
What surface maximizes entanglement entropy?

Amin Faraji Astaneh,1,2,4,* Gary Gibbons,3,4,5,† and Sergey N. Solodukhin4,‡
1Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran, Iran
2School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),

P.O. Box 19395-5531, Tehran, Iran
3D.A.M.T.P., University of Cambridge, Cambridge CB3 0WA, United Kingdom

4Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350 Fédération Denis Poisson,
Université François-Rabelais Tours, Parc de Grandmont, 37200 Tours, France

5LE STUDIUM, Loire Valley Institute for Advanced Studies, 45000 Tours and Orleans, France
(Received 1 August 2014; published 23 October 2014)

For a given quantum field theory, provided the area of the entangling surface is fixed, what surface
maximizes entanglement entropy? We analyze the answer to this question in four and higher dimensions.
Surprisingly, in four dimensions the answer is related to a mathematical problem of finding surfaces
that minimize the Willmore (bending) energy and eventually to the Willmore conjecture. We propose a
generalization of the Willmore energy in higher dimensions and analyze its minimizers in a general class of
topologies Sm × Sn and make certain observations and conjectures that may have some mathematical
significance.
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I. INTRODUCTION

There are surprisingly many aspects involved in which
entanglement entropy is related to geometry. This relation-
ship is likely to have very deep reasons which are not yet
fully understood. In this paper we reveal a new aspect of
this relationship. It is related to the problem of finding a
surface that maximizes the entanglement entropy provided
the area of the entangling surface is fixed. This problem has
many mathematical analogs. The particular problem which
sparked our interest is the problem related to sandpiles.
Indeed, suppose γ is a curve that bounds the sandpile. If

one thinks of the vertical direction as time, the sandpile may
be thought of as the domain of dependence of the base of
the sandpile. One may ask, for a given perimeter lðγÞ,
which sandpile has the largest volume. The answer, perhaps
unsurprisingly, is when γ is a circle [1]. In the holographic
approach to the entanglement entropy, the geometrical
picture is pretty much similar to that of the sandpile so
that one would expect that something similar is going on.
In this paper we make this intuitive picture more precise.

As in the case of the sandpiles, the entanglement entropy is
indeed maximized by the round sphere (in dimensions
d ≥ 4), so that the round sphere is what we shall call the
global entropy maximizer. However, each topological class
may possess its own entropy maximizer and indeed, as we
show in this paper, this is the case. In four dimensions these
maximizers are the so-called Lawson surfaces, higher
genus compact surfaces that can be minimally embedded
in sphere S3. For genus g ¼ 1 the surface is the Clifford

torus and our problem is related to the so-called Willmore
conjecture, the problem of minimization of the Willmore
energy.
In higher dimensions the situation is more complicated

since the topological classification of compact ðd − 2Þ-
dimensional surfaces is more involved. We, nevertheless,
analyze this problem for some particular class of surfaces
which have the product structure Sm × Sn, nþm ¼ d − 2,
and find the respective entropy maximizers. Moreover, we
present arguments as to why the round sphere has to be the
global entropy maximizer. This, therefore, answers the
question asked in the title of the paper.

II. PRELIMINARIES

A. Entanglement entropy

Consider a d-dimensional spacetime M and a
codimension-two surface Σ. For a given compact closed
surface Σ, entanglement entropy is defined by tracing over
degrees of freedom residing inside the surface. Provided
one starts with a pure quantum (typically vacuum) state,
after the tracing one ends up with a nontrivial density
matrix ρ. Entanglement entropy (for a review see [2]) is
then defined as

SðΣÞ ¼ −TrρðΣÞ ln ρðΣÞ: ð2:1Þ

Remarkably, tracing over degrees of freedom outside the
surface gives the same value. This property of the entropy
indicates that entanglement entropy is not an extensive
quantity which is characterized by geometry of the surface
and the spacetime near the surface. One quantity which
encodes geometry is the area of the surface, AðΣÞ.
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Indeed, being computed in a quantum field theory, to
leading order entanglement entropy is found to be propor-
tional to the area. Since entropy is a dimensionless quantity
its dependence on the area should be compensated by
another dimensionful variable. This variable naturally
appears in a quantum field theory and is known as a UV
cutoff ϵ. Thus, entanglement entropy is a function of the
UV cutoff ϵ as well as of the geometric characteristics of the
surface, S ¼ SðΣ; ϵÞ. In what follows we consider entan-
glement entropy of a vacuum state although a generaliza-
tion to more general situations would be very interesting.
Now, we are ready to formulate our problem.

B. Formulation of the problem

(A) Suppose that the quantum field theory is specified
and fixed as well as the background spacetime M.
In particular, the UV cutoff ϵ is fixed so that the
entropy can be considered to be function only of
geometry of the surface Σ, SðΣÞ. Consider a class of
surfaces of the same area, A ¼ AðΣÞ. This class may
be also specified by imposing certain restrictions
on topology of Σ. For what surface Σ0 does the
entanglement entropy SðΣÞ take the maximal value?
If, for a given topology, such a surface Σ0 exists

then we obviously have an inequality

SðΣÞ ≤ SðΣ0Þ topology is fixed ð2:2Þ

We shall call Σ0 a “maximizer” of the entropy. A
separate interesting problem is to find a global
maximizer.

