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Theoretical predictions for the cosmic antiproton spectrum currently fall short of the corresponding
experimental level of accuracy. Among the main sources of uncertainty are the antiproton production
cross sections in cosmic ray inelastic interactions. We analyze existing data on antiproton production in
pp scattering, including for the first time the measurements performed by the NA49 Collaboration. We
compute the antiproton spectrum finding that in the energy range where data are available (antiproton
energies of about 4–550 GeV) different approaches lead to almost equivalent results, with an uncertainty
of 10%–20%. Extrapolations outside this region lead to different estimates, with the uncertainties
reaching the 50% level around 1 TeV, degrading the diagnostic power of the antiproton channel at those
energies. We also comment on the uncertainties in the antiproton production source term coming from
nuclei heavier than protons and from neutrons produced in pp scatterings, and point out the need for
dedicated experimental campaigns for all processes involving antiproton production in collisions of light
nuclei.
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I. INTRODUCTION

Cosmic ray (CR) antiprotons are a remarkable diagnostic
tool for astroparticle physics. The bulk of the measured
flux is certainly consistent with a purely secondary origin in
CR collisions onto interstellar medium gas, but additional
primary components are not excluded, either of astrophysi-
cal origin (see for instance [1]) or of exotic nature, such as
dark matter annihilation or decay [2]. At the very least,
antiprotons provide a consistency check for the current
understanding of galactic CR modeling and can narrow
down propagation parameters (see e.g. [3–5]).
This tool is however only as sharp as the uncertainties

entering the background (i.e. the secondary component)
and signal (i.e. the primary component) computations are
robust. Statistical and systematic errors reported by the
PAMELACollaboration [6] are already at the 10% level up
to the 10 GeV scale, below the theoretical error. In a short
time, AMS-02 [7] is expected to provide significantly
higher precision, calling for a reassessment of the theo-
retical predictions.
The contribution of different processes to the p̄ secon-

dary yield has been studied in the past; see e.g. [8–10]. In
[9], for instance, the uncertainties on the production cross
sections were estimated to be ∼25%, and already identified
as the limiting factor in theoretical predictions (see also
[10] for similar considerations). In practice, nuclei heavier
than protons and helium only contribute at a few percent
level (see e.g. [8]), thus playing a very marginal role, either
as projectiles or targets, in the antiproton production.
Reactions involving helium (p-He, He-p, He-He) represent

a sizable fraction of the total yield, easily reaching ∼50% at
low energies [9].
While for processes involving helium nuclei no data are

available, the situation is different for the proton-proton
case, where there are several experimental studies. The
latest reevaluation of the antiproton production yield in
pp collisions was reported in [11], while the Tan and
Ng parametrization [12] is still largely used, despite
being more than 30 years old. The reason is that, until
recently, the available data set was limited to data only
collected in the 1960s and 1970s. In the last decade,
however, two more experimental data sets have become
available: the BRAHMS data [13] and—more important
for the energies of interest for AMS-02 applications—the
NA49 results collected at the CERN Super Proton
Synchrotron [14].
Given the importance of these nuclear data for new

measurements in astroparticle physics, it seems thus timely
to reevaluate the antiproton production cross section in pp
collisions in light of this newly available information.
In this paper we engage ourselves in this task, in order
to provide the community with a parametrization for the
inclusive antiproton production cross section as well as
with a reliable assessment of the corresponding uncertain-
ties that should be taken into account in CR studies.
The outline of the paper goes as follows: in Sec. II we set

up the relevant formalism, present the experimental data
that will be used subsequently and describe the analysis
methods. In Sec. III we present our results. We begin by
validating our analysis framework by reproducing existing
results in the literature and then move on to evaluating the
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inclusive antiproton production cross section, first relying
solely on the novel NA49 data and then on the full set of
available measurements. In Sec. IV we briefly comment on
the impact of other contributions entering the secondary
antiproton source term, namely of antineutrons and helium
nuclei. Finally, in Sec. V we discuss our key results and
present our conclusions. Two appendixes follow, where we
present some—standard but useful—kinematics used in our
analysis as well as a new evaluation of the total, elastic and
inelastic pp scattering cross sections that we performed for
the energy range of interest to our work.

II. FRAMEWORK, DATA AND METHODS

A. Theoretical framework

CR protons interact with the interstellar medium (ISM)
and may produce secondary antiprotons. Different channels
are involved, with the dominant one being the CR proton
flux collisions with the target hydrogen gas (pp). The
corresponding source term is the convolution of the
antiproton production cross section dσpp→p̄

dEp̄
ðEp; Ep̄Þ and

the interstellar CR proton energy spectrum

qppp̄ ðEp̄Þ ¼
Z þ∞

Eth

dσpp→p̄

dEp̄
ðEp; Ep̄ÞnHð4πΦpðEpÞÞdEp;

ð1Þ

where nH is the ISM hydrogen density, Φp is the CR proton
flux, Ep and Ep̄ are the CR proton and antiproton energies,
and Eth the production threshold energy equal to 7mp.
The overall ISM composition is H∶He∶C ¼ 1∶0.1∶5 ×
10−4 cm−3 [15]. Whenever needed for illustrative purposes,
we will fix Φp to the fit to the preliminary AMS-02 data
[16] reported in [17].
The differential cross section dσpp→p̄=dEp̄ is in turn the

integral over the angle ϑ between the incoming proton and
the final state antiproton momenta

dσpp→p̄

dEp̄
ðEp; Ep̄Þ ¼ 2πpp̄

Z
ϑmax

ϑmin

Ep̄
d3σ
dp3

6̄p

dð− cosϑÞ; ð2Þ

where pp̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p̄ −m2

p

q
, ϑmin ¼ 0° and the expression for

ϑmax is given by Eq. (A15) in Appendix A. The integral in
Eq. (2) is computed in the galactic frame at fixed antiproton
energy Ep̄. Its integrand represents the “Lorentz-invariant
distribution function”1 for the process pþ p → p̄þ X, i.e.
the inclusive antiproton production. Inclusive cross sec-
tions for processes of the form aþ b → cþ X can be
described in terms of the Lorentz-invariant distribution
function

fðaþ b → cþ XÞ ¼ Ec
d3σ
dp3

c
¼ Ec

π

d2σ
dpLdp2

T
¼ d2σ

πdydp2
T
;

ð3Þ
where pL, pT and y are respectively the longitudinal and
transverse momentum and the rapidity of particle c.
Traditionally, the independent variables most frequently
used to parametrize this quantity are

(i) the center-of-mass (CM) energy
ffiffiffi
s

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mpðEp þmpÞ

p
, which is uniquely fixed by the

total incident proton energy in the lab frame, Ep;
(ii) pT , the antiproton transverse momentum;
(iii) the so-called “radial scaling” variable xR, defined as

xR ¼ E�̄
p

E�̄
p;max

; ð4Þ

where E�̄
p is the antiproton energy and E�̄

p;max is the
maximal energy it can acquire, both defined in the
CM frame. The maximal antiproton energy is (see
Appendix A for details)

E�̄
p;max ¼

s − 8m2
p

2
ffiffiffi
s

p ; ð5Þ

which, from the condition E�̄
p;max ≥ mp, also implies

the threshold energy for the incident proton in the
lab frame, Ep ≥ 7mp.

The inclusive antiproton production cross section cannot
be computed from first principles. Our primary goal in this
work is to provide reliable estimates for the magnitude and
the uncertainties of the invariant distribution (3). Our results
will be presented mostly in the form of suitable fitting
functions. However, we also want to test how reasonable the
ansatz of the chosen functional form(s) is. To that purpose,
we will also compare the fitted functions to an “agnostic”
spline interpolation of the data, which only requires a
smooth, piecewise functional dependence. We will mainly
focus on antiprotons with energies ranging from a few GeV
up to Oð1Þ TeV, with the upper limit of this interval
corresponding roughly to the highest energy that can be
probed by AMS-02 and the lower one to the point where
astrophysical uncertainties become so large that they con-
stitute the dominant limiting factor in CR studies, a point
which we will also briefly comment upon in Sec. IV.

