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Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by
Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a
Virasoro symmetry of the gravity S-matrix related to Bondi, van der Burg, Metzner, and Sachs symmetry.
As shown long ago by Weinberg, the leading behavior is not corrected by loops. In contrast, we show that
with the standard definition of soft limits in dimensional regularization, the subleading behavior is
anomalous and modified by loop effects. We argue that there are no new types of corrections to the first
subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To
facilitate our investigation, we introduce a new momentum-conservation prescription for defining the
subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory
amplitudes before turning to gravity amplitudes.
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I. INTRODUCTION

Recent years have seen enormous advances in our ability
to calculate scattering amplitudes in gauge and gravity
theories. These advances allow us to address various
fundamental issues in such theories. Some time ago
Weinberg presented a theorem for the universal factoriza-
tion of scattering amplitudes when gravitons become soft
[1]. Recently Weinberg’s soft-graviton theorem was shown
to be a Ward identity [2] of the Bondi, van der Burg,
Metzner, and Sachs (BMS) [3] symmetry. Along these
lines, Strominger conjectured that an extension of
Weinberg’s theorem [4] for the first subleading terms in
the soft limit follows from BMS symmetry. Supporting
evidence has been presented recently by Cachazo and
Strominger [5], proving that it holds at tree level.
Interestingly, Cachazo and Strominger also showed that
the second-order subleading correction to the tree behavior
is also universal. These results are similar to the universal
subleading soft-photon behavior proven long ago for four-
point scattering by Low [6]. The case of subleading
behavior in four-point gravity scattering was first discussed
by Gross and Jackiw [7]. The first subleading soft-graviton
behavior was recently discussed by White using eikonal
methods [8]. Very recently, the subleading soft behavior at
tree level has also been shown to be universal outside of
four dimensions [9].
One might hope that at least the first subleading soft

behavior is a theorem valid to all loop orders, as
suggested by its link to BMS symmetry [5]. However,
symmetries at loop level are delicate because of the
need to regularize ultraviolet and infrared divergences.
The required regularization can modify Ward identities
derived from symmetries. In this paper, we demonstrate
in a simple way that graviton infrared singularities

imply that there are loop corrections to the subleading
behavior of scattering amplitudes as external gravitons
become soft, when we use the standard definition of such
limits. These corrections are effectively a quantum break-
ing of the symmetry responsible for the tree-level
behavior.
To understand the loop-level behavior of soft gravitons,

it is useful to first look at the well-studied case of loop
corrections to soft gluons in QCD [10,11]. The subleading
soft-gluon behavior was already discussed using the
eikonal approach [12]. A simple proof of the universal
subleading soft behavior of gluons at tree level was recently
given [13], following the corresponding proof for gravitons
[5]. The connection between the two theories is not
surprising. Gravity scattering amplitudes are closely related
to gauge-theory ones and can even be constructed directly
from them [14–18].
At one loop, the modifications to the leading soft-gluon

behavior are directly tied to the infrared singularities and
can be used to deduce the complete correction including
finite parts [10]. When a gluon becomes soft, there is a
mismatch between the infrared singularities at n points and
at n − 1 points, so loop corrections to the soft function are
required to absorb this mismatch. Following the gauge-
theory case, we use the infrared singularities of gravity loop
amplitudes [1,19] to deduce the existence of loop correc-
tions to the subleading soft-graviton behavior. As in QCD,
discontinuities in the infrared singularities arise as one goes
from n points to n − 1 points by taking a soft limit in the
standard way. In gravity, the leading soft-graviton behavior
is smooth because the dimensionful coupling ensures that
any discontinuity is suppressed by at least one additional
factor of the soft momentum [17]. However, since there is
less suppression in subleading soft pieces, loop corrections
survive. This allows us to demonstrate in a simple way
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that the subleading behavior of gravitons indeed has
loop corrections similar to the loop corrections that appear
in QCD. As the loop order increases, the suppression
increases. Hence, the first subleading behavior is protected
against corrections starting at two loops, and the second
subleading behavior is protected against corrections start-
ing at three loops.
This paper is organized as follows. In Sec. II, we give

preliminaries on the tree-level behavior of soft gluons and
gravitons. In Sec. III, we turn to the main subject of this
paper: the behavior of the subleading contributions at loop
level, showing that there are nontrivial one-loop corrections
to subleading soft-graviton behavior. In Sec. IV, we discuss
the all-loop behavior. We give our conclusions in Sec. V.

II. PRELIMINARIES

In this section, we summarize the soft behavior of
gravitons and gluons at tree level, including their sublead-
ing behavior.