(B) Suppose that all conditions of (A) hold but the
topology of surface is not fixed and can vary. Is there
a surface Σm, called a global “maximizer”, such that

SðΣÞ ≤ SðΣmÞ any topology ð2:3Þ

for any surface Σ of same area A and arbitrary
topology?

C. Minkowski spacetime: A natural guess
for maximizer

In this paper we mostly consider the case when space-
time M is Minkowski. In d-dimensional Minkowski
spacetime there is a large group of symmetry OðdÞ. This
symmetry may be useful in finding a maximizer. Indeed,
a surface-maximizer, Σ0 or Σm, is most likely to be a
maximally symmetric surface, i.e. to be invariant under a
group of rotations Oðd − 1Þ. There is only one such
surface, the round sphere Sd−2.
Therefore, we might guess that the round sphere is the

maximizer in its own topological class. This is one of the
conjectures which we shall check in this paper. This
symmetry consideration, however, does not tell us whether
the round sphere Sd−2 is a global maximizer and what

surfaces maximize the entropy in other topological classes
which do not contain spheres. We therefore formulate our
proposed answer to question ( B):
The round sphere Sd−2 is the global maximizer of

entanglement entropy in any topology,

SðΣd−2Þ ≤ SðSd−2Þ: ð2:4Þ

Below we shall provide evidence for this statement in
various dimensions.

D. Holographic entanglement entropy

One way to attack the problem outlined in Sec. II B is to
use the holographic approach to entanglement entropy
proposed in [3]. According to this approach one considers
a ðdþ 1Þ-dimensional spacetime which solves Einstein
equations with a negative cosmological constant. This
spacetime is asymptotically anti—de Sitter and we shall
use notation AdSdþ1 even though this space is not globally
anti—de Sitter. The physical d-dimensional spacetime M
is conformal boundary of AdSdþ1. We remind the reader
that the entangling surface Σ is co-dimension 2 surface
in M. Now, in a hypersurface of constant time in AdSdþ1

consider a ðd − 1Þ-dimensional surface HΣ which bounds
entangling surface Σ, ∂HΣ ¼ Σ. Let us impose condition
that HΣ to be minimal surface. Its area is AðHΣÞ. It is
divergent and it should be regularized by placing M at
some finite small distance ϵ from infinity of AdSdþ1. In the
holographic dictionary ϵ should be identified with the UV
cutoff in a conformal field theory in physical space M.
Now, according to prescription of [3] the entanglement
entropy in the CFT living in M and defined for the
entangling surface Σ is given by

SHEðΣÞ ¼
AðHΣÞ
4Gdþ1

; ð2:5Þ

where Gdþ1 is ðdþ 1Þ-dimensional Newton’s constant.
According to the holographic dictionary GN is related to
number of degrees of freedom in the CFT. For instance
1=G3 ¼ 2=3N (d ¼ 2), 1=G5 ¼ 2=πN2 (d ¼ 4), 1=G7 ¼
32=π2N3 (d ¼ 6) so that for generic d, 1=Gdþ1 ∼ Nd=2.
Asymptotically, near the conformal boundary of AdSdþ1

the equation for a minimal surface HΣ can be found by
using the Fefferman-Graham coordinates. In four dimen-
sions the analysis was done by Graham and Witten [4].
Generalizing this analysis for arbitrary dimensions d (see
also [5] for a relevant analysis) we find the following
asymptotic for the volume element of the minimal
hypersurface, HΣ,

dvHΣ
¼ r−dþ1

�
1 −

1

2

�
d − 3

ðd − 2Þ2 ðTrKÞ2 þ TrP

�
r2 þ � � �

�

× dvΣdr; ð2:6Þ
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where r is the radial coordinate orthogonal to M and
following the notation of Graham-Witten we have

Pαβ ¼
1

d − 2

�
Rαβ −

R
2ðd − 1Þ gαβ

�
: ð2:7Þ

Rαβ here is the curvature in physical spacetimeM and Ka
αβ,

a ¼ 1; 2 is extrinsic curvature of surface Σ. The traces
in (2.6) are defined in terms of the induced metric on Σ,
γαβ ¼ gαβ − Σa¼1;2ðnaαnaβÞ. We then arrive at

TrP ¼ 1

d − 2

�
−Raa þ

d
2ðd − 1ÞR

�
; ð2:8Þ

Raa ¼ Rαβnαan
β
a. Now putting things together and perform-

ing the integral over r (which goes from r ¼ ϵ on the lower
limit) one finds the asymptotic form for the holographic
entanglement entropy

SHEðΣÞ ¼
AðHΣÞ
4Gdþ1

¼ 1

4Gdþ1

AðΣÞ
ðd − 2Þϵd−2

þ 1

4GN

1

2ðd − 2Þðd − 4Þϵd−4

×
Z
Σ
dvΣ

�
Raa −

d
2ðd − 1ÞR −

d − 3

d − 2
ðTrKÞ2

�
:

ð2:9Þ

In dimension d ¼ 4 the power law divergence 1=ϵd−4

becomes logarithmic and we arrive at

SHEðΣÞ ¼
AðΣÞ
4πϵ2

N2

þ N2

24π

Z
Σ
dvΣð3Raa − 2R −

3

2
ðTrKÞ2Þ log 1

ϵ

ð2:10Þ

in agreement with the earlier derivation in [6] (see also [7]
for the case of vanishing extrinsic curvature). Expression
(2.9) agrees with the holographic calculation for a ðd − 2Þ-
sphere given in [3].