B. Experimental data

In order to estimate the inclusive antiproton production
cross section, we consider the data sets [13,14,18–23],
reported in Table I in terms of the center-of-mass energy

ffiffiffi
s

p
and ðpT; xRÞ regions (often not rectangular) covered by
each experiment. Note that not all experiments provide data
in terms of these kinematic variables; in those cases, the
data were first converted in terms of fs; pT; xRg. We report

1For simplicity, in the rest of this work we will interchange this
term with “cross section.”
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in Appendix A the straightforward but somewhat lengthy
derivation of the transformation equations. The data are
graphically illustrated in Fig. 1. In the left panel, the cross
section is shown as a function of ELAB

p̄ , for different
combinations of pT and xR. In the right panel, the same
data are seen in the pT − xR plane. The NA49 data cover
wide ranges in both pT and xR, and describe lab antiproton
energies from about 8 GeV up to 70 GeV.
Compared to the previous works [11,12], the analyses

of the NA49 [14] and BRAHMS [13] data sets are new to
this paper. Note that the BRAHMS center-of-mass energy
corresponds to an incident proton energy of roughly
21 TeV in the lab frame, which lies somewhat beyond
the energy region of interest for our work. Given the
absence of data for incident proton energies above
∼200 GeV, however, we have included this data set since
it can help in guiding the high-energy extrapolation of the
fit to physical values. It is worth stressing that in the more
interesting tens of GeV region for the antiproton laboratory
energy, the major impact will be provided by far by the
NA49 data.
Another important conceptual issue concerns the pos-

sibility to combine data—whose quality and robustness of

error assessment is very diverse—in a global fit. There is no
simple answer to this question: on one hand there are some
systematic effects that are certainly present in the old data
and hard to estimate and correct for. A known example is
provided by the feed-down effect. A significant fraction of
antiproton production [easily of Oð20%Þ] comes from
strange hyperon (Λ, Σ) decays, whose decay lengths are
comparable to or larger than length scales of current
microvertex detections or precision tracking. This effect
was taken into account in the NA49 data analysis, where
the contribution from hyperons has been subtracted from
the measured yields [24]. For older experiments, no such
correction was performed: while in some cases—as for the
CERN ISR—it may be argued that reasonable estimates
make the expected correction negligible, for fixed-target
experiments covering an extended range of lab momenta
the situation is somewhat more complicated. No a priori
correction has been applied in the following for this effect,
especially since ex-novo simulations of trajectories through
the detectors and the collimators would be needed for
robust estimates. For a semiquantitative discussion, we
address the reader to [14]. However, in deriving global fits,
we shall allow for experiment-dependent renormalizations,

FIG. 1 (color online). The data on d3σpp→p̄=dp3 employed in our analysis are reported as a function of ELAB
p̄ (left panel) and in the

pT − xR space (right panel). For the data details, see Table I.

TABLE I. Data sets used in our analysis along with their corresponding
ffiffiffi
s

p
values and ðpT; xRÞ regions.

Experiment
ffiffiffi
s

p
(GeV) pT (GeV) xR

Dekkers et al., CERN 1965 [18] 6.1, 6.7 (0.00, 0.79) (0.34, 0.65)
Allaby et al., CERN 1970 [19] 6.15 (0.05, 0.90) (0.40, 0.94)
Capiluppi et al., CERN 1974 [20] 23.3, 30.6, 44.6, 53.0, 62.7 (0.18, 1.29) (0.06, 0.43)
Guettler et al., CERN 1976 [21] 23.0, 31.0, 45.0, 53.0, 63.0 (0.12, 0.47) (0.036, 0.092)
Johnson et al., FNAL 1978 [22] 13.8, 19.4, 27.4 (0.25, 0.75) (0.31, 0.55)
Antreasyan et al., FNAL 1979 [23] 19.4, 23.8, 27.4 (0.77, 6.15) (0.08, 0.58)
BRAHMS, BNL 2008 [13] 200 (0.82, 3.97) (0.11, 0.39)
NA49, CERN 2010 [14] 17.3 (0.10, 1.50) (0.11, 0.44)
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which may account (at least in an averaged way) for such a
correction; see below.
On the other hand, relying only on contemporary data,

notably NA49, means having the invariant cross section at
only one point in

ffiffiffi
s

p
, i.e. at one beam energy. Then, in

order to obtain the general cross section, one has to
supplement the data with some additional theoretical
assumption, such as the scaling hypothesis [25], namely
that the cross section only depends on pT and xR. While
this behavior is expected to be approximately respected,
notably at high

ffiffiffi
s

p
, its quantitative accuracy can only be

gauged by comparison with experimental data. For this
reason we decided to apply both strategies and to use either
fits or interpolations, to all data sets or to NA49 only, with
or without the scaling hypothesis, to assess the importance
of these effects.

C. Method

Our fits were performed with the MINUIT minimization
package. Let us denote with k ¼ 1;…; L the different
experimental data sets, with ik the ith point of the data
set k, and let C be the vector of the cross section
parameters. The fitting procedure consists of varying the
values of the cross section parameters C, comparing the
theoretical cross section Fðsik ; xik ; pik ;CÞ with the data
fikðsik ; xik ; pikÞ and finally finding the minimum of χ2ðCÞ
function defined below. This procedure gives the best-fit
configuration Cbest with the corresponding 1σ errors σC.
We define the χ2ðCÞ function to be minimized in the fitting
procedure in the following way:

χ2ðCÞ ¼ χ2statðCÞ þ χ2sys ð6Þ

where

χ2sys ¼
XL
k¼1

ðωk − 1Þ2
ϵ2k

; ð7Þ

and

χ2statðCÞ ¼
XL
k¼1

X
ik

ðωkfik − Fðsik ; xRik
; pTik

;CÞÞ2
ω2
kσ

2
ik

: ð8Þ

In the equations above, ϵk is a systematic overall scale error
of the data set k (either quoted in the experimental paper, or
assumed conservatively to be of the same order of the
statistical one if this information is not available, notably
for older references); the parameter ωk renormalizes the
data set k and is determined consistently by the global fit: of
course, large renormalizations with respect to ϵk are
disfavored by the large penalties to be paid in the global
analysis; σik is the statistical error on the data point ik, while
the factor ðωkfik − FÞ=ωk is the difference between exper-
imental values f (accounting for a possible renormalization

ωk, unique for each data set) and the fitting function F,
which depends on the independent variables described
above, and on the vector of fitting parameters C.
This method is the most natural generalization of the

unbiased one presented in [26] [see therein Eq. (3) and
Sec. IV] and it has already been successfully used in the
past for other astroparticle physics analyses involving
combinations of different data sets, as for instance nuclear
reaction rates in primordial nucleosynthesis [27].
Passing on to the data interpolations against which we

will be comparing our fitting procedure results, one
difficulty lies with the fact that 3-dimensional interpolation
of scattered data is a nontrivial problem in contemporary
numerical analysis, with very few (if any) relevant publicly
available tools. In order to tackle this issue, in our
interpolations we will be making the assumption that the
invariant distribution (3) scales with

ffiffiffi
s

p
only through an

overall multiplicative dependence on the inelastic pp
scattering cross section σin. Under this assumption, by
dividing the experimental data with σin we obtain a

ffiffiffi
s

p
-

invariant set of points for which only a 2-dimensional
interpolation is needed. Besides, as a by-product of our
analysis we have reevaluated the inelastic cross section as
described in Appendix B.
The interpolations were performed by means of the

Python routine SmoothBivariateSpline contained in the
scipy library, choosing piecewise cubic polynomials as
interpolating functions. Note that the routine does not
actually perform an exact interpolation, but rather finds a
compromise between the smoothness of the interpolating
function and the closeness to the experimental data.
Estimating a statistically meaningful uncertainty band in

this approach is fairly tricky. What we did was to consider
each experimental best determination and error as the mean
and standard deviation of a Gaussian probability distribu-
tion of the cross section at that point. We then sampled
these distributions accordingly, thus creating a large num-
ber of pseudoexperimental points. Each set of points is then
interpolated (and, depending on the variable one is inter-
ested in, eventually integrated over cos ϑ and the proton
incident energy/proton flux) to obtain an “envelope band”
for the quantity of interest. The average between maximum
and minimum of the envelope at each point then defines an
“average interpolation curve.”