A. Soft gravitons

At tree level, consider the soft scaling of momentum kn
of an n-point amplitude,

kα _αn → δkα _αn ; λαn →
ffiffiffi
δ

p
λαn; ~λ _αn →

ffiffiffi
δ

p
~λ _αn; ð2:1Þ

where kα _αn ¼ λαn ~λ
_α
n is the standard decomposition of a mass-

less momentum in terms of spinors. (See, e.g., Ref. [20] for
the spinor-helicity formalism used for scattering ampli-
tudes.) In the limit (2.1), an n-point graviton tree amplitude
behaves as [5]

Mtree
n →

�
1

δ
Sð0Þn þ Sð1Þn þ δSð2Þn

�
Mtree

n−1 þOðδ2Þ; ð2:2Þ

where δ is taken to be a small parameter. The soft operators
are

Sð0Þn ¼
Xn−1
i¼1

εμνk
μ
i k

ν
i

kn · ki
;

Sð1Þn ¼ −i
Xn−1
i¼1

εμνk
μ
i knρJ

νρ
i

kn · ki
;

Sð2Þn ¼ −
1

2

Xn−1
i¼1

εμνknρJ
μρ
i knσJνσi

kn · ki
; ð2:3Þ

where εμν is the graviton polarization tensor of the soft
legnandJμνi is the angular-momentumoperator forparticle i.

Sð0Þn is the leading term found long ago by Weinberg [1].
For simplicity, we suppress powers of the gravitational
coupling κ=2 here and in the remaining part of the paper.
In a helicity basis with a plus-helicity soft graviton, the
explicit forms of the operators are

Sð0Þn ¼ −
Xn−1
i¼1

½n i�hx iihy ii
hn iihx nihy ni ;

Sð1Þn ¼ −
1

2

Xn−1
i¼1

½n i�
hn ii

�hx ii
hx ni þ

hy ii
hy ni

�
~λ _αn

∂
∂ ~λ _αi

;

Sð2Þn ¼ −
1

2

Xn−1
i¼1

½n i�
hn ii

~λ _αn ~λ
_β
n

∂2

∂ ~λ _αi ∂ ~λ _βi
; ð2:4Þ

where λx and λy are arbitrary massless reference spinors,
which reflect gauge invariance. We follow the standard
conventions of sab ¼ ha bi½b a�:. The case of a minus-
helicity soft graviton follows from parity conjugation. The
first subleading behavior was discussed first in Ref. [8].
It is convenient to present the subleading behavior in

terms of a holomorphic scaling of the spinors [5]. An
advantage is that it makes the factorization channels clearer
because the universal subleading behavior appears as poles
in the scattering amplitudes. Taking leg n of an n-point
amplitude to be a soft plus-helicity graviton, we scale the
spinors as

kμn → δkμn; λαn → δλαn; ~λ _αn → ~λ _αn: ð2:5Þ

Under this rescaling, tree-level graviton amplitudes behave
as [5]

Mtree
n →

�
1

δ3
Sð0Þn þ 1

δ2
Sð1Þn þ 1

δ
Sð2Þn

�
Mtree

n−1 þOðδ0Þ;

ð2:6Þ

where Mtree
n is the n-point amplitude and Mtree

n−1 is the
ðn − 1Þ-point amplitude obtained by removing the soft
leg n. The connection of the two scalings is through little-
group scaling. The proof of universality [5] of the sub-
leading soft behavior (2.3) relies on all contributions arising
from factorizations on 1=ðka þ knÞ2 propagators in the soft
kinematics (2.5), as illustrated in Fig. 1.
Some care is needed to interpret the soft behavior in

Eq. (2.6) because the n-point kinematics of the amplitude
on the left-hand side of the equation is not the same as
the ðn − 1Þ-point kinematics normally used to define the
amplitude on the right-hand side of the equation. This
becomes an issue for the subleading soft terms because
of feed down from leading terms to subleading ones,

FIG. 1. The diagrams where leading and subleading contribu-
tions to the tree soft factor arise. Leg n is the soft leg.
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depending on the precise prescription. The prescription
chosen by Cachazo and Strominger is to explicitly impose
n-point momentum conservation on the amplitude on the
left-hand side and ðn − 1Þ-point momentum conservation
on the amplitude on the right-hand side. This constraint is
conveniently implemented via

~λ1 ¼ −
Xm
i¼3

h2 ii
h2 1i

~λi; ~λ2 ¼ −
Xm
i¼3

h1 ii
h1 2i

~λi; ð2:7Þ

so that
P

m
i¼1 λi ~λi ¼ 0. This constraint is imposed on the

amplitudes on the left-hand side of Eq. (2.6) with m ¼ n
and on the right-hand side with m ¼ n − 1.
For our loop-level study, we use a different prescription.

