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Quark-antiquark bound state in momentum-helicity representation
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In this paper we have extended a three-dimensional approach for describing quark-antiquark bound
states based on a momentum-helicity representation. To this end we have formulated the relativistic
form of the Lippmann-Schwinger equation in the momentum-helicity space which leads to integral
equations with one variable. Then we have solved these integral equations by inserting a spin-dependent
quark-antiquark potential model numerically. Finally we have obtained the mass spectrum of light
mesons and we have compared these results with the results which are obtained in the partial wave

representation.
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I. INTRODUCTION

Recently the three-dimensional (3D) approach for
nucleon-nucleon (NN) scattering and the deuteron state
on the momentum-helicity basis state have been developed.
This approach is based on a helicity representation with
respect to the total spin of the two-nucleon system. The
important advantage of a three-dimensional approach is
that a sometimes tedious partial wave expansion of a
complex NN force is no longer needed. Instead one
introduces a helicity representation of the NN force, which
is perfectly adapted to the set of six operators completely
describing the most general NN force compatible with
general invariance principles. Thus, for any NN force given
in operator form, this scheme is applicable. In this work we
have extended this approach to studying quark-antiquark
bound states [1,2].

To this end we have considered the relativistic quark-
antiquark interaction in terms of a linear confinement
term, a Coulomb term, and various spin-dependent pieces.
This potential is not a simple nonrelativistic reduction
of an effective one gluon exchange potential since the
coefficients of the various terms in the potential will be
constrained by phenomenological considerations alone.
The various terms making up the potential are used because
they are invariant under rotations, space reflection, and time
reversal [3].

This article is organized as follows. In Sec. II a new
formalism based on the momentum-helicity basis state
is presented for describing the meson bound states.
In Sec. III we evaluate the matrix elements of the spin-
dependent quark-antiquark potential in the momentum-
helicity space. In Sec. IV we give the numerical
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calculations and results, and in Sec. V a dissection
and outlook are presented.

II. FORMULATION OF QUARK-ANTIQUARK
BOUND STATE BASED ON HELICITIES

The momentum-helicity basis state is defined as [1]

p;PSA) = |p)[PSA), (1)

where p is the relative momentum of the quark and
antiquark, S is the total spin, and A is the spin projection
along the relative momentum. This basis state is the
eigenstate of the helicity operator S - p:

S-p

p;PSA) = A

p; PSA). (2)

The orthogonality and completeness relations for this state
are defined as

(s p'S'N|p;: pSA) = 6(p" — p)JssOns (3)

X

The relativistic form of the Schrodinger equation for the
two-body bound state is

p;PSA) (p; pSA| = 1. (4)

M. M.
H|®;") = E|®;7), (5)

where the Hamiltonian H is the sum of a relativistic kinetic

energy operator 7" and a relativistic potential operator V.
M\ . .

Furthermore |®;”) is the quark-antiquark bound state

with the total angular momentum j, and E represent the

mass of two-body system. The kinetic energy operator has

the form
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T:\/m%+p2+\/m§+p2, (6)

where m and m, are the masses of the quark and antiquark.
In what follows, we assume m = m; = m,. Equation (5)
can be rewritten as the relativistic form of the homogenous
Lippmann-Schwinger equation:

L P — 7)

E—2ym i+

By inserting the completeness relation into this equation,
we have

1
m2+p2

XZ/dp’<p;ﬁSAlle’;ﬁ’SA’>
A/

. M,
p;PSA|D ) =
(p:BSA") = ——

x (' p'S'A|@). (8)

Now, we extract the angular dependency of the wave
function as follows:

(p:pSA[®}") = (p2:2SAIR' (p)|@}")
<pi.isA|ein6'eiJ:qz|(I)Mj>
eMi?(pz; 2SA|e> 9|<I> 7
A0)25(p). 9)

= eiM/(ﬂ

In this stage, we define a suitable coordinate system so that
the vector p is along the z axis. With this consideration
Eq. (8) leads to

M. 1
(I):/p =
Sj( ) E—-2 m2—|—p2

xZ/dp’(pz;iSA|V|p’;f)’SA’)
A/

x &My (0)28(p'), (10)

where we use din v (0) = 8,y The azimuthal dependence
of the potential as we have shown in the next section can be
factored out:

—iNg' VS

(pz: ASA|VID SN = VS (ppl ). (11)

Thus Eq. (10) can be rewritten as
|
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M, 1
(I)Sjj(p) = E—2/m 1 p?