III. RESULTS

A. Validation of fitting method

As a preliminary exercise, and in order to validate our
kinematical data conversion and fitting routines, we
checked if the fit of Eq. (6) in [11] is reproduced, of
course restricting ourselves to the data sets available at the
time [18–23]. The parametrization of the invariant cross
section is in this case
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E
d3σ
dp3

¼ σinðsÞð1 − xRÞD1e−D2xR

× ½D3ð
ffiffiffi
s

p ÞD4e−D5pT þD6e−D7p2
T �; ð9Þ

where σin is the total inelastic cross section for pp
collisions for which here, and only here, we used the
parametrization adopted in [11]

σinðsÞ ¼ σ0

�
1 − 0.62e−

EincðsÞ
0.2 sin

�
10.9

E0.28
inc ðsÞ

��
; ð10Þ

where EincðsÞ is the incident kinetic energy in GeV defined
as EincðsÞ ¼ s=ð2mpÞ − 2mp and σ0 ¼ 44.40 mbarn. We
show in Table II our best-fit values and 1σ errors for the
cross section parameters Di in Eq. (9). A modest disagree-
ment with the results of [11] was initially found only forD1

andD2, which eventually we could attribute to a typo in the
fitting parameter values reported in their Table V. If we
invert D1 with D2, not only do we obtain a very good
agreement with our results, but also a reduced chi-squared
χ2ν ≃ 3.6, the same value the authors quote in their paper.
By insisting in interpreting literally the values of their
Table V, we would find χ2ν ≃ 9.9, clearly inconsistent with
the value of 3.6. In Fig. 2 we display the comparison of the
best fit and 3σ uncertainty band of the source term derived
with our best-fit values of the parameters in Table II, and
the best-fit source term with the results reported in [11] with
D1 and D2 inverted. The two results are essentially
indistinguishable.

B. Analysis of NA49 data

Once our routines are validated, we proceed first with fits
to the NA49 data set only. We use the functional form

E
d3σ
dp3

¼ σinðsÞð1 − xRÞC1e−C2xR

× ½C3e−C4pT þ C5e−C6p2
T �; ð11Þ

where σinðsÞ is defined in Appendix B, Eq. (B2). This
functional form is a simplified version of the standard
parametrization proposed in [28] (it has four parameters
less), which we found to provide an accurate and more
compact description of the data. Note that we implicitly
assume some form of scaling, in that the only dependence
on s is given by the overall multiplication with the inelastic
cross section. The best-fit values and the 1σ errors are
reported in Table III, with the corresponding fit having a
reduced chi-square χ2ν ¼ 1.3 for 137 degrees of freedom.
The comparison between data and fitted function (along
with the corresponding 3σ bands) is presented in Fig. 3. We
see that the data are well represented by the fitting function,
Eq. (11), for all the pT and xR values.
Next, we checked that the chosen fitting formula does

not impose too strong a theoretical bias. To that purpose, as
described in Sec. II C, we performed an “educated”
interpolation of the data by dividing the data points by
σinðsNA49Þ and assuming that the resulting function is
independent of s. The final function which is obtained
by remultiplying by σinðsÞ thus still has a dependence on s,
albeit a trivial one, via the overall factor σinðsÞ. The
comparison between our fitting and interpolating proce-
dures is shown in yellow in Fig. 4. The vertical lines
correspond to the equivalent antiproton energy spanned
by the NA49 experiment, where an interpolation is mean-
ingful. In order to obtain a reasonable interpolation outside
this interval, we supplemented the data sets with “fake”
points at the boundaries of the interpolation grid with very
large errors that do not artificially influence the curve, yet
are sufficient to prevent the numerical routine from being
driven to extreme functional form interpolations (for
example, negative cross sections). No reasonable error
can be however assigned outside the region covered by
the data, apart for a lower limit that should be at least as
large as the maximum relative width of the yellow band.
The fact that the average interpolation curve is always
within ∼3σ of the best fit previously obtained suggests that
this 3σ band is roughly representing the maximum uncer-
tainty (at least where data exist), accounting not only for

TABLE II. Best-fit values and 1σ errors for the parameters Di in Eq. (9) resulting from a fit to the [11] data set.

D1 (error) D2 (error) D3 (error) D4 (error) D5 (error) D6 (error) D7 (error)

4.22(0.66) 3.435(0.016) 0.0067(0.0014) 0.0510(0.050) 3.609(0.021) 0.0209(0.0010) 3.086(0.083)

FIG. 2 (color online). Comparison of the source term for
antiproton production in pp collisions as obtained in [11] (see
however text for a correction in their table) and in this work, by
refitting the same data sets with the same functional form, with
our nominal 3σ statistical error band. Vertical dot-dashed lines
show the domain of energy actually covered by the experiments
analyzed.
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statistical errors, but also for possible theoretical biases,
acting as additional systematics, related to the choice of the
fitting function.

C. Global analysis

Finally, we proceed to the global analysis of all available
data on pp → p̄þ X listed in Table I. In this case, given
that we wish to describe data referring to quite different

ffiffiffi
s

p
values and covering different ðpT; xRÞ regions, it is
expected that we will have to introduce some complication
with respect to the previous paragraph. In this spirit, we
tried numerous different functional forms, essentially
variations of the standard parametrization proposed in
[28]. We present here results on our two most successful
attempts, which also provide interesting insights on the
extrapolation to regions where data are either scarce or
altogether unavailable, a point that we shall discuss in more
detail in Sec. VA.
As a first step, we used an improved version of Eq. (11),

introducing an explicit dependence on s, namely

E
d3σ
dp3

¼ σinðsÞð1 − xRÞC1e−C2xR

× ½C3ð
ffiffiffi
s

p ÞC4e−C5pT þ C6ð
ffiffiffi
s

p ÞC7e−C8p2
T �: ð12Þ

This parametrization of the cross section is similar to the
one proposed in [28] except for the absence of a

ffiffiffi
s

p
exponent in the ð1 − xRÞC1 term. The fit gives a reduced
chi-square of χ2ν ¼ 4.16, with a number of degrees of
freedom of 385. The best-fit values and uncertainties are

reported in Table IV. We have also checked that considering
the exact form as in [28] we obtain an even worse fit to the
data (χ2ν ¼ 5.6 with 385 degrees of freedom).
Motivated by the relatively poor quality of the fit, we

tried an extended version of Eq. (12), namely

E
d3σ
dp3

¼ σinðsÞð1 − xRÞC1e−C2xR j½C3ð
ffiffiffi
s

p ÞC4e−C5pT

þ C6ð
ffiffiffi
s

p ÞC7e−C8p2
T þ C9ð

ffiffiffi
s

p ÞC10e−C11p3
T �j; ð13Þ

where the absolute value simply prevents the function from
becoming negative in some corners of parameter space.
Compared to the previous function, this one further con-
tains the exponential of a cubic function of pT and an
additional s dependence. The best-fit parameters for
Eq. (13) are reported in Table V. This parametrization
yields a somewhat better χ2ν ¼ 3.30 for 382 degrees of
freedom. In order to test the validity of the scaling
hypothesis, we obtain that the fit to the same data with
Eq. (13), containing no dependence on s but not in σinðsÞ,
gives a reduced χ2ν ¼ 4.82.
The improved value of χ2ν is obtained at the expense of

some rescaling of the data sets. With respect to our
best result given by Eq. (13), the measurements reported
in [13,14,18–23] are renormalized respectively by factors ωk
of f0.87; 1.04; 1.16; 0.98; 0.95; 1.13; 1.02; 1.16g. Therefore
the NA49 data [14], which represent the bulk of the fitting
procedure, are renormalized by a negligible ∼2% while
[13,18,19,23] by more than 10%. Interestingly, the largest
renormalization value is 16% for the BRAHMS data set [13]
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FIG. 3 (color online). Comparison between NA49 data with the fitting function of Eq. (11) (see Table III), with 3σ error bands. For
clarity, the data and the theoretical curves at each pT value have been multiplied by a factor of 0.9npT , where npT

is the integer counting
the pT , from lower to higher (i.e. for pT ¼ 0.60 GeV=c2 the rescaling is 0.96).