We interpret the expressions on both sides of Eq. (2.6) as
carrying the same n-point kinematics, without needing to
apply any additional constraints on the kinematics. The
advantage is that this prevents complicated terms from
feeding down from higher- to lower-order terms in the soft
expansion, which would obscure the structure at loop level.
This change in prescription effectively shifts contributions
between different orders in the expansion.1

B. Soft gluons

Following the same derivation as for gravitons, tree-level
Yang–Mills amplitudes also have a universal subleading
soft behavior [13]. If we scale λn → δλn, the color-ordered
amplitude behaves as

Atree
n →

�
1

δ2
Sð0ÞnYM þ 1

δ
Sð1ÞnYM

�
Atree
n−1; ð2:8Þ

where the leading soft factor is

Sð0ÞnYM ¼ k1 · εnffiffiffi
2

p
k1 · kn

−
kn−1 · εnffiffiffi
2

p
kn−1 · kn

: ð2:9Þ

The subleading one is

Sð1ÞnYM ¼ −iεnμknν
�

Jμν1ffiffiffi
2

p
k1 · kn

−
Jμνn−1ffiffiffi

2
p

kn−1 · kn

�
: ð2:10Þ

Again we have suppressed the coupling constants. Using
spinor-helicity, the plus-helicity gluon leading soft factor is

Sð0ÞnYM ¼ hðn − 1Þ 1i
hðn − 1Þ nihn 1i ; ð2:11Þ

while the subleading operator is

Sð1ÞnYM ¼ 1

hðn − 1Þ ni
~λ _αn

∂
∂ ~λ _αn−1

−
1

h1 ni
~λ _αn

∂
∂ ~λ _α1

: ð2:12Þ

An earlier description was given in Ref. [12].

III. ONE-LOOP CORRECTIONS TO
SUBLEADING SOFT BEHAVIOR

As shown by Weinberg [1], the leading soft-graviton
behavior has no higher-loop corrections. In Ref. [5],
Cachazo and Strominger demonstrated that their proposed
theorem for subleading soft-graviton behavior holds at
tree level.
Here, we demonstrate that there are nontrivial loop

corrections for the subleading soft-graviton behavior analo-
gous to the ones that appear in QCD for the leading soft
terms, using the standard definition of soft limits in dimen-
sional regularization. As in QCD, loop corrections linked
to infrared divergences necessarily appear because of mis-
matches in the logarithms of the infrared singularities at n
and n − 1 points. Divergences require a regulator which
can break symmetries at the quantum level. In this sense, we
can think of the loop corrections as due to an anomaly in the
underlying symmetry. Its origin is similar to the twistor-
space holomorphic anomaly [21], where extra contributions
arise in regions of loop integration that are singular.
In general, the structure of the loop corrections to soft

behavior is entangled with the infrared divergences. This
phenomenon is familiar in QCD [10,22], so we discuss this
case first before turning to gravity. Besides corrections that
arise from infrared singularities, we will find that there are
other loop corrections due to nontrivial factorization proper-
ties [23–25], even for infrared-finite one-loop amplitudes.

A. One-loop corrections to soft-gluon behavior

In general, loop-level factorization properties of gauge
theories are surprisingly nontrivial, in part, because of their
entanglement with infrared singularities [22]. This causes
naive notions of factorization in soft and other kinematic
limits to break down; in massless gauge theories, one can
obtain kinematic poles also from the loop integration.
However, because the infrared singularities have a universal
behavior, they offer a means for studying soft limits of loop
amplitudes with an arbitrary number of external legs.
Figure 2 shows the types of contributions to the one-loop

soft behavior when the amplitude is represented in terms
of the standard covariant basis of integrals. These consist
of “factorizing” contributions, illustrated in Fig. 2(b), and
“nonfactorizing” contributions, illustrated in Fig. 2(c).2 The
nonfactorizing contributions arise from poles in the

1We numerically confirmed in many examples that the two
prescriptions give identical results through OðδÞ in Eq. (2.2).

2In the light-cone gauge or the unitarity approach, by introduc-
ing light-cone denominators containing a reference momentum,
one can push all contributions into factorizing diagrams [11,26].
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S-matrix coming from loop integration and not directly
from propagators, as illustrated in Fig. 2(c).
As a simple example, consider the single-external-mass

box integral, displayed in Fig. 3. This is one of the basis
integrals for one-loop amplitudes. The infrared-divergent
terms of this integral are [27]