X oodp/p/2 /ﬂ d@/vS , p’p/’(g/

[ e
2r X s

< dfy (@050 [ deoN (12)
0

Integration on the azimuthal angle ¢’ yields

M

B (p) = — NWZ/ ay? ["ao

X VM/_A,(p,p ,9’)djw A,(H’)q)g}(p ). (13)

Finally by defining

Vi (peo) = [ a0V (. 00, @), (19

Eq. (13) is reduced to an equation in one variable as

M 271'

Miip) =
) =

<Y [TV o B (5)
A/

It is well known that the total spin states of two quarks are
singlet (S = 0) and triplet (S = 1) states. For the singlet
case and arbitrary j, Eq. (15) leads to one equation as

P,/ (p) = / dp'p"*Viyo(p. )20, (P).

(16)

E— 2\/ 2+p

Also for the triplet case and j = 0, Eq. (15) leads to one
equation as

2w

E—2/m? + p?

0 (p) = —————= / dp'p"*Vi(p. )oY (p).

(17)

For the triplet case and j > 0 it is more complicated. For
example, for j = 1, Eq. (15) leads to one equation for the P
channel and leads to two coupled equations for the S and D
channels as follows:

_ 27 *© 1 121y71 / 1 / /
\Ilm(p)_E—Z\/m/o dp'p”[Vi,(p.p') =V (p.P)¥ 111 (P). (18)
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o B 2z
) S e
+V2[V(p. p) + Vi (p.p') -
2z
Uy (p) =~
N TEEY

+[Vi(p.p')

where for the derivation of Egs. (18), (19), and (20), we
have used Eq. (A4) and the symmetry relation for helicity
components of the potential as follows:

VS (P p) = Vi _u(p. p). (21)

III. QUARK-ANTIQUARK POTENTIALS IN
MOMENTUM-HELICITIY REPRESENTATION

The general form of the potential that we have used in
our calculations is the sum of five terms [3,4],

V=V, +Ve+Vss+Vis+Vrp, (22)

with the following representations in the momentum space:
PIVLIp) = Cuva aar

1
+ W (2cos(gr,) —2+ qr. sin(qrc))} ,

_ _22 2
_fcase 1 CC

[ ()

2.2 C
(p|Vsslp') = —fcae4 127;;2 (61-063),

(pIVelp)

3C .
(p|Vislp) = fea,e @7 &Tz—ngsqz i(6)+6)-pxp,
_pp Cr
p|Vrlp') = feage +a a2m

x[3(6-q)+(62-q) —

These terms represent the linear confining, Coulomb, spin-
spin, spin-orbit, and tensor interactions, respectively. /o
is the string tension, a, is the strong-interaction fine-

(61-02)l.  (23)
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1 0
/ dp'p{[2Vi,(p.p') + 2V (p.P") + Vie(p.P') +2Viy(p.P') + 2V, (p. P)] W01 (P)

V(IJO(P» p)— ZV%O(P» p')+ VL] (P PP (P'), (19)

1 )
/ dP/P/z{\/E[Vh(P,P/) - 2V(1)1(P,P/) - V(I)O(Pvpl) + V{O(P,P/) + V1—11(Pvpl)]‘1’011(l’/>

=2V (p.p') +2Vio(p, p') =2Vio(p, p') + Vi (0, )]} Pani (), (20)

quark-antiquark and —2/3 for quark-quark, ¢, and &, are
the Pauli matrices, and q =p’ —p is the momentum
transfer. For the linear confining and Coulomb parts of
the potential, we have used a Fourier transformation of
the regularized form of them [4]. Multiplying factors
C;,Cc,Cgg, Cr g, and Cy, which represent the strength
of every term, can be varied to fit the meson data. To write
this potential in terms of the momentum-helicity basis
state, we have used the following operators [1]:

Q =1,
Q, =82,
Q, =(S-p)(S P,
=(S-p)(S-p).
=(S-p>( p),
=(S-p)(S-p) (24)

The matrix elements of these operators are easier to
evaluate as

SA|Q, [p'SA’
SA|Q,|p'SA’
PSA[Q;|p'SA

(P ) = (BSA|P'SA’),
(P )
( )
(BSA|Q|p"SA)
(P )
(P )

S(S + 1)(PSA|p'SA’),
AZ(PSAP'SN'),
AN (PSA|P'SA'),
A2A2(PSA|P'SA'),
A*(PSA[P'SA). (25)

SA|Q;|p'SA!
SA|Qq|p'SA!

Since the momentum-helicity basis state is the eigenstate
of these operators, the potential terms will have a simple
form in this space. We can easily show through a simple
calculation that

structure constant, f,. is the color factor which is —4/3 for 6,6, =2Q, —3Q,, (26)
|
i , pr 1
;(0'1 +65) - pXp :E 792—294—;(92—293 —2Q4 +2Q5) |, (27)
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1 1
= —? 6pp'Qy + 2p"*(Qy — 3Q3) 4+ 2p*(Qy — 3Q) — pp'r&H — 3PP/; (Q; —2Q5 —2Q6 +2Qs5) |, (28)

where y = p’ - p. Therefore, the final form of the potential in the momentum-helicity space is obtained as

oA 1 .
V3P = CoVaSASA) [ota)r. + o (Caos(ar =2+ aresin(ar,)|

ﬂ'zq

c

C
+ foa,e P (PSA[P'SA) {r—c 5(q) +

2”2q2

Cc (1 _ Sin(‘ﬂc)) Css

28(S+1)=3)

qr. C122%m2

/
L 3G pr {yS(S 1) = 2AN — L(S(S 4+ 1) =207 — 282 — 2A’2A2)}
4

822m? ¢

Bl 247121712q2

C
. [61919’1\/\’ +2p(S(S+ 1) =3A"%) +2p*(S(S + 1) = 3A%) — pp'yS(S + 1)

3PP (g(s+1) =207 —2A2 2A’2A2)] }

4

The overlap of the momentum-helicity basis states
becomes [1]

S

(PSAIP'SN) = Y~ eNe=)as, (0)dy, (0).
N=-§

(30)

For the special case where the vector p is along the z
direction, one obtains the simple form as
(ZSA|Pp'SN)

= e Mds,(0). (31)

IV. NUMERICAL RESULTS

In our numerical calculations we have used the Gaussian
quadrature grid points to discretize the momentum and the
angle variables. The integration interval for the momentum
is covered by two different hyperbolic and linear mappings
of the Gauss-Legendre points from the interval [—1, +1] to
the intervals [0, ps] [P2, Pmax]> T€SPECtively, as

p:L p:pmax_P2x+Pmax+P2
ot (=o)X 2 2
1 P2 P

(32)

The p’ integration is cut off at a value of p,,,, = 10 GeV.
The typical values for p; and p, are 1 and 3 GeV,
respectively. In our calculations we chose 60 grid points
for the momentum variables in the interval [0, p,], and 80
grid points for the momentum variables in the interval
[P2, Pmaxl- Also, 140 grid points for the spherical angle
variable are sufficient. The parameters of the potentials we
have used in our calculations are shown in Table I.

(29)

|

The results of light meson mass spectra are shown in
Table II. They are compared with the results which are
obtained in the partial wave representation and experimen-
tal data (Exp.). As we see, the results obtained from both
representations are in good agreement, with high accuracy.

TABLE I. Parameters of the model [3].

