
particle motion in Newtonian mechanics. Examples of (a) mon-
otonic solutions in the V4 model and (b) nonmonotonic solutions
in the VV model.
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that with ~rmax ≠ 0, respectively. The blue solid line
corresponds to the Q-shell solutions that will be
explained below.
In the case of ordinary Q-balls ( ~Ω ¼ ~ω), the ~Ωð0Þ- ~ϕð0Þ

relation, which was represented by the dashed line in
Fig. 5(a), can be understood as follows. In the picture of a
particle motion in Newtonian mechanics, if we ignore the
“nonconserved force” term, ð2=rÞdϕ=dr, the maximum of
~ϕ, ~ϕmax ¼ ~ϕð0Þ is determined by the nontrivial solution of
VΩ ¼ 0. Then, we obtain

~ϕð0Þ ¼ 2

~Ω2
; ð25Þ

which approximates the dashed line in (a).
In the case of gauged Q-balls, the ~Ωð0Þ- ~ϕð0Þ relation for

large ~Ωð0Þ (small ~Q), which is represented by the dotted
line in Fig. 5(a), almost coincides with that for ordinary
Q-balls. For small ~Ωð0Þ (large ~Q), however, the ~Ωð0Þ- ~ϕð0Þ
relation for ordinary Q-balls and that for gauged Q-balls
are qualitatively different. Nevertheless, it is surprising
that there is no qualitative difference in the ~Q- ~E relation
between solutions with ~rmax¼ 0 and those with ~rmax ≠ 0.
Both solutions are on the same quasilinear relation across
point A.
Q reaches a maximum at the point B where cusp

structure appears in the ~Q- ~E plane. Q-ball solutions with
the boundary conditions (10) disappear at the point C
where ~ϕð0Þ → 0. However, Arodź and Lis [18] found a new
type of solutions with boundary conditions (11) and

ϕðrÞ ¼ dϕ
dr

ðrÞ ¼ dΩ
dr

ðrÞ ¼ 0; for 0 < r < r0; ð26Þ

which are different from (10), and called them “Q-shells.”
The ~Q- ~E curve of Q-shells is smoothly connected to
that of Q-balls at point C. As ~Ωð0Þ increases, Q decre-
ases and reaches a minimum at another cusp D in the
~Q- ~E plane; then, Q turns to increase without upper
limit. We also show the ~Q-ð ~E − 3.7459 ~QÞ relation in
Fig. 6, where we see that the solutions B-C-D have
slightly larger values of ~E than those of the other
solutions with the same Q. If we apply the catastrophe
theory [20], we find that the solution sequence B-C-D
is unstable, while the other two sequences are stable
and cross in the ~Q- ~E plane.

FIG. 4. The field configurations of ~ϕ and ~Ω for the VV model
with ~Q ¼ 120. The dashed and solid lines correspond to the
ordinary and gauged Q-balls, respectively.

(a)

(b)

FIG. 5 (color online). (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations
for the VV model. The dashed line corresponds to the ordinary
Q-balls. The dotted and black solid lines correspond to the
gauged Q-balls with ~rmax ¼ 0 and those with ~rmax ≠ 0, respec-
tively. The blue solid line corresponds to the Q-shell solutions.
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V. CONDITIONS FOR REGULAR POTENTIALS
THAT ALLOW UNBOUNDED CHARGE

Now, we discuss whether any regular potentials allow
Q-balls with unlimited Q. As we discussed in the previous
section, to obtain large ~Q solutions, ~Ω should become
so large without violating the condition (21). ~Ω is not
constrained by (21) at all if and only if

lim
ϕ→þ0

1

ϕ

dV
dϕ

¼ ∞: ð27Þ

This is the general condition for V that allows large Q-balls
without limitation.
We also require the regularity condition at the center,

lim
ϕ1→þ0

∂V
∂ϕ1

¼ lim
ϕ1→−0

∂V
∂ϕ1

; ð28Þ

for ϕ2 ¼ 0. This condition is equivalent to

lim
ϕ→þ0

dV
dϕ

¼ 0: ð29Þ

Next, we investigate concrete expressions of V that
satisfy (27) and (29). We denote the dominant term of V
at ϕ ≈ 0 by V0ðϕÞ and discuss two types of functions
for V0:

(i) Suppose

V0 ¼ Kϕα; ð30Þ

where α is a positive real number. Because

1

ϕ

dV0

dϕ
¼ Kαϕα−2; ð31Þ

the condition that (27) is satisfied is given by

α < 2; K > 0: ð32Þ

The V-shaped potential (α ¼ 1) falls into this class.
However, if we take account of the regularity
condition (29), which indicates α > 1, the allowed
parameter range of α becomes

1 < α < 2: ð33Þ

Note that integers are not allowed for the power α.
(ii) Suppose a more general class,

V0 ¼ Kϕα

�
log

ϕ

M

�
n
; ð34Þ

where α is a positive real number and n is a natural
number. Because

1

ϕ

dV0

dϕ
¼ Kϕα−2

�
log

ϕ

M

�
n−1

�
α log

ϕ

M
þ n

�

≈ Kαϕα−2
�
log

ϕ

M

�
n
; ð35Þ

the condition (27) is satisfied if

α ≤ 2; fn is odd; K < 0g or fn is even; K > 0g:
ð36Þ

Because the regularity condition (29) indicates
α > 1, the allowed parameter range of α becomes

1 < α ≤ 2: ð37Þ

One of the simple choices is α ¼ 2; n ¼ 1, and,
accordingly, K < 0:

V0 ¼ Kϕ2 log

�
ϕ

M

�
: ð38Þ

If we include the regular mass term μ2ϕ2=2 and redefine K,
we have

V log ¼
μ2

2
ϕ2

�
1þ Kϕ2 log

�
ϕ

M

��
: ð39Þ

This agrees with the gravity-mediated type in the Affleck–
Dine mechanism. In the next section, we investigate
equilibrium solutions for this model systematically.

FIG. 6 (color online). ~Q-ð ~E − 3.7459 ~QÞ relation for the VV
model near the points B, C, and D.
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VI. LOG POTENTIAL

We rescale the quantities in (39) as

~ϕ ≔
qϕ
M

; ~Ω ≔
Ω
M

;

~r ≔ Mr; ~μ ≔
μ

M
;

~Q ≔ q2Q; ~E ≔
q2E
M

: ð40Þ

We fix ~μ ¼ q ¼ 1 below.
We show some solutions of gauged Q-balls in Fig. 7; we

choose K ¼ −1 and obtain solutions with ~Q ¼ 1.7 and 11,
in which case rmax ¼ 0, and that with ~Q ¼ 103, in which
case rmax ≠ 0. As ~Q increases, the field configuration
becomes shell-like, and the location of the shell becomes
farther from the center. This behavior is explained by the
repulsive Coulomb force of electric charge. These con-
figurations are just like “Q-shells,” which were obtained by
Arodź and Lis for the V-shaped model [18]. The difference
is that we use the boundary conditions (10) and (11)
consistently and give a tiny but nonzero value for ~ϕð0Þ,
while they adopted the special boundary condition (26).
We show the ~Ωð0Þ- ~ϕð0Þ and ~Q- ~E relations forK ¼ −1 in

Fig. 8. For reference, we also plot the relations for ordinary
Q-balls (Ω ¼ ω), which are represented by the dashed
lines. Their extreme behavior in the thin-wall limit
(ω → ∞) and in the thick-wall limit (ω → 0) can be
discussed analytically as follows [13]. The maximum of
ϕ, ~ϕmax ¼ ~ϕð0Þ, can be estimated by the nontrivial solution
of VΩ ¼ 0:

~ϕmax ¼ e
1− ~ω2

−2K : ð41Þ

Because the energy and the charge are roughly estimated as

E ∼ VðϕmaxÞR3; Q ∼ ωϕ2
maxR3; ð42Þ

where R is the typical radius, we find

ω → 0 ∶ ϕmax → nzf; E → nzf; Q → 0;

ω → ∞ ∶ ϕmax → 0; E → 0; Q → 0; ð43Þ

where nzf denotes nonzero finite. Therefore, there is an
upper limit Qmax. This analytic estimate agrees with the
numerical results in Fig. 8. There are two sequences of
solutions that merge at the cusp. We suppose by energetics

(a)

(b)

FIG. 8 (color online). (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations for
K ¼ −1. The dashed lines correspond to ordinary Q-balls. The
dotted and solid lines correspond to gauged Q-balls with ~rmax ¼ 0
and those with ~rmax ≠ 0, respectively.

FIG. 7. The field configurations of ~ϕ for gauged Q-balls with
K ¼ −1 and ~Q≃ 1.7, 11, and 103.
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that the sequences with high energy are unstable (unstable
branch) while those with low energy are stable (stable
branch).
The results for gauge Q-balls are represented by the

dashed lines (~rmax ¼ 0) and the solid lines (~rmax ≠ 0). The
solutions denoted by red lines correspond to those with
small ω and an unstable branch, while those denoted
by black lines correspond to large ω and a stable branch.
For dotted lines, the gauged Q-balls are similar to the
ordinary Q-balls (dashed lines). In contrast, due to the non-
monotonic behavior of ~ϕð~rÞ (i.e., ~rmax ≠ 0), the properties
of gauged Q-balls with solid lines and ordinary Q-balls
are quite different.
As for the stable solutions denoted by the black lines,

both ~Ωð0Þ- ~ϕð0Þ and ~Q- ~E relations of solutions are similar

to those of the VV model, except that the cusp structure
does not appear in the ~Q- ~E plane in Fig. 8(b). Because ~E is
a monotonically increasing function of ~Q, we judge that
all equilibrium solutions by black lines are stable. We also
suppose by energetics that the solutions denoted by red
lines are unstable.
Figures 9 and 10 show the ~Ωð0Þ- ~ϕð0Þ and ~Q- ~E relations

for K ¼ −0.6 and −0.4, respectively. We find that as jKj
decreases the existing domain of the unstable solutions
becomes small in the ~Ωð0Þ- ~ϕð0Þ plane, and the two
sequences leave away from each other.
A drastic change occurs between K ¼ −1.06 and

K ¼ −1.07, as shown in Figs. 11 and 12. As jKj increases,
the two sequences approach further; eventually at some
point in −1.07 < K < −1.06, the “recombination” of the

(a)

(b)

FIG. 9 (color online). (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations for
K ¼ −0.6.

(a)

(b)

FIG. 10 (color online). (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations for
K ¼ −0.4.
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two sequences takes place. At first sight, this recombination
looks strange; however, we can understand this phenome-
non in a rational way as follows. If we look at the existing
domain of equilibrium solutions in the two-dimensional
parameter space [say, the ~Ωð0Þ- ~ϕð0Þ or the ~Q- ~E space] for
fixed K, we see that there are two separate sequences of
solutions. However, if we consider the existing domain in
the three-dimensional parameter by regarding K as another
parameter, it is described by a simply connected surface.
The recombination of the two sequences is nothing but
changing cross sections of the same surface.
The solution sequence of the ordinary Q-balls, repre-

sented by the dashed line in Fig. 12, is analogous to the
sequence including point A. The other sequence including
point B has no counterpart of ordinary Q-balls. The

solutions in the branch B-A0-B0 are unstable, and there
are two small cusps about A0-B0. The lower energy
solutions in both sequences are stable; interestingly, the
two sequences of stable solutions are separated. There is no
upper limit of ~Q.
As a common property for every K, there are sequences

of cusp structures in the large Q region for unstable
solutions. We show (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations
for the very small ~ϕð0Þ (and large ~Q > 500) region for
K ¼ −1.07 in Fig. 13. Complicated structure appears along
the sequence C to G; there are several cusps about
C-D-E-F. As shown in Fig. 14, field distributions in
this region also have complicated structures. Beyond the
point F, both ~ϕmax and ~rmax monotonically increase. It is
interesting that small differences of boundary values ~Ωð0Þ
and ~ϕð0Þ result in such large differences in ~Q and ~E.