I1m4 ¼ 2icΓ
sn1s12

�
1

ϵ2

��
μ2

−sn1

�
ϵ

þ
�

μ2

−s12

�
ϵ

−
�

μ2

−sn12

�
ϵ
�
þ finite

�
; ð3:1Þ

where the labels correspond to those in Fig. 3. We also have

cΓ ¼ 1

ð4πÞ2−ϵ
Γð1þ ϵÞΓ2ð1 − ϵÞ

Γð1 − 2ϵÞ ;

si1i2…ij ¼ ðki1 þ ki2 þ � � � þ kijÞ2: ð3:2Þ

When leg n goes soft, the integral has a 1=sn1 kinematic
pole from the prefactor. While one might expect such poles
to cancel out of amplitudes, they, in fact, remain due to their
entanglement with infrared singularities. However, this link
ensures that they have a regular pattern. In general, these
nonfactorizing contributions need to be accounted for in
loop-level soft behavior and other factorization limits in
gauge theories. The same holds for the subleading soft
behavior of gravity amplitudes.
A one-loop n-gluon amplitude in QCD has ultraviolet

and infrared singularities given by [22,28]

A1-loop
n ð1; 2;…; nÞjdiv ¼ −

1

ϵ2
Atree
n ð1; 2;…; nÞσYMn ; ð3:3Þ

where

σYMn ¼ cΓ

�Xn
j¼1

�
μ2

−sj;jþ1

�
ϵ

þ 2ϵ

�
11

6
−
1

3

nf
Nc

−
1

6

ns
Nc

��
:

ð3:4Þ
In this expression, nf is the number of quark flavors, ns is the
number of scalar flavors (zero in QCD), and Nc is the
number of colors. Here, ϵ ¼ ð4 −DÞ=2 is the dimensional-
regularization parameter, and μ2 is the usual dimensional-
regularization scale. It turns out that it is best to work with
unrenormalized amplitudes containing also ultraviolet diver-
gences because the mismatch in the number of coupling
constants at n and n − 1 points causes an additional (trivial)
discontinuity in the soft behavior. By working with unrenor-
malized amplitudes, we avoid this. A key property of
Eq. (3.4) is that the terms depending on the number of
quark and scalar flavors is independent of the number of
external gluons. The terms in the summation arise from soft-
gluon singularities in the loop integration. For our purposes,
the expression in Eq. (3.4) should be interpreted as being
series expanded in ϵ. The higher-order-in-ϵ terms are
important when carrying out phase-space integration near
singular points, but we do not deal with this issue here.
Consider the soft limit of the singular parts of the

gauge-theory amplitude (3.3). The tree prefactor obeys
the simple soft behavior given in Eq. (2.8). The infrared
singularities, however, have a mismatch between n points
and n − 1 points:

σYMn ¼ σYMn−1 þ σ0YMn þOðϵ2Þ; ð3:5Þ

where

σ0YMn ¼ cΓ

�
1þ ϵ log

�−μ2sðn−1Þ1
sðn−1Þnsn1

��
: ð3:6Þ

It turns out that this mismatch can be used to deduce the
complete one-loop corrections to the leading soft factor by
matching the infrared discontinuities in the basis integrals
to the infrared discontinuities in the amplitude [10].
The leading soft behavior of an n-gluon amplitude with

any matter content for λn → δλn is then [10,11]

A1-loop
n → Sð0ÞnYMA

1-loop
n−1 þ Sð0Þ1-loopnYM Atree

n−1; ð3:7Þ

FIG. 2. At one loop, the simple tree-level soft behavior (a) is corrected by factorizing (b) and nonfactorizing (c) contributions [10]. In
gravity, the corrections are suppressed by factors of the soft momentum kn, but they affect the subleading behavior.

FIG. 3. An example of an integral that has a nonfactorizing’
kinematic pole that contributes to the soft behavior.
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where the leading one-loop soft correction function is

Sð0Þ1-loopnYM ¼ −Sð0ÞnYM
cΓ
ϵ2

�−μ2sðn−1Þ1
sðn−1Þnsn1

�
ϵ πϵ

sinðπϵÞ

¼ −Sð0ÞnYMcΓ

�
1

ϵ2
þ 1

ϵ
log

�
−μ2sðn−1Þ1
δ2sðn−1Þnsn1

�
þ 1

2
log2

�
−μ2sðn−1Þ1
δ2sðn−1Þnsn1

�
þ π2

6

�
þOðϵÞ: ð3:8Þ

The form on the first line is valid to all orders in ϵ. For our
purposes, we first expand in ϵ prior to taking the soft limit.
Now consider the subleading soft terms. Taking the

divergent part of the one-loop amplitude to have a soft limit
of the form,

A1-loop
n jdiv →

�
1

δ2
Sð0ÞnYM þ 1

δ
Sð1ÞnYM

�
A1-loop
n−1 jdiv

þ
�
1

δ2
Sð0Þ1-loopnYM þ 1

δ
Sð1Þ1-loopnYM

�
Atree
n−1jdiv; ð3:9Þ

we then solve for the divergent parts of the one-loop

corrections to the soft operators, denoted by SðiÞ1-loopnYM . We
do so by comparing the soft expansion of the left-hand side of

Eq. (3.9) to the termson the right-hand side.ApplyingSð1ÞnYM to
the infrared singularity of the ðn − 1Þ-point amplitude gives