Vo (GeV?) 0.197
A (GeV™h 0.645
m (GeV) 0.258
re (fm) 10

a; 0.375
Cr 0.6704
Cc 3.3824
Css 0.5243
Cis 0.1515
Cr 0.6318
TABLE II. Comparison of the light meson mass spectrum

obtained by the momentum-helicity representation and the partial
wave representation.

nLSJ” State Exp. [3] Reference [3] E (MeV)
0000~ T 138 140.1 140.00
0011~ p 768.3 775.7 775.75
0101+ b, 1233 1174.6 1174.63
0110*" ao 983.3 973.7 973.77
0111+ a, 1260 1298.2 1298.21
1000~ 7 (1300) 1300 1188.9 1188.93
1011~ p (1450) 1450 1472.7 1472.72
0202~ 7y 1665 1661.9 1661.89
2011~ p (1700) 1700 1960.5 1960.45
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V. DISCUSSION AND OUTLOOK

During the past few years, several models and meth-
odological approaches have been developed for the
studying of light and heavy mesons. Some of them were
based on the solving of the relativistic and nonrelativistic
forms of the Schrodinger or Lippmann-Schwinger (LS)
equations for light and heavy mesons, respectively
[3-10]. As we know, the Bethe-Salpeter (BS) equation
as a successor of the relativistic quantum mechanical
equation has been used for the calculations of quark-
antiquark systems [11]. These calculations have been
carried out by spinless and spin-dependent forms of the
BS equation [12-14].

Recently a 3D approach has been developed for repre-
sentation of few-body equations in the momentum space.
This approach, because of some advantages, was introduced
as a successor of the partial wave (PW) representation
[15-24]. We have used this approach for estimation of
heavy triply baryon masses by solving the Faddeev equation
[25]. As we mentioned in the Introduction, the 3D
approach based on momentum-helicity representation has
been developed for realistic interactions. One practical
advantage of working with helicity states is that states
are the eigenstates of the helicity operator appearing in the
quark-antiquark potentials. Another advantage is found
when the formulation is extended to a relativistic scheme.
Using the helicity representation is less complicated
than using the spin representation with a fixed quantization
axis.

In this paper we have extended the 3D approach based
on momentum-helicity basis states from nuclear into
particle physics problems. The properties of heavy-flavor
baryons have recently received much attention. Several
methods have been used to investigate heavy-flavor
baryons based on relativistic and nonrelativistic schemes
[26-29]. This work is the first step toward studying
single, double, and triple heavy-flavor baryons in the
framework of the nonrelativistic quark model by formu-
lation of the Faddeev equation in the 3D momentum-
helicity representation. Furthermore, we can apply this
formalism straightforwardly for investigation of heavy-
pentaquark systems, which can be considered as two-
body (heavy meson, baryon) systems with meson-nucleon
interactions. These works are other tasks which are under
way. Formulation of the BS equation in the momentum-
helicity representation is a major task that can be done.

PHYSICAL REVIEW D 90, 085020 (2014)

In this paper as a test of our formalism we have applied
this approach for representation of the relativistic form of
the LS equation in the momentum-helicity space. Thus,
we have applied a relativistic potential in operator forms
in the momentum-helicity representation, and we have
calculated the mass spectra of light mesons and compared
them with their PW results. It is clear that by replacing

the relativistic form of propagator (E —2+/m? + p?)~!
with its nonrelativistic form (E — %2)_1 in the LS equation
and applying a nonrelativistic potential (C; = C¢ =
Css =Cis=Cr=1), we can apply this formalism
toward calculation of mass spectra of heavy mesons.

APPENDIX: CONNECTION BETWEEN
MOMENTUM-HELICITY REPRESENTATION
OF WAVE FUNCTION AND ITS PARTIAL
WAVE REPRESENTATION

By inserting the complexness relation of the partial wave
representation in the momentum-helicity representation of
the wave function, we have

(p:BSAIR)") = S (s BSA|p(IS') jm) (p(1S") jm|}").
1S'm

(A1)

The scalar product of the partial wave and the momentum-
helicity basis states is given as [2]

A . RI+T. .
(P;PSA[p(IS') jm) = 1 Osse Aogl (0)C(Isj;0AA).
(A2)

Inserting this relation into Eq. (A1) yields
N M,
(p; PSA[D; )

) : 21+ 1 .
1

By comparison with Eq. (9), this equation can be
rewritten as

21+ 1
Ph(p) = = C(Isj;0AN) ¥y5;(p). (A4
jS(p) Z dx (Isj )Wisi(p) (Ad)
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