(a)

(b)

FIG. 11 (color online). (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations for
K ¼ −1.06. The two sequences in red lines and in black lines are
about to touch.

(a)

(b)

FIG. 12. (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations with K ¼ −1.07.
The recombination of the two sequences happens.
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VII. SUMMARY AND DISCUSSIONS

In many models of gauged Q-balls, which were studied in
the literature, there are upper limits for chargeQmax and size
of Q-balls due to the repulsive Coulomb force. The only
knownmodel that allows largeQwithout limitation is the V-
shaped potential VV, which is singular at ϕ ¼ 0. Moreover,
largeQ solutions exist not as Q-balls but as Q-shells, which
are obtained using boundary conditions (26). Tomake it clear
whether property of unboundedQ is peculiar to the singular
potential, we have derived general conditions for potentials
that allow Q-balls with unbounded Q. We have found that
large gauged Q-balls exist even for regular potentials.
One of the simple models is V log in (39), which agrees

with the gravity-mediated type of the Affleck–Dine mecha-
nism. We have also investigated equilibrium solutions
for this model systematically. As the electric charge Q
increases, the field configuration of the scalar field becomes
shell-like; because the charge is concentrated on the sur-
face, the Coulomb force does not destroy the Q-ball

configuration. These properties are analogous to Q-shells
in VV, which was studied by Arodź and Lis [18], although
we do not use boundary conditions (26). Thus, we can
summarize this feature of gauged Q-balls as follows:

Does Qmax exist?

V4 Yes.
VV Yes. (Qmax does not exist as a Q-shell.)
V log No.

We have also found that for each K in V log there are two
sequences of solutions that can be seen in Figs. 8 to 11.
These are summarized as follows:

(i) Unstable solutions written by red lines have small
~Ωð0Þ, which hasmaximum ~Ωð0Þmax. They have high-
energy E comparing them with the stable solutions.

(a)

(b)

FIG. 13. (a) ~Ωð0Þ- ~ϕð0Þ and (b) ~Q- ~E relations for K ¼ −1.07
and ~Q > 500. The dotted lines extend from Fig. 12.

(a)

(b)

FIG. 14 (color online). Field distributions of ~ϕ with K ¼ −1.07
for (a) solutions C-D-E and (b) solutions E-F-G.
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(ii) Stable solutions written by black lines have large
~Ωð0Þ, which has minimum ~Ωð0Þmin. They have low-
energyE comparing themwith the unstable solutions.

As jKj increases, the two sequences approach. They are
summarized in the table below. The value ~E below is that
for ~Q ¼ 50, which is chosen as a reference:

Unstable solutions Stable solutions

jKj ¼ 0.4 ~Ωð0Þmax ≃ 3.69 × 10−5,
~E≃ 420

~Ωð0Þmin ≃ 1.3, ~E≃ 98

jKj↗ ~Ωð0Þmax↗, ~E↘ ~Ωð0Þmin↘, ~E↗
jKj ¼ 1.06 ~Ωð0Þmax ≃ 0.48, ~E≃ 129.5 ~Ωð0Þmin ≃ 0.70,

~E≃ 129

Eventually, at some point Kcrit. in −1.07 < K < −1.06,
the recombination of the two sequences takes place. This
occurs at points A and B in Fig. 12. At first sight, this
recombination looks strange. However, if we consider the
existing domain in the three-dimensional parameter by
regarding K as another parameter, it is described by a
simply connected surface. The recombination of the two
sequences is nothing but changing cross sections of the
same surface.
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