Sð1ÞnYMσ
YM
n−1 ¼ −cΓϵ

� ½1n�
½1 ðn− 1Þ�hðn− 1Þni−

½ðn− 1Þn�
½ðn− 1Þ1�h1ni

þ ½ðn− 2Þn�
½ðn− 2Þ ðn− 1Þ� hðn− 1Þni−

½2n�
½21�h1ni

�
;

ð3:10Þ

whereweuse the formofσYMn−1 exactly as it appears inEq. (3.4)
without any additional momentum-conservation relations
imposed. Taking the one-loop correction to the subleading
soft function to be

Sð1Þ1-loopnYM ¼ −
1

ϵ2

h
σ0YMn Sð1ÞnYM − ðSð1ÞnYMσ

YM
n−1Þ

i
þOðϵ0Þ;

ð3:11Þ

we find that Eq. (3.9) holds. The simple form of the correction

relies on using the specific form for Sð1ÞnYMσ
YM
n−1 in Eq. (3.10).

We also interpret both sides of Eq. (3.9) as having the samen-
point kinematics.
It would be important to understand the infrared-finite

terms as well. These also have nontrivial corrections. For
the case of the infrared-finite identical-helicity one-loop
amplitudes [29], numerical analysis through 30 points
shows that the amplitudes behave exactly as tree-level
amplitudes with no nontrivial corrections. However, the
one-loop amplitudes with a single minus helicity [23] have
nontrivial subleading soft behavior. As an example, con-
sider the one-loop five-gluon amplitude [23,30],

A1-loop
5 ð1−; 2þ; 3þ; 4þ; 5þÞ ¼ i

48π2
1

h3 4i2
�
−

½2 5�3
½1 2�½5 1� þ

h1 4i3½4 5�h3 5i
h1 2ih2 3ih4 5i2 −

h1 3i3½3 2�h4 2i
h1 5ih5 4ih3 2i2

�
; ð3:12Þ

as the momentum of leg 5 becomes soft. The four-point one-loop single-minus-helicity amplitude is [31]

A1-loop
4 ð1−; 2þ; 3þ; 4þÞ ¼ i

48π2
h2 4i½2 4�3

½1 2�h2 3ih3 4i½4 1� : ð3:13Þ

Applying the tree-level operators to the four-point amplitude, as in Eq. (2.8), yields

�
1

δ2
Sð0ÞnYM þ 1

δ
Sð1ÞnYM

�
A1-loop
4 ð1−; 2þ; 3þ; 4þÞ ¼ i

48π2
h1 3i3h2 4i½1 2�
h2 3i2h3 4i3

�
1

δ2
h4 1i

h4 5ih5 1i þ
1

δ

½5 2�
h5 1i½1 2�

�
: ð3:14Þ

After applying the operators, we applied five-point momentum conservation to remove the antiholomorphic spinors ~λ3, ~λ4.
3

This facilitates comparison with the soft limit of the five-point amplitude (3.12). With the same constraints applied, this is
given by

3We note that the momentum-conservation prescription of Ref. [5] gives the same conclusion.
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A1-loop
5 ð1−; 2þ; 3þ; 4þ; 5þÞ → i

48π2

�h1 3i3h2 4i½1 2�
h2 3i2h3 4i3

�
1

δ2
h4 1i

h4 5ih5 1i þ
1

δ

½5 2�
h5 1i½1 2�

�

þ 1

δ

h1 4i3h3 5i
h1 2ih2 3ih3 4i3h4 5i2 ðh1 3i½1 5� þ h2 3i½2 5�Þ

�
: ð3:15Þ

While the leading-order pieces are identical, the subleading
pieces differ in Eqs. (3.14) and (3.15).
The nontrivial behavior of the single-minus-helicity

amplitudes is not surprising given that they contain nontrivial
complex poles that cannot be interpreted as a straightforward
factorization. In general, nonsupersymmetric gauge-theory
loop amplitudes contain such nontrivial poles. This phe-
nomenon complicates the construction of gauge and gravity
loop amplitudes from their poles and has been described in
some detail in Refs. [24,25]. We leave the discussion of such
infrared-finite contributions to the future.