III. MAXIMUM OF ENTROPY IN
DIMENSION d ¼ 4

A. Holographic analysis

Let us consider the case when the physical spacetime is
flat. Then the holographic formula (2.10) simplifies

SHEðΣÞ ¼
AðΣÞ
4πϵ2

N2 −
N2

16π

Z
Σ
dvΣðTrKÞ2 log 1

ϵ
; ð3:1Þ

so that the only contribution from the extrinsic curvature is
in the logarithmic term.

In our problem formulated in Sec. II B one considers
a class of surfaces of same area A ¼ AðΣÞ. Thus, in this
class the first term in (2.10) is the same for all surfaces.
Therefore, in order to find a maximum of the entropy (2.10)
one has to look at the minimum of the second term which is
proportional to the integral of square of extrinsic curvature.
This term is well known in the mathematical literature as
the Willmore (bending) energy,

WðΣÞ ¼ 1

4

Z
Σ
ðTrKÞ2; ð3:2Þ

Analyzing its minimum we first do some rewriting,

1

2
ðTrKÞ2 ¼ RΣ þ KΣ;

RΣ ¼ ðTrKÞ2 − TrK2; KΣ ¼ TrK2 −
1

2
ðTrKÞ2; ð3:3Þ

where RΣ is intrinsic curvature of Σ. The important
observation now is that invariant KΣ is a complete square,

KΣ ¼
�
Kij −

1

2
γijTrK

�
2

; ð3:4Þ

where γij is the induced metric on Σ. Since the first term in
(3.3) is topological the minimum of (3.3) is achieved if the
second term, integral of a complete square (3.4), vanishes.
This is only possible if KΣ ¼ 0, i.e.,

Kij ¼
1

2
γijTrK: ð3:5Þ

Using the Gauss-Codazzi equations,

∇jKij ¼ ∇iTrK;

RΣ ¼ ðTrKÞ2 − TrK2; ð3:6Þ

we find that Eq. (3.5) implies that RΣ is constant and
positive so that Σ is a round sphere S2.
Thus, we have proved that the round sphere is the

minimizer of the Willmore energy. This is of course a well
known fact in the mathematical literature. For us it implies
that, in its topological class, the round sphere is the
maximizer of the holographic entanglement entropy

SHEðΣÞ ≤ SHEðS2Þ: ð3:7Þ

B. Generic four-dimensional CFT
in Minkowski spacetime

The above holographic consideration can be generalized
to cover the entanglement entropy of a generic four-
dimensional conformal field theory. Indeed, the UV diver-
gent terms in the entropy read [6]
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SCFTðΣÞ ¼
Nða; bÞAreaðΣÞ

4πϵ2

−
1

2π

�
a
Z
Σ
RΣ þ b

Z
Σ
KΣ

�
ln
1

ϵ
; ð3:8Þ

whereNða; bÞ is the number of on-shell degrees of freedom
in the CFT, a and b are central charges related to conformal
anomalies. For free fields we have that the a charge is non-
negative, a ≥ 0, and the b charge is positive, b > 0, for all
fields except s ¼ 3=2. The CFT holographically dual to
supergravity on AdS5 is characterized by condition a ¼ b.
Provided the spectrum of the CFT does not contain exotic
particles, the same arguments as above apply to this more
general case.
By the same arguments as before entropy (3.8) has

maximum for a surface Σ0 for which KΣ ¼ 0 so that Σ is a
round sphere, Σ0 ¼ S2. Hence, we still have the bound

SCFTðΣÞ ≤ SCFTðS2Þ: ð3:9Þ

C. A mass deformation of CFT

These consideration can be even generalized to non-
conformal theories. Consider a deformation of the CFT by
adding some mass. Then the entanglement entropy takes
the form [8]

Snon-CFTðΣÞ ¼
Nða; bÞAðΣÞ

4πϵ2

−
1

2π

Z
Σ

�
aRΣ þ bKΣ þ

X
s

m2
s

12
Ds

�
ln
1

ϵ
;

ð3:10Þ

where Ds is the dimension of representation of spin s. The
mass term in the entropy (3.10) again reduces to an area
term and it is thus irrelevant for the maximization of the
entropy. The maximum is then achieved for a surface for
whichKΣ ¼ 0 so that this surface is again the round sphere,

Snon-CFTðΣÞ ≤ Snon-CFTðS2Þ: ð3:11Þ

This inequality in Minkowski spacetime is thus quite robust
and is valid for a very large class of theories.