TABLE III. Best-fit parameters and 1σ errors to the NA49 data [14] with Eq. (11).

C1 (error) C2 (error) C3 (error) C4 (error) C5 (error) C6 (error)

7.56(1.15) 0.245(0.148) 0.0164(0.0025) 2.37(0.13) 0.0352(0.0020) 2.902(0.059)
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giving a factor of 1.16, which is still not particularly
significant given the statistical errors, yet perhaps indicative
of some “theoretical error” effects which become more
prominent when an agreement over a large energy range is
demanded. We display in Fig. 5 the comparison of the cross
section best fit and 3σ uncertainty band according to Eq. (13)
with the data sets [14,18–23]. We omit the comparison with
the BRAHMS results, because in this case the cross section
has only been measured along a line in the ðpT; xRÞ space
(see Fig. 1). Nevertheless, the difference between our best-fit
cross section and the data in [13] is at most ∼30%. We see
that most of the data are well reproduced by the fitting
function of Eq. (13) at all pT values. This is true in particular
for the NA49 data, except for a slight overestimation at
the lowest pT value. We have however checked that a
20% shift in the differential cross section for pT < 0.15
has a negligible effect on the antiproton source term (less
than 5%).
We then repeated the interpolation analysis, previously

only performed for NA49, for the entire data set. In this

case, the parameter space coverage is such that there is no
need to supplement the data set with “fake” points, as
previously done for the NA49 data alone. The spline
method results in this case are, thus, fully data driven,
modulo our implicit assumption concerning the cross
section

ffiffiffi
s

p
scaling according to an overall factor σinðsÞ.

In Fig. 6 we compare the results obtained for the
antiproton source term through our fits according to
Eqs. (13) and (12), as well as the estimate based on our
spline interpolation. The energy range where pp data
(except for BRAHMS) are available is bracketed by the
vertical lines. We see that above 10 GeV, and within the
region where experimental data are available, all three
methods yield compatible results. At lower and higher
energies, however, there is a significant departure of the
three estimates. We will discuss the implications of these
results in much more detail in Sec. VA.
In order to compare the results derived in this section to

previous published proton-proton cross section estimates,
we show in Fig. 7 the best-fit and 3σ uncertainty band
source term calculated with our results and the best-fit
source term derived with the parametrizations adopted in
[11,12]. In the range of antiproton kinetic energy where
data exist, our 3σ band is marginally compatible with
the parametrization in [11,12], which is overestimated
(underestimated) below (above) about 20 GeV.

IV. CONTRIBUTIONS FROM NEUTRONS
AND NUCLEI

In order to obtain the total antiproton source term, two
more effects should be taken into account: the effects of
nuclear projectiles and targets in the collisions, and the
yield coming from antineutron production. An exhaustive
treatment of both subjects goes beyond our current pur-
poses. For completeness, however, in the following we
summarise the rescalings of the yield from the pp → p̄
process that are usually adopted in the literature to account
for both the processes, and some of the issues involved.
Concerning nuclear enhancements (effects of proton-

nucleus, nucleus-proton, and nucleus-nucleus collisions),

TABLE IV. Best-fit values and 1σ errors for the parameters Ci in Eq. (12) derived with a fit to all data sets.

C1 (error) C2 (error) C3 (error) C4 (error) C5 (error) C6 (error) C7 (error) C8 (error)

4.499(0.040) 3.41(0.11) 0.00942(0.00083) 0.445(0.027) 3.502(0.018) 0.0622(0.0086) −0.247ð0.049Þ 2.576(0.027)

TABLE V. Best-fit values and 1σ errors for the parameters Ci in Eq. (13) derived with a fit to all data sets.

C1 (error) C2 (error) C3 (error) C4 (error) C5 (error) C6 (error)

4.448(0.035) 3.735(0.094) 0.00502(0.00036) 0.708(0.019) 3.527(0.014) 0.236(0.024)

C7 (error) C8 (error) C9 (error) C10 (error) C11 (error)

−0.729ð0.036Þ 2.517(0.027) −1.822ð0.009Þ10−11 3.527(0.022) 0.384(0.021)

FIG. 4 (color online). Comparison between the function
Eq. (11) fitted to NA49 data, with 3σ error band (solid curve
with cyan/blue shaded band), and interpolated curve (dashed red),
with the interpolation envelope band, yellow/light shading. The
dashed vertical lines correspond to the equivalent antiproton
energy sampled by the NA49 experiment, where an interpolation
is actually justified.
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FIG. 5 (color online). Differential cross section for antiproton production in pp scattering, as a function of xR, for different pT values.
The curves refer to the 3σ uncertainty band around the best fit obtained with a fit of Eq. (13) to the data sets in Table I. The data, from top
left to bottom right, are from [14,18–23]. For the sake of clarity, the data from [19] and [14] and the relevant theoretical curves at each pT
value have been rescaled by a factor 0.6npT and 0.9npT , respectively, as described in Fig. 3.
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unfortunately very few data are present, notably none for
the most important channels which are the ones involving
helium. One possible strategy to deduce cross sections for
reactions involving helium is to constrain those of nuclear
species for which some data are available, and extrapolate
from heavier species to lighter ones; see e.g. [11]. Given
that helium is quite light, however, it has often been
considered reliable to deduce the relevant cross sections
from rescaling the pp ones either with semiempirical
formulas or via hadronic models; see e.g. [9]. The most
recent dedicated studies were performed on the basis of the
Monte Carlo (MC) model DTUNUC in [29] and in [9]. The
models implemented in the software are based on the
dual parton model [30] and the Gribov-Glauber approach
for a unified treatment of soft and hard scattering processes.
The former are parametrized according to Regge

phenomenology whereas the latter rely on lowest order
perturbative QCD. Eventually, DTUNUC formed the basis
of/merged into DPMJET-III (see [31] and references
therein for further details).2

A fit of the nuclei enhancement yield of antiprotons
found in [29] compared to the one in pp collision is given
in [10]:

Qtot=Qpp ¼ 0.12ðTp̄=GeVÞ−1.67 þ 1.78; ð14Þ

with the above expression assuming a 10% density ratio of
He to H nuclei. Note that this ignores different spectral
indices and species-dependent spectral breaks, which have
been reported by some experiments but have not been
confirmed by preliminary results of AMS-02. To gauge
their possible effect at high energies, we address the reader
to the brief discussion in [33].
Lacking empirical information for the most relevant

channels involving helium, it is hard to assess the accuracy
of the previous models. The overall uncertainty (on the total
source term yield Qtot) was estimated in [29] to reach 40%,
from the dispersion of predictions based on different
prescriptions, but this conclusion is overly pessimistic,
since not all the models/evaluations have the same reli-
ability (some were based on obsolete prescriptions, for
instance). In [9] the error estimate was closer to 20%–25%,
provided that the pp cross section does not depart from the
Tan and Ng parametrization [12] by more than 10%, which
seems to be only marginally compatible with our results.
Since all these prescriptions do not include subtle nuclear

effects, it is also likely that the uncertainty at low energies
(where nuclear effects are expected to play a larger role) is
significantly larger than at high energy. If, in addition, one
considers the more complicated astrophysical propagation
effects at low energies (reacceleration, convection, solar
modulation)3 and the need to correctly account for (cata-
strophic and noncatastrophic) energy losses, themselves
affected by errors, it is clear that below a few GeV’s the
lower the energy the less reliable is the theoretical prediction.
Most likely, this energy window cannot be used (but very
crudely) for astroparticle physics constraints.
Another correction which is needed to infer the total

antiproton flux from σpp→p̄ consists in accounting for the
antiproton flux coming from antineutron production.
Traditionally, it has been assumed that σpp→n̄ ¼ σpp→p̄,
so that the previous results have been simply multiplied by
a factor 2. However, the NA49 Collaboration itself [36] has
reported an isospin dependence in studies of secondary
yields in np and pp collisions: in pp reactions, there is a
significant preference of the positively charged pn̄

FIG. 6 (color online). Comparison between fitted function of
Eq. (13) with 3σ band (solid curve with cyan/blue shaded band),
of Eq. (12) with 3σ band (dot-dashed curve with green/light green
shaded band) and interpolated curve (dashed red), with the
interpolation envelope band (red/orange shading). The dashed
vertical lines correspond to the equivalent antiproton energy
sampled by the global data set, where an interpolation is in
principle meaningful.