B. One-loop corrections to soft-graviton behavior

Applying a similar analysis, it is straightforward to see
that one-loop corrections to the subleading soft-graviton
behavior do not vanish because of mismatched logarithms
in the infrared singularities. At one loop, the n-graviton
amplitude contains the dimensionally-regularized infrared-
singular terms [19,32],

M1-loop
n jdiv ¼

σn
ϵ
Mtree

n ; ð3:16Þ

where Mtree
n is the n-graviton tree amplitude, and

σn ¼ −cΓ
Xn−1
i¼1

Xn
j¼iþ1

sij log

�
μ2

−sij

�
; ð3:17Þ

where cΓ is defined in Eq. (3.2). As in QCD, the logarithms
that appear at n points are not identical to the ones
appearing at ðn − 1Þ points. The logarithms in the infrared
singularity that differ between an n- and ðn − 1Þ-graviton
amplitude are

σ0n ¼ −cΓ
Xn−1
i¼1

sin log

�
μ2

−sin

�
: ð3:18Þ

While this mismatch does not affect the leading soft
behavior because of the suppression from the sin factors,
it does affect subleading terms.
By absorbing the mismatches into corrections to the

subleading soft operator, we find that in the soft limit
λn → δλn, the infrared singular terms behave as

M1-loop
n jdiv →

�
Sð0Þn

δ3
þ Sð1Þn

δ2
þ Sð2Þn

δ

�
M1-loop

n−1

�����
div

þ
�
Sð1Þ1-loopn

δ2
þ Sð2Þ1-loopn

δ

�
Mtree

n−1

�����
div

; ð3:19Þ

where

Sð0Þ1-loopn jdiv ¼ 0;

Sð1Þ1-loopn jdiv ¼
1

ϵ
½σ0nSð0Þn − ðSð1Þn σn−1Þ�;

Sð2Þ1-loopn jdiv ¼
1

ϵ

�
σ0nS

ð1Þ
n − ðSð2Þn σn−1Þ

þ
Xn−1
i¼1

½n i�
hn ii

�
~λ _αn
∂σn−1
∂ ~λ _αi

�
~λ
_β
n

∂
∂ ~λ_βi

�
: ð3:20Þ

Similar to the gauge-theory case, the simple form of these
corrections to the subleading soft operators relies on using
the form of σn−1 obtained from Eq. (3.17) with no addi-
tional momentum-conservation relations imposed. We
again also interpret both sides of Eq. (3.19) as having
the same n-point kinematics.
We have checked numerically through 10 points that

the infrared-finite identical-helicity graviton amplitudes
[33] satisfy the same subleading soft behavior as the tree
amplitudes. However, more generally we expect a more
complicated behavior due to the nontrivial factorization
properties of loop amplitudes [23,24]. Such nontrivial
factorization properties have been discussed for gravity
theories in Refs. [25,34]. Indeed, by numerically analyzing
the infrared-finite one-loop five-graviton amplitude with a
single minus helicity from Ref. [34] and the one-loop four-
graviton amplitude with a single minus helicity from
Ref. [35], we find that the second subleading soft behavior
has nontrivial corrections. We leave a discussion of the
infrared-finite corrections to the graviton soft behavior to
the future.

IV. ALL-LOOP-ORDER BEHAVIOR
OF SOFT GRAVITONS

As we demonstrated in the previous section, the sub-
leading soft behavior has loop corrections. In this section,
we argue that the first subleading soft behavior has no
corrections beyond one loop and that the second subleading
behavior has no corrections beyond two loops.

A. General considerations

The all-loop leading soft-graviton behavior was dis-
cussed in some detail in Sec. 5.2 of Ref. [17]. Here we
follow this discussion for the subleading behavior. As
already noted for gauge theory, potential contributions to
the soft behavior can be divided into factorizing and
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nonfactorizing contributions [22] when the amplitude is
expressed in terms of covariant Feynman integrals. We
consider these types of contributions in turn.
The factorizing contributions of the type displayed in

Fig. 4 depend on the soft momentum kn and one additional
momentum ka. After the Lorentz indices of polarization
tensors are contracted, no other Lorentz invariants are
present other than san. By dimensional analysis, the
L-loop correction contains an additional factor κ2L of
the gravitational coupling relative to the tree-level contri-
bution in Fig. 1 and therefore must contain relative factors
of sLan. This gives a suppression of one soft momentum kn
for each additional loop.
The nonfactorizing contributions displayed in Fig. 5

have a similar suppression. The nonfactorizing contribu-
tions arise in regions where loop momenta become soft in
addition to the external soft leg. For example, in the one-
loop case displayed in Fig. 5(a), as kn → 0, we must also
have the loop momentum go as l1 → 0 in order to obtain a
nonfactorizing contribution to the soft behavior; otherwise,
there would be no large contribution for kn → 0, or
equivalently for λn → 0. In this region, l2 ¼ l1 − kn,
l3 ¼ l1 − kn − kb, and l4 ¼ l1 þ ka all go on shell. After
integration, this leads to potential kinematic poles in san or
sbn, or equivalently in λn. However, because gravity has an
extra power of soft momentum, either kn or l1 in the vertex
attaching leg n to the loop will suppress the pole. Similarly,
at two loops, illustrated in Fig. 5(b), potential contributions
arise when additional loop momenta become soft, in this
case l5. Once again, the dimensionful coupling ensures that
there will be additional factors of soft momenta in the

numerator. More generally, after integration, we get an
additional L factors of sjn compared to the gauge-theory
case, where j can be any momentum in the amplitude.
The net effect is that there are no loop corrections to

the leading soft behavior, no corrections beyond one loop
for the first subleading soft behavior, and no corrections
beyond two loops for the second subleading soft behavior.
We therefore expect the general form of the L-loop
behavior for a plus-helicity graviton with λn → δλn to have
no loop corrections beyond two loops.