D. Curved spacetime

For a four-dimensional CFT in curved spacetime the
entanglement entropy is modified by the Weyl tensor
projected on the subspace transverse to Σ (see [6,9])

SðΣÞ ¼ Nða; bÞAreaðΣÞ
4πϵ2

−
1

2π

Z
Σ
ðaRΣ þ bð−Wabab þ KΣÞÞ ln

1

ϵ
; ð3:12Þ

where KΣ is still defined as in (3.3). The round sphere is
still a maximizer of the entropy if Weyl tensor of spacetime
M is vanishing. It would be interesting to generalize this to
spacetime with a nontrivial Weyl tensor.

E. Higher genus: the Willmore conjecture
and the Lawson surfaces

In four dimensions, d ¼ 4, as we have shown in this
paper, the problem of maximizing entanglement entropy is
related to a mathematical problem of minimization of the
Willmore bending energy (3.2). The topological type of
2-dimensional closed surface Σ is completely characterized
by its genus g. If g ¼ 0 (sphere) the minimizer of the
Willmore energy is round sphere S2 for whichWðS2Þ ¼ 4π.
This is consistent with our consideration above. But what
about higher genus? The answer to this question is given by
the so-called Willmore conjecture. For genus one (torus)
Willmore [10] conjectured in 1966 that for surfaces of
higher genus there exists a better bound. In particular, for
any torus one has that

WðT2Þ ≥ 2π2 ð3:13Þ

with equality if and only if T2 is the Clifford torus. This
torus is characterized by the ratio of two radii equal to
1=

ffiffiffi
2

p
. For the Clifford torus the Willmore energy

WðT2Þ ¼ 2π2 > 4π. So that the round sphere is still the
energy minimizer in these two topological classes. The
Willmore conjecture was proven very recently in [11]. With
this conjecture we obtain that for surfaces of genus g ¼ 1
entanglement entropy satisfies the bound

SðΣg¼1Þ ≤ SðT2
CliffÞ ð3:14Þ

with equality if and only if Σ is the Clifford torus T2
Cliff .

In order to illustrate the Willmore conjecture let us
consider the four-dimensional flat metric

ds2 ¼ ðdt2þdr2þ r2dθ2þðR2þ rcosθÞ2dϕ2Þ; ð3:15Þ
where 0 ≤ ϕ; θ ≤ 2π. In this metric we can define torus as a
hypersurface of constant r ¼ R1. In this metric R2 is the
radius of the circle of revolution and R1 is the radius of the
circle being revolved. Clearly, R2 ≥ R1. Effectively, we can
discard the time in (3.15) and consider the 2-torus as
immersed in R3. The area of the torus is found to be

AðT2Þ ¼
Z

2π

0

dϕ
Z

2π

0

dθR1ðR2 þ R1 cos θÞ ¼ 4π2R1R2:

ð3:16Þ
The trace of the extrinsic curvature is found to be

KðT2Þ ¼ R2 þ 2R1 cos θ
R1ðR2 þ R1 cos θÞ

: ð3:17Þ
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Then one can evaluate the Willmore energy as

WðT2Þ ¼
Z

2π

0

dϕ
Z

2π

0

dθ

�
R2 þ 2R1 cos θ

2R1ðR2 þ R1 cos θÞ
�
2

× R1ðR2 þ R1 cos θÞ

¼ π2R2
2

R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − R2

1

p : ð3:18Þ

This energy is a function of the ratio x ¼ R2=R1 and it has a
minimum at x ¼ ffiffiffi

2
p

that corresponds to R2 ¼
ffiffiffi
2

p
R1. This

is exactly the Clifford torus. As expected, the Willmore
energy for this value of x is

WðT2ÞjR2¼
ffiffi
2

p
R1

¼ 2π2: ð3:19Þ

Sometimes, it is convenient, and in fact preferred by
mathematicians, to consider, instead of flat space R3,
2-surfaces embedded in sphere S3. The two spaces are
conformally related by stereographic projection. The con-
formal invariant generalization of the Willmore energy is

WðΣÞ ¼ 1

4

Z
Σ

�
ðTrKÞ2 − Rabab þ

1

2
Raa

�
: ð3:20Þ

For a 2-surface Σ embedded in S3 we have

WðΣÞ ¼
Z
Σ

�
1

4
ðTrKÞ2 þ 1Þ: ð3:21Þ

Among all possible embeddings the distinguished one is
the minimal embedding. If Σ is minimally embedded in S3

the trace of extrinsic curvature of Σ vanishes and the
Willmore energy

WðΣÞ ¼ AðΣÞ ð3:22Þ

is equal to the area of Σ. A 2-sphere S2 is minimally
embedded in S3 as the equator. On the other hand, the
Clifford torus, which is a square torus defined by equations

x21 þ x22 ¼
1

2
¼ x23 þ x24; ð3:23Þ

is the only torus which can be minimally embedded in S3.
This statement is known as the Lawson conjecture made by
H.B. Lawson, Jr. in 1970 [12]. This conjecture was proven
in 2013 by S. Brendle [13].
In higher genus g > 1 Lawson has constructed surfaces