FIG. 7 (color online). The best-fit and 3σ uncertainty band
source term derived with the fit of Eq. (12) and Eq. (13) to all data
sets in Table I is shown together with the source term obtained
using [11,12] cross section parametrizations.

2Recently, a new theoretical evaluation appeared in
the Appendix of [32].

3It has been clearly shown as different propagation setups can
be responsible for a ∼50% min-max dispersion in the flux
expected at low energy [34,35].
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combination over p̄n (the opposite being true for neutron
projectiles). This results in σpp→n̄ ¼ κσpp→p̄ with κ ≃ 1.5
around xF ∼ 0 (see also Fig. 3 in [36]; xF is defined in
Appendix A), although the effect depends on xF to some
extent. Given the still rudimentary knowledge of these
effects, an energy-independent rescaling κ ≃ 1.3� 0.2
should encompass the data and be a better approximation
than the usually assumed κ ¼ 1. It is clear that addressing
these issues is of paramount importance for further reduc-
ing the uncertainties in the antiproton source term.

V. DISCUSSION AND CONCLUSIONS

A. Discussion

We now discuss our findings focusing on the global
analysis outlined in Sec. III C. As we can see in Fig. 7, for
antiproton energies lying roughly within the interval
(10,300) GeV, we find that our results on the antiproton
source term from proton-proton scattering are consistent
with previous estimates. They are moreover stable with
respect to reasonable changes in the parametrization choice
and in agreement with data-driven methods. These findings
can be understood considering that the majority of the data
lie in the T ∈ ð10; 300Þ GeV range, where the most reliable
estimates of the distribution in Eq. (3) can be obtained and
which, even prior to the NA49 and BRAHMS measure-
ments, were already discreetly populated with data. In this
sense, given that the NA49 data are not in contradiction
with previous experimental results, it is expected (and
verified) that the estimates presented in Tan and Ng [12]
and Duperray et al. [11] are in good agreement with our
findings for this energy range. Moreover, as long as a
reasonable functional form is adopted for the invariant
distribution, it is more or less bound to predict a compa-
rable source term within this energy range. The small
discrepancies of our spline interpolation and fitting
approaches could be likely attributed to the fact that the
interpolation essentially neglects the scaling violation,
while the fits do allow for some flexibility (extra depend-
ence on s) to accommodate it.
On the other hand, at low and high energies, the

relatively small amount of available data essentially implies
extrapolations of the fits performed principally for T
between 8 and 300 GeV. Consequently, moderately differ-
ent assumptions can yield significantly different results.

This is demonstrated by the fact that adopting two slightly
different parametrizations while using the same data set
changes the high-energy source term prediction quite
dramatically. Moreover, these findings are insensitive to
the inclusion or not of the BRAHMS data in the analysis,
which means that the results in [13] are not sufficient to
constrain the high-energy behavior of the invariant distri-
bution and, hence, the antiproton source function. This is
due to the fact that the data of [13] only cover the
exponentially suppressed high-pT region (similarly to the
ones of [23]); see Fig. 1. In this sense, both the low-energy
and high-energy behaviors of the invariant distribution
remain highly uncertain. Given that both the spline method
and the fit with Eq. (13) demonstrate a similar trend at high
energies, we believe that making any conclusive statement
concerning the high-energy behavior of the antiproton
inclusive cross section would be risky. This is all the more
the case since spline interpolations can be notoriously
misleading when extrapolated outside data-covered regions.
Whereas in the low-energy regime this point is not very

important, given that in any case the secondary antiproton
flux is dominated by huge uncertainties coming from
astrophysical sources (solar modulation, propagation
parameters, antiproton scattering cross sections), it is
plausible that in the region of several hundreds of GeV
and higher the main uncertainty is still due to the antiproton
production cross section.
We summarize in Table VI the pp-induced source term

along with the associated percentage uncertainties resulting
from our analysis of the NA49 data according to Eq. (11),
our global analysis according to Eqs. (12) and (13), our
spline interpolation method of the full data set, and the
previous estimates in [12] and [11], for a few representative
values of the antiproton energy. This table simply illustrates
the results reported in Figs. 6 and 7: with increasing energy,
the different approaches turn from marginally compatible
(at the lowest energies, few GeV) to fully compatible until,
towards the end of the region for which experimental data
are available, they yield very different results.
Concerning the error estimates, we also point out that the

nominal 1σ error band obtained from the χ2 minimization
procedure is underestimated, for several reasons. In some
case where χ2=d:o:f: is close to 1, as in the fit to NA49 data
only with a simple fitting formula, we showed how the
agreement with an interpolation method is only meaningful

TABLE VI. Best-fit values and corresponding percentage relative errors for the pp-induced source term (in GeV−1 cm−3 s−1), for
some representative antiproton energies and different approaches in the data analysis.

T (GeV) Eq. (11) (% error) Eq. (12) (% error) Eq. (13) (% error) Spline (% error) Tan and Ng Duperray et al.

5 1.23 × 10−30ð4.9Þ 1.47 × 10−30ð6.1Þ 1.67 × 10−30ð5.4Þ 1.38 × 10−30ð2.7Þ 1.42 × 10−30 1.40 × 10−30

10 4.31 × 10−31ð4.2Þ 4.87 × 10−31ð3.0Þ 5.17 × 10−31ð4.8Þ 4.34 × 10−31ð2.5Þ 4.96 × 10−31 4.74 × 10−31

100 1.70 × 10−33ð5.9Þ 1.82 × 10−33ð8.7Þ 1.77 × 10−33ð6.8Þ 2.03 × 10−33ð3.2Þ 1.82 × 10−33 2.04 × 10−33

500 2.42 × 10−35ð6.2Þ 2.82 × 10−35ð9.5Þ 3.39 × 10−35ð8.8Þ 3.26 × 10−35ð5.2Þ 2.38 × 10−35 3.27 × 10−35

1000 3.13 × 10−36ð6.9Þ 4.16 × 10−36ð11Þ 6.83 × 10−36ð10Þ 7.02 × 10−36ð5.8Þ 3.29 × 10−36 4.93 × 10−36
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if roughly a 3σ band is used as a typical estimate of the
error. This is the choice we presented in our plots. A similar
prescription was found to be more indicative of the real
uncertainty, once global fits were performed. In this case,
the inadequacy of the nominal 1σ error band was already
hinted at by the relatively large reduced χ2, never smaller
than χ2ν ¼ 3.30. We attribute these results to a combination
of factors: (i) underestimated experimental errors, notably
in (some of) the older data sets, due to effects that were
neglected as the feed-down we mentioned; (ii) inadequacy
of any simple functional form tested to describe faithfully
the data, especially on a large dynamic range; (iii) some sort
of more or less implicit analytical extrapolation assumption
in order to achieve coverage of the 3-dimensional space
ð ffiffiffi

s
p

; pT; xRÞ starting from a discrete set of points. Note that
this also applies to interpolation techniques, which for
instance rely on some theoretical assumptions such as
scaling. The situation may be certainly improved if high-
quality measurements such as the ones provided by NA49
could be extended to a broader dynamic range.
We also stress that outside the regions where data are

available, there is no compelling reason for either one of
our results according to Eqs. (12) and (13) to be more
realistic than the other. Whereas the agreement of all of our
computations at intermediate energies hints that the error
estimates there is fairly reliable, this is not at all the case at
very low and high energies. A more conservative approach
is to assume that in this case the error is dominated by the
extrapolation uncertainty, for which a proxy is given by the
region spanned by the ensemble of our approaches,
amounting to about 50% at 1 TeV.
As a practical summary of our analysis, we report in