B. All-loop behavior of leading infrared singularities

Since there should be no corrections beyond two loops,
we expect that the L-loop leading infrared-divergent terms
should behave in the soft limit as

ML-loop
n jlead div →

�
Sð0Þn

δ3
þ Sð1Þn

δ2
þ Sð2Þn

δ

�
ML-loop

n−1

�����
lead div

þ
�
Sð1Þ1-loopn

δ2
þ Sð2Þ1-loopn

δ

�
MðL−1Þ-loop

n−1

�����
lead div

þ Sð2Þ2-loopn

δ
MðL−2Þ-loop

n−1

�����
lead div

: ð4:1Þ

We check this using the known all-loop-order form of
infrared singularities in gravity theories [1,19]. The infrared
singularities of gravity amplitudes are given by

Mn ¼ SnHn; ð4:2Þ

where Mn is a gravity amplitude valid to all loop orders
and Hn is the infrared-finite hard function. The all-loop
infrared singularity function is a simple exponentiation of
the one-loop function (3.16):

Sn ¼ exp

�
σn
ϵ

�
: ð4:3Þ

From this equation, we see that the leading infrared singularity
at L loops is simply given in terms of the tree amplitude:

ML−loop
n jlead div ¼

1

L!

�
σn
ϵ

�
L
Mtree

n : ð4:4Þ

This gives us a simple means for testing Eq. (4.1) and
also for finding the leading infrared-singular part of the

two-loop operator, Sð2Þ2-loopn . We do so by taking the
difference of the soft expansion on both sides of
Eq. (4.1) and using the previously determined operators
in Eq. (3.20). We need the soft expansion of the leading
infrared-singular part of ML-loop

n , given by
FIG. 5. Sample nonfactorizing (a) one- and (b) two-loop
contributions to the soft behavior.

FIG. 4. Sample factorizing (a) one- and (b) two-loop contri-
butions to the soft behavior.
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σLn
L!

Mtree
n →

ðσn−1 þ δσ0nÞL
L!

�
Sð0Þn

δ3
þ Sð1Þn

δ2
þ Sð2Þn

δ

�
Mtree

n−1;

ð4:5Þ
where σ0n is defined in Eq. (3.18). We also need the results
of acting on ðσLn−1=L!ÞMtree

n−1 with the tree-level soft
operators,

�
Sð0Þn

δ3
þ Sð1Þn

δ2
þ Sð2Þn

δ

�
σLn−1
L!

Mtree
n−1: ð4:6Þ

Evaluating these, we deduce the leading infrared-divergent
contribution to the two-loop soft operator to be

Sð2Þ2-loopn jlead div ¼
1

ϵ2

�
1

2
ðσ0nÞ2Sð0Þn − σ0nðSð1Þn σn−1Þ

−
�
1

2

Xn−1
i¼1

½n i�
hn ii

�
~λ _αn
∂σn−1
∂ ~λ _αi

�
2
��

: ð4:7Þ

The lack of higher-loop corrections to the soft operators is a
consequence of the fact that they are suppressed by addi-
tional powers of the soft momentum. As before, the form
of σn−1 in the correction must be specifically as given
in Eq. (3.17).

V. CONCLUSIONS

Recently a generalization of Weinberg’s soft-graviton
theorem for the subleading behavior was proposed [4,5].
(See also the previous work from White [8].) Here we
showed that, unlike the leading soft-graviton behavior,
the subleading soft behavior requires loop corrections. In
QCD, loop corrections to the leading soft functions make
up for mismatches in the infrared singularities of n-point
and ðn − 1Þ-point amplitudes. Applying this observation
to gravity, we obtained the leading infrared-singular loop
contributions to the subleading soft-graviton operators
valid to all loop orders. This proves in a simple way that
there necessarily are nonvanishing loop corrections to soft-
graviton behavior. In addition, in the simple example of a
five-graviton amplitude with a single minus helicity, we
found additional corrections to the second subleading
behavior, not linked to infrared singularities. These come
from the nontrivial complex factorization properties of
generic loop amplitudes [22–25,34].
Following the discussion for the leading soft-graviton