Σg;L which are minimally embedded in S3 (for a recent
review see [14]). The area of the Lawson surface satisfies
inequality

4π < AðΣg;LÞ < 8π: ð3:24Þ

It was conjectured in [15] that this area is monotonically
increasing in g and that in the limit g → ∞ it is approaching
8π. These surfaces, as conjectured by Kusner [16] in 1989,
are the minimizers of the Willmore energy in their genus.
Thus, in our problem of maximization the entanglement
entropy, namely the Lawson surfaces are the entropy
maximizers in their respective genus,

SðΣgÞ ≤ SðΣg;LÞ: ð3:25Þ

On the other hand, the round sphere is the global maximizer
for all genera,

SðΣgÞ ≤ SðS2Þ ð3:26Þ

for any genus g in agreement with our statement in
Sec. II C.
This completes our analysis in dimension d ¼ 4.

IV. MAXIMUM OF ENTROPY IN
DIMENSION d > 4

A. Holographic entanglement entropy
in higher dimensions

We continue our analysis for the holographic entangle-
ment entropy in higher dimension d > 4. In flat physical
spacetime, as follows from Eq. (2.9), the leading UV
divergent part of the entropy takes the form

SHEðΣÞ ¼
NAðΣÞ

ðd − 2Þϵd−2

−
N ðd − 3Þ

2ðd − 2Þ2ðd − 4Þϵd−4
Z
Σ
dvΣðTrKÞ2; ð4:1Þ

where N is an effective number of degrees of freedom in
the theory. The second term in this expression is again
proportional to a higher dimensional analog of the
Willmore energy. However, in higher dimensions this
quantity should be properly understood as we discuss in
the next subsection.

B. Higher dimensions and the normalized
Willmore energy

In higher dimensions the Willmore energy (3.2) is
dimensionful and therefore can be easily made arbitrarily
small by just rescaling the size of of the surface. Therefore,
in order to have a sensible minimization problem we need
to define a quantity which would be dimensionless. A
natural generalization is divide the higher dimensional
analog of (3.2) by an appropriate power of the surface
area A ¼ AðΣÞ. Thus in dimension d we define the
normalized Willmore energy as follows:
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ŴðΣd−2Þ ¼ WðΣd−2Þ=Ad−4
d−2; WðΣd−2Þ ¼

1

4

Z
Σd−2

ðTrKÞ2:

ð4:2Þ

The minimization problem of this quantity will be analyzed
later in the paper. The respective minimizers, as will be
shown, are the maximizers of the entanglement entropy
(provided the area of surface is fixed) in the appropriate
dimensions. For a recent work on the generalized Willmore
energy, see [17].

C. Round sphere

We start our analysis with the case when the entangling
surface Σ is a round ðd − 2Þ-sphere of radius R. The area of
the sphere is

AðSd−2Þ ¼ 2π
d−1
2

Γðd−1
2
ÞR

d−2; ð4:3Þ

while the Willmore functional is equal to

WðSd−2Þ ¼ ðd − 2Þ2
4R2

AðSd−2Þ ¼ ðd − 2Þ2
4

2π
d−1
2

Γðd−1
2
ÞR

d−4;

ð4:4Þ
so that the normalized Willmore energy is

ŴðSd−2Þ ¼ WðSd−2Þ
½AðSd−2Þ�d−4d−2

¼ ðd − 2Þ2
4

�
π

d−1
2

Γðd−1
2
Þ
� 2

d−2

: ð4:5Þ

Respectively, as follows from (4.1), the entanglement
entropy of a round sphere of area A in d dimensions to
leading order takes the form

SðSd−2Þ ¼ NA
ðd − 2Þϵd−2 −

N cðdÞ
ϵd−4

A
d−4
d−2;

cðdÞ ¼ ðd − 3Þπd−1
d−2

2ðd − 4ÞðΓðd−1
2
ÞÞ 2

d−2
: ð4:6Þ

D. Ellipsoid

In order to approach our problem and check whether the
round sphere is a maximizer of entropy (and respectively a
minimizer of the normalized Willmore energy) it is natural
to consider a deformation of the sphere which can still be
treated analytically. An example of a deformation of this
type is the ellipsoid. An ellipsoid Ed−2 is a surface in space
Rd−1 with Cartesian coordinates ðx1; x2; ..; xd−1Þ described
by the equation

x21
a21

þ…þ x2d−1
a2d−1

¼ 1: ð4:7Þ

One may choose the angular coordinates ðθ1; ..; θd−2Þ as
follows:

x1 ¼ a1 cos θ1 cos θ2 � � � cos θd−3;
x2 ¼ a2 sin θ1 cos θ2 � � � cos θd−3;
x3 ¼ a3 sin θ2 � � � cos θd−3;
..
.

xd−1 ¼ ad−1 sin θd−2: ð4:8Þ

In what follows for simplicity we shall restrict ourselves to
a special case at which