Fig. 8 an estimate for the uncertainties inherent to the

production of antiprotons from inelastic pp scatterings.
The results are expressed as the ratio of the antiproton
source term in Eq. (1) to a reference value. For the blue and
the red bands, this reference value has been fixed to the
source term obtained by setting the pp production cross
section to the best fit to all the data obtained with Eq. (13)
(parameters as in Table V). Outside the vertical bands—
delimiting the energy range in which data are available—
we extrapolate the production cross section by means of the
same formula.
The blue band corresponds to considering parametriza-

tion (13) alone. By simple inspection we can clearly see
that the relevant uncertainty is maximally of the order of
10%. The red band is obtained by convoluting the uncer-
tainty bands resulting from fits through Eqs. (13) and (12)
and (within the vertical bands) the spline interpolation. This
more conservative approach sizes the uncertainties from
20% at the lowest energies to the extrapolated 50%
at 1 TeV.
The most conservative estimate is shown by the orange

band, where the additional uncertainty on the antineutron
production has been taken into account. In this case, the
normalization has been fixed to a source term in which the
antineutrons produced in pp scatterings contribute with an
energy-independent rescaling factor κ ¼ 1.3 (with respect
to 1). The relevant uncertainty band has been derived by
shifting the (red) previous convolution by an additional
factor to account for the antineutron decay, κ ≃ 1.3� 0.2,
as discussed in Sec. IV. The orange band indicates that the
antiproton source term may vary by 30% at 1 GeV, and by
up to more than 50% at 1 TeV. In the energy range where
scattering data are available (between 4 GeVand 550 GeV),
the uncertainty is of Oð20%–30%Þ nonsymmetrically
around the reference source term, with the ambiguity
increasing with energy.
Finally, although we did not include an analysis of the

uncertainties due to the contribution of nuclei to the yield, it
is obvious that the total relative uncertainty cannot be
smaller than the one showed above.

B. Conclusions

In this work we have performed a reevaluation of the
Lorentz-invariant distribution for inclusive antiproton pro-
duction in pp collisions in light of the recent results from
the NA49 and BRAHMS experiments. We have combined
these observations with older measurements at different
center-of-mass energies in order to extract a reliable
estimate both for the average value of the cross section
and for the current status of the corresponding uncertain-
ties. Our main results have been presented in Secs. III B,
III C and IV and summed up as handy fitting functions.
We have paid special attention in quantifying the extent

to which the functional form we adopt introduces theo-
retical bias, by comparing our primary results to those
obtained by using different parametrizations, data-driven

FIG. 8 (color online). Estimate of the uncertainties in the
antiproton source term from inelastic pp scattering. The blue
band indicates the 3σ uncertainty band due to the global fit with
Eq. (13), while the red band corresponds to the convolution of the
uncertainties brought by fits to the data with Eq. (13), Eq. (12)
and with the spline interpolation (see Fig. 6). The orange band
takes into account the contribution from decays of antineutrons
produced in the same reactions. Vertical bands as in Fig. 6. See
text for details.
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estimates or different subsets of the data. We are therefore
confident that the uncertainties quoted throughout our
paper are robust (cf. also the discussion in Sec. VA).
Our findings show that, despite the experimental

progress in measuring the inclusive antiproton production
cross section, uncertainties persist. In most of the well-
constrained intermediate antiproton energy range (few GeV
to few hundreds GeV), these uncertainties can be as low as
10%–15%. At higher energies, we have shown that our
knowledge is much worse, with extrapolations leading to
errors larger than ∼50% at 1 TeV.
A complete determination of the antiproton yield from

pp scattering must include the antineutron decay contri-
bution, usually assumed to be identical to the antiproton
one. A recent measurement has reported a significant
isospin dependence, which could amount to a slight
increase of the antiproton source term and be accompanied
by a non-negligible uncertainty in the overall flux.
Last but not least, we remind the reader that a significant

contribution to the cosmic antiproton flux is due to the
reactions involving helium nuclei, both in the incoming
radiation and in the ISM. The relevant cross sections have
never been measured, and the corresponding antiproton
source term can be estimated only by relying on some
theoretical models and extrapolations, introducing an addi-
tional uncertainty which is hard to quantify.
We expect that for the few years to come, these

uncertainties will continue imposing non-negligible limi-
tations on the interpretation of cosmic antiproton data,
expected to be measured by AMS-02 with an unprec-
edented accuracy. As a side effect, it appears unlikely that
any definite conclusion for dark matter indirect detection
could be drawn from a relatively featureless “excess” in the
antiproton yield, expected to be below a few tens of percent
of the overall flux, unless perhaps correlated features are
found in several different cosmic ray channels. At very low
energies, the situation is further aggravated by the poor
knowledge of astrophysical parameters, plus additional
nuclear and particle physics uncertainties related e.g. to
noncatastrophic energy losses of antiprotons.
Despite current limitations, many of these sources of

error are not irreducible, but could be addressed with
dedicated experimental campaigns. As we stressed, the
key advances would come from planning experiments with
an extended coverage in the ðpT; xRÞ plane, like NA49,
with higher energies, with helium target/projectile, and by
providing systematic analyses of antineutron yields.
Another very useful enterprise would be a reanalysis of
existing data sets with the aim of assessing the feed-down
corrections associated to different experiments. Indeed, the
CR antiprotons must include the contributions from
hyperon decays, while the current databases are not uni-
form in that respect.
Cosmic ray antiprotons offer an important tool to address

a number of astrophysical and astroparticle questions, as

certified by the resources invested in balloon-borne and
space-borne detectors in recent years. We believe that a
nuclear and particle physics commitment to measure many
of these missing ingredients should be identified as a
strategic task, to provide astroparticle missions with the
crucial laboratory input to fully exploit their results.

Note added.—During the completion of this work, we
became aware of a study by R. Kappl and M.W. Winkler
[37]. On one side, it focuses on NA49 data interpolation
rather than performing a global data set reanalysis with
fitting formulas, like ours. On the other hand, it extends to
propagated fluxes including other channels as well. As far
as a comparison is possible, our results agree with theirs
within quoted errors.
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APPENDIX A: USEFUL KINEMATICS

In order to extract the invariant distribution of Eq. (3), we
have transformed all data (when needed) in the CM frame,
expressed them in the form ðpT; xR; fð

ffiffiffi
s

p
; pT; xRÞÞ and

then performed our fit and interpolation as described in the
main text. Here we collect for convenience some useful
formulas by means of which these conversions can be done.
In what follows, all kinematic variables carrying stars are
defined in the CM frame whereas those carrying LAB
superscripts are defined in the lab frame.
Note that experiments [18,19,23] and [14] are fixed-

target experiments, whereas [20–22] and [13] are colliding
beam ones. With the exception of NA49 [14], fixed-target
experiments give their results in the lab (or, equivalently in
this case, target) frame. All other data sets are given in the
CM frame.
The experiments [18] and [19] do not provide results for

the quantity defined in (3), but rather for d2σ=dΩdp which
can be recast as [38]

d2σ
dΩdp

¼ pLAB;2
p̄

d3σ
dp3

: ðA1Þ

This leads to
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ELAB
p̄

d3σ
dp3

p̄
¼ ELAB

p̄

pLAB;2
p̄

d2σ
dΩdp

ðA2Þ

which can be computed straightforwardly from the avail-

able data using ELAB
p̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pLAB;2
p̄ þm2

p

q
.