behavior [1,17], we argued that there are no loop correc-
tions to the first subleading soft behavior beyond one loop
and no new corrections to the second subleading behavior
beyond two loops. This is connected to the dimensionful
coupling of gravity. In the regions contributing to the soft
limit, an extra power of the soft momentum is obtained for
each additional loop, suppressing the contributions. By the
third loop order, there is a sufficient number of powers of

the soft momentum to suppress further corrections to the
soft operators.
We also discussed the form of subleading corrections

to the soft behavior in gauge theory as a warmup for the
gravity case. It is interesting to note that the subleading soft
behavior in QCD might be useful for improved soft-gluon
approximations.
An important remaining task is to determine the loop

corrections to the general subleading soft behavior of the
infrared-finite terms in both gauge and gravity theories.
While this is simple in special cases, such as for identical-
helicity amplitudes [29,33], in general the task is compli-
cated by the nontrivial complex factorization properties
of loop amplitudes [22–25,34], on top of well-understood
feed downs from infrared singularities. We leave general
studies of the soft behavior of infrared-finite terms in gauge
and gravity amplitudes to future work.
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Note Added.—In this paper we have used the standard
definition of dimensionally regularized soft limits where
terms are kept from the series expansion of the dimen-
sional-regularization parameter in the soft limit. We do so
because it matches the one needed for scattering amplitudes
and associated physical processes as they are normally
computed. After the appearance of the first version of this
paper, a new paper appeared [36], showing that in some
simple supersymmetric examples, loop corrections to the
soft operators can be removed by altering the longstanding
standard definition of soft limits. This alteration involves
keeping the dimensional-regularization parameter finite
before taking the strict soft limit, which has the effect of
dropping terms.
The lack of loop corrections found in the examples of

Ref. [36] is not surprising and is a simple consequence of
the lack of discontinuities [10,22] with the reordered limits.
This is connected to the well-known fact that with a finite
dimensional-regularization parameter ϵ < 0, or equiva-
lently D > 4, there are no infrared singularities. One can
also view the prescription as equivalent to taking soft limits
on integrands instead of the integrated expressions because
one can push limits through the integral when they are
smooth. (One can apply soft limits directly at the integrand
level, but that is a distinct problem from the one for
integrated amplitudes.) As an example, we immediately see
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from the first line of Eq. (3.8) that one-loop corrections to
the leading soft function in QCD vanish for kn → 0 if we
hold ϵ < 0 fixed.
However, there are a number of reasons why it is

important to use the standard dimensional-regularization
procedure for taking soft [10,11] or other limits. To be
useful for obtaining cross sections, soft limits must be
compatible with cancellations of infrared singularities
between real-emission and virtual contributions. One might
imagine keeping ϵ finite in both contributions in an attempt
to treat them on an equal footing. However, the use of four-
dimensional helicity states on external legs makes this
problematic. Even in the well-understood standard defi-
nition of soft limits, one must be careful not to violate
unitarity because of the incompatible treatment of real-
emission and virtual contributions. (See, for example,
Ref. [37].) Moreover, in QCD the modified prescription
disrupts the cancellation of leading infrared singularities
when ϵ → 0 because it alters the real-emission sigularities
without changing corresponding virtual ones.
Even if there were a way to avoid difficulties with real-

emission contributions, keeping ϵ finite in virtual contri-
butions would lead to serious complications as well. In
general, loop amplitudes are computed only through a fixed
order in ϵ because the higher-order contributions are rather
complicated, except in simple supersymmetric cases, and
do not carry useful physical information for the problem at
hand. (For an example of the typical forms that loop
amplitudes take, see Ref. [38].)

The single-minus-helicity infrared-finite amplitudes are
a good example of why amplitudes are normally series
expanded in ϵ. As noted in Secs. III A and III B, these
amplitudes have another type of loop correction to soft
behavior coming from nontrivial complex factorization
channels and not from infrared discontinuities. (Since
the first version of our paper appeared, He, Huang, and
Wen thoroughly investigated the single-minus-helicity
amplitudes [39], among other topics, confirming our
finding of nontrivial loop corrections.) In general, such
amplitudes are known only for ϵ ¼ 0 [23,34]. It would be
highly nontrivial to obtain the higher-order in ϵ contribu-
tions for the purpose of attempting to prevent renormaliza-
tion of the soft operators. Furthermore, we note that loop
corrections to soft behavior are, in fact, quite useful for
understanding the analytic structure of amplitudes and their
associated physical properties. More generally, experience
shows that it is overwhelmingly simpler to absorb com-
plications associated with dimensional regularization into
loop corrections of soft limits rather than to deal with
higher order in ϵ terms in amplitudes.
Consequently, while it may be tempting to change the

standard definitions of dimensional regularization and
soft limits in order to remove loop corrections to soft
operators associated with infrared singularities, we greatly
prefer the standard definitions because of their well-under-
stood consistency, simplicity, and applicability to problems
of physical and theoretical interest.
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