ða1 ¼ a2 ¼ � � � ¼ ad−2 ¼ aÞ ≠ ðad−1 ¼ bÞ: ð4:9Þ

The area element reads

dvðEd−2Þ ¼ ad−3 cos θ2 × � � �

× ðcos θd−2Þd−3F 1
2ðθd−2Þ

Yd−2
i¼1

dθi; ð4:10Þ

while the trace of the extrinsic curvature,

TrKðEd−2Þ ¼ b
a
a2 þ ðd − 3ÞF ðθd−2Þ

F
3
2ðθd−2Þ

; ð4:11Þ

where we have defined

F ðθd−2Þ ¼ ða2sin2θd−2 þ b2cos2θd−2Þ: ð4:12Þ

Now after performing the integrals, the area of the ellipsoid
is found to be

AðEd−2Þ ¼ 2π
d−1
2

Γðd−1
2
Þa

d−2ð1− e2Þd−22 2F1

�
d
2
;
d− 2

2
;
d− 1

2
; e2

�

ð4:13Þ

in terms of the hypergeometric function, where we intro-

duced e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

b2

q
.

On the other hand, the Willmore energy of the ellipsoid
reads
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WðEd−2Þ ¼ 1

4

2π
d−1
2

Γðd−1
2
Þ a

d−4ð1 − e2Þd−42

×

�
2F1

�
d − 2

2
;
d − 6

2
;
d − 1

2
; e2

�

þ ðd − 3Þ22F1

�
d − 2

2
;
d − 2

2
;
d − 1

2
; e2

�

þ 2ðd − 3Þ2F1

�
d − 2

2
;
d − 4

2
;
d − 1

2
; e2

��
:

ð4:14Þ

We are interested in the ratio of the normalized energies for
ellipsoid and sphere,

ŴrðeÞ ¼
ŴðEd−2Þ
ŴðSd−2Þ : ð4:15Þ

In Fig. 1, we have plotted some curves describing the
behavior of this function with respect to the parameter e in
various dimensions. In all dimensions we find that this is a
monotonically growing function. Its minimum is equal to 1
at e ¼ 0, corresponding to the round sphere. At e ¼ 1 the
function (4.15) approaches infinity. The case e ¼ 1 corre-
sponds to a ¼ 0 so that the ellipsoid shrinks to an interval.
Thus for 0 < e < 1 we have that ŴrðeÞ > 1. This corre-
sponds to the case when b > a. A similar analysis can be
done for a > b with a similar conclusion: the minimum is
at a ¼ b. In the other limit the function Ŵr approaches
infinity for b ¼ 0 that corresponds to the case when one
dimension of the ellipsoid shrinks to zero and it becomes a
lower dimensional sphere. This analysis demonstrates that
in the class of ellipsoid geometries the round sphere is
indeed the minimizer of the normalized Willmore energy
and, respectively, is the maximizer of the holographic
entanglement entropy,

SðEd−2Þ ≤ SðSd−2Þ: ð4:16Þ

This statement may be made more rigorous. Consider,
a generic ellipsoid (4.8) characterized by parameters
a1; ..; ad−1. Both the area and the Willmore energy are
symmetric functions of these parameters,

AðEd−2Þ ¼ Aða1; ..; ad−1Þ; WðEd−2Þ ¼ Wða1; ..; ad−1Þ;
ð4:17Þ

where Að..Þ and Wð..Þ are symmetric functions of their
arguments. Suppose that ad−1 ≠ 0. Then, the normalized
Willmore energy is a symmetric function of ðd − 2Þ
variables,

ŴðEd−2Þ ¼ Ŵðα1; ..; αd−2Þ; αi ¼ ai=ad−1: ð4:18Þ

Suppose that this function has its minimum at values
α01; ..; α

0
d−2. Then near this point in quadratic order it can

be presented as

Ŵðα1; ..; αd−2Þ ¼
X
i;j

Wijðαi − α0i Þðαj − α0jÞ; ð4:19Þ

where the condition of symmetry requires that Wij to be
symmetric. This however is not sufficient for complete
symmetry of (4.19). Indeed, interchanging any pair αi and
αj we find that (4.19) is symmetric only if α0j ¼ α0i . Thus,
we conclude that the symmetry condition requires that
α01 ¼ α02 ¼ .. ¼ α0d−2. The respective ellipsoid geometry is
precisely the round sphere. Since the minimum of the
normalized Willmore energy corresponds to maximum of
entanglement entropy we come to inequality (4.16).