The results are given as a function of the transverse
momentum component pT and ϑLAB, the p̄ emission angle
with respect to the incoming proton beam in the lab frame.
Since pT remains unchanged in the two reference frames,
one needs to compute the xR values which the measure-
ments correspond to. We have that

E�̄
p ¼ γCMðELAB

p̄ − vCMpLAB
p̄ cosϑLABÞ ðA3Þ

where vCM and γCM are the velocity of the CM reference
frame with respect to the lab one and the corresponding
Lorentz boost. These are given by

vCM ¼ pLAB
p =ðELAB

p þmpÞ
¼ pLAB

p =
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pLAB
p

2 þm2
p

q
þmp

�

γCM ¼ ðELAB
p pþmpÞ=

ffiffiffi
s

p
: ðA4Þ

Then, direct use of the definition (4) allows us to com-
pute xR.
Experiments [20,21] and [14] provide results for fðpþ

p → p̄þ XÞ in the CM frame, as a function of pT , and the
alternative Feynman scaling variable xF is defined as

xF ¼ 2p�
Lffiffiffi
s

p ≃ p�
L

p�
L;max

; ðA5Þ

where p�
L is the antiproton longitudinal momentum and

p�
L;max is its maximum possible longitudinal momentum.

It is thus necessary to find the correspondence between the
xR and xF scaling variables. First, from p�2

L ¼ p�2 − p�2
T

and p2 ¼ E2 −m2 we get

E�2
p̄ ¼ p�2

L þm2
p þ p�2

T ; ðA6Þ

whereas E�̄
pmax is given by (5). Direct use of (A5) and (4)

then gives

xR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2Fðs=4Þ þm2

p þ p2
T

q
E�̄
p;max

: ðA7Þ

Reference [23] provides results for fðpþ p → p̄þ XÞ in
the CM frame as a function of pT and ϑLAB, also providing
the values ϑ� of the angle in the CM frame. The pT values
remain unchanged in the CM frame. So all that is left is to

calculate xR. Since p�̄
p ¼ pT= sinϑ�, by using E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~p2 þm2
p

q
and Eq. (A13), we can calculate xR through (4).

The BRAHMS experiment [13] chooses to give its
results for the invariant cross section

1

2πpT

d2σ
dpTdy

¼ Ep̄
d3σ
dp3

p̄
ðA8Þ

as a function of the antiproton transverse momentum pT
and the antiproton rapidity in the CM frame, y�, defined as

y� ¼ 1

2
ln

�
E� þ p�

L

E� − p�
L

�
: ðA9Þ

From this definition and E�2
p̄ ¼ p�2

L þ p2
T þm2

p̄ we get

E�̄
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p̄ þ p2
T

q
cosh y: ðA10Þ

Then, xR can be calculated by means of this relation
and (4).
It is maybe useful to report the computation of the

maximal antiproton energy E�̄
pmax introduced in Eq. (5).

For a general inclusive reaction aþ b → cþ X in the CM
frame we have

ffiffiffi
s

p ¼ E�
c þ E�

X: ðA11Þ
By replacing E�

c, E�
X through E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, squaring the

resulting relation, reintroducing the energies in the crossed
terms, eliminating EX in favor of

ffiffiffi
s

p
and E�

c, using p�2 −
E�2 ¼ −m2 to eliminate p�2 and solving for E�

c we get

E�
c ¼

sþm2
c −m2

X

2
ffiffiffi
s

p ; ðA12Þ

where we introduced for compactness a slight abuse of
notation for the X system by assigning it a mass variable
mX. In reality mX simply refers to internal energy of the X
system.
Now, for s and mp fixed, we see that E�̄

p;max is obtained
through (A12) once the energy mX of the X system
becomes minimal. Conservation of baryon number fixes
mX;min ¼ 3mp (production of 3 additional protons at rest).
So we get

E�̄
p;max ¼

s − 8m2
p

2
ffiffiffi
s

p : ðA13Þ

Finally we derive the maximum antiproton angle with
respect to the incoming proton in the laboratory frame
ϑLABmax . This quantity can be derived using the condition xR ≤
1 and the definition of xR in Eq. (4). Then writing E�̄

p in the
laboratory frame [see Eq. (A3)] the condition xR ≤ 1 can be
written as

xR ¼ γCM2
ffiffiffi
s

p ðELAB
p̄ − vCMpLAB

p̄ cosϑLABÞ
s − 8m2

p
≤ 1: ðA14Þ
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By using the definition of vCM and γCM given in Eq. (A4)
we get

cosϑLABmax ¼ ELAB
p̄ ðELAB

p þmpÞ −mpðELAB
p − 3mpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ELAB
p̄

2 −m2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ELAB
p

2 −m2
p

q :

ðA15Þ

APPENDIX B: INELASTIC CROSS SECTION
PARAMETRIZATION

The inelastic proton cross section is defined as the
difference between the total pp scattering cross section
σpptot and its elastic counterpart σppel :

σppin ¼ σpptot − σppel : ðB1Þ

In order to estimate σppin for our energy region of interest, we
employ the experimental data provided by the Particle Data
Group (PDG) on the total and elastic pp cross sections [39].
We fit this data by means of the highest-ranking para-
metrization of the total proton cross section suggested by
the PDG itself, which reads

σpptot ¼ Zpp þ Bpplog2ðs=sMÞ þ Ypp
1 ðsM=sÞη1 − Ypp

2 ðsM=sÞη2
ðB2Þ

where Bpp ¼ πðℏcÞ2=M2, sM ¼ ð2mp þMÞ2, all energies
are given in GeV and all cross sections in mbarn.
Although this parametrization is given for the total

proton cross section, noticing the resemblance in the
ffiffiffi
s

p
dependence of both the total and the elastic cross section,
we employ the same functional form in order to fit the data

on both σpptot and σ
pp
el . In both cases, we include in the fitting

procedure only data referring to
ffiffiffi
s

p
> 5 GeV. Moreover,

given the large amount of relevant data available for low
ffiffiffi
s

p
values as opposed to the relative scarcity of measurements
for

ffiffiffi
s

p
> 80 GeV, we include the highest-energy data

contained in the sample in order to capture the cross
section behavior over our entire energy range of interest
in a reliable manner.
The fitting parameters for both σpptot and σppel are shown in

Table VII. The resulting functions provide very good fits to
the available data, with a χ2 per degree of freedom of 0.78
for the total cross section and 1.5 for the elastic case, where
statistical and systematic uncertainties have been added in
quadrature. With these two parametrizations at hand, we
then compute the inelastic cross section through its defi-
nition (B1). We have verified that, modulo small
differences due to the specific goals of our analysis
described before, our results are in very good agreement
not only with the PDG results on σpptot but also with the
function for σppel quoted by all LHC experiments (see
e.g. [40,41]) as well as with the results on both σpptot and
σppel by Block and Halzen [42].

[1] P. Blasi and P. D. Serpico, Phys. Rev. Lett. 103, 081103
(2009).

[2] P. Salati, F. Donato, and N. Fornengo, arXiv:
1003.4124.

[3] D. Maurin, R. Taillet, F. Donato, P. Salati, A. Barrau et al.,
arXiv:astro-ph/0212111.

[4] C. Evoli, D. Gaggero, D. Grasso, and L. Maccione,
J. Cosmol. Astropart. Phys. 10 (2008) 018.

[5] F. Donato, D. Maurin, P. Brun, T. Delahaye, and P. Salati,
Phys. Rev. Lett. 102, 071301 (2009).

[6] O. Adriani et al. (PAMELA Collaboration), Phys. Rev. Lett.
105, 121101 (2010).

[7] http://www.ams02.org/.
[8] I. Moskalenko, A. W. Strong, and O. Reimer, Astron.

Astrophys. 338, L75 (1998).

[9] F. Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul, and
R. Taillet, Astrophys. J. 563, 172 (2001).

[10] I. V. Moskalenko, A. W. Strong, J. F. Ormes, and M. S.
Potgieter, Astrophys. J. 565, 280 (2002).

[11] R. Duperray, C.-Y. Huang, K. Protasov, and M. Buenerd,
Phys. Rev. D 68, 094017 (2003).

[12] L. Tan and L. Ng, Phys. Rev. D 26, 1179 (1982).
[13] I. Arsene et al. (BRAHMS Collaboration), Phys. Rev. Lett.