E. Product spaces Sm × Sn

In higher dimensions there are many possibilities to
create a “toric” geometry by considering various products
of spheres, Sm × Sn.
A natural generalization for the flat metric of Rmþnþ2,

will be

ds2 ¼ ½dt2 þ dr2 þ r2ðdθ21 þ sin2θ1dθ22 þ � � �
þ sin2θ1 � � � sin2θm−1dθ2mÞ
þ ðRþ r cos θ1Þ2ðdα21 þ sin2α1dα22 þ � � �
þ sin2α1 � � � sin2αn−1dα2nÞ�: ð4:20Þ

Here, surface of constant r is a product space as Sm × Sn.
We can find the trace of the extrinsic curvature for such a
general case, which reads

0.2 0.4 0.6 0.8 1.0
e

0.9

1.0

1.1

1.2

d � 7

d � 6

d � 5

d � 4

W
�

r

FIG. 1 (color online). Ratio of normalized Willmore energies
(ellipsoid to sphere) in dimension d.
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TrKðSm × SnÞ ¼ mRþ ðmþ nÞr cos θ1
rðRþ r cos θ1Þ

: ð4:21Þ

The area of the surface Sm × Sn is found to be

AðSm × SnÞ ¼
Z Ym

i¼1

dθi
Yn
j¼1

dαjaðr; θi; αjÞ; ð4:22Þ

where

aðr;θi;αjÞ ¼ rm½ðsinθ1Þm−1ðsinθ2Þm−2 � � �sinθm−1�
× ðRþ rcosθ1Þn
× ½ðsinα1Þn−1ðsinα2Þn−2 � � � sinαn−1�: ð4:23Þ

One can perform the integral (4.22) and find

AðSm × SnÞ ¼ 4π
mþn
2
þ1

Γðmþ1
2
ÞΓðnþ1

2
Þ ðRþ rÞn

× rm2F1

�
m
2
;−n;m;

2r
Rþ r

�
: ð4:24Þ

We can also evaluate the Willmore energy,

WðSm × SnÞ ¼ 1

4

Z Ym
i¼1

dθi
Yn
j¼1

dαj½TrKðSm × SnÞ�2

× aðr; θi; αjÞ; ð4:25Þ

which leads to

WðSm × SnÞ ¼ π
mþn
2
þ1

Γðmþ1
2
ÞΓðnþ1

2
Þ ðRþ rÞnrm−2

×
�
ðmþ nÞ22F1

�
m
2
;−n;m;

2r
Rþ r

�

þ n2R2

ðRþ rÞ2 2F1

�
m
2
;−nþ 2;m;

2r
Rþ r

�

−
2ðmþ nÞnR

Rþ r 2F1

�
m
2
;−nþ 1;m;

2r
Rþ r

��
:

ð4:26Þ

Some specific examples read

m ¼ 1; n ¼ 1 → AðS1 × S1Þ ¼ 4π2rR; WðS1 × S1Þ ¼ π2R2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2

p ;

m ¼ 2; n ¼ 1 → AðS2 × S1Þ ¼ 8π2r2R; WðS2 × S1Þ ¼ π2R
r

�
6rþ R log

�
Rþ r
R − r

��
;

m ¼ 1; n ¼ 2 → AðS1 × S2Þ ¼ 4π2rðr2 þ 2R2Þ; WðS1 × S2Þ ¼ π2

r
ð9r2 þ 2R2Þ; ð4:27Þ

and so on.
Now defining x ¼ r

R we can construct the following dimensionless quantity:

ŴðSm × SnÞ ¼ WðSm × SnÞ
½AðSm × SnÞ�mþn−2

mþn

¼ 1

4
mþn−2
mþn

�
π

mþn
2
þ1

Γðmþ1
2
ÞΓðnþ1

2
Þ
� 2

mþn
�
1þ 1

x

� 2n
mþn

×

�
ðmþ nÞ22F1

�
m
2
;−n;m;

2x
1þ x

�

þ n2

ð1þ xÞ2 2F1

�
m
2
;−nþ 2; m;

2x
1þ x

�
−
2ðmþ nÞn

1þ x 2F1

�
m
2
;−nþ 1; m;

2x
1þ x

��

×

�
2F1

�
m
2
;−n;m;

2x
1þ x

��
−mþn−2

mþn

: ð4:28Þ

Our desired problem is to compare the normalized
Willmore energy of surface Sm × Sn with that of a round
sphere with the same fixed area. Therefore, we shall
consider a ratio of two normalized energies,

ŴrðxÞ ¼
ŴðSm × SnÞ
ŴðSmþnÞ ; ð4:29Þ

as function of the variable x ¼ r=R and will look for
a minimum of this function. Notice that 0 ≤ x ≤ 1 as
one can see from the metric (4.20). In what follows
we have calculated the minimum value for this quantity
in d ¼ 4; 5;…; 10 dimensions.
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(i) d ¼ mþ nþ 2 ¼ 4