98, 252001 (2007).
[14] T. Anticic et al. (NA49 Collaboration), Eur. Phys. J. C 65, 9

(2010).
[15] J.-P. Meyer, Astrophys. J. Suppl. Ser. 57, 173 (1985).
[16] H. Haino for the Ams-02 Collaboration, in Proceedings of

the 33rd International Cosmic Ray Conference, Rio de
Janeiro, 2013.

TABLE VII. Fit results for the total and elastic proton scattering
cross sections according to Eq. (B2).

Parameter Total Elastic

M 2.06 3.06
Zpp 33.44 144.98
Ypp
1

13.53 2.64
Ypp
2

6.38 137.27
η1 0.324 1.57
η2 0.324 −4.65 × 10−3

DI MAURO et al. PHYSICAL REVIEW D 90, 085017 (2014)

085017-14

http://dx.doi.org/10.1103/PhysRevLett.103.081103
http://dx.doi.org/10.1103/PhysRevLett.103.081103
http://arXiv.org/abs/1003.4124
http://arXiv.org/abs/1003.4124
http://arXiv.org/abs/astro-ph/0212111
http://dx.doi.org/10.1088/1475-7516/2008/10/018
http://dx.doi.org/10.1103/PhysRevLett.102.071301
http://dx.doi.org/10.1103/PhysRevLett.105.121101
http://dx.doi.org/10.1103/PhysRevLett.105.121101
http://www.ams02.org/
http://www.ams02.org/
http://www.ams02.org/
http://dx.doi.org/10.1086/323684
http://dx.doi.org/10.1086/324402
http://dx.doi.org/10.1103/PhysRevD.68.094017
http://dx.doi.org/10.1103/PhysRevD.26.1179
http://dx.doi.org/10.1103/PhysRevLett.98.252001
http://dx.doi.org/10.1103/PhysRevLett.98.252001
http://dx.doi.org/10.1140/epjc/s10052-009-1172-2
http://dx.doi.org/10.1140/epjc/s10052-009-1172-2
http://dx.doi.org/10.1086/191001


[17] M. Di Mauro, F. Donato, N. Fornengo, R. Lineros, and
A. Vittino, J. Cosmol. Astropart. Phys. 04 (2014) 006.

[18] D. Dekkers, J. Geibel, R. Mermod, G. Weber, T. Willitts,
K. Winter, B. Jordan, M. Vivargent, N. King, and E. Wilson,
Phys. Rev. 137, B962 (1965).

[19] J. V. Allaby, F. G. Binon, A. N. Diddens, P. Duteil, A.
Klovning et al., Report No. CERN-70-12, 1970.

[20] P.Capiluppi,G.Giacomelli,A.M.Rossi,G.Vannini,A.Bertin,
A. Bussiere, and R. J. Ellis, Nucl. Phys. B79, 189 (1974).

[21] K. Guettler et al. (British-Scandinavian-MIT Collabora-
tion), Nucl. Phys. B116, 77 (1976).

[22] J. Johnson, R. Kammerud, T. Ohsugi, D. Ritchie, R. Shafer,
D. Theriot, J. Walker, and F. Taylor, Phys. Rev. Lett. 39,
1173 (1977).

[23] D. Antreasyan, J. Cronin, H. Frisch, M. Shochet, L. Kluberg,
P. Piroué, and R. Sumner, Phys. Rev. D 19, 764 (1979).

[24] H. G. Fischer (private communication).
[25] F. Taylor, D. Carey, J. Johnson, R. Kammerud, D. Ritchie,

A. Roberts, J. Sauer, R. Shafer, D. Theriot, and J. Walker,
Phys. Rev. D 14, 1217 (1976).

[26] G. D’Agostini, Nucl. Instrum. Methods Phys. Res., Sect. A
346, 306 (1994).

[27] P. D. Serpico, S. Esposito, F. Iocco, G. Mangano, G. Miele,
and O. Pisanti, J. Cosmol. Astropart. Phys. 12 (2004) 010.

[28] A. N. Kalinovskii, M. V. Mokhov, and Y. Nikitin, Passage
of High-Energy Particles Through Matter (AIP, New York,
1989) p. 262.

[29] M. Simon, A. Molnar, and S. Roesler, Astrophys. J. 499,
250 (1998).

[30] A. Capella, U. Sukhatme, C.-I. Tan, and J. Tran Thanh Van,
Phys. Rep. 236, 225 (1994).

[31] S. Roesler, R. Engel, and J. Ranft, Proceedings of
International Conference on Advanced Monte Carlo for
Radiation Physics, Lisbon, 2000, p. 1033.

[32] M. Kachelriess and S. Ostapchenko, Phys. Rev. D 86,
043004 (2012).

[33] F. Donato and P. D. Serpico, Phys. Rev. D 83, 023014
(2011).

[34] C. Evoli, I. Cholis, D. Grasso, L. Maccione, and P. Ullio,
Phys. Rev. D 85, 123511 (2012).

[35] M. Cirelli, D. Gaggero, G. Giesen, M. Taoso, and A.
Urbano, arXiv:1407.2173.

[36] H. Fischer (NA49 Collaboration), Heavy Ion Phys. 17, 369
(2003).

[37] R. Kappl and M.W. Winkler, arXiv:1408.0299.
[38] E. Byckling and K. Kajantie, Particle Kinematics (John

Wiley and Sons, New York, 1971).
[39] http://pdg.lbl.gov/2013/hadronic‑xsections/hadron.html.
[40] G. Antchev et al. (TOTEM Collaboration), Europhys. Lett.

101, 21004 (2013).
[41] G. Antchev et al. (TOTEM Collaboration), Phys. Rev. Lett.

111, 012001 (2013).
[42] M.M. Block and F. Halzen, Phys. Rev. D 86, 014006

(2012).

NEW EVALUATION OF THE ANTIPROTON PRODUCTION … PHYSICAL REVIEW D 90, 085017 (2014)

085017-15

http://dx.doi.org/10.1088/1475-7516/2014/04/006
http://dx.doi.org/10.1103/PhysRev.137.B962
http://dx.doi.org/10.1016/0550-3213(74)90484-2
http://dx.doi.org/10.1016/0550-3213(76)90313-8
http://dx.doi.org/10.1103/PhysRevLett.39.1173
http://dx.doi.org/10.1103/PhysRevLett.39.1173
http://dx.doi.org/10.1103/PhysRevD.19.764
http://dx.doi.org/10.1103/PhysRevD.14.1217
http://dx.doi.org/10.1016/0168-9002(94)90719-6
http://dx.doi.org/10.1016/0168-9002(94)90719-6
http://dx.doi.org/10.1088/1475-7516/2004/12/010
http://dx.doi.org/10.1086/305606
http://dx.doi.org/10.1086/305606
http://dx.doi.org/10.1016/0370-1573(94)90064-7
http://dx.doi.org/10.1103/PhysRevD.86.043004
http://dx.doi.org/10.1103/PhysRevD.86.043004
http://dx.doi.org/10.1103/PhysRevD.83.023014
http://dx.doi.org/10.1103/PhysRevD.83.023014
http://dx.doi.org/10.1103/PhysRevD.85.123511
http://arXiv.org/abs/1407.2173
http://dx.doi.org/10.1556/APH.17.2003.2-4.20
http://dx.doi.org/10.1556/APH.17.2003.2-4.20
http://arXiv.org/abs/1408.0299
http://pdg.lbl.gov/2013/hadronic-xsections/hadron.html
http://pdg.lbl.gov/2013/hadronic-xsections/hadron.html
http://pdg.lbl.gov/2013/hadronic-xsections/hadron.html
http://pdg.lbl.gov/2013/hadronic-xsections/hadron.html
http://dx.doi.org/10.1209/0295-5075/101/21004
http://dx.doi.org/10.1209/0295-5075/101/21004
http://dx.doi.org/10.1103/PhysRevLett.111.012001
http://dx.doi.org/10.1103/PhysRevLett.111.012001
http://dx.doi.org/10.1103/PhysRevD.86.014006
http://dx.doi.org/10.1103/PhysRevD.86.014006