d ¼ 4 S1 × S1

xmin 0.707
Ŵr;min 1.571

(ii) d ¼ mþ nþ 2 ¼ 5

d ¼ 5 S2 × S1 S1 × S2

xmin 0.886 0.816
Ŵr;min 1.391 1.333

(iii) d ¼ mþ nþ 2 ¼ 6

d ¼ 6 S3 × S1 S2 × S2 S1 × S3

xmin 0.968 1 1
Ŵr;min 1.324 1.237 1.116

(iv) d ¼ mþ nþ 2 ¼ 7

d ¼ 7 S4 × S1 S3 × S2 S2 × S3 S1 × S4

xmin 0.9987 1 1 1
Ŵr;min 1.289 1.226 1.152 1.076

(v) d ¼ mþ nþ 2 ¼ 8

d ¼ 8 S5 × S1 S4 × S2 S3 × S3 S2 × S4 S1 × S5

xmin 1 1 1 1 1
Ŵr;min 1.271 1.230 1.175 1.117 1.058

(vi) d ¼ mþ nþ 2 ¼ 9

d ¼ 9 S6 × S1 S5 × S2 S4 × S3 S3 × S4 S2 × S5 S1 × S6

xmin 1 1 1 1 1 1
Ŵr;min 1.257 1.233 1.192 1.145 1.097 1.048

(vii) d ¼ mþ nþ 2 ¼ 10

d ¼ 10 S7 × S1 S6 × S2 S5 × S3 S4 × S4 S3 × S5 S2 × S6 S1 × S7

xmin 1 1 1 1 1 1 1
Ŵr;min 1.245 1.234 1.204 1.165 1.124 1.083 1.041

Based on this data one can make the following
observations:
(1) Only in five cases, i.e. S1 × S1, S1 × S2, S2 × S1,

S3 × S1 and S4 × S1, is the local minimum at
xmin < 1. For other cases the function ŴrðxÞ is
monotonically decreasing so that the minimum
occurs at xmin ¼ 1. For illustrative purposes we
present the different behavior of the function
ŴrðxÞ in Fig. 2.

(2) For all combinations of m and n, we have
Ŵr;min > 1. This means that the Willmore energy
for Sm × Sn topology is greater than the Willmore
energy for the round sphere of same dimension, i.e.
Smþn. So that in comparison with a general toric
geometry, the round spheres are the maximizers of
the entanglement entropy.

(3) In each table, Ŵr;min decreases from left to right.
Consequently, for spaces Sm × Sn in d ¼ mþ nþ 2

dimension, entanglement entropy will have its
maximum value for the space S1 × Sd−3.

(4) It also decreases from the top to the bottom. In
particular, in the limit d → ∞ we have Ŵr;min → 1.
In this limit entanglement the entropy thus
approaches that of the round sphere.

We can also formulate some conclusions and
conjectures:
(1) In the class of compact ðd − 2Þ-surfaces of arbitrary

topology the round sphere Smþn, mþ n ¼ d − 2, is
the global minimizer of the normalized Willmore
energy. Respectively, it is the global maximizer of
the entanglement entropy in agreement with our
guess in Sec. II C.

(2) For surfaces of fixed topology same as that of
Sm × Sn the product space Sm × Sn (with the radii
ratio xmin given in the tables above) is the
minimizer,
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FIG. 2 (color online). ŴrðxÞ for (from left to right) S3 × S1, S2 × S2 and S1 × S3, respectively.
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ŴðΣÞ ≥ ŴminðSm × SnÞ; ð4:30Þ

where the minimal values are given in the tables
above. Respectively, for surfaces of this topology
the entanglement entropy satisfies the bound,

SðΣÞ ≤ SðSm × SnÞ: ð4:31Þ

V. CONCLUSIONS

In this paper we have analyzed the problem of finding a
surface for which the entanglement entropy of a given
quantum field theory would be maximal. In four dimen-
sions for a large class of conformal and nonconformal field
theories this problem reduces to a well-known mathemati-
cal problem of minimization of the Willmore bending
energy. In each topological class there exists a surface,
known as the Lawson surface, which minimizes the
Willmore energy and respectively maximizes the entangle-
ment entropy. The global maximizer (in all possible
topologies) is the round sphere. This fact may have some
important applications in various physical models and
situations and may be used as a hint to actually observe
the entanglement entropy in an experiment. We, however,
do not dwell on this problem here.
In higher dimensions the analysis is somewhat more

involved. In particular, there are more possibilities to
construct surfaces of “toric” type, namely the product
spaces Sm × Sn with various possible values for n and m
such that nþmþ 2 ¼ d is dimension of the physical
spacetime. We have conjectured that these product spaces
are the entropy maximizers in their own topological class.
On the other hand, our analysis indicates that the global
maximizer in all possible topologies is still the round

sphere. This fact appears to be universal in all dimen-
sions d ≥ 4.
The dimension d ¼ 3 needs a special consideration. The

reason is that in this dimension the first subleading term in
the entropy is a constant which does not depend on the UV
cutoff. Therefore in order to calculate this constant and
determine its sign, in the holographic set up, we would need
to know the respective minimal surface and its area exactly,
not making any approximations. This may be a difficult
task if the entangling surface (which has dimension 1 in this
case) is some arbitrary closed curve. Thus we have not done
this analysis in dimension d ¼ 3. However, we expect that
the round circle S1 would still be the global maximizer in
this case. It would be nice to check this conjecture in some
explicit calculation.
We are not aware of any previous mathematical results

on the Willmore energy in dimensions higher than four.
Therefore, we expect that our conclusions and conjectures
made in Sec. IV may have some mathematical significance